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Abstract

In order to manage evolving organisational practice and maintain compliance

with changes in policies and regulations, businesses must be capable of dynam-

ically reconfiguring their business processes. However, such dynamic reconfigu-

ration is a complex, human-intensive and error prone task. Not only must new

business process rules be devised but also, crucially, the transition between the

old and new rules must be managed.

In this paper we present a fully automated technique based on formal specifi-

cations and discrete event controller synthesis to produce correct-by-construction

reconfiguration strategies. These strategies satisfy user-specified transition re-

quirements, be they domain independent - such as delayed and immediate

change - or domain specific. To achieve this, we provide a discrete-event control

theoretic approach to operationalise declarative business process specifications,

and show how this can be extended to resolve reconfiguration problems. In this

way, given the old and the new business process rules described as Dynamic Con-

dition Response Graphs, and given the transition requirements described with

linear temporal logic, the technique produces a control strategy that guides

the organisation through a business process reconfiguration ensuring that all

transition requirements and process rules are satisfied. The technique outputs

a reconfiguration DCR whose traces reproduce the controller’s reconfiguration

strategy. We illustrate and validate the approach using realistic cases and ex-

amples from the BPM Academic Initiative.
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1. Introduction

Organisations rely on business processes to ensure that task and activity ex-

ecution achieves their objectives. Workflows are operational models that guide

everyday activities ensuring that business processes are adhered to. These work-

flows can be derived automatically from formally defined processes or manually.

As business environments evolve, organisations must ensure that their pro-

cesses are consistent with their own policies, strategies and external regula-

tions, e.g., Van der Aalst and Stefan (2000). As a result, workflows must also

be evolved. Business process reconfiguration involves not only devising the new

workflows for new business rules but also dynamically changing the old workflow

with the new one.

In other words, reconfiguration requires defining how business instances run-

ning the current workflow should transition to the new workflow. There is no

unique way of defining these transitions but some widespread domain indepen-

dent options have been studied. For instance, an “immediate” reconfiguration

requirement Ellis et al. (1995) asserts that reconfiguration must occur as soon

as possible but only at a state in which the new workflow prescribes behaviour

consistent with the old one. On the other hand, a “delayed” reconfiguration

requirement states that living instances continue to use the old workflow, while

new instances should be created using the new workflow. However, in some

cases domain specific transition requirements are needed: An organisation may

require applying different strategies for different workflow instances based on

the specific state each instance is on. For some an “immediate” reconfigura-

tion may be desired, for others a “delayed” reconfiguration is needed, and for

some others, remediation or compensation activities specifically designed for the

reconfiguration must be applied before reconfiguring.

Manual business process reconfiguration can be complex, laborious and error-

prone. It can therefore benefit greatly from automated techniques that support

i) specification and analysis of business process and transition requirements, and

ii) construction of workflows and reconfiguration strategies that satisfy these re-
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quirements.

One approach to automation is build and verify, where formal verification

techniques are used to check compliance of workflows to requirements. However,

post-hoc verification requires prior manual workflow construction, and verifica-

tion failures can require laborious workflow debugging. An alternative approach

is to automatically produce correct-by-construction workflows and reconfigura-

tion strategies directly from requirements.

Automatic construction of workflows from business rules has been studied

(e.g., Pesic and Van der Aalst (2006); Hildebrandt and Mukkamala (2010)) and

typically relies on ad-hoc algorithms and/or results from automata theory. In

this paper we take an alternative and novel approach to workflow synthesis that

formulates the problem as a discrete event supervisory control problem Ramadge

and Wonham (1989) in which the humans and systems being coordinated by the

workflow are the system under control and the business process requirements

are the goals to be achieved by the controller.

Construction of workflow reconfiguration strategies has also been studied

(e.g., Ellis et al. (1995); Kradolfer and Geppert (1999); Zhao and Liu (2007))

but restricted to domain independent transition requirements and no support

for implementing varied transition strategies on a per instance basis in which,

for instance, remedial or compensatory activities are prescribed. In this pa-

per we present a fully automated technique for business process reconfiguration

that supports domain dependent, user-defined transition requirements. We use

synthesis to not only produce correct-by-construction workflows from business

process requirements but also to compute a reconfiguration strategy that guar-

antees progress from an old workflow towards the new one while satisfying any

user-defined transition requirements.

In particular, we show how Dynamic Condition Response (DCR) graphs Hilde-

brandt and Mukkamala (2010), a declarative language for business process re-

quirements, can be translated into a composition of Labelled Transition Sys-

tems (LTS) Keller (1976) and Fluent Linear Temporal Logic (FLTL) Gian-

nakopoulou and Magee (2003) which is suitable for discrete event controller
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Figure 1: Dynamic reconfiguration of business process schema.

synthesis D’Ippolito et al. (2013). We build upon recent work on dynamic con-

troller update Nahabedian et al. (2018) to handle dynamic reconfiguration. The

approach is validated using examples from the BPMAcademic Initiative BPMAI

(2020) described as DCR graphs which we reconfigured to illustrate a variety of

transitions requirements.

Figure 1 shows the reconfiguration schema presented in this paper. It starts

with the translation of an old and new DCR business process specifications

to control problems. With the two control problems and user specified FLTL

transition requirements, we define a controller update problem Nahabedian et al.

(2018) that when solved yields a Reconfiguration Strategy represented as an

LTS. This strategy is able to reconfigure any live instance of the current workflow

from any state. The dynamic reconfiguration schema finishes with an extraction

process in which the history of one live instance of the current workflow is used

to compute from the Reconfiguration Strategy, a DCR graph that describes

how reconfiguration of that particular live instance should proceed to satisfy

transition requirements and new business rules.

This paper extends our previous work Nahabedian et al. (2019) in two ma-

jor ways. Firstly, we provide the extraction method that outputs a declarative

workflow model using the same language as the one provided by the user. Thus,

the technique presented in Nahabedian et al. (2019) becomes more useful for

users as they are not required to understand yet another workflow language.
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Second, we provide a formalization of the technique giving definitions for the

translation of user specified inputs to control problems (see Section 4) and for

the extraction method to obtain the final output (see Section 5.4). Both trans-

lation and the extraction method are shown to be sound and complete for given

definitions.

The rest of the paper is structured as follows. Section 2 presents an illustra-

tive example. Formal definitions are presented in Section 3. Section 4 shows a

translation from models in a declarative workflow language to a control prob-

lem. In Section 5 we present how to set out the reconfiguration problem and

how to frame it as a synthesis problem. Later in this section we introduce the

extraction method that builds a declarative workflow model representing the

reconfiguration. An analysis of our technique is presented in Section 6. Finally,

we present a discussion on related work (Section 7), and then, a conclusion

(Section 8).

2. Running Example

We use as a running example a hospital process taken from Hildebrandt and

Mukkamala (2010) and inspired by a real-life case study on oncology workflows

at Danish hospitals. The process includes prescribe medicine and sign activi-

ties in which a doctor adds a prescription to a patient record and signs it. A

nurse will give medicine in response to the doctor prescription, or challenge the

prescription (the don’t trust activity). Process requirements include that the

doctor must perform prescribe medicine before sign, ii) that the nurse can nei-

ther perform give medicine nor don’t trust if the doctor has not done sign, and

iii) that the nurse cannot perform both give medicine and don’t trust ,.

