
1 

Timber production assessment of a plantation forest: An integrated framework with 

field-based inventory, multi-source remote sensing data and forest management 

history 

Tian Gao a,b, Jiaojun Zhu a,b,*, Songqiu Deng c, Xiao Zheng a,b, Jinxin Zhang a,b, Guiduo Shang a,b,d, 1 

Liyan Huang a,b,d 2 

 3 

a Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese 4 

Academy of Sciences, Shenyang 110016, China 5 

b Qingyuan Forest CERN, Chinese Academy of Sciences, Shenyang 110016, China 6 

c Institute of Mountain Science, Shinshu University, Nagano 399-4598, Japan 7 

d University of Chinese Academy of Sciences, Beijing 100049, China 8 

 9 

* Correspondence author at: 72 Wenhua Road, Shenyang 110016, China. Tel.: +86-24-83970342; 10 

Fax: +86-24-83970300. E-Mail: jiaojunzhu@iae.ac.cn (J.J. Zhu). 11 

12 



2 

Abstract 13 

Timber production is the purpose for managing plantation forests, and its spatial and 14 

quantitative information is critical for advising management strategies. Previous 15 

studies have focused on growing stock volume (GSV), which represents the current 16 

potential of timber production, yet few studies have investigated historical 17 

process-harvested timber. This resulted in a gap in a synthetical ecosystem service 18 

assessment of timber production. In this paper, we established a Management 19 

Process–based Timber production (MPT) framework to integrate the current GSV and 20 

the harvested timber derived from historical logging regimes, trying to synthetically 21 

assess timber production for a historical period. In the MPT framework, age-class and 22 

current GSV determine the times of historical thinning and the corresponding 23 

harvested timber, by using a “space-for-time” substitution. The total timber 24 

production can be estimated by the historical harvested timber in each thinning and 25 

the current GSV. To test this MPT framework, an empirical study on a larch plantation 26 

(LP) with area of 43,946 ha was conducted in North China for a period from 1962 to 27 

2010. Field-based inventory data was integrated with ALOS PALSAR (Advanced 28 

Land-Observing Satellite Phased Array L-band Synthetic Aperture Radar) and 29 

Landsat-8 OLI (Operational Land Imager) data for estimating the age-class and current 30 

GSV of LP. The random forest model with PALSAR backscatter intensity channels 31 

and OLI bands as input predictive variables yielded an accuracy of 67.9% with a Kappa 32 

coefficient of 0.59 for age-class classification. The regression model using PALSAR 33 

data produced a root mean square error (RMSE) of 36.5 m3 ha-1. The total timber 34 
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production of LP was estimated to be 7.27 × 106 m3, with 4.87 × 106 m3 in current 35 

GSV and 2.40 × 106 m3 in harvested timber through historical thinning. The historical 36 

process-harvested timber accounts to 33.0% of the total timber production, which 37 

component has been neglected in the assessments for current status of plantation 38 

forests. Synthetically considering the RMSE for predictive GSV and misclassification 39 

of age-class, the error in timber production were supposed to range from -55.2 to 56.3 40 

m3 ha-1. The MPT framework can be used to assess timber production of other tree 41 

species at a larger spatial scale, providing crucial information for a better 42 

understanding of forest ecosystem service. 43 

 44 
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1 Introduction 48 

Timber production is the most important ecological services of plantation forests 49 

(Costanza et al. 1997). With development of human society, the demand of timber 50 

increases sharply. Timber production of natural forest hardly meet timber demand of 51 

human society due to deforestion of primary forest across the world, thus plantation 52 

forests are planted as a substitution for natural forests (Mason and Zhu 2014; Zou et al. 53 

2015). As reported by Food and Agriculture Organization (FAO) in 2010, the total 54 

area of planted forest is estimated to be 264 million ha, corresponding to 6.6% of the 55 

world’s forest area. During the past half century, China possesses the largest area of 56 

planted forests in the world, accounting for 36% (69 million ha) of the country’s total 57 

forested area. whereas only accounting for 17% (2.48 × 109 m3) of the total growing 58 

stock volume (GSV), with an average of 35.8 m3 ha-1 (Chinese Ministry of Forestry 59 

2014). The low productivity weakens the expected function of plantation forests for 60 

timber production. In this context, accurate estimation of timber production and its 61 

spatial distribution are required for a better understanding of ecological service 62 

functions and further improving timber production of plantation forests, which 63 

services for the strategic goals of plantation forest resource management (Alkemade et 64 

al. 2014; Mason and Zhu 2014; Fu and Forsius 2015). 65 

The GSV is defined as stem volume of living trees in a given area of forest, 66 

including bark but excluding branches and stumps. The GSV represents directly the 67 

amount of current timber in a stand, which is a key indicator in the context of forest 68 

management. GSV is also a major predictor for assessing biomass of forest, which 69 
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plays an important role in carbon cycle and global change issues (Fang et al. 2001; 70 

Pan et al. 2011). The GSV is traditionally estimated from field-based measurements of 71 

the diameter at breast height (DBH) collected at sample plots (Santoro et al. 2011). 72 

Alternatively, the satellite-based approach aided by forest inventory can up-scale 73 

observed extent and has thus been widely used to estimate GSV or biomass for a 74 

continuous spatial distribution (Bijalwan et al. 2010; Gao et al. 2013a). Satellite 75 

optical images have been used to estimate biomass and GSV at different scales 76 

(Houghton et al. 2007; Anaya et al. 2009; Zheng et al. 2013; Gao et al. 2013b). 77 

However, passive optical data can only sense the canopy in two dimensions, thereby 78 

making it be insensitive to sub-canopy structure, such as basal area and height of tree 79 

(Almeida Filho et al. 2007; Morel et al. 2011). Satellite-based synthetic aperture radar 80 

