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Abstract
Given a directed graph G and a positive integer k, the Arc Disjoint r-Cycle Packing problem
asks whether G has k arc-disjoint r-cycles. We show that, for each integer r ≥ 3, Arc Disjoint
r-Cycle Packing is NP-complete on oriented graphs with girth r. When r is even, the same
result holds even when the input class is further restricted to be bipartite. On the positive side,
focusing on r = 4 in oriented graphs, we study the complexity of the problem with respect to two
parameterizations: solution size and vertex cover size. For the former, we give a cubic kernel with
quadratic number of vertices. This is smaller than the compression size guaranteed by a reduction
to the well-known 4-Set Packing. For the latter, we show fixed-parameter tractability using an
unapparent integer linear programming formulation of an equivalent problem.
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1 Introduction

Disjoint Cycle Packing is a fundamental problem in graph theory and combinatorial
optimization. Given a (directed or undirected) graph G and a positive integer k, the
objective of the Disjoint Cycle Packing problem is to determine whether G has k (vertex
or arc/edge) disjoint cycles. All variants of Disjoint Cycle Packing are NP-complete
[3, 13, 23] and therefore have been studied in various algorithmic realms. The fixed-parameter
tractable (FPT) algorithm (with respect to the number k of cycles as the parameter) [7]
given by Bodlaender in 1994 for Vertex Disjoint Cycle Packing is one of the earliest
results in the parameterized complexity framework. This problem does not admit polynomial
kernels [9] but has a lossy kernel [28]. However, Edge Disjoint Cycle Packing has a
polynomial kernel (and hence is also FPT) [9].

While Disjoint Cycle Packing in undirected graphs is amenable to parameterized
algorithms, their directed-analogues are not. On directed graphs, Vertex Disjoint Cycle
Packing and Arc Disjoint Cycle Packing are both W[1]-hard [3, 31]. Therefore,
studying this problem on a subclass of directed graphs and studying Disjoint r-Cycle
Packing (where the length of each cycle in the solution set is required to be r) are natural
directions of research. Both Vertex Disjoint Cycle Packing and Arc Disjoint Cycle
Packing are NP-complete but FPT on tournaments [5, 6]. However, these problems are
W[1]-hard on bipartite digraphs [3, 31]. In this paper, we focus on Arc Disjoint r-Cycle
Packing in oriented graphs. Bessy et. al., have shown that Arc Disjoint 3-Cycle
Packing is NP-Complete on tournaments [5]. From this, it follows easily (by reduction via
subdivision of arcs) that, for each q ≥ 1, Arc Disjoint 3q-Cycle Packing is NP-complete
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5:2 Packing Arc-Disjoint 4-Cycles in Oriented Graphs

on oriented graphs with girth 3q, and that the input class can be restricted to be bipartite
when q is even. This leaves open the complexity of Arc Disjoint r-Cycle Packing in
digraphs for r ̸≡ 0 mod 3. Our first set of results close this gap.

We show that Arc Disjoint r-Cycle Packing is NP-complete on oriented graphs for
each integer r ≥ 3, by a reduction from a variant of Satisfiability [23, LO1].

(Theorem 1) For each integer r ≥ 3, Arc-Disjoint r-Cycle Packing on oriented
graphs of girth r is NP-complete. Further, for each even integer r ≥ 4, this result holds
even when the input graph is restricted to be bipartite.

It is easy to verify that Arc Disjoint r-Cycle Packing reduces to r-Set Packing.
In r-Set Packing, given a family F of sets over a universe U , where each set in the
family has cardinality at most r, and a positive integer k, the objective is to decide whether
there are sets S1, . . . , Sk ∈ F that are pairwise disjoint. Note that r is fixed. Given an
instance (G, k) of Arc Disjoint r-Cycle Packing, the instance (E(G), C, k) of r-Set
Packing where C is the set of r-cycles of G is equivalent to it. It is well-known that r-Set
Packing admits a kernel with O(kr) sets [17] and O(kr−1) elements [1, 29] leading to a
straight-forward O⋆(2O(k log k))-time algorithm. Further, using the standard color-coding
technique [2, 12, 30], r-Set Packing admits an O⋆(2O(k))-time algorithm. These results
imply that Arc Disjoint r-Cycle Packing in general digraphs admits an FPT algorithm
with running time O⋆(2O(k)) and a polynomial kernel. However, the kernel with O(kr) sets
and O(kr−1) elements for r-Set Packing does not straightaway give a kernel of same size
for Arc Disjoint r-Cycle Packing. Restricting our attention to Arc Disjoint 4-Cycle
Packing, we obtain a cubic kernel with quadratic number of vertices.

(Theorem 2) Arc Disjoint 4-Cycle Packing in oriented graphs has a kernel with
O(k3) edges and O(k2) vertices.

In parameterized complexity, solution size is one of the most natural and almost always
the first parameter considered for an optimization problem. Though this parameterization
has proven to be fruitful, solution size does not reflect the input structure. Therefore,
structural parameters like treewidth, the size of a vertex cover, the size of a feedback vertex
set and in general the size of a modulator to a family of graphs have been considered in the
literature [11, 12, 16, 18, 24]. In the context of Disjoint Cycle Packing, the parameters
that have been studied are treewidth, the size of a vertex cover, the size of a feedback vertex
set and a modulator to a cluster graph and max leaf number [8, 24]. The importance in
these structural parameters is partly due to their practical relevance and partly due to their
role in identifying parameterizations that yield FPT algorithms. In this spirit, we study
the complexity of Arc Disjoint 4-Cycle Packing parameterized by the size of a vertex
cover (of the underlying undirected graph). We first reduce this problem to Arc Disjoint
4-Cycle Packing in oriented bipartite graphs parameterized by the size ℓ of one of the
parts of the bipartition. Then we define a new equivalent problem of building a multidigraph
with certain decomposition properties and give an integer linear programming formulation for
it where the number of variables is a function of ℓ. Finally, by invoking the FPT algorithm for
Integer Linear Programming parameterized by the number of variables [12, 22, 25, 26],
we obtain the following result.