A Dynamic Condition Response (DCR) graph for the process requirements,

taken from Hildebrandt and Mukkamala (2010), is depicted in Figure 2. Whilst

in Figure 4 we depict a Labelled Transition System that represents a workflow

that satisfies the process requirements. Note that in Figure 4, pm, s, gm and dt

labels refer to activities prescribe medicine, sign, give medicine and don’t trust ,

respectively. The workflow also corresponds to the semantics of the DCR graph
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Figure 2: DCR graph for a hospital
process

Figure 3: DCR graph model for new
hospital process.

The meaning of an arrow from A to B depends on its color: if blue (i.e., response)
then if A occurs then B is pending; if yellow (i.e., condition) then A must occur before
B; if green (i.e., inclusion) then A enables occurrences of B; if red (i.e., exclusion) then
A prohibits B; if purple (i.e., milestone) then B is prohibited if A is pending.

Figure 4: Workflow for a
hospital process

Figure 5: Workflow for new hospital process.

and can be constructed automatically using controller synthesis as described in

Section 5.

Consider a scenario taken from Mukkamala (2012) in which the workflow

must be changed. One such change might be that a new internal regulation

has been introduced. The regulation may state that doctors must not prescribe

medicine if new tests have arrived (receive tests) but have not been examined

(examine tests). Also, as expected, receive tests must happen before examine

tests. This change involves two new activities and extra rules as depicted in Fig-

ure 3 and requires a significantly more complex workflow (depicted in Figure 5

where rt and et labels refer to receive tests and examine tests). This workflow

can also be automatically synthesised.

The process of reconfiguration requires handling patients that are already in
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treatment. In other words, it requires handling the transition of a live instance

running the old workflow to handling the new one. Consider the following

scenario in which a patient has had a medicine prescribed and the prescription

has been signed off. Before the medicine is actually given to the patient, new

test results arrive. Note that the current hospital process does not track test

results. Now consider that the hospital process is reconfigured. The current

state of the new process is one in which the event receive tests has not occurred

(because it was not being tracked), thus, the medicine can be given patient

despite the fact that there were new tests. This is a scenario to be avoided,

it is preferable to assume upon reconfiguration that there may be test results

available but that have not yet been registered in the workflow engine.

Indeed, a naive approach in which an immediate Ellis et al. (1995) reconfig-

uration is required regardless of the living instance’s state may pose health risks

in this case. Such a reconfiguration would be map state 2 of Figure 4 to state 2

of Figure 5 (i.e., 2 2). However, as discussed this puts the patient at risk.

A more appropriate reconfiguration requirement is that test examination

must be performed when changing to the new hospital process, just in case. Note

that this requirement is not part of the new hospital process, it is specifically

designed for the transition. Indeed, it may require in some cases that doctors

register that they have examined tests when there were no tests to examine.

For this reconfiguration requirement, it would be more appropriate to map

state 2 with state 9, and more generally the complete mapping from the old

workflow to the new workflow would be to the following mapping: (0 5), (1 

7), (2 9), (3 11), (4 12).

The provision of a mapping between workflow states ensuring that a tran-

sition requirement holds can be very difficult for complex workflows. An alter-

native is to support a declarative description of transition requirements and to

compute a mapping automatically. For the hospital example, what is needed is

that reconfiguration may not conclude without examine tests. Note that this

requirement is inconsistent with both the old and new business requirements!

In the old process, there is no examine tests activity. While in the new process,
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examine tests is required after receive tests. Thus, what we need to specify is

that there should be a transition period during the reconfiguration in which

neither the old nor new business process requirements hold and in which ex-

amine tests (and nothing else) must occur. In this paper we show how domain

specific transition requirements such as these can be specified in linear temporal

logic, how to automatically build a workflow that codifies a strategy for taking

a live instance running a workflow to a new workflow guaranteeing all transition

requirements, and finally we show how this workflow can be encoded as a DCR

graph. For this specific example, the transition requirement in temporal logic

should say that from the time when old requirements stop to hold, every activity

is prohibited (except for examine tests) until examine tests was executed and

new requirements start to hold. We show in Section 5.1 how to formally write

this transition requirement in temporal logic.

In short, we need to solve the reconfiguration problem by having as inputs

the specification for the current workflow, the specification of a new workflow, a

transition requirement representing the properties that the reconfiguration must

ensure, and, the history of what it was executed under the current workflow re-

quirements. The proposed technique must build a workflow specification that

describes how to continue the given history, guaranteeing that the reconfigura-

tion process will eventually end by satisfying the new workflow requirements. To

do so, we show how to model domain specific transition requirements and how

to automatically build a strategy for taking a live instance running a workflow

to a new workflow guaranteeing all transition requirements. After having this

strategy, we can automatically extract a workflow specification that produces a

reconfiguration process for a given history.

3. Preliminaries

We use Dynamic Condition Response (DCR) graphs Hildebrandt et al. (2011)

to specify both the old and new business processes, which are part of the input

to the reconfiguration approach that we propose. The other inputs are the tran-

sition requirements which are described in temporal logic. We also use DCR
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graphs to output the strategy that is required to correctly transition between

the two processes.

3.1. Dynamic Condition Response Graphs

To simplify presentation we use a reduced version that does not include

principals.

Definition 3.1. (Dynamic Condition Response graph Hildebrandt et al. (2011))
A Dynamic Condition Response Graph (DCR graph) is a tuple DG = (A, .,
R,M,Act, `,R, as) where
• A is a finite set of activities, the nodes of the graph.
• . : A → A is a partial function defining a hierarchy of activities by map-
ping an activity to its super-activity. Activities that are not super-activities
of any other are referred to as atomic

• R : A → A is a set of graph edges. Edges are partitioned into five kinds,
named and drawn as follows: conditions (→•), responses (•→), inclusions
(→+), exclusions (→%) and milestones (→3).

• M is the marking of the graph. This is a triple of sets of atomic activi-
ties (Ex,Re, In), where Ex are the previously executed, Re the currently
pending and In the currently included.

• Act is the set of actions labels.
• ` : A→ Act is a labeling function mapping activities to actions, and
• R is a set of roles
• as : A→ R is the role assignment relation to activities.
We denote (•→e) = {e′ ∈ A | e′•→e}, (e•→) = {e′ ∈ A | e•→e′}, and

similarly for →•, →+, →% and →3. For simplicity, if a DCR graph is defined
without an explicit Act, ` and . then ` is an injective function (i.e., each activity
is mapped to different action labels), and . = ∅ (i.e., there is no any super
activity). Also we will leave R and as implicit when they are irrelevant for a
particular definition or proof.

The following definitions are presented without considering the nesting func-

tion (.). We decide to do so because a nested DCR graph can be mapped to

a DCR graph with at most the same number of activities Hildebrandt et al.

(2011). Essentially, all relations are extended to sub activities, and then only

the atomic activities are preserved.

Definition 3.2. (Enabled activity of a DCR graph) Let D = (A,R,M) be a
DCR graph, with M = (Ex,Re, In). An activity e ∈ A is enabled from marking
M (D e−→) if and only if
(a) e ∈ In,
(b) (In ∩ (→•e)) ⊆ Ex, and
(c) Re ∩ In ∩ (→ 3e) = ∅.
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Definition 3.3. (Executing DCR graph) Let D = (A,R,M) be a DCR graph,
with marking M = (Ex,Re, In) and e ∈ A is enabled. The result of executing
e (D e−→ D′) is a DCR graph D′ = (A,R,M ′) with M ′ = (Ex′, Re′, In′) such
that
(a) Ex′ = Ex ∪ {e},
(b) Re′ = (Re \ {e}) ∪ (e•→), and
(c) In′ = (In \ (e→%)) ∪ (e→+).
If not specified, we assume that initially In = A and Re = Ex = ∅.