(SAR) data have been examined for handling this issue, due to their sensitivity to the 81 

geometric properties of forests (Liesenberg and Gloaguen 2013; Chowdhury et al. 82 

2014; Galeana-Pizaña et al. 2014; Santoro et al. 2015). Comparing to SAR data 83 

acquired at shorter wavelengths (e.g., X and C-bands), L-band (23.5 cm) SAR is 84 

particularly useful in mapping forest areas because of its better ability to penetrate 85 

into forest canopies. The L-band backscatter from forested terrain consists primarily 86 

of backscatter from stem volume (Way et al. 1994; Karam et al. 1995), thus showing 87 

greater sensitivity to the woody components. In current studies, L-band SAR data 88 

have also been proved to be more useful for GSV estimation (Imhoff 1995; Simard et 89 

al. 2002; Rosenqvist et al. 2007), although a saturation effect (L-band backscatter does 90 

not increase with GSV) has been observed. Previous literatures reports that L-band 91 
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SAR data appears well adapted to estimate the relatively low GSV of boreal forest 92 

(Peregon and Yamagata 2013; Suzuki et al. 2013), temperate forest (He et al. 2011; 93 

Cartus et al. 2012) and savanna woodlands (Carreiras et al. 2012; Mermoz et al. 2014). 94 

However, these studies on L-band SAR data-based GSV estimations are specific to 95 

each study site that caused by various environment conditions and forest structures. 96 

Considering that low GSV and structure of plantation forests in China, L-band SAR 97 

data are supposed be rather useful for the GSV estimation of plantation forests, but 98 

little attention has been paid to the issue. 99 

Timber production of plantation forests is a historical process, closely relating to 100 

forest managements. In addition to current GSV, thinning operation (or selective 101 

logging), which is considered as a component of near-natural forest management (Luo 102 

et al. 2014; Li et al. 2014a), also harvests considerable biomass, including non-timber 103 

and timber biomass. For an efficient forest management, successive thinning should 104 

be implemented as a stand growing, providing timber throughout a rotation of 105 

plantation forest. During this stand age-related process, additionally, non-timber 106 

biomass of plantation, including branches and leaves, is returned to soil or collected 107 

for fuelwood. These forest management practices have been recognized to play an 108 

important role in the terrestrial carbon cycle and the potential contribution to climate 109 

change mitigation efforts for plantation forests (Ray et al. 2009). Nevertheless, due to 110 

the extensive area of plantation forests and the long-term history of forest management, 111 

our current knowledge about the timber production of historical process is rather 112 

limited. Previous studies have reported the effects of thinning on carbon storage 113 
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(Davis et al. 2009; Nunery and Keeton 2010) and structure (Forshed et al. 2008; Zhu 114 

et al. 2010) at a stand-scale, however, these studies mainly focused on the responses 115 

of forest to management practices. Yet few studies have investigated the historical 116 

contribution of successive thinning operations to timber production at a continuous 117 

spatial scale. Although a long-term field-based inventory that recording management 118 

practices can represent the historical timber production for a given stand, it is 119 

insufficient for a large spatial scale assessment of production timber. This resulted in a 120 

gap in a synthetical ecosystem service assessment of timber production of plantation 121 

forests. 122 

In order to obtain timber production for a period, the timber harvested by 123 

historical management practices is supposed to be quantitated. In this study, timber is 124 

defined as stem volume of trees, and timber production includes harvested timber and 125 

current timber (GSV). We established a Management Process–based Timber 126 

production (MPT) framework to integrate historical logging process and current 127 

potential of timber production, trying to synthetically assess timber production for a 128 

historical period at a continuous spatial scale. In the MPT framework, age and current 129 

GSV of plantation forests are the two key parameters, and a space-for-time 130 

substitution was used to defining historical process-harvested timber. To test and 131 

apply this framework, we conducted an empirical study on a larch plantation (LP) in 132 

Saihanba Forestry Center, which is the largest plantation forest center of larch in Asia. 133 

Multi-source remote sensing data and field-based inventory were employed to estimate 134 

age and GSV of plantation forests. These two key parameters are input to the MPT 135 
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framework to assess the timber production for a period of approximate 50 years. 136 

2 Data and Methods 137 

2.1 Study area 138 

Larix spp. is one of the most important planted timber tree species of China (Zhu 139 

et al. 2010; Yan et al. 2013; Gao et al. 2015). Since the 1950s, about 3.06 million ha of 140 

LP have been planted in North China. This study location is Saihanba Forestry Center 141 

(SFC), which is the largest plantation forest center of larch in Asia (116°52–117°39′ E, 142 

42°04′–42°36′ N; ca. 93,000 ha; Fig. 1). SFC is located in a typical forest-steppe 143 

ecotone between the Inner Mongolian Plateau and North Hebei Mountain, with an 144 

elevation ranging from 1042 m to 1936 m. The climate of SFC is semi-arid and 145 

semi-humid, with a short growing season of May to September. Annual mean air 146 

temperature and precipitation were -1.2 °C and 452 mm, respectively. SFC consisted 147 

of six sub-forestry centers, by the names of Sandaohekou (SDHK), Qiancengban 148 

(QCB), Beimandian (BMD), Yinhe (YH), Sanxiang (SX), Dahuanqi (DHQ), from 149 

west to east, respectively. Since 1960s, SFC has planted over 74,000 ha of plantation 150 

forest. Currently, the forest cover of SFC reaches as high as 80%. The total extent of 151 

LP (Larix principis-rupprechtii, a principal tree species for forestation) is 152 

approximately 44,000 ha, accounting for 58% of forest land area of SFC. Most of LPs 153 

in SFC are a single species monoculture. The other forest types are Pinus sylvestris 154 

var. mongolica plantations and Betula platyphylla natural secondary forest, accounting 155 

for 27% and 11% of total forest area, respectively. 156 
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 157 