(Theorem 3) Arc Disjoint 4-Cycle Packing in oriented graphs is FPT with respect
to size of a vertex cover as the parameter.
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Road Map. The paper is organized as follows. In Section 2, we give the necessary definitions
related to directed graphs. In Section 3, we show the NP-completeness of Arc Disjoint
r-Cycle Packing in oriented (bipartite) graphs of girth r. In Section 4, we describe
FPT algorithms and polynomial kernels for Arc Disjoint 4-Cycle Packing. Finally, we
conclude with some remarks and open problems in Section 5.

2 Preliminaries

The set {1, 2, . . . , n} is denoted by [n]. A multidigraph is a pair (V,A) consisting of a set V
of vertices and a multiset A of ordered pairs of vertices (called arcs) in V . A directed graph
(or digraph) is a multidigraph (V,A) where A is a set of ordered pairs of distinct vertices in
V . Note that a digraph is a multidigraph with no self-loops or multiple/parallel arcs. An arc
is specified as an ordered pair of vertices and this pair of vertices are called as its endpoints.
A matching is a collection of arcs that do not share any endpoint. For a digraph G, V (G)
and A(G) denote the set of its vertices and the set of its arcs, respectively. An oriented graph
is a digraph G having no pair of vertices u, v ∈ V (G) with (u, v), (v, u) ∈ A(G). A bipartite
(di)graph is a (di)graph G whose vertex set can be partitioned into two sets X and Y such
that every arc/edge in G has one endpoint in X and the other endpoint in Y . We denote
such a digraph as G[X,Y ] and say that (X,Y ) is a bipartition of G.

Two vertices u, v are said to be adjacent in G if (u, v) ∈ A(G) or (v, u) ∈ A(G). For a set
of arcs F , V (F ) denotes the union of the sets of endpoints of arcs in F . A vertex u is said to
be an in-neighbour of v if (u, v) ∈ A(G). Similarly, a vertex u is said to be an out-neighbour
of v if (v, u) ∈ A(G). For a vertex v ∈ V (G), its out-neighborhood, denoted by N+(v), is
the set {u ∈ V (G) | (v, u) ∈ A(G)} and its in-neighborhood, denoted by N−(v), is the set
{u ∈ V (G) | (u, v) ∈ A(G)}. The out-degree and in-degree of a vertex v are the sizes of its
out-neighborhood and in-neighborhood, respectively. For a set X ⊆ V (G) ∪A(G), G−X
denotes the digraph obtained from G by deleting X.

A path P in G is a sequence (v1, . . . , vk) of distinct vertices such that for each i ∈ [k − 1],
(vi, vi+1) ∈ A(G). We say that P starts at v1 and ends at vk and also refer to v1 and vk as the
endpoints of P . The set {v1, . . . , vk} is denoted by V (P ) and the set {(vi, vi+1) | i ∈ [k− 1]}
is denoted by A(P ). A cycle C in G is a sequence (v1, . . . , vk) of distinct vertices such that
(v1, . . . , vk) is a path and (vk, v1) ∈ A(G). The set {v1, . . . , vk} is denoted by V (C) and the
set {(vi, vi+1) | i ∈ [k− 1]} ∪ {(vk, v1)} is denoted by A(C). The length of a path or cycle X
is the number of vertices in it. A cycle (path) of length q is called a q-cycle (q-path) and a
cycle on three vertices is also called a triangle. A collection of q-cycles is called a Cq-packing
or a q-cycle packing.

For details on parameterized algorithms, we refer to standard books in the area [12, 14,
19, 21].

3 NP-Completeness

In this section, we show that for each even integer r ≥ 4, Arc-Disjoint r-Cycle Packing
is NP-complete on oriented bipartite graphs of girth r and for each integer r ≥ 3, Arc-
Disjoint r-Cycle Packing is NP-complete on oriented graphs of girth r. It is easy to
verify that Arc Disjoint r-Cycle Packing is in NP. To prove NP-hardness, we give
a polynomial-time reduction from a variant of the Satisfiability problem. Let SAT(1,
2) denote Satisfiability restricted to formulas with at most 3 variables per clause and
each variable occurring exactly once negatively and once or twice positively in the formula.

FSTTCS 2022
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Figure 1 Gadget corresponding to the variable Xi that appears negatively in C1 and positively
in C2 and C3. Here, circles and squares denote a bipartition.

It is well-known that Satisfiability is NP-complete when restricted to instances with 2
or 3 variables per clause and at most 3 occurrences per variable [32, Theorem 2.1]. By a
straightforward transformation of instances of this problem into instances of SAT(1, 2), it
follows that SAT(1, 2) is also NP-complete.

Now, we proceed to the NP-hardness of Arc-Disjoint r-Cycle Packing. First, we
show the hardness of Arc-Disjoint 4-Cycle Packing and then move on to the general
case. Consider an instance ψ of SAT(1,2) with n variables and m clauses. From ψ, we
construct an oriented bipartite graph G such that ψ is satisfiable if and only if G has an
arc-disjoint 4-cycle packing of size m + n. Let {X1, X2, . . . , Xn} and {C1, C2, . . . , Cm} be
the sets of variables and clauses, respectively, in ψ. We consider the ordering of the variables
(and clauses) given by the increasing order of their indices. The construction of G from ψ is
as follows.

For every i ∈ [n], add a set of six vertices {xi, yi, zi, pi, qi, ri} where (xi, pi, yi, qi, zi, ri) is
a directed path and (ri, xi), (xi, qi), (yi, ri), (pi, zi) ∈ A(G).
For every j ∈ [m], add two vertices cj and dj along with the arc (cj , dj).
For every i ∈ [n] and j ∈ [m] such that Xi appears in Cj ,

if the appearance is as a negative literal, then add arcs (dj , xi) and (pi, cj).
if the appearance is as a positive literal and this is the first such appearance, then add
arcs (dj , xi) and (qi, cj).
if the appearance is as a positive literal and this is the second such appearance, then
add arcs (dj , zi), (ri, cj).