Definition 3.4. (DCR graph Run Debois et al. (2018b)) Let D = (A,R,M,Act, `)
be a DCR graph. A run of D is a (finite or infinite) sequence of DCR graphs Di

and activities ei such that D0
e0−→ D1

e1−→ . . . . A trace of D is a sequence of ac-
tions labels `(ei) associated with a run of D. We write runs(D) and traces(D)
for the set of runs and traces of D, respectively.

In this paper we assume that every run of a DCR can be extended to an

infinite run of the same DCR. A DCR that does not conform to this assumption

can be extended with an additional stuttering activity to do so. The assumption

is introduced to allow for a simpler semantics for the linear temporal logic,

defined below, which is typically used over infinite sequences.

Definition 3.5. (Accepting Runs Debois et al. (2018b)) Let D0
e0−→ D1

e1−→ . . .
be a finite or infinite run of D. We way that it is an accepting run if for every
Di and every activity e, if e ∈ Re ∩ In then there is a j ≥ i such that e ∈ Ex
or e 6∈ In in the initial marking of Dj .

Definition 3.6. (Reachable Marking) Let D = (A,R,M,Act, `) be a DCR
graph. A marking M is reachable from D if there exists a finite run D0

e0−→
D1

e1−→ . . . Dn where M is the marking of Dn.

Definition 3.7. (Deterministic DCR Graph) Let D = (A,R,M,Act, `) be a
DCR graph. We say D is deterministic if for any reachable marking M ′ and
two activities e, e′ ∈ A enabled in M ′, if `(e) = `(e′) then e = e′. In this paper
we assume all DCR graphs to be deterministic.

We introduce the notion of consistent marking with respect to a sequence of

activities to capture the correct update of a marking with respect to the con-

straints of a DCR graph independently of whether the sequence corresponds to

a run of the DCR. This definition is used later on to define DCR reconfigura-

tion. More specifically, to intialise the marking of a new DCR graph based on

the execution history produced while running an old DCR graph.
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Definition 3.8. (Consistent Marking) Let D = (A,R,M,Act, `) be a DCR
graph, with marking M = (Ex,Re, In). We say a marking M ′ = (Ex′, Re′, In′)
is consistent with M and a finite sequence of action labels π if Ex′ = δEx,
Re′ = δRe and In′ = δIn, where δEx, δRe and δIn are defined as follows (λ
corresponds to an empty sequence):

δEx(Ex, λ) = Ex and δEx(Ex, x.π) = δEx(Ex, π) ∪ `−1(x)
δRe(Re, λ) = Re and δRe(Re, x.π) = (δRe(Re, π) \ `−1(x)) ∪

{(e•→)|e ∈ `−1(x)}
δIn(In, λ) = In and δIn(In, x.π) = (δIn(In, π) \

{(e→%)|e ∈ `−1(x)}) ∪ {(e→+)|e ∈ `−1(x)}

Definition 3.9. (Marking update) Let D = (A,R,M,Act, `) be a DCR graph.
We say D′ has its marking updated according to a finite sequence of action labels
π (noted δ(D,π)) if D′ = (A,R,M ′, Act, `) where M ′ is a consistent with M
and π. Note that there is at most one D′ resulting from updating D with π.

3.2. Labelled Transition Systems Control Problem

We reason operationally about DCR graphs using Labelled Transition Sys-

tems Magee and Kramer (1999). They are a canonical, compositional, represen-

tation of reactive systems ideally suited to model checking of business processes

and synthesis of discrete event controllers.

Definition 3.10. (Labelled Transition System) A Labelled Transition System
(LTS) E is a tuple (SE , LE , ∆E , s0), where SE is a finite set of states, LE ⊆ L
is its communicating alphabet, L is the universe of all observable events, ∆E ⊆
(SE × LE × SE) is a transition relation, and s0 ∈ SE is the initial state. We
define ∆E(e) as {` | (e, `, e′) ∈ ∆E} and refer to a path of E is a sequence
p = s0, `0, s1, `1, s2, . . . where for every i ≥ 0 we have (si, `i, si+1) ∈ ∆E. A
trace π is a sequence obtained by removing states from p. We say that E is
deterministic if (e, `, e′) ∈ ∆ and (e, `, e′′) ∈ ∆ =⇒ e′=e′′, and is deadlock-free
if for all e ∈ S there exists (e, `, e′) ∈ ∆E.

Reactive systems are built compositionally. Such composition is built syn-

chronizing events and propositions of the two LTS involved. We formalise the

parallel composition as follows.

Definition 3.11. (Parallel Composition) The parallel composition E‖C of LTS
E = (SE , LE ,∆E , e0) and C = (SC , LC ,∆C , c0) is an LTS (SE × SC , LE ∪
AC ,∆‖, (e0, c0)) such that ∆‖ is the smallest relation that satisfies the rules:

(e, `, e′) ∈ ∆E

((e, c), `, (e′, c)) ∈ ∆‖
` /∈ LC

(c, `, c′) ∈ ∆C

((e, c), `, (e, c′)) ∈ ∆‖
` /∈ LE

(e, `, e′) ∈ ∆E , (c, `, c′) ∈ ∆C

((e, c), `, (e′, c′)) ∈ ∆‖
` ∈ LE ∩ LC
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3.3. Fluent Linear Temporal Logic

Linear Temporal Logic (LTL) is used to declaratively describe behaviour

of reactive systems Pnueli (1977). We use a linear temporal logic of fluents

to provide a uniform framework for specifying state-based temporal properties

in event-based models Letier et al. (2005); Uchitel et al. (2004). FLTL Gi-

annakopoulou and Magee (2003) is a linear-time temporal logic for reasoning

about fluents. A fluent is defined by a pair of sets and a Boolean value: f =

〈I, T, Init〉, where f.I is the set of initiating events, f.T is a set of terminating

events and f.I ∩ f.T = ∅. A fluent may be initially true or false as indicated by

f.Init.

Let F be the set of all possible fluents. An FLTL formula is defined induc-

tively using the standard Boolean connectives and temporal operators X (next),

U (strong until) as follows:

ϕ ::= f | ¬ϕ | ϕ ∨ ψ | Xϕ | ϕUψ

where f ∈ F . We define ϕ ∧ ψ as ¬ϕ ∨ ¬ψ, 3ϕ (eventually) as >Uϕ, 2ϕ

(always) as ¬3¬ϕ, and ϕWψ (weak until) as ϕUψ ∨2ϕ.

The trace π = `0, `1, . . . satisfies a fluent f for a fluent definition d at position

i, denoted π, i |=d f , if and only if, one of the following conditions holds:

I fd.Init ∧ (∀j ∈ N · 0 ≤ j ≤ i⇒ `j /∈ fd.T ), or

I ∃j ∈ N · (j ≤ i ∧ `j ∈ fd.I) ∧ (∀k ∈ N · j < k ≤ i⇒ `k /∈ fd.T )

In other words, a fluent holds at position i if and only if it holds initially or

some initiating event has occurred, but no terminating event has yet occurred.