Fig. 1. Location of Saihanba Forestry Center and spatial distribution of sampling sites. 158 

2.2 Logging regime of SFC 159 

The logging operations in the study area are regulated by the forest management 160 

of SFC. Generally, LP rotation is approximately 40 years. During this period, LP 161 

experiences 5 thinning operations. For each thinning operation, approximate 20% of 162 

GSV is harvested for a stand. The first thinning operation is carried out when LP is 16 163 

to 19 years. Then, thinning operation is carried out every 4 or 5 years. The last 164 

thinning operation was conducted when LP is 37 to 39 years old. Finally, LP is 165 

clear-cut after they are older than 40 years. A small portion of LPs that are older than 166 

45 years may be reserved to produce large-diameter timber. 167 

2.3 Field data 168 

Two field surveys were conducted and 77 plots of LP were sampled during 169 
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summer (July and August) of 2013 and 2014. Each plot had a dimension of 30 × 30 m, 170 

where was settled at least 15 m far from boundary of a LP patch to ensure its 171 

representative. On each plot, DBH was measured for every tree with its diameter ≥ 4 172 

cm. Stand density and age were recorded. Thinning operation roughly in last five 173 

years was also recorded by counting stumps in a sampling plot. Since the larch is 174 

originally planted as patches, the forest structure within a patch is relatively 175 

homogeneous. Therefore, the plot-level investigation could generally represent the 176 

situation of a LP stand. In addition to the above sample data, we also collected Forest 177 

Resource Management Inventory (FRMI) data derived from SFC in 2011. FRMI is 178 

usually conducted by local forestry administrations, aiming to support forest 179 

management and production (Zeng and Zhou 2003). In this study, the field 180 

information extracted from these data to supplement our field surveys. A total of 215 181 

samples were finally obtained. These larches grown across a forest-steppe ecotone 182 

that is unique in climatic conditions and soil backgrounds, under which these trees 183 

likely had a unique architecture such as crown shape, woody element arrangement, 184 

and stem taper that determines the stem volume equation. This determination can not 185 

be more accurately reflected by a regional or national stem volume equation (Jenkins 186 

et al 2003); therefore, a local stem volume equation (Saihanba Forestry Center, 2012) 187 

was used to estimate the stem volume of the sampled trees. The equation is given by: 188 

2.56180452 ×0.00009521= DV
                      (1)

 189 

where V is stem volume (m3) and D is DBH (m). The total GSV of each plot is 190 

calculated as the sum of all trees in a plot. The calculated results for 215 samples 191 
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represented GSV of LP for the period of 2011, 2013 and 2014. To correspond 192 

temporally to remote sensing data (2010), an empirical annual increment of GSV and 193 

the records of thinning were employed to adjust the GSV value to that of 2010. 194 

2.4 Remote sensing data and pre-processing 195 

2.4.1 ALOS PALSAR 196 

The ALOS PALSAR (Advanced Land-Observing Satellite Phased Array L-band 197 

Synthetic Aperture Radar) data used in this study consisted of 1 × 1 degree (ca. 111 × 198 

111 km) mosaic tiles at a spatial resolution of 25 × 25 m for 2010, which was provided 199 

by JAXA (Japan Aerospace Exploration Agency). The strip data that show minimum 200 

response to surface moisture were preferentially selected for the period of 2010 201 

(Shimada et al. 2014). The dataset has been geometrically corrected using the 90 m 202 

SRTM Digital Elevation Model, as well as radiometrically calibrated and balanced for 203 

seasonal change between adjacent strips (Shimada and Ohtaki 2010). Two tiles were 204 

combined to generate a mosaic for study area at HH (horizontal transmit and 205 

horizontal receive) and HV (horizontal transmit and vertical receive) polarizations. A 206 

median filter with a window size of 5 × 5 pixel was applied to reduce speckle effects 207 

(Lee et al. 2009; Shimada et al. 2014). Because spatial resolution of Landsat-8 OLI 208 

(Operational Land Imager) is 30 × 30 m, the PALSAR images were resampled to the 209 

resolution of 30 × 30 m for the consistency of remote sensing dataset. The PALSAR 210 

dataset was expressed in the form of the normalized radar cross section with 211 

gamma-naught (γ0). The digital numbers (DN) signal was converted into backscatter 212 
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coefficient γ0 using the following equation (Shimada et al. 2009): 213 

83-)10(log×10= 2DNγ0

                        
(2) 214 

where DN stands for 16-bit unsigned integer digital numbers. The calculations of 215 

ALOS PALSAR mosaic data produced two features: HH and HV backscatter of 2010. 216 

These two PALSAR variables were used for GSV estimation. 217 

2.4.2 Landsat-8 OLI 218 

Landsat-8 OLI is a new sensor of the Landsat series, which has improved sensor 219 

signal-to-noise performance and associated improvements in radiometric resolution, 220 

etc. (Roy et al. 2014). The OLI bands consists of blue (0.45–0.51 μm), green (0.53–221 

0.59 μm), red (0.64–0.67 μm), near infrared (0.85–0.88 μm) and two shortwave 222 

infrared (1.57–1.65 μm and 2.11–2.29 μm) bands. OLI scenes (P123/R31) in four 223 

seasons, including spring (green-up stage, 15 May 2014), summer (growing peak 224 

stage, 29 July 2013), autumn (defoliating stage, 4 October 2013), and winter (leafless 225 

and snowless stage, 4 November, 2013), were adopted. Geometric correction was 226 

performed by approximate 50 ground control points to reduce the error to less than 227 

15m; radiometric calibration, atmospheric correction were performed using the Fast 228 

Line-of Sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) software 229 

package in ENVI 5.0. Furthermore, the 4-scene OLI images were processed with the 230 