Refer to Figure 1 for an illustration. In order to prove the correctness of the reduction,
we first make some observations about the type of 4-cycles in G. Notice that for each clause
Cj , the vertices cj and dj in G respectively have out-degree one and in-degree one. Hence,
any 4-cycle containing one of these vertices must contain the arc (cj , dj). Further, observe
that if a 4-cycle contains the arc (cj , dj), then the other two vertices of that cycle must
belong to the the same variable gadget Xi for some i ∈ [n]. We will refer to such a cycle as
a clause-variable cycle involving Cj and Xi. Notice that if there is a clause-variable cycle
involving Cj and Xi, then it must be one of the following: (cj , dj , xi, pi), (cj , dj , xi, qi) or
(cj , dj , zi, ri). The first one will be referred to as the negative clause-variable cycle and the
other two will be referred to as positive clause-variable cycles.

▶ Observation 3.1. Let j ∈ [m]. If a 4-cycle in G contains a vertex cj or dj, then it must
be a clause-variable cycle. In any arc-disjoint 4-cycle packing of G, there is at most one
clause-variable cycle involving Cj.

Now, consider a 4-cycle of G that does not contain cj or dj vertices for any j ∈ [m]. In any
such cycle, all its four vertices must belong to the same variable gadget Xi for some i ∈ [n].
This is because there are no edges between vertices that belong to two distinct variable
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Figure 2 The 3 different variable cycles highlighted in red with the clause-variable cycles that
are arc-disjoint to it highlighted in blue and the clause-variable cycles that are not arc-disjoint to it
shown separately in grey.

gadgets. Any such 4-cycle whose vertex set is contained in the variable gadget of Xi would
be referred to as a variable cycle of Xi. Notice that the variable cycles of Xi possible are
(xi, pi, yi, ri), (xi, pi, zi, ri) and (xi, qi, zi, ri). We will call (xi, pi, yi, ri) as the first positive
variable cycle of Xi, (xi, pi, zi, ri) as the second positive variable cycle of Xi and (xi, qi, zi, ri)
as the negative variable cycle of Xi. Note that all these three cycles contain the arc (ri, xi).
Hence, we can make the following observation.

▶ Observation 3.2. Any 4-cycle in G which is not a clause-variable cycle must be a variable
cycle. Let i ∈ [n]. In any arc-disjoint 4-cycle packing of G, there is at most one variable
cycle of Xi.

▶ Observation 3.3. Let i ∈ [n].
The first positive variable cycle of Xi is arc-disjoint from positive clause-variable cycles
involving any clause Cj and Xi.
The negative variable cycle of Xi is arc-disjoint from negative clause-variable cycles
involving any clause Cj and Xi.
If Xi appears positively in clauses Cj and Ck, then the positive clause-variable cycle
involving Cj and Xi is arc-disjoint from the positive clause-variable cycle involving Ck

and Xi.
The following is another crucial observation.

▶ Observation 3.4. Suppose F is a family of arc-disjoint 4-cycles in G. Let i ∈ [n].
If F contains a negative clause-variable cycle involving clause Cj and Xi for some j ∈ [m],
then F cannot contain a (first or second) positive variable cycle of Xi.
If F contains a positive clause-variable cycle involving clause Cj and Xi for some j ∈ [m],
then F cannot contain a negative variable cycle of Xi.

Refer to Figure 2 for an illustration.

FSTTCS 2022



5:6 Packing Arc-Disjoint 4-Cycles in Oriented Graphs

▶ Lemma 3.1. ψ is a Yes-instance of SAT(1,2) if and only if (G,m+n) is a Yes-instance
of Arc-disjoint 4-Cycles.

Proof. From Observations 3.1 and 3.2, it follows that any arc-disjoint 4-cycle packing of G
can contain at most m+ n cycles.

Suppose ψ is a Yes-instance of SAT(1,2). We will produce a family F consisting of
m + n arc-disjoint 4-cycles in G. Let τ be a satisfying truth assignment of ψ. When ψ

is evaluated on τ , in each clause Cj of ψ, at least one literal gets the truth value True.
From each clause Cj , choose any one literal lj which gets the truth value True and do the
following.

if lj is a positive occurrence of a variable Xi, then add a positive clause-variable cycle
involving Cj and Xi to F .
if lj is a negative occurrence of a variable Xi, then add the negative clause-variable cycle
involving Cj and Xi to F .

For each variable Xi do the following.
if Xi is assigned to be True, add the first positive variable cycle of Xi to F .
otherwise, add the negative variable cycle of Xi to F .

From Observation 3.3, it follows that the cycles added to F are arc-disjoint. Further, we
have added m+ n cycles to F .

To prove the converse, suppose there exist a family F consisting of m+ n arc-disjoint
4-cycles in G. We will produce a truth assignment τ that satisfies ψ. By Observations 3.1
and 3.2, among the cycles in F , exactly m are clause-variable cycles and exactly n are variable
cycles, one corresponding to each variable. If the variable cycle of Xi is a positive variable
cycle, assign Xi to be True. If the variable cycle of Xi is a negative variable cycle, assign Xi

to be False. This defines the truth assignment τ . Now, it remains to show that τ satisfies ψ.
Consider any clause Cj of ψ. Since F contains exactly m clause-variable cycles, there must
be a clause-variable cycle in F that involves Cj and some variable Xi. By Observation 3.4,
if the variable cycle of Xi in F is a positive variable cycle, then the clause-variable cycle in
F involving Cj and Xi is a positive clause variable cycle. If this happens, then Xi appears
positively in Cj . As per our truth assignment τ , we have assigned Xi to be True and hence,
the clause Cj will be satisfied. Similarly, from Observation 3.4, we can also show that if
variable cycle of Xi in F is a negative variable cycle, then we would have assigned Xi to
False, in which case as well, the clause Cj will be satisfied by τ . Since the same argument
holds for every clause Cj , we can see that τ satisfies all clauses of ψ simultaneously. ◀

Lemma 3.1 along with the fact that the reduction described runs in polynomial time
leads to the following result.