We say ϕ is a safety formula if there is a finite trace π such that:

π, i |=d ¬ϕ , ¬(π, i |=d ϕ)

π, i |=d ϕ ∨ ψ , (π, i |=d ϕ) ∨ (π, i |=d ψ)

π, i |=d Xϕ , π, i+ 1 |=d ϕ

π, i |=d ϕUψ , ∃j ≥ i · π, j |=d ψ ∧ ∀ i ≤ k < j · π, k |=d ϕ

We use π |=d ϕ, instead of π, 0 |=d ϕ. We use |= instead of |=d if from the

context d is obvious.
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3.4. Control Problems

Discrete event control aims to build an discrete event controller that satis-

fies given requirements under assumptions about the behaviour of the discrete

event system to be controlled. We refer the system to be controlled as the en-

vironment. We adopt a formulation of control where the assumptions about

the environment are described using LTL and LTS, and the controller to be

automatically constructed is an LTS.

The notion of legality (based on Interface Automata de Alfaro and Henzinger

(2001)) allows modelling controllability and monitorability of events. A legal

LTS cannot block the occurrence of events that it does not control and cannot

attempt actions that it controls but its environment can not accept.

Definition 3.12. (Legal LTS) Let P = (SP , LP , ∆P ,p0) and Q = (SQ, LQ,∆Q, q0)
be LTS, C ⊆ (LP ∪LQ) be a set of events that P does control and U ⊆ (LP ∪LQ)
be a set of events that P does not control.

We say that P is a legal LTS for Q with respect to (C,U) if ∀ (p, q) ∈ SP‖Q,
p and q are legal in the following sense:
• (∆P (p) ∩ U) = (∆Q(q) ∩ U), and
• (∆P (p) ∩ C) ⊆ (∆Q(q) ∩ C).

Note that we adopt a slightly stronger notion than that of de Alfaro and

Henzinger (2001). Here, we request the P not to be more robust (i.e. accept

more uncontrollable events) than Q can exhibit.

Definition 3.13 (LTS Control D’Ippolito et al. (2013)). Let E = (SE , LE ,∆E , e0)
be an environment model in the form of an LTS, Lc ⊆ LE be a set of controllable
events, and G be a controller goal in the form of an FLTL property. A solution
for the LTS control problem with specification E = (E,G,Lc) is an LTS C such
that C is legal with respect to E and controlled events Lc, E‖C is deadlock free,
and E‖C |= G.

We are particularly interested in controllers that enable as many controlled

actions as possible without compromising the satisfaction of the requirements.

We refer to these as maximal controllers.

Definition 3.14 (Maximal Controller). Let E = (E,G,Lc) be an LTS Control
Problem. We say that C is a maximal controller for E if C is a solution to E
and for any other solution C ′ to E the traces of C include those of C ′.

Property 3.1 (Existence of Maximal Controllers). A maximal controller exists
for any control problem E = (E,G,Lc) where G is a safety property.
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A dynamic update of controllers can be formulated as follows.

Definition 3.15 (DCU Problem). Let E = (E,2G,Lc) be an old specification,
E ′ = (E′,2G′, L′c) be a new specification, T be a safety FLTL formula, R ⊆
(SE × SE′) be a mapping relation of states and, stopOldReq and startNewReq
are special events denoting the ending of old and start of new requirements,
respectively. A solution for the DCU Synthesis Problem is an LTS controller Cu
such that:
(a) Cu |= (G ∧ ¬startNewReq) W stopOldReq,
(b) Cu |= T ,
(c) Cu |= 2(startNewReq → 2G′), and
(d) Cu |= 2(beginReconf → (3 stopOldReq ∧ 3 startNewReq))

The output of a DCU problem is an LTS Cu where every trace satisfies that

(a) the old requirements G hold, and the new requirements are not started,

until stopOldReq is triggered, (b) the transition requirements hold, (c) the new

specification G′ must be valid from startNewReq is onwards, and (d) the update

eventually happens.

The formulation above is from Nahabedian et al. (2018), except for condition

(a) which we have strengthened to require stopOldReq before startNewReq as

an overlap of specifications is not needed in this paper.

4. DCR Semantics as Control Problem

In this section we first show how to automatically build an LTS from a

DCR graph such that it characterises all valid traces of the DCR graph. We

restrict DCR graphs to those with no nesting (Nesting can be eliminated while

preserving semantics Hildebrandt et al. (2011)). We reinterpret DCR semantics

as a control problem in which a discrete event controller must enable and disable

activities in such a way that its environment, as long as it only executes enabled

activities, always satisfies the business process requirements as described in the

DCR graph. We extract from a DCR graph a set of controllable events LC , an

LTS E, and a FLTL formula G such that controller synthesis (Definition 3.13)

results in a controller that enforces the DCR graph semantics. Controllable

events LC are the activities enabling and disabling ones, while events modelling

the execution of activities will be monitorable but not controllable. The LTS E
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will model the assumptions the controller can rely upon to guarantee business

requirements. Finally, the formula G encodes the domain specific aspects of the

DCR graph, namely the arrows that establish dependencies between activities.

4.1. Controllable and Monitorable Events

We model the interaction between the controller and the environment as a

turn based game. The controller first decides which activities to enable and

disable and then lets the environment decide which of the enabled activities it

will perform. Having finished performing an activity, the environment notifies

the controller. It is then the controller’s turn again to select enabled activities.

We use a controlled event menu to model the turn-based interaction where

the controller offers to its environment a menu of activities to perform. First,

the controller will select what activities to disable then it indicates, using menu

that it is the environment’s turn to decide what activity to execute.

We use a controlled event enableAll to model the controller enabling all

activities of the DCR graph and controlled events a_disable for every for each

atomic activity a ∈ atom(A). We force the occurrence of enableAll at the

start of the controller’s turn, and then allow an arbitrary number of disable

events. As we will discuss in Section 4.4, the synthesis algorithm minimises

the number of events that the controller performs, thus it will execute the least

possible number of disable events, hence leaving enabled all activities that are

consistent with the business process requirements.

The only non-controlled events we introduce model the indication that an

activity has been performed. That is, for each atomic activity a ∈ atom(A) we

introduce an event a_happened.

With these events the controller can be understood as a workflow engine

enforcing business rules. In the hospital example, the controller first decides

which activities should be enabled (by first enableAll and then a sequence of

disabled events) and then presents them to hospital staff (menu).The nurses and

doctors perform an enabled activity and report back to the engine (happened).

At this point, the controller will decide again what activities to enable and
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Figure 6: Happens(s) LTS constrain-
ing the occurrence of s_happened.

Figure 7: Turns LTS constraining con-
troller and environment turns.

update the engine display.

Summarising, the set of controlled and monitored events is defined as follows.

Definition 4.1. (Controllable events from a DCR graph) Let DG = (A,R,M)
be a DCR graph. The set of controllable events is LC = {a_disable | a ∈ A} ∪
{menu, enableAll} and the set of uncontrollable set is LC = { a_happened | a ∈
A}

4.2. Environment Model

The environment model, given as an LTS E, models the two assumptions

that the controller can rely on to guarantee the requirements expressed by the

DCR graph.

The first assumption is that activities can only happen when they are en-

abled. This can be modelled using one LTS model for each activity and compos-

ing them all in parallel. In Figure 6 we show an LTS, Happens(s), modelling

the assumption for activity sign. State 0 models that sign is enabled (thus,

the outgoing transition s_happened) while state 1 models that the activity is

disabled (i.e., there is no outgoing s_happened transition). Events enableAll

and s_disable toggle between state 0 and 1. We assume the activity is initially

enabled.