Kauth–Thomas linear transformation, which generated 12 features (brightness, 231 

greenness and wetness for 4-scene). Combining with the original bands, a total of 36 232 

variables derived from OLI images were employed for discrimination of LP 233 
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age-classes. 234 

2.5 Random forest 235 

Random forest (RF) was used to predict age-class of LP. Random forest is a 236 

simple but robust machine learning algorithm, which can be viewed as an ensemble of 237 

individual tree-like classifiers (Breiman 2001; Rodriguez-Galiano and Chica-Olmo 238 

2012). It can handle a number of input variables, as well as quantify the contribution 239 

of each input variable (Rodriguez-Galiano et al. 2012). Two user parameters are 240 

required to run a RF model: the number of tree in forest (ntree) and the number of 241 

prediction variables used at each split to grow a decision tree (mtry). Breiman (2001) 242 

suggested that adding more trees to RF model does not induce over-training. More 243 

trees can strength stability of “out of bag” (OOB) error assessment. In order to obtain 244 

more reliable estimate of OOB error, we followed recommendations by Diaz-Uriarte 245 

and Alvarez De Andres (2006) and set ntree to 1000. Additionally, the squared root of 246 

the total number of input variables was implemented to determine mtry (Naidoo et al. 247 

2012), and this assignment of mtry value could generate acceptable results (Liaw and 248 

Wiener 2002; Ismail et al. 2010; Naidoo et al. 2012). 249 

2.6 Modelling timber production 250 

2.6.1 Framework for modelling timber production 251 

In a plantation forest ecosystem, current GSV represents standing stock of timber. 252 

In other words, it can be defined as the potential of timber production when all the 253 
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trees are clear-cut. Timber producing is a successive and historical process, which 254 

closely links to forest management. Therefore, a MPT framework was elaborated 255 

which concerns current GSV and the harvested timber derived from historical logging 256 

regimes. In the framework, age was used to descript the processed management 257 

practices (historical thinning) of plantation forest; current GSV represented the 258 

current potential of timber production. As descripted in section 2.2, LP of SFC is 259 

supposed to experience 5 thinning operations during a rotation. Considering the 260 

historical logging regime of LP, a special MPT framework was designed for 261 

modelling timber production (Fig. 2). 262 

 263 

Fig. 2. A management process–based timber production framework for larch 264 

plantation of SFC. TO refers to thinning operation. Age-class-I: ≤19 years; 265 

Age-class-II: 20~24 years; Age-class-III: 25~29 years; Age-class-IV: 30~34 266 
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years; Age-class-V: 35~39 years; Age-class-VI: ≥40 years. 267 

 268 

As descripted in Fig. 2, LP ages were divided into 6 age-classes, closely linking 269 

to the logging regime of SFC. Four age-classes were defined with an interval of 5 270 

years between 20 and 40 years, and the other two age-classes were defined by less 271 

than 19 years and larger than 40 years, respectively. The timber production of an 272 

Age-class-I LP stand is supposed to be its current GSV. The timber production of an 273 

Age-class-II LP stand is supposed to consist of the current GSV and the harvested 274 

timber (20% of GSV) when this stand is in Age-class-I. Similarly, the timber 275 

productions of LP stand of Age-class-III, IV, V and VI were assessed, via this method 276 

(Fig. 2). For example, an Age-class-VI LP stand experiences 5 thinning operations, 277 

therefore its timber production is considered as a summation of the current GSV and 278 

harvested timber through 5 thinning operations. In the MPT framework, current GSV 279 

and historical harvested timber were summed as the total timber production of a LP 280 

stand. Historical harvested timber can be calculated by times of processed thinning 281 

operations and corresponding harvested timber for each thinning operation. Therefore, 282 

current GSV and age-class are the two key parameters of the MPT framework. The 283 

latter identifies the times of processed thinning operation of a LP stand and which 284 

thinning operations have been carried out (Fig. 2). To implement this framework, a set 285 

of predictive variables derived from PALSAR data and OLI images was created for 286 

the estimations of GSV and age-class. 287 

The estimation of historical harvested timber derived from a specific thinning 288 
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operation is a practical problem. Since the historical GSV of a LP stand cannot be 289 

obtained, a “space-for-time” substitution was employed to infer past harvested timber. 290 

In this process, current GSVs of different age-classes were adopted as the 291 

substitutions for historical GSV. For example, in order to estimate the timber 292 

productions of a LP stand of Age-class-VI, the timber harvested by the fifth thinning 293 

operation, which was carried out between 35 and 39 year (Age-class-V), is required 294 

(Fig. 2). The current GSV of Age-class-V LP stand and thinning intensity (20% of 295 

GSV) were employed to produce the required value. In order to obtain the reliable 296 

substitutions for historical harvested timber, various situations were considered. 297 

Generally, forest managements and site conditions both influence plantation forest 298 

productivity. The LP management of SFC are consistently regulated, with the similar 299 

original planting density (ca. 5000 trees ha-1) and practices (thinning and pruning, 300 

etc.), thus these impacts on the historical harvested timber are limited. Site condition 301 

is another important influential factor. In SFC, larch tends to be planted in a flat area, 302 

with an altitude range of 1597 ± 168 m (statistics for 215 samples). The low variations 303 

in altitude lead a weak impact on timber production. It should be noted that aspect is a 304 

key factor, closely relating to soil properties and available water (Yimer et al. 2006). 305 

Synthetically considering these topographical factors, we divided slope range into 306 

four segments with an interval of 5°, and divided aspect into sunny slope (SW, S, and 307 

SE aspects) and shady slope (NE, N, and NW aspects). This grading generated 8 308 

topographical types (Fig. 3).  309 
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 310 