▶ Lemma 3.2. Arc-Disjoint 4-Cycle Packing in oriented bipartite graphs is NP-complete.

Now, we give a generalization of the above reduction by constructing a graph Gr from ψ,
for each integer r ≥ 4. If r = 4, then Gr = G. If r > 4, then we make the following two
modifications in G to obtain Gr.

For every i ∈ [n], replace the arc (ri, xi) in G by a path Pi = (ri, ai,1, ai,2 . . . , ai,r−4, xi)
of length r − 2 from ri to xi in Gr.
For every j ∈ [m], replace the arc (cj , dj) in G by a path Qj = (cj , bj,1, bj,2 . . . , bj,r−4, dj)
of length r − 2 from cj to dj in Gr.

By extending similar arguments as in the case of G, it can be seen that for any j ∈ [m] if a
cycle in Gr contains either vertex cj or vertex dj , then that cycle must contain the entire
path Qj . Further, similar to G, for any cycle of Gr that does not contain cj or dj vertices for
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any j ∈ [m], all vertices of the cycle must belong to the same variable gadget Xi for some
i ∈ [n] and the cycle must necessarily contain the entire path Pi. From these arguments, it
can be seen that Gr has no cycles of length less than r.

By extending our earlier definitions, r-cycles in Gr that contain Qj for some j ∈ [m] will
be called as clause-variable cycles and r-cycles in Gr that contain Pi for some i ∈ [n] will be
called as variable cycles. The terminology of negative and positive clause variable cycles can
also be generalized in the same manner. It can be seen that a variable cycle that contains Pi

has exactly two vertices from outside Pi and they both belong to the gadget of variable Xi

itself and a clause-variable cycle that contains Qj has exactly two vertices from outside Qj

and they both belong to the same variable gadget.
Our remaining arguments for the case when r = 4 also extend easily so that the statements

of Observation 3.1, Observation 3.2, Observation 3.3, Observation 3.4 and Lemma 3.1 can
be generalized by replacing G with Gr and 4 with r. It may be noted that the graph Gr

obtained has girth r and when r is even, Gr is bipartite. Further, it is known from the
literature that Arc-Disjoint 3-Cycle Packing is NP-complete for tournaments [5]. Hence,
we have the following theorem, obtained as a generalization of Lemma 3.2.

▶ Theorem 1. For each integer r ≥ 3, Arc-Disjoint r-Cycle Packing on oriented graphs
of girth r is NP-complete. Further, for each even integer r ≥ 4, this result holds even when
the input graph is restricted to be bipartite.

Arc Disjoint r≤ Cycle Packing is a related problem, where the cycles in the packing are
required to be of length at most r. For an odd integer r > 4, the answer to Arc Disjoint
r≤ Cycle Packing on any input oriented bipartite graph is the same as when the cycles in
the packing are restricted to be of length at most r − 1. This yields the following corollary.

▶ Corollary 1. For each integer r ≥ 4, Arc Disjoint r≤ Cycle Packing on oriented
bipartite graphs is NP-complete.

4 FPT Algorithms and Kernels for Packing Arc-Disjoint 4-Cycles

Now, we move on to describing FPT algorithms and polynomial kernels for Arc Disjoint
4-Cycle Packing in oriented graphs. First we consider the standard parameter (solution
size) and then proceed to vertex cover size as the parameter.

4.1 Solution Size as Parameter
As mentioned before, Arc Disjoint 4-Cycle Packing reduces to 4-Set Packing. While
the current fastest FPT algorithm for 4-Set Packing solves Arc Disjoint 4-Cycle
Packing in the same time, the kernel for 4-Set Packing with O(k3) elements and O(k4)
sets does not straight away give a kernel of same size for Arc Disjoint 4-Cycle Packing.
Here, we describe an O(k3) sized kernel with O(k2) vertices. Towards this, we give two
kernelization procedures - one that produces a cubic kernel and an other that gives a
quadratic vertex kernel. By combining these two procedures, we get the desired kernel.
Our algorithm crucially uses reduction rules based on the new expansion lemma [20] and
sunflowers [15, 19, 21].

Consider an instance (G, k) of Arc Disjoint 4-Cycle Packing. The first reduction
rule is a standard preprocessing rule.

▶ Reduction Rule 4.1. If there is a vertex or an edge in G that is not in any 4-cycle, then
delete it.

FSTTCS 2022
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The correctness of this rule is immediate as no C4-packing can contain a vertex or an
edge that is not a part of any 4-cycle. The next reduction rule uses the notion of sunflowers
[15, 19, 21].

▶ Definition 4.1. (ℓ-sunflower) An ℓ-sunflower in G with core C ⊆ A(G) is a set S of ℓ
4-cycles such that for any two elements S and S′ in S, we have A(S) ∩A(S′) = C.

Now, we describe a rule that identifies edges that may be assumed to be in some solution
(if the instance is a Yes-instance) using sunflowers.

▶ Reduction Rule 4.2. If there is an edge e in G such that there is a (4k − 3)-sunflower
with {e} as the core, then delete e from G and decrease k by 1.

Note that finding a sunflower with core {(u, v)} reduces to finding a maximum matching
in the auxiliary bipartite graph Guv with bipartition (A,B) defined as follows: A = N−(u),
B = N+(v) and a vertex x ∈ A is adjacent to a vertex y ∈ B if and only if (y, x) ∈ A(G).
Observe that A and B are not necessarily disjoint and we rename B so that A∩B = ∅ before
finding the matching. Thus, Reduction Rule 4.2 can be applied in polynomial time. The
correctness of the rule is justified by the following lemma.