Figure 7 models the turn-based assumption: The controller chooses what

activities may be executed without violating workflow requirements, and then,

the environment picks which of the enabled activities is to be executed. The

initial state (0) models the turn of the controller where any activity in A can be

disabled. Event menu models when the controller relinquishes its turn offering

a menu of activities to perform. State 1 is the environment’s turn in which it

can select only one activity in A to be executed, going to state 2. Here, all
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activities are enabled with enableAll event to start again with controller’s turn

at state 0.

In conclusion the LTS environment E is defined as follows:

Definition 4.2. (Environment from a DCR graph) Let DG = (A,R,M) be a
DCR graph, Happens() be a (parametric) LTS like Figure 6 and Turns be the
LTS from Figure 7. The LTS environment is E = Turns ‖ Happens(a1) ‖ . . . ‖
Happens(an) with {a1, . . . , an} ∈ A.

4.3. Controller Goals

The controller goals must enforce the constraints between activities described

in the DCR graph. Our encoding resembles that of Pesic and Van der Aalst

(2006) where LTL formulas are used to formalise activity constraints of that

appear in a DCR graph.

To facilitate expressing FLTL rules that capture the rules from Definition 3.2

that govern when an activity can be executed, we introduce fluents that capture

the sets Ex, Re, and In. More specifically, for each activity a ∈ A we introduce

three fluents modelling if a belongs to sets Ex, Re, and In according to Defini-

tion 3.3. Note that although DCR graphs allow any combination of activities in

Ex, Re and In in the initial marking, for simplicity, we assume that the initial

marking of the DCR graph is such that In = A and Re = Ex = ∅, which is the

most common scenario.

• a.Executed = 〈{a_happened}, ∅,⊥}〉 models if a ∈ Ex: Initially no ac-

tivity is in Ex and once in Ex it is never removed (see Definition 3.3a).

• a.Required = 〈{a′_happened | a′ ∈ (•→a)}, a_happened,⊥〉 models if

a ∈ Re: All activities are initially not required and the execution of a

activity makes it no longer required, and any activity in a response re-

lation with a makes it a required (see Definition 3.3b). In the hospital

example, fluent s.Required is defined as 〈{pm_happened, dt_happened},

s_happened, ⊥〉 because activity sign is a response to don’t trust and pre-

scribe medicine according to Figure 2. Note that for cases where a•→a,

we define a.Required as 〈{a′_happened | a′ ∈ (•→a)}, ∅,⊥〉 because the

execution of a does not turn false the fluent.
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• a.In = 〈{a′_happened | a′ ∈ (→+a)}, {a′_happened | a′ ∈ (→%a)},>〉

models if a ∈ In mimicking Definition 3.3c. Considering Figure 2, the

fluent gm.In is defined as 〈{s_happened}, {dt_happened}, >〉.

We introduce FLTL formulas to preserve the rules that govern when an activ-

ity can be executed (i.e., is enabled) according to Definition 3.2. In other words,

the formulas will relate the occurrence of a_happened with fluents a′.Executed,

a′.Required, and a′.In for all a′ ∈ A.

• For rule (a) of Definition 3.2 we introduce for every activity a ∈ A a

formula αa = (a_happened→ a.In).

• For rule (b) of Definition 3.2 we introduce for all a ∈ A: βa = (a_happened

→
∧
a′∈(→•a)(a

′.In→ a′.Executed)). For instance, for sign, according to

Figure 2 we have βs = (s_happened→ (pm.In→ pm.Executed)).

• For rule (c) of Definition 3.2 we introduce for each a ∈ A: κa = (

a_happened→
∧
a′∈(→3a)

(¬a′.Required ∨ ¬a′.In)). For instance, κpm =

(pm_happened→ (¬et.Required ∨ ¬et.In)) for Fig 3.

Then, we can formalize requirement G for a DCR graph DG as follows:

Definition 4.3. (Requirements from a DCR graph) Let DG = (A,R,M) be a
DCR graph, and, for each a ∈ A we have the following fluents:

• a.Executed = 〈{a_happened}, ∅,⊥〉,

• a.Required =

{
〈{a′_happened | a′ ∈ (•→a)}, ∅,⊥〉 if a•→a
〈{a′_happened | a′ ∈ (•→a)}, a_happened,⊥〉 otherwise

• a.In = 〈{a′_happened | a′ ∈ (→+a)}, {a′_happened | a′ ∈ (→%a)},>〉

Requirements for the DCR graph DG is 2G = 2
∧
a∈A αa ∧βa ∧κa where αa =

(a_happened→ a.In), βa = (a_happened→
∧
a′∈(→•a)(a

′.In→ a′.Executed))

and κa = (a_happened→
∧
a′∈(→3a)

(¬a′.Required ∨ ¬a′.In)).

4.4. Workflow Synthesis

In the previous sub-sections we defined all the elements needed to define

a control problem that yields as a result an LTS that enforces execution of

activities according to the semantics of a DCR graph. That is, we have a set
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of controllable events Lc, an LTS environment E, and an FLTL formula G that

can be used to define a control problem E = (E,2G,Lc); solutions to E are

LTS that decide when to enable and disable activities such that when running

with an environment that plays in turns and only executes enabled activities

(as described in E) satisfies all business process requirements (as captured in

G). In other words: E‖C |= 2G (Definition 3.13).

However, note that ensuring that E‖C |= 2G is not enough. We need the

controller to be maximal in the sense of that at any menu, the maximal set of

activities should be enabled that do not violate 2G. Consider a workflow for the

hospital in which after sign the only activity that is enabled is give medicine.

The sequence sign.give medicine satisfies 2G, but sign followed by don’t trust

should also be possible.

To ensure maximality we exploit a characteristic of the synthesis algorithm

implemented in the MTSA tool D’Ippolito et al. (2008): MTSA builds eager

controllers in the sense that they take the shortest route to satisfying their

requirements. As the controller is forced to do enableAll, the synthesis algorithm

will try to do as few disable actions as possible while still ensuring 2G, thus a

maximal number of activities will always be enabled.

In Fig 4 and 5 we show an abstract view of the controllers that MTSA builds

for the control problems extracted from the DCR graphs depicted in Figure 2

and 3. The actual controllers synthesised for these graphs have 188 and 2291

states respectively and are too large to depict in this paper. What we depict in

Figures 4 and 5 is the result of hiding events enableAll, disable and menu events

and minimising with respect to weak bisimulation Milner (1980).

These abstract depictions of the controllers (which are built automatically

by the MTSA tool) provide a view similar to that which actors Nurse and

Doctor observe (i.e., they only observe the activities that are enabled and not

the controllers incrementally deciding which activities to disable).
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Figure 8: If C is a controller, then every trace π ∈ C has an abstract trace abs(π).
For all i ∈ N, wi is a subtrace which only has disable, enableAll and menu events.

4.5. Correctness and Completeness

In the following we show that the control problem defined previously ade-

quately builds controllers for a DCR Graph.

We first introduce the notion of an abstract trace of a controller. This

consists of a trace in which only happened events are observed. In other words,

we remove all controlled events from traces as we are interested in checking if

the occurrence of activities in a trace is consistent with traces of a DCR Graph.