Fig. 3 The eight topographical types of SFC LP 311 

Combined with 6 age-classes, 48 combinations were produced. By overlaid the 312 

estimated GSV, a total of 48 substitutions that calculated by averaged GSV of 313 

corresponding area, were generated for calculation of historical harvested timber. At 314 

pixel level, harvested timber and GSV were summed as timber production of LP (Fig. 315 

4). Due to the wide range of Age-class-I (0 to 19 year), the GSV of low age (less than 316 

15 year) LP cannot represent harvested timber of Age-class-I. Here we assume that the 317 

ages of LP are distributed evenly in the Age-class-I, and only adopt the 20% of pixels 318 

with the highest GSV to estimate the harvested timber. 319 

 320 
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 321 

Fig. 4 Flowchart describing the process of modelling timber production of LP 322 

2.6.2 Estimation of GSV 323 

The calculated field-based GSV were correlated to the spatial corresponding 324 

pixel backscatter of PALSAR data (Fig. 4). The 2/3 of the total samples was used to 325 

adopt regression models with γ
0 

HV and γ
0 

HH, respectively. Based on the reserved samples 326 

(1/3 of the total samples), root mean squared error (RMSE) were calculated to 327 

evaluate the precision of the models. 328 

( )
2N

=1

-
N

1
=RMSE ∑

i
ObsiPredi

YY                      (3) 329 

Where YPredi is the ith prediction and YObsi is the ith observation. Finally, the best 330 

regression model and band were selected and used to map GSV for the whole study 331 

area. 332 

2.6.3 Estimation of age-class  333 

A useful approach to estimate stand age has been to use spectral reflectance, due 334 
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to its changes in chlorophyll content and the internal structure as trees gets older 335 

(Jensen et al. 1999; Dye et al. 2012). During the whole growing cycle of trees (e.g. 336 

leaf on and leaf off), remotely sensed spectral signals of different forest ages also 337 

varied (Li et al. 2014b). To capture these subtle differences in spectral response to 338 

phenological variabilities among various LP age-classes, the original six bands as well 339 

as three features produced by Kauth–Thomas linear transformation for four-season 340 

were aided for creating a set of 36 optical remotely sensed variables. Furthermore, as 341 

a plantation forest growing, its undercanopy structure changes substantially. SAR data 342 

(Section 2.4.1) can help to characterize the structure differences among varied 343 

age-class. Finally, a total of 38 variables were adapted to train RF model. In turn, the 344 

four-seasonal images and Kauth–Thomas linear transformations on the bands 345 

produced a number of variables, and some of them are probably correlated or 346 

redundant, leading to an obstacle of expected increase in accuracy 347 

(Rodriguez-Galiano et al. 2012). In order to identify the most informative predictors 348 

for the discrimination of age-class, a feature selection strategy was employed based on 349 

the RF-derived importance assessment. The optimized subsets of variables were 350 

gradually generated and further applied to a RF model to mapping LP age-classes.  351 

A confusion matrix of prediction based on OOB error was used to assess the 352 

age-class classification accuracy. In this process, each sample in OOB (ca. 1/3 of 353 

original samples) is predicted by its corresponding bootstrap (ca. 2/3 of original 354 

samples) training tree (Grimm et al. 2008). Then, predicted categories are compared 355 

to observed categories for each individual tree to calculate OOB error. Finally, the 356 
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OOB errors for all trees in the forest are aggregated to estimate overall error. OOB 357 

error is considered to be a reliable assessment of predictive accuracy (Breiman 2001; 358 

Ismail and Mutanga 2010; Adam et al. 2014; Tinkham et al. 2014). Since OOB error 359 

does not need an independent validating dataset (Lawrence et al. 2006; Grimm et al. 360 

2008), it is of particular interest regarding the forest area, where collection of 361 

abundant field-based samples is difficult. All RF computations of this study were 362 

performed by statistical software R 2.15.2. 363 

3 Results 364 

3.1 Age-class of LP 365 

The 38 input variables were used in RF model to classify age-classes of LP. The 366 

accuracy of the RF classifier for the six age-classes was 65.6%, with a Kappa 367 

coefficient of 0.56. In order to enhance the efficiency of RF classifier, RF model 368 

identified the importance of each input variable and further produced optimal subset of 369 

possible predictors by reducing redundant predictors (Fig. 5). As reducing the weaker 370 

predictors, the classification accuracy stalled or marginally increased until a turning 371 

point that 10 variables was eliminated (slope = 0.0017; R2 = 0.826; P = 0.013), and 372 

decreased afterwards (slope = ‒0.4203; R2 = 0.772; P < 0.001). Although the 373 

neighboring points could be used to divide the fitted curve and the similar trends 374 

could be observed, the R2 was lower than that of the 10-variable reduction. Finally, the 375 

classification of age-class was improved with the “best” subset (28 input variables), 376 

which has an overall accuracy of 67.9% and kappa coefficient of 0.59. 377 
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 378 

Fig. 5. The effect of variable reduction on classification accuracies. 379 

The high producer’s accuracy was observed for Age-class-I, followed by 380 

Age-class-V and Class-VI (Table 1). The lowest produce’s accuracy was Age-class-III. 381 

The confusion matrix shows that there were discrepancies between the producer’s and 382 

user’s accuracy. For Age-class-I and V, the producer’s accuracies were higher than 383 

user’s accuracies; for Age-class-II and III, conversely, the producer’s accuracies were 384 

lower than user’s accuracies. The differences between producer’s and user’s accuracies 385 

of Age-class-IV and VI were rather small. This result suggested that the age-class map 386 

produced by RF model tended to misclassify other age-classes as Age-class-I and V. 387 

 388 

Table 1 Confusion matrix of the RF classifier for the six age-classes of LP. I~VI refer 389 

to the six age-classes of LP. Prod. acc. and user acc. refer to producer’s accuracy 390 

and user’s accuracy, respectively. 391 

Reference Classify as 
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Data I II III IV V VI total Prod. acc. 