▶ Lemma 4.1. If Reduction Rule 4.2 is applicable on (G, k), then (G, k) is a Yes-instance
if and only if (G− e, k − 1) is a Yes-instance.

Proof. Let S denote a (4k− 3)-sunflower in G with core {e}. Since e is in at most one cycle
of any 4-cycle packing of G, it is clear that (G− e, k − 1) is a Yes-instance, whenever (G, k)
is. Conversely, consider a (k − 1)-sized 4-cycle packing F of G− e. Then, |A(F)| = 4(k − 1)
and there are at most 4(k − 1) cycles in S that have an edge from A(F). Therefore, there
exists a cycle C in the sunflower S such that A(C) ∩A(F) = ∅. Then, F ∪ {C} is a k-sized
4-cycle packing of G. ◀

Subsequently, we assume that (G, k) is an instance on which Reductions Rules 4.1 and 4.2
are not applicable. Let X be a maximal set of 4-cycles in G such that for any two elements X
and Y in X , we have |A(X)∩A(Y )| ≤ 1. The following lemma shows that if X is sufficiently
large, then (G, k) is a Yes-instance.

▶ Lemma 4.2. If |X | > 16k2, then there is a set C ⊆ X of k arc-disjoint 4-cycles that can
be obtained in polynomial time.

Proof. Obtain a sequence F1, . . . ,Fr of disjoint subsets of X as follows. For i ≥ 1, consider
an arbitrary 4-cycle Ci ∈ X \

⋃i−1
j=1 Fj and let Fi be the subset of cycles in X \

⋃i−1
j=1 Fj that

share an edge with Ci. Observe that for each i ∈ [r], |Fi| ≤ 4(4(k − 1)) as Reduction Rule
4.2 is not applicable. Further, r ≥ k as |X | > 16k2. Then, C1, . . . , Ck is the required 4-cycle
packing. ◀

Lemma 4.2 lets us apply the following reduction rule.

▶ Reduction Rule 4.3. If |X | > 16k2, then replace the instance (G, k) by a constant-sized
Yes-instance.

Subsequently, we assume that |X | ≤ 16k2. Define P to be the set of all 3-paths of G that
are in some 4-cycle in X . Note that P is O(k2). The next lemma says that P “hits” all
4-cycles in G.

▶ Lemma 4.3. For every 4-cycle C in G, there is a 3-path P ∈ P such that A(P ) ⊆ A(C).



J. Babu, R. Krithika, and D. Rajendraprasad 5:9

Proof. Consider a 4-cycle C in G. If C ∈ X , then the claim trivially holds. Otherwise,
C /∈ X and by the maximality of X , there is a 4-cycle X in X such that |A(X) ∩A(C)| ≥ 2.
Let e and e′ be two common arcs of X and C. If e and e′ share an endpoint, then the 3-path
formed by e and e′ that is present in X and C is also in P and the claim holds. Otherwise, e
and e′ form a matching implying that X = C leading to a contradiction. ◀

The next rule is one that uses the notion of expansion and new expansion lemma [20].

▶ Definition 4.2 (ℓ-expansion). Let ℓ be a positive integer and H be a bipartite graph with
bipartition (A,B). For Â ⊆ A and B̂ ⊆ B, a set M ⊆ E(H) of edges is called an ℓ-expansion
of Â onto B̂ if the following properties hold.

every vertex of Â is incident to exactly ℓ edges in M .
exactly ℓ|Â| vertices in B̂ are incident to edges in M .

For an ℓ-expansion M of Â onto B̂, we call the vertices of B̂ that are endpoints of edges in
M as saturated and the remaining vertices of B̂ as unsaturated. Observe that a 1-expansion
is simply a matching of Â to B̂ that saturates Â.

▶ Proposition 4.1 (New ℓ-Expansion Lemma, [20]). Let ℓ be a positive integer and H be a
bipartite graph with bipartition (A,B). Then there exists Â ⊆ A and B̂ ⊆ B such that there
is an ℓ-expansion M of Â onto B̂ in H, N(B̂) ⊆ Â and |B \ B̂| ≤ ℓ|A \ Â|. Moreover, the
sets Â and B̂ (and M) can be computed in polynomial time.

Note that B̂ (and Â) may be empty. In that case, since |B \ B̂| ≤ ℓ|A \ Â|, we have
|B| ≤ ℓ|A|. Therefore, if |B| > ℓ|A|, then B̂ ̸= ∅. Now, we are ready to state the next
reduction rule.

We will apply Proposition 4.1 on an auxiliary bipartite graph Ĝ with bipartition (A,B)
where A = P and B = V (G) \ V (P), and a vertex (x, y, z) in A is adjacent to v ∈ B if and
only if (x, y, z, v) is a 4-cycle in G.

▶ Reduction Rule 4.4. Let Â ⊆ A and B̂ ⊆ B be the sets and M be the ℓ-expansion computed
by Proposition 4.1 on Ĝ for ℓ = 1. Let U ⊆ B̂ be the set of unsaturated vertices of M . Delete
U from G.

Observe that after the application of this rule, if B̂ is empty, then |V (G)| ≤ 3|A|+ |B| ≤
3|A|+|A|. Otherwise, B̂ is non-empty and |V (G)| ≤ 3|A|+|B̂\U |+|B\B̂| ≤ 3|A|+|Â|+|A\Â|.
In both cases, |V (G)| is O(k2). The correctness of the rule is justified by the following lemma.

▶ Lemma 4.4. (G, k) is a yes-instance if and only if (G− U, k) is a yes-instance.