Definition 4.4 (Abstract traces in a Controller). Let ED = (E,2G,LC) be a
control problem where E, G and LC were extracted from D as described in this
section, C be a solution to ED, and, π be a trace in C. The Abstract Trace
of π in the Controller C is a trace abs(π) in which disable events, menu and
enableAll are hidden (see Figure 8). We refer to the LTS that has as its traces
all the abstract traces of a controller C as abs(C). LTS abs(C) can be obtained
by hiding disable events, menu and enableAll and then determinising.

We now prove correctness by showing that for any trace in the abstract

version of a controller that is a solution of our control synthesis problem, there

is a run in the DCR Graph. We prove completeness by showing that any run in

the DCR Graph has as a trace in the abstract version of a controller that is a

maximal solution of the control synthesis problem. Recall from Definition 3.14

that a controller is maximal if it is maximal with respect to trace inclusion.

Theorem 4.1. Let D = (A,R,M0, `, Act) be a DCR graph and ED = (E,2G,LC)
be the LTS control problem extracted from D as described in this section.

[Correctness] If C is a solution to ED and π is a trace in C, where abs(π) =

v0_happened.v1_happened . . . , then D
v0−→ D1

v1−→ D2 . . . ∈ runs(D).
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[Completeness] If C is a maximal solution to ED and D v0−→ D1
v1−→ D2 . . . ∈

runs(D) then there exists a trace π ∈ C such that abs(π) = v0_happened.
v1_happened . . . .

Correctness Proof. As C is an LTS that is the solution to the control problem
ED , we know that E‖C |= 2G (see definition 3.13). As C is legal w.r.t E
(definition 3.12) its traces must be a subset of those of E. Thus, it is also the
case that C |= 2G. Therefore, for all j ∈ N0, π, j |= G. By Lemma 4.2, we
know thatD v0−→ D1

v1−→ D2 . . . ∈ runs(D).

Completeness Proof. We assume D v0−→ D1
v1−→ . . . is a run in D. We need

to prove that there exist a trace π ∈ C such that π = w0. v0_happened.
w1. v1_happened . . . where subtraces wi do not contain happened events (see
Figure 8). If so, then we know that abs(π) = v0_happened.v1_happened . . .
because of Definition 4.4.

To prove the existence of π, we need to prove that (BASE) there exist w0

with no happened events such that w0.v0_happened is prefix of π and (IND)
given w0 . . . wi−1 with no happened events such that w0.v0_happened . . . wi−1.
vi−1_happened is prefix of π, then there exist a subtrace wi with no happened
events such that w0.v0_happened . . . wi.vi_happened is a prefix of π.

To prove (BASE), let π be a trace of C. As C is legal with respect to E
(Definition 3.13) we have that π is a trace of E. By construction of E, π must
be a trace that starts with a finite amount of disables events (between 0 and
|A|−1), followed by a menu event. We call this prefix w. The state of C having
run w will have enabled transitions labelled a_happened for all events a that
were not disabled in w (see Figure 6).

We must show that v0_happened is enabled at this state. Let us assume
that it is not and we will reach a contradiction. Because C is maximal, if
v0_happened is not enabled, then there must be no strategy for the controller
at the state in E reached after w.v0_happened. This is equivalent to stating
that the control problem extracted from D1 has no solution. However, there is
a run D1

v1−→ D2
v2−→ D3 . . . in runs(D1) and by Lemma 4.1 the control problem

extracted from D1 has a solution, reaching a contradiction.
Now we prove (IND): We have that D v0−→ . . . Di−1

vi−1−−−→ Di
vi−→ is a prefix

of an infinite run in D. We assume that C has a trace π with prefix π = w0.
v0_happened. w1.v1_happened . . . vi−1_happened where wj have no happened
events. We will show π.wi.vi_happened is a prefix of a trace in C.

Let c be the state reached in C after π. As in the BASE case, all traces in
C starting with π have a finite sequence of enableAll , disable and menu events
before the next happened event. Let wi the longest of such sequences such that
π.wi is a prefix of π. Let c′ be the state reached in C having run π.wi. We
assume that c′ does not have vi_happened enabled and reach a contradiction.
The reasoning is as with the BASE case.

The following lemma provides a sufficient condition for realisability of a

control problem ED for a DCR graph D.
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Lemma 4.1. Let D be a DCR graph, and ED be the control problem extracted
from D. If there is an infinite trace in traces(D) then there is a solution to ED.

Proof. Given an infinite run D v0−→ D1 . . ., we build an LTS that is a solution to
the control problem ED and that has as its only abstract trace: v0_happened.
v1_happened . . .. We build the LTS in two steps. First, one in which only
has happened events in its alphabet and has as its only trace: v0_happened.
v1_happened . . .. This can be done with a finite set of LTS states as each state is
considered to model a markingM0.M1 . . . whereMi is the marking of Di. (Note
that there are a finite number of markings). From this LTS we add between
every vi_happened, vi+1_happened the trace enableAll .w.menu where w has
exactly one disabled event for every activity except vi+1. It is straightforward
to show that the resulting LTS is a solution to ED.

The following lemma states that if a finite trace satisfies the controller goal

G for a control problem ED then its abstraction is a trace of a DCR graph D.

Lemma 4.2. Let D = (A,R,M0, Act, `) be a DCR graph, π be a trace with
alphabet defined as LC∪LC from Definition 4.1, and k, k̂ ∈ N0 such that k̂ is the
position of the kth happened event in π. If for all i ≤ k̂, π, i |= G, and abs(π) =

v0_happened . . . vk_happened, then, D
v0−→ . . . Dk

vk−→ Dk+1 ∈ runs(D), where
fluents in G are initialised according to marking M0 (as in Definition 4.3).

Proof. We prove this Lemma using induction over the length of a run in D. We
want to prove that (BASE) D v0−→ and (IND) if D0

v0−→ D1
v1−→ . . . Di−1

vi−1−−−→ Di

with i ≤ k is a run in D, then, Di
vi−→. We refer to Mi as the marking for DCR

graph Di.
To prove (BASE) we will show that v0 is enabled at marking M0 because

rules (a)-(c) from Definition 3.2 are satisfied.
Rule (a) is true iff v0 ∈ In0. As initial marking was defined to have every

activity in A we have v0 ∈ In0.
Rule (b) is true iff (In0 ∩ (→•v0) ⊆ Ex0). As In0 = A and Ex0 = ∅ this

holds iff (→•v0) = ∅.
Assume that there exists an activity b such that b→•v0. As for all j ∈ N0, we

know that π, j |= G, then, for all a ∈ A, the formula αa∧βa∧κa must be true (see
Definition 4.3). In particular, βv0 must be true after the execution of the first
happened event (i.e., the |w0| + 1 event of π, see Figure 8): π, |w0| + 1 |= βv0 .
Recall βv0 = v0_happened → (b.In → b.Executed) and that π, |w0| + 1 |=
v0_happened. Thus, the consequent of βv0 should be true. Since w0 does not
have any happened event, then, at position |w0|+1, fluents b.In and b.Executed
still have their initial value (true and false respectively) for all b 6= v0. Thus, if
b 6= v0, the consequent does not hold, reaching a contradiction. If b = v0 then
we have that b_happened and that b→•b which is also a contradiction.