I 49 0 0 2 1 0 52 0.942  

II 2 6 0 2 4 2 16 0.313  

III 5 0 3 3 8 1 20 0.150  

IV 2 4 0 17 7 2 32 0.500  

V 3 0 2 6 53 2 66 0.791  

VI 0 0 0 2 9 18 29 0.613  

total 61 10 5 32 82 25 215 - 

User acc. 0.803  0.600  0.600  0.531  0.646  0.720  - 0.679 

 392 

This classifier was applied to map the age-classes of LP, which was shown in Fig. 393 

6a. The mapping result suggests that high age-classes (≥ 30 years) mainly appeared in 394 

the western part and northern part of SFC, while low age-classes (< 30 years) 395 

distributed in the eastern and southern part of SFC. This result was generally consistent 396 

with the history of SFC afforestation. Because the topography in the western and 397 

northern part of SFC is relatively flat, the initial afforestation was carried out in these 398 

areas (SDHK, QCB and BMD sub-forestry centers). Furthermore, high age-classes 399 

were also observed nearby the main roads (Fig. 6a). 400 
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Fig. 6 Spatial patterns of estimated age-classes (a) and GSV (b); Spatial patterns of 402 

timber production assessed by the management process–based timber production 403 

framework (c). 404 

3.2 GSV of LP 405 

The relationships of PALSAR backscatter with field-based GSV were established 406 

using statistical regression, and the HH- and HV-polarizations were used in training 407 

logarithmic models (γ0 = a•log(GSV) + b). As shown in Fig. 7a, the fitted relationship 408 

for γ
0 

HV was better than that for γ
0 

HH, with R2 of 0.75 and 0.66, respectively. The 409 

validation errors (RMSE) were estimated to be 36.5 m3 ha-1 (relative RMSE is 28.7%) 410 

for γ
0 

HV and 52.6 m3 ha-1 (relative RMSE is 41.4%) for γ
0 

HH, respectively (Fig. 7b). 411 

 412 

Fig. 7 Relationship between the PALSAR polarisations and GSV (a); Field-measured 413 

GSV against γ
0 

HV retrieved GSV (b). 414 

The promising regression model developed by γ
0 

HV was used to map GSV of LP 415 

with a spatial resolution of 30 m (Fig. 6b). The total GSV of LP over a total area of 416 

43,945 ha was estimated to be 4.87 × 106 m3. The GSV density ranged approximately 417 
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from less than 20 m3 ha-1 to over 200 m3 ha-1, with an averaged value of 110.8 m3 ha-1. 418 

The analysis of six age-classes and corresponding GSVs suggested that the GSV 419 

increased with the age-classes, showing a robust positive correlation (R2=0.61, 420 

P<0.05). 421 

3.3 Timber production of LP 422 

The timber production during a rotation period that combined current GSV and 423 

harvested timber derived from historical thinning operations was assessed for SFC. 424 

The total timber production of LP was estimated to be 7.27 × 106 m3 for the period of 425 

1962 to 2010, with 4.87 × 106 m3 in current GSV and 2.40 × 106 m3 in historical 426 

harvested timber, over a total area of 43,945 ha (Table 2). The historical 427 

process-harvested timber accounts to 33.0 % of the total timber production. The mean 428 

timber production density was 165.4 m3 ha-1, ranging from 20 to 350 m3 ha-1. 429 

 430 

Table 2 Timber production of six sub-forestry centers. T1: sunny slope, 0~5°; T2: 431 

sunny slope, 5~10°; T3: sunny slope, 10~15°; T4: sunny slope, 15~20°; T5: 432 

shady 0~5°; T6: shady slope, 5~10°; T7: shady slope, 10~15°; T8: shady slope, 433 

15~20°. I~VI refer to the six age-classes of LP. 434 

Topogra

phical 

types 

Area 

(ha) 

Density of harvested timber through thinning 

operation (m3 ha-1) 

 

Density of total timber production  

(m3 ha-1) 

I II III IV V VI  I II III IV V VI 

T1 5985 0.0 17.2  45.7  68.5  97.0  123.3  44.5  159.6  160.0  210.6  228.9  269.3  
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T2 6850 0.0 17.8  45.3  69.3  97.9  125.7  49.7  155.5  165.0  212.2  236.9  271.3  

T3 4407 0.0 19.5  46.2  69.0  97.3  125.2  56.2  152.6  160.6  210.1  237.2  270.7  

T4 5499 0.0 19.2  45.4  65.8  93.1  119.0  58.0  150.5  147.4  202.0  222.9  265.5  

T5 5633 0.0 16.0  42.7  65.5  93.6  120.2  44.5  149.3  156.6  206.1  226.6  265.4  

T6 6341 0.0 18.1  44.9  68.7  97.3  126.0  51.5  152.2  163.7  211.5  241.0  277.0  

T7 3994 0.0 20.7  47.3  71.4  100.2  129.7  66.3  153.8  167.5  215.4  247.9  284.7  

T8 5236 0.0 24.3  51.0  74.8  103.4  132.6 

 

83.5  157.7  170.0  217.6  249.6  291.6  

Average -- 0.0  19.1  47.2  70.3  96.9  124.3  56.5  154.5  163.3  210.1  234.3  273.9  

 

Area 

(ha) 

Averaged density of total timber production  

(m3 ha-1) 

 

Total timber production  

(104 m3) 