Proof. The “if” part of the claim follows from the fact that G− U is a subgraph of G. Now,
suppose (G, k) is a yes-instance. Let C be a k-sized 4-cycle packing of G. Note that by
Lemma 4.3, for each C ∈ C, there exists a 3-path PC in P that is contained in C. Let Ĉ be
the set of cycles in C such that for each C ∈ Ĉ, there is a 3-path PC in Â such that PC is
contained in C. Note that each 4-cycle in C \ Ĉ is also a 4-cycle in G− U as N(B̂) ⊆ Â. Let
Ĉ = {C1, . . . , Cr} and for each i ∈ [r], let Pi = (xi, yi, zi) be a 3-path in Â that is contained
in Ci. As Â is saturated by a matching M in Ĝ, there is a vertex vi ∈ B matched to the
vertex Pi in Â. By replacing each Ci by (xi, yi, zi, vi) in C, we get a k-sized 4-cycle packing
of G− U . ◀

Now, we have the following property on an instance on which none of the reduction rules
described so far is applicable.
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▶ Proposition 4.2. If (G, k) is an instance of Arc Disjoint 4-Cycle Packing on which
none of the Reduction Rules 4.1, 4.2, 4.3, 4.4 is applicable, then G has O(k2) vertices.

Note that since all the reduction rules described can be applied in polynomial time,
Proposition 4.2 gives us a quadratic vertex kernel for Arc Disjoint 4-Cycle Packing.
However, this kernel may have O(k4) edges.

Next, we describe a procedure that reduces the number of edges to O(k3). This procedure
is a stand-alone algorithm that produces a cubic kernel. We begin with the definition of
C4-partners.

▶ Definition 4.3. Two arcs (x, y) and (z, v) are called C4-partners in G if (x, y, z, v) is a
C4 in G.

For an arc (x, y) in G, Exy denotes the set of all C4-partners of (x, y). We will rightfully
treat Exy as a subdigraph of G. For a collection of subgraphs H of G, A(H) denotes⋃

H∈H A(H). For a set S and a natural number q, ⌊S⌋q denotes S itself if |S| ≤ q and an
arbitrary q-sized subset of S otherwise.

We now describe a procedure that marks a certain number of 4-cycles and takes the
subgraph spanned by the arcs of the marked cycles as the kerenel. This marking procedure
is described as Algorithm 1.

Algorithm 1 MarkingProcedure.

Require: A digraph G and a positive integer k
Ensure: A subgraph H of G on O(k3) edges such that H has an arc-disjoint C4-packing of

size k if and only if G has an arc-disjoint C4-packing of size k.
Find a maximal arc-disjoint C4-packing P in G

if |P| ≥ k then
A(H)← A(P ′) and V (H)← V (P ′), where P ′ is any subset of k distinct cycles from

P.
return H

for each arc (x, y) ∈ A(P) do
if Exy has a matching M of size 4k then

Fxy = M

else
Let S be the set of endpoints of a maximum matching in Exy

Fxy ← ∅
for each vertex s ∈ S do

Let As be the set of arcs in Exy outgoing from s

Let Bs be the set of arcs in Exy incoming to s
Add ⌊As⌋4k ∪ ⌊Bs⌋4k to Fxy

for each arc (z, v) ∈ Fxy do
mark the 4-cycle (x, y, z, v)

Let H be the subgraph of G whose arc set is the union of the arcs of all the marked 4-cycles
and vertex set is the set of endpoints of its arcs.
return H

We show the correctness of MarkingProcedure in the following lemma.

▶ Lemma 4.5. Given a digraph G and a positive integer k, MarkingProcedure (Algorithm
1) returns a digraph H on O(k3) edges and O(|V (G)|) vertices such that H has an arc-disjoint
C4-packing of size k if and only if G has an arc-disjoint C4-packing of size k.
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Proof. Since H is a subgraph of G, the “only if” direction is immediate. To prove the
other direction, suppose (G, k) is an yes-instance and let Q = {Q1, . . . Qk} be an arc-disjoint
C4-packing in G which has the maximum number of edges from H. If all the cycles in
Q are present in H, then it has a k-sized packing as required. Hence for the rest of the
proof we assume Q1 is not contained in H and show that we can replace Q1 with another
4-cycle Q′

1 which is contained in H and arc-disjoint from Q2, . . . , Qk. Then the C4-packing
{Q′

1, Q2, . . . , Qk} contradicts the choice of Q.
Since Q1 is a 4-cycle in G, and P is a maximal C4-packing in G, there is an arc (x, y)

of Q1 present A(P). Let Q1 = (x, y, z, v). If (z, v) was added to Fxy by the algorithm,
Q1 would have been marked and hence Q1 would be present in H. Hence we assume that
(z, v) ̸∈ Fxy. If Exy had a matching of size 4k, then there are 4k arc-disjoint 3-length paths
from y to x in in H. At most 4(k − 1) of them can be hit by other cycles Q2, . . . , Qk of the
packing Q. Let (y, z′, v′, x) be a 3-length path in H that is arc-disjoint from Q2, . . . , Qk. We
can replace Q1 = (x, y, z, v) with Q′

1 = (x, y, z′, v′) in Q.
Suppose Exy did not have a matching of size 4k. Then either z or v (or both) belong to

S. We will argue the case when z ∈ S. The case v ∈ S is similar. Since (z, v) is not in Fxy,
the set Fxy contains 4k other edges of Exy outgoing from z. Hence there are 4k arc-disjoint
2-length paths from z to x in in H. At most 4(k − 1) of them can be hit by other cycles
Q2 . . . Qk of the packing Q. Let (z, v′, x) be a 2-length path in H that is arc-disjoint from
Q2, . . . , Qk. We can replace Q1 = (x, y, z, v) with Q′

1 = (x, y, z, v′) in Q.
We now prove a bound on the size of H. Observe that for each arc (x, y) ∈ A(P), |Fxy|

is bounded above by 4k in the first case and 8k|S| in the second case. Since |S| ≤ 2(4k − 1),
we have |Fxy| ≤ 64k2. Since |A(P)| < 4k, the total number of 4-cycles that are marked is
less than 256k3 and hence H has at most 1024k3 arcs. ◀

Applying Algorithm 1 on the instance guaranteed by Proposition 4.2, leads to the following
result.

▶ Theorem 2. Arc Disjoint 4-Cycle Packing admits an O(k3) sized kernel with O(k2)
vertices.