Rule (c) is true iff Re0∩ In0∩ (→3v0) = ∅. As Re0 was defined to be empty
(initial marking), then this rule holds.
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Therefore, rules (a)-(c) from Definition 3.2 are guaranteed for activity v0 at
marking M0. Then, D

v0−→.
Now we prove (IND): Di

vi−→, assuming D0
v0−→ D1

v1−→ . . . Di−1
vi−1−−−→ Di

with i ≤ k. Hence, we need to prove that vi is enabled at marking Mi. By
Definition 3.2, we need to prove that:
(a) vi ∈ Ini
(b) Ini ∩ (→•vi) ⊆ Exi
(c) Rei ∩ Ini ∩ (→3vi) = ∅

As abs(π) = v0_happened . . . vi_happened . . . vk_happened, there must be
a position j such that vi_happened is the j event in π (i.e., π, j+1 |= vi_happened).
We also know that π, j + 1 |= G. Thus, the consequent of formulas αvi , βvi and
κvi must be true at position j + 1 (see Definition 4.3).

Thus, we have:
I) π, j + 1 |= vi.In
II) π, j + 1 |=

∧
a∈(→•vi)(a.In→ a.Executed)

III) π, j + 1 |=
∧
a∈(→3vi)

(¬a.Required ∨ ¬a.In)

By I) and Lemma 4.3 we have that activity vi is included at marking Mi

(vi ∈ Ini). Hence, rule (a) from Definition 3.2 is guaranteed.
By II) and Lemma 4.3 we have that for all a ∈ (→•vi) either a /∈ Ini or

a ∈ Exi. Thus, the following holds: Ini ∩ (→•vi) ⊆ Exi.
By III) and Lemma 4.3 we have that for all a ∈ (→3vi) either a /∈ Rei or

a /∈ Ini. Thus, the following holds: Rei ∩ Ini = ∅.
As rules (a), (b) and (c) from Definition 3.2 are valid for marking Mi and

activity vi, we conclude that vi is enabled at marking Mi (i.e. Di
vi−→).

The following lemma states that fluents a.In, a.Executed and a.Required

mimick correctly the state of a marking.

Lemma 4.3. Let π be a trace in C and abs(π) = v0_happened.v1_happened . . .
D be a DCR graph such that D0

v0−→ D1 . . . Di−1
vi−1−−−→ Di is a run of D reaching

marking Mi. Let j such that j = 0 or π, j |= vi_happened. For all activity
a ∈ atom(A),
• π, j |= a.In iff a ∈ Ini
• π, j |= a.Executed iff a ∈ Exi
• π, j |= a.Required iff a ∈ Rei

Proof. This follows straightforwardly from the fact that the definition of flu-
ents a.In, a.Executed, and e.Required (Definition 4.3) updates their values
mimicking the execution semantics of DCR graphs (Definition 3.3).

We have proved that the runs of a DCR graph D and the traces (of executed

activities) in C are equivalent. This result can be extended trivially to traces

in D if we apply function ` to each activity.
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Corollary 4.1. Let D = (A,R,M, `,Act) be a DCR graph and ED = (E,2G,LC)
be the LTS control problem extracted from D as described in this section.

[Correctness] If C is a solution to ED and π is a trace in C, where abs(π) =
v0_happened.v1_happened . . . , then `(v0).`(v1) . . . ∈ traces(D).

[Completeness] If C is a maximal solution to ED and `(v0).`(v1) . . . ∈ traces(D)
then there exists a trace π ∈ C such that abs(π) = v0_happened. v1_happened . . . .

5. Controlling Business Process Reconfiguration

In this section we show how to compute, using Dynamic Controller Update

(Definition 3.15), a reconfiguration strategy that guides the execution of work-

flow instances from satisfying the old business requirements to satisfying the

new ones while ensuring that all transition requirements are satisfied.

For this purpose, we first discuss how domain specific transition requirements

for a business reconfiguration can be described using FLTL. This involves intro-

ducing two new events. We then discuss what a solution to a reconfiguration

problem may look like and how such solutions can be built automatically solv-

ing a Dynamic Controller Update problem. Finally, we show how to use the

output of a Dynamic Controller Update to build a DCR graph representing the

dynamic reconfiguration of business processes.

5.1. Specification of Transition Requirements

Consider the scneario discussed in Section 2 for a Hospital process in which

a transition requirement stating that activity examine tests should be forced

when reconfiguring. Alternatively, this requires that before the new business

process requirements are to be enforced, activity examine tests is required.

To formalise this transition requirement we introduce an event that repre-

sents when the old business requirements are to be dropped (stopOldReq) and

when the new business requirements are to come into force (startNewReq). With

these, the transition requirement can stated as: when stopOldReq occurs, all ac-

tivities are prohibited except for examine tests until both examine tests and

startNewReq have occurred. In FLTL this is as follows.
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Th = 2(stopOldReq → ((
∧
a∈A\{et} ¬a_happened) W (et.Executed ∧

startNewReq))). Note that guaranteeing this formula requires enabling and

disabling activities such that the uncontrolled events a_happened can occur as

required by Th.

Two examples of domain independent transition requirements are immedi-

ate and delayed reconfiguration Ellis et al. (1995). The immediate reconfig-

uration requirement can be formalised as follow: TImm = beginReconf =⇒

((
∧
a∈A ¬a_happened) W startNewReq). In other words, as soon as the recon-

figuration is required, no activities are allowed until the controller signals that

the new business process requirements are guaranteed. The delayed reconfigura-

tion requirement relaxes immediate reconfiguration by allowing postponement

of startNewReq but requiring that any activities that occur before it comply to

the old business process requirements. This requirement can be formalised as

follows: T∅ = 2((StopOldReq ∧ ¬StartNewReq) →
∧
a∈A ¬a_happened), where

StopOldReq and StartNewReq are fluents that are initially false, become true

with stopOldReq and startNewReq , and never become false again.

Formally, we require transition requirements to be FLTL safety properties

that only predicate over happened events plus stopOldReq, startNewReq, and

beginReconf and that do not use the temporal operator X (i.e., they are

stutter invariant Lamport (1994)).

5.2. Reconfiguration Workflows

Returning to Th, what would a valid reconfiguration strategy that complied

to this transition requirement be? Assume the workflow in Figure 4 is in state 2,

a solution to the reconfiguration is to deploy a workflow that does force examine

tests and then reaches a state 10 in Figure 5. Our goal is to automatically build a

workflow that manages the transition between these two workflows consistently

with respect to a transition requirement. We call this workflow a reconfiguration

workflow.

This reconfiguration workflow that assumes that the old workflow is in state

2 is inadequate as, before it takes control, a new activity (e.g., give medicine)
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may be executed taking the old workflow (Figure 4) in state 2 to state 3. Should

this happen then the reconfiguration should force examine tests and then move

to state 13 in Figure 5 instead of 10. Thus, the goal is to build a reconfiguration

workflow that can manage the transition from any state in the old workflow.

Conceptually, our solution builds one reconfiguration workflow that consists

of three phases. The first is structurally equivalent to the old workflow (modulo

a new event beginReconf). This allows hot-swapping the old workflow with the

reconfiguration workflow, and setting the initial state of the latter according

to the current state of the former. The second phase is triggered by an event

beginReconf. At this point, the reconfiguration workflow may start to deviate

from the behaviour of the old workflow to ensure transition requirements. At

the point it does so, it must first signal stopOldReq. The third phase is one in

which the new workflow requirements are satisfied. Entering this third phase is

signalled with startNewReq.