Total 43945 165.4  726.9 

 435 

As descripted from Fig. 6c, a high-density timber production (>240 m3 ha-1) 436 

appeared in the north part of SFC. Additionally, the similar high-density (180 to 300 437 

m3 ha-1) also observed in the middle part and western part of SFC. A medium timber 438 

production density (120 to 240 m3 ha-1) appeared throughout in SFC. The timber 439 

production in southeastern part has the lowest density (<120 m3 ha-1). Overall, the 440 

timber production of LP exhibits a large spatial heterogeneity and gradually decreases 441 

from northwest to southeast, showing an age-related spatial pattern. 442 
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4 Discussions 443 

4.1 Feature selection for estimation of age-class 444 

The feature selection based on the RF-based importance assessment of input 445 

variables reduced redundant variables (10 variables) and improved the classification 446 

accuracy (2.3%). The 10 removed variables included 7 variables for spring, 2 447 

variables for summer and 1 variables for winter. It seems that variables of spring are 448 

not as useful as those in the other seasons. The capture date of image may be also 449 

important. Only 2 variables derived from Kauth–Thomas linear transformation was 450 

removed, indicating the transformed variables are more informative than the original 451 

bands (Fig. 8). The optimized subset included 16 spectral bands, 10 Kauth–Thomas 452 

linear transformation features and 2 PALSAR bands. The highest ranked variable in 453 

the optimized subset was near-infrared (NIR) band of summer. This result was 454 

consistent with the previous forest age classifications reported by Jensen et al. (1999) 455 

and Dye et al. (2012). The greenness and wetness of summer also showed strong 456 

predictive ability. The most important 3 variables appeared in summer, indicating the 457 

high importance of growing peak stage for discriminating age-classes of LP. It should 458 

be noted that, blue, red visible bands and greenness of autumn and blue visible band 459 

and brightness of winter were ranked in the most important 10 variables, which 460 

contributed more to the increase in accuracy than that of the same variables of 461 

summer. Our finding illustrated that the optical remotely sensed variables throughout 462 

a whole growing cycle were useful for capturing the reflectance differences among the 463 
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LP age-classes, due to mutual complementarity of multi-seasonal images. 464 

Furthermore, RF-based importance assessment ranked PALSAR HH and HV as the 465 

fourth and fifth important variables. Since PALSAR variables can characterize forest 466 

undercanopy structure, they were the critical supplement to optical variables for 467 

discrimination of LP age-classes. The combined subset of optical variables and 468 

PALSAR variables could be a powerful tool of improving classification accuracy of 469 

forest age. 470 

 471 

Fig. 8. Variable importance in optimized subset. BRI., GRE. and WET. refer to 472 

brightness, greenness and wetness, respectively. *: The 28 variables of the optimized 473 

subset. 474 

4.2 Saturation effect for estimation of GSV 475 

Although L-band backscatter intensity is strongly correlated with forest GSV, it is 476 

restricted by the saturation effect, which means the backscatter intensity loses its 477 
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sensitivity to the increasing stand GSV when GSV exceed the saturation levels (Imhoff 478 

1995). Saturation level is highly site dependent and has been reported to occur in a large 479 

GSV ranges mainly from 100 to 200 m3 ha-1, which concerned temperate and boreal 480 

forests (Peregon and Yamagata 2013; Chowdhury et al. 2014), mangrove (Hamdan et 481 

al. 2014), savanna (Mermoz et al. 2014), tropics (Saatchi et al. 2011), and plantation 482 

forests (Avtar et al. 2013). To our knowledge, however, there are no referenced studies 483 

that have been reported for LP. Generally, there are two quantitating definitions for 484 

saturation level: an increase in AGB of 1 Mg ha-1 corresponding to an increase of γ
0 

HV 485 

smaller than 0.01 dB (Watanabe et al. 2006; Lucas et al. 2010), and an increase in 486 

AGB of 10 Mg.ha-1 corresponding to an increase of γ
0 

HV smaller than 0.2 dB (Mermoz et 487 

al. 2014). To convert GSV (m3 ha-1) to AGB (Mg ha-1), a special conversion function 488 

for larch was employed for marching the required unit (Wang et al. 2013); then the two 489 

definitions for saturation level were calculated. The result indicated that saturation 490 

levels for the two definitions were 327 m3 ha-1 (310 Mg ha-1) and 171 m3 ha-1 (160 Mg 491 

ha-1), respectively. In addition to these quantitating definitions, a simple comparison 492 

between truth GSV and retrieved GSV was also employed to define saturation level 493 

(Saatchi et al. 2011; Cartus et al. 2012; Chowdhury et al. 2014; Hamdan et al. 2014). 494 

Referring this method, the saturation level present in this study should be around 200 495 

m3 ha-1. Note that, even though the lower saturation level (171 m3 ha-1) was considered, 496 

a small proportion (less than 12 %) of area was affected. If the saturation level of 200 497 

m3 ha-1 were taken into account, only 3% of area was affected. Therefore, it implied 498 

that the saturation effect on GSV estimation was rather limited. 499 
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Our observed saturation levels are higher than that observed in most previous 500 

studies. Soil, vegetation moist and forest structure are main factors that influence the 501 

saturation level (Lucas et al. 2010; Sandberg et al. 2011). On the one hand, the annul 502 

precipitation of SFC is approximately 450 mm, leading the low humidities of soil and 503 

vegetation. On the other hand, and perhaps more importantly, LP of SFC is single 504 

species monoculture, and the undergrowth (shrubs and small trees) is sparse, thereby 505 

producing a high proportion of tree stem-scattering (Watanabe et al. 2006). This simple 506 

structure can also mitigate the saturation effect in the GSV estimation. 507 

4.3 Uncertainties of modelling timber production 508 

The error of estimated GSV and age-class, which were the primary parameters of 509 

MPT framework, closely associated with uncertainties of modelling timber production. 510 