We remark that in Theorem 2, our focus was on only getting a cubic kernel with quadratic
number of vertices and we have not attempted to optimize the constants involved.

4.2 Vertex Cover Size as Parameter
In this section, we study the time complexity of Arc-Disjoint 4-Cycle Packing in oriented
graphs parameterized by the size of a vertex-cover. The first step is to reduce this problem
to Arc Disjoint 4-Cycle Packing in oriented bipartite graphs parameterized by the size
of the smaller part. Then we invent a new problem which is in bijective correspondence with
arc-disjoint 4-cycle packing in oriented bipartite graphs. Given an oriented bipartite graph
G, we consider the problem of building an auxiliary multidigraph H with vertex set as the
smaller part of G which can be decomposed into a disjoint union of a collection of transitive
bipartite multidigraphs, each with an upper bound on its chromatic index. We formulate
this problem as an Integer Linear Programming problem with its number of variables
and constraints, though exponential in the size of the smaller part of G, is independent of
the size of the larger part. Hence solving this integer linear program gives an FPT algorithm
for the original problem.
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▶ Lemma 4.6. Let G be an oriented graph with a vertex-cover X. G has a collection of k
pairwise arc-disjoint 4-cycles if and only if there exists a collection P of pairwise arc-disjoint
3-paths in G[X] such that the bipartite digraph GP obtained from G by deleting all the edges
inside X and adding for each P = (a, b, c) in P a new 3-path (a, bP , c) (where bP is a new
two-degree vertex) contains k pairwise arc-disjoint 4-cycles.

Proof. Suppose G has a collection C of k pairwise arc-disjoint 4-cycles. Since X is a vertex-
cover of G, for each C = (a, b, c, d) ∈ C, the intersection of C with G[X] is either the entire
C, a 3-path in C, or two vertices of C. In the first case, add (a, b, c) and (c, d, a) to P. In
the second case, add the 3-path in C ∩G[X] to P. In the third case, the two vertices of C
from X are non-adjacent and no path is added to P. By the arc-disjointness of C and the
above construction, P is a collection of pairwise arc-disjoint 3-paths in G[X]. In this case
it is easy to see that the bipartite digraph GP constructed for P also contains k pairwise
arc-disjoint 4-cycles.

In the other direction, let P be a collection of pairwise arc-disjoint 3-paths in G[X] such
that the bipartite digraph GP constructed based on it has a family C of k pairwise arc-disjoint
4-cycles. Since GP is bipartite with X as one part, every cycle C = (a, b, c, d) in C has two
non-adjacent vertices, say a and c in X and the other two vertices outside X. This splits
C into two 3-length paths (a, b, c) and (c, d, a). Let PC denote this collection of 2k pairwise
arc-disjoint paths obtained from the k cycles in C, each starting and ending in X. We will
show that each 3-path in PC is either present in G, or it can be substituted by a 3-path in
G with the same endpoints, such that the resulting collection P ′

C is pairwise arc-disjoint in
G. This would suffice to construct k pairwise arc-disjoint 4-cycles in G. Let (a, b, c) be a
3-path in PC . If b is a vertex in G, then the same path (a, b, c) is available in G as well and is
added to P ′

C . If b is a new vertex in GP but not in G, then b represented a 3-path (a, b′, c)
in G[X], Add (a, b′, c) to P ′

C instead of (a, b, c). Note that the arc-disjointness among the
newly added 3-paths is due to the arc-disjointness in P and their arc-disjointness with the
3-paths from PC is since the former is made up of arcs from G[X], while the latter is made
up of arcs across X and V (G) \X. ◀

If X has ℓ vertices, then there are at most ℓ3 3-paths in G[X] and any collection P of
pairwise arc-disjoint 3-paths has at most ℓ2/2 paths in it. Hence the number of choices for
P is upper bounded by

(
ℓ3

ℓ2/2
)
≤ (2eℓ)ℓ2/2 . Hence one can use an algorithm to solve Arc

Disjoint 4-Cycle Packing in bipartite graphs to solve the same problem for G with a
blow-up of (2eℓ)ℓ2/2 in running time.

This leads us to the study of parameterized complexity of Arc Disjoint 4-Cycle
Packing in bipartite digraphs G with bipartition L ∪ R with respect to min{|L|, |R|}
as the parameter. Consider an instance I = (G, k) with |L| = min{|L|, |R|} = ℓ. Let
L = {v1, . . . , vℓ} and R = {u1, . . . , un}.

▶ Definition 4.4. (Signature) For a vertex u ∈ R, the signature of u is a string πu =
(πu(1), . . . , πu(ℓ)) in {1,−1, 0}ℓ defined as follows.

πu(i) =


1, if u ∈ N+(vi)
−1, if u ∈ N−(vi)
0, otherwise

Observe that the signature of vertices in R can be determined in O(n) time and there are
at most 3ℓ distinct signatures. Let S denote the set of possible signatures. For each σ ∈ S,
let Rσ denote the set of vertices of R that have signature equal to σ. For each σ ∈ S, let
σ−1(+1) denote the set {vi ∈ L | σ(i) = 1} and σ−1(−1) denote the set {vi ∈ L | σ(i) = −1}.
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Given two multidigraphs G1 = (V,A1) and G2 = (V,A2) on the same vertex set, we
denote by G1 ⊎ G2 the multidigraph obtained by taking the union of G1 and G2 after
renaming the arcs in A2 so that A2 is disjoint from A1. We call G1 ⊎G2 as the disjoint union
of G1 and G2 and extend the terminology to any finite collection of graphs on a common
vertex set. A multidigraph in which for each pair of vertices u, v the number of arcs directed
from u to v is the same as the number of arcs directed from v to u is called balanced.