In Figure 9 we depict an abstract reconfiguration workflow (enabling, dis-

abling and menu events are hidden) that implements the reconfiguration from

business process requirements of Figure 2 to those of Figure 3 under transition

requirement Th. The blue rectangle on the left represents the first phase of the

reconfiguration workflow. Note that the structure of states and transitions is

that of the workflow to be replaced (Figure 4), thus hotswapping this workflow

in is trivial. Note that all states in the blue region have an outgoing transi-

tion labelled beginReconf. When beginReconf is triggered, no matter what the

current state is, there is a path to the yellow region on the right. The yellow

region represents the new workflow as in Figure 5. The transition from the old

requirements to new ones, while satisfying the transition requirements is rep-

resented by between both rectangles. It is noteworthy that there are no loops

during the transition phase which guarantees that eventually the new business

process requirements will be enforced.
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Figure 9: Reconfiguration workflow with transition requirement Th.

5.3. Automatic Construction of Reconfiguration Workflows

Summarising, Figure 9 represents a strategy to solve the problem of recon-

figuring business process requirements in Figure 2 to those of Figure 3 under

transition requirement Th. We now discuss how such solution can be built by

solving a DCU problem Definition 3.15. The DCU problem requires two control

problems ED = (E,G,Lc) and ED′ = (E′, G′, L′c) which represent in this case

the old and new business process synthesis problems as described in Section 4,

starting from DCR graph D and D′. Dynamic Controller Update also requires

a transition requirement T and a state mapping R from the states of E to those

of E′. We have discussed T , we now discuss R.

The purpose of relation R is to explain the relationship between the assump-

tions modelled in each control problem. The issue is that E tracks assumptions

for a controller synthesised from C, when a reconfiguration is deployed it is not

possible to know what the state of the assumption E′ is. R must be provided

by a user to address this problem. In this setting, the mapping can be trivially

defined as the only differences between E and E′ are the LTSs (like the one in

Figure 6) representing activities that are present in one business process and

not the other. Furthermore, we know that for any new activity, this one can

never have been enabled by the controller of the old workflow. In consequence,
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R can be defined as the state identity relation for all LTS that are in E and E′

and as the constant relation 0 (i.e., the initial state) for LTSs representing new

activities. We assume the disjoint union of D and D′. Although an activity

in D and D′ may have the same name (and they represent the same operation

in the business process domain), we treat each shared activity between D and

D′ as two different ones. The reason of doing this, is that each activity may

change its relations (arrows) with the rest of the activities when changing from

D to D′. Thus, enabling and disabling an activity may change based on the

new model D′. This is also the case when we consider fluents generated for G

and G′.

Thus, given two DCR graphs D and D′ describing the old and new busi-

ness process requirements and a transition requirement T we can automatically

build control problems ED = (E,G,Lc) and ED′ = (E′, G′, L′c) as described

in Section 4 and R to describe and solve a DCU problem. An abstraction of

the solution to the DCU problem for the Hospital reconfiguration problem with

Th described above is depicted in Figure 9 and was built automatically using

MTSA.

An important methodological note is that not every DCU problem has a

solution. It is possible to provide two control problems ED and ED′ that are

individually realisable yet for certain transition requirements, the update is

impossible. Note that the automated procedure for solving DCU problems Na-

habedian et al. (2018) is complete. This means that if it fails to produce a

solution it will report so to the user that no solution to the problem exists.

In terms of business process reconfiguration non-realizability means that

it is possible to start with two sets of business process requirements that are

consistent yet to propose a transition requirement that is too stringent to allow

for a correct reconfiguration. An example of this, for the Hospital example, is

to require T = 2(startNewReq → ¬pm.Executed). There is no reconfiguration

strategy that can guarantee that the new business process requirements will be

put in force independently of the current state of the live instances of the old

workflow, in this case that activity prescribe medicine has not been executed.
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Note that if reconfiguration is possible, the synthesis algorithm will produce

a controller that attempts to achieve its liveness goals (i.e., 2(beginReconf →

(3 stopOldReq ∧ 3 startNewReq))) as soon as possible. In other words, events

stopOldReq and startNewReq will happen as early as possible.

5.4. Reconfiguration DCR Graphs

Having discussed how to build a reconfiguration workflow, we now show how

the reconfiguration strategy for one particular instance of the workflow can be

shown as a DCR graph which we refer to as a Reconfiguration DCR. We define

first Reconfiguration DCRs and then introduce an automatic process to build

them.

The reconfiguration workflows discussed previously encode a reconfiguration

strategy from every state in which an instance that is following the old business

process rules might be in. In order to provide feedback to a user that specified

the business rules in DCR, it is convenient to show them how one particular in-

stance should continue to be treated to adequately reconfigure business process.

Thus, we assume that we have a particular trace α that satisfies α ∈ traces(D)

and corresponds to the activities that one workflow instance has gone through.

Given this trace, the execution of a Reconfiguration DCR should continue α

guaranteeing rules from Definition 3.15. That is, we require that any trace of

the Reconfiguration DCR should continue α with some behaviour c while ad-

hering to the DCR D and then after a transition period t it should only allow

behaviour r that adheres to D′. Note that r does not need to be a trace of D′ as

some activities required by D′ may have already occurred before adherence. We

require r to be a trace of D′ with its initial marking updated to be consistent

with what occurred in α.c.t.

Note that to update D′ with an appropriate initial marking it is necessary

to be able to map activity labels in traces of D with activities in D′. To simplify

presentation we assume that the labelling functions of D and D′ are injective

and it is the same activity in D and D′ that gets mapped to a particular label.

Definition 5.1. (Reconfiguration DCR) Let D = (A, .,R,M0, Act, `) and D′ =
(A′, .′, R′, M ′0, Act

′, `′) be DCR graphs for the old specification and the new spec-
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Figure 10: Reconfiguration DCR for transition requirement Th and α.c.t = pm.et.
We use a shorthand to avoid an inclusion arrow from the left-most activity to all the
rest.

ification, respectively, where M0 = (Ex0, Re0, In0) and M ′0 = (Ex′0, Re
′
0, In

′
0),

T be an FLTL formula representing a transition requirement, and, α be a trace
in D. We require ` and `′ be injective and that activities are labelled consis-
tently in both DCRs (i.e., a ∈ A and a′ ∈ D′ if `(a) = `; (a′) then a = a′).
A Reconfiguration DCR for a trace α is a DCR graph DRα such that for ev-
ery infinite acceptance trace ω ∈ traces(DRα) there exists finite traces c and
t and an infinite trace r such that ω = c.t.r with i) α.c ∈ traces(D), ii)
α.beginReconf.c.stopOldReq .t.startNewReq . r |= T , and, iii) r is an acceptance
trace of δ(D′, α.c.t). (Definition 3.9).

The definition above only considers infinite accepting runs of a reconfigura-

tion DCR. Recall that we assume for all DCRs, and thus D′, that any run can

be extended to an infinite run to allow evaluating LTL properties over infinite

runs.

Recall the hospital workflow example discussed in Section 2 and its recon-

figuration workflow is depicted in Figure 9. For the case in which the medicine

was prescribed but nothing else was executed (α.c.t = pm.et), a Reconfigura-

tion DCR is depicted in Figure 10. Note that this DCR graph forces exam-

ine tests before moving into a run that complies to the new business rules.

This corresponds to the transition period depicted in Figure 9 as the path

through states 1, 2, 4, 5, 6. Also note that new DCR graph, depicted in a

dashed box, has a different marking than the original DCR (see Figure