The RMSE for the GSV predictions was 36.5 m3 ha-1, which can be used to estimate the 511 

error in timber production directly. Furthermore, 32.1% of total pixels were supposed 512 

to be misclassified for age-class (Table 3), Since the age-classes were adopted for 513 

assessing the timber produced by thinning operation, the defined intervals of adjacent 514 

age-classes from Age-class-II to Age-class-V was small (5 years), which may cause 515 

difficulty on discrimination from one age-class to the adjacent another. This confusion 516 

between two age-classes leads to misestimated times of thinning operations. For 517 

example, if a pixel of Age-class-III LP is misclassified as Age-class-II, an 518 

underestimation would occur, because the timber that harvested by a thinning 519 

operation is not included in total timber production of the pixel. Similarly, if this pixel 520 
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is misclassified as Age-class-V, the excessive harvested timber derived from two 521 

thinning operations is involved, leading to an overestimation of timber production. 522 

 523 

Table 3 Errors in estimated timber production derived from the misclassification of 524 

age-classes. I~VI refer to the six age-classes of LP. Proportion of pixels refers to 525 

the misclassified proportion of total pixels for each age-class; Averaged times of 526 

thinning operations refers to averaged misestimated times of thinning operations 527 

for each age-class. For example, for the first record (overestimation for 528 

Age-class-I), a 1.3% of total pixels were misclassified as the higher age-classes; 529 

each of misclassified pixel was averagely overestimated for 3.3 times thinning 530 

operations, with an averaged harvested timber of 23.8 m3 ha-1 for each thinning; 531 

the total overestimated timber was 4.9 × 104 m3. 532 

Age-class 

 Overestimation 

Area 

(ha) 

Proportion 

of pixels  

(%) 

Averaged 

times of 

thinning 

operations 

Averaged 

harvested timber 

for each thinning 

(m3 ha-1) 

Total 

harvested 

timber 

(104 m3) 

I 613.2  1.4 3.3  23.8  4.9  

II 1635.2  3.7 3.0  26.0  12.8  

III 2452.7  5.6 1.8  24.6  11.1  

IV 1839.6  4.2 1.2  26.7  6.0  

V 408.8  0.9 1.0  27.4  1.1  
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VI 0.0  0.0 0.0  0.0  0.0  

Total 6949.4  15.8 - - 35.8  

Age-class 

 Underestimation 

 

Area 

(ha) 

Proportion 

of pixels  

(%) 

Averaged 

times of 

thinning 

operations  

Averaged 

harvested timber 

for each thinning 

(m3 ha-1) 

Total 

harvested 

timber 

(104 m3) 

I 0.0  0.0 0.0  0.0  0.0  

II 408.8  0.9 1.0  19.1  0.8  

III 1022.0  2.3 2.0  23.6  4.8  

IV 1226.4  2.8 2.3  24.7  7.1  

V 2248.3  5.1 2.0  24.8  11.2  

VI 2248.3  5.1 1.2  27.3  7.2  

Total 7153.8  16.3 - - 31.1  

 533 

As shown in Table 3, the proportion of overestimated age-class pixels was 15.8%, 534 

leading to an overestimated timber production of 35.8 × 104 m3; the proportion of 535 

underestimated age-class pixels was 16.3%, leading to an underestimated timber 536 

production of 31.1 × 104 m3. Comparing error in estimated GSV, the error derived 537 

from misclassification of age-class was small. Synthetically considering the RMSE 538 

(36.7 m3 ha-1) for estimated GSV and misclassification of age-class, the error in 539 

estimated timber production density ranged from -55.2 to 56.3 m3 ha-1 (RMSE of 540 
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estimated GSV was also considered for assessing error in historical harvested timber). 541 

The difference between the MPT framework (Fig. 2) and practical thinning is 542 

another uncertainty source of timber production estimation. The MPT framework was 543 

localized for SFC, according to the general logging regime of LP. Nevertheless, the 544 

site conditions of LPs vary among topographies, leading to different LP productivities. 545 

Although the effect of site conditions on GSV was considered, various site conditions 546 

also associated with forest management. For example, LPs in very flat area probably 547 

experience more than five-time thinning operations with higher proportion of 548 

harvested timber, due to the high productivity as well as convenient practice condition. 549 

Conversely, LPs in mountain area may experience fewer thinning operations with less 550 

harvested timber. Considering the generally management measures for LP in SFC, this 551 

effect is only limited to part area of SFC. 552 

5 Conclusion 553 

This study demonstrates a Management Process–based Timber production 554 

framework that closely links to logging regimes of a plantation forest. The current 555 

GSV and harvested timber produced through historical thinning operations are 556 

combined to assess timber production of larch plantation during a rotation period 557 

(more than 40 years). The key parameters of the framework, including current GSV 558 

and age-class, were estimated by field-based samples and multi-source remote sensing 559 

data, and total timber production of larch plantation has been assessed with the MPT 560 

framework. This approach can assess timber production during a long term without 561 
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historical data. It is noteworthy that the framework was specially designed for the 562 

management regime of larch plantation in Saihanba Forestry Center. It can also be 563 

widely used for assessing timber production in other area, with localized proxies 564 

according the forest management regimes. This approach can provide crucial 565 

information for a better understanding of forest ecosystem service functions. 566 

The saturation effect of the PALSAR signal for GSV is observed at a high level, 567 

both due to dry environment of the vegetation and simple structure of larch plantation. 568 

Considering the large area of plantation forests and its increasing trend in China, 569 

ALOS PALSAR has the potential to be an excellent dataset for plantation forest 570 

monitoring. The analysis of uncertainties has shown that the error in estimated GSV 571 

contributes a larger proportion of error in timber production than that of age-class. 572 

Another possible uncertainty is from the difference between the management 573 

practices and the MPT framework, although its effect would be small. Future study 574 

should elaborate diverse designs linking to various forest management measures for 575 

different tree species. 576 
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