▶ Lemma 4.7. G has a collection of k pairwise arc-disjoint 4-cycles if and only if there
exists a collection of bipartite multidigraphs Hσ, σ ∈ S, on the vertex set L such that

(i) each arc of Hσ is directed from σ−1(+1) to σ−1(−1),
(ii) the edges of Hσ can be properly coloured using |Rσ| colours, and
(iii) the disjoint union H =

⊎
σ∈S Hσ is a balanced multidigraph with 2k arcs.

Proof. Suppose G contains an arc-disjoint collection C of 4-cycles, |C| = k. For each σ ∈ S,
we set Hσ = (L,Aσ) where Aσ contains an arc from u to w for each v ∈ Rσ such that
(u, v, w) is a path in one of the cycles in C. The first condition in the lemma follows from the
definition of signature. The second condition follows since for each v ∈ Rσ the collection of
arcs (u,w) in Hσ where (u, v, w) is a path in one of the cycles in C forms a matching in Hσ.
The third condition follows since each 4-cycle (u, v, w, x) in C (with u,w ∈ L) contributes
two opposite arcs, specifically (u,w) and (w, u), to H.

In the opposite direction, suppose we have a collection of bipartite multigraphs Hσ,
σ ∈ S, on the vertex set L, satisfying the three conditions of the lemma. We first construct a
collection P of pairwise arc-disjoint P3’s in G starting and ending in L as follows. Condition
2 assures that we can decompose the arc-set of each Hσ into at most |Rσ| matchings Hv,
v ∈ Rσ. For each arc (u,w) in Hv, add the directed path (u, v, w) to P. The first condition
in the lemma ensures that (u, v, w) is indeed a path in G. Two paths resulting from the same
matching Hv, for each v ∈ R, are arc-disjoint because of the disjointness of the end-vertices
of the two paths. Two paths resulting from Hv and Hv′ , for each v, v′ ∈ R, v ̸= v′, are
arc-disjoint since their middle vertices are two distinct vertices in R. Hence P is a collection
of arc-disjoint P3’s from G. Condition 3 guarantees that |P| = 2k and that the P3’s in P
can be perfectly paired to form a collection C of pairwise arc-disjoint 4-cycles in G, with
|C| = k. ◀

The feasibility of finding a collection of bipartite multidigraphs satisfying the conditions
of Lemma 4.7 can be checked by the following integer linear program.

Set of Variables: X =
{
xσ,u,w | σ ∈ S, u ∈ σ−1(−1), w ∈ σ−1(+1)

}
Feasible Solution: An integral assignment to the variables satisfying the following
properties.

For each signature σ ∈ S and u,w ∈ L∑
w′: xσ,u,w′ ∈X

xσ,u,w′ ≤ |Rσ| and
∑

u′: xσ,u′,w∈X

xσ,u′,w ≤ |Rσ|

For each pair u,w ∈ L∑
σ: xσ,u,w∈X

xσ,u,w =
∑

σ: xσ,w,u∈X

xσ,w,u.

Optimum Solution: A feasible solution that maximizes
∑

xσ,u,w∈X

xσ,u,w.
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Since the edge-chromatic number of bipartite multigraphs is equal to their maximum
degree [4], the second condition of Lemma 4.7 is equivalent to ensuring that Hσ has a
maximum degree at most |Rσ|. This is ensured by the first group of constraints. The second
group of constraints ensure that the disjoint union H is balanced. The edge-count of H is
the cost function to be maximized.

Integer Linear Programming is FPT when parameterized by the number of variables
by the following result.

▶ Proposition 4.3 ([12, 22, 25, 26]). An integer linear program of size L with p variables
can be solved in O(p2.5p+o(p)(L+ logMx) log(MxMc)) time where Mx is an upper bound on
the absolute values a variable can take in a solution and Mc is the largest absolute value of a
coefficient in the vector c corresponding to the objective function.

In our integer linear program, the number of variables p is equal to |X| which is O(3ℓℓ2)
and the number of constraints is O(3ℓℓ). So the size L of the integer linear program is
O(32ℓℓ3). Moreover the maximum value Mx that a variable can take is bounded by |Rσ|
which is O(n) and all the coefficients are 1 or 0. Hence, Proposition 4.3 gives the following
result.

▶ Theorem 3. Arc Disjoint 4-Cycle Packing parameterized by the size of a vertex
cover is FPT.

5 Concluding Remarks

In this work, we studied Arc Disjoint r-Cycle Packing and showed that it is NP-complete
on oriented graphs with girth r and remains so for even r when the input is further restricted
to be bipartite. For r = 4, we gave a cubic kernel (containing a quadratic number of vertices)
with respect to the number of cycles as the parameter and showed fixed-parameter tractability
with respect to the size of a vertex cover as the parameter. Improving the size of this kernel or
showing tightness and giving an FPT algorithm for the problem parameterized by treewidth
are interesting future directions. Note that treewidth of a graph is at most the size of its
vertex cover. Also, coming up with the best possible polynomial kernels possible for r > 4 is
a natural next question.

Tournaments and bipartite tournaments are well-studied special classes of digraphs with
interesting structural and algorithmic properties. While Arc Disjoint Cycle Packing is
known to be NP-complete in tournaments [5], the complexity of this problem in bipartite
tournaments is still open. Further, Arc Disjoint 4-Cycle Packing is also open in bipartite
tournaments. The NP-completeness of Arc Disjoint Cycle Packing in tournaments
was established by a reduction from SAT(1,2) to Arc Disjoint 3-Cycle Packing in
tournaments. The construction of the graph in the reduced instance may be viewed as
consisting of two phases where in the first phase, an oriented graph is constructed and in the
second phase, this graph is completed into a tournament using a decomposition of the edges
of a complete (undirected) graph into triangles [27]. The second phase of this approach does
not seem to extend to bipartite tournaments. Further, Arc Disjoint 4-Cycle Packing
in bipartite tournaments is closely related to a conjecture by Brualdi and Shen [10] that
asserts that every Eulerian bipartite tournament has a decomposition of its arcs into 4-cycles.
We believe that resolving the complexity of this problem would shed some light on this
conjecture.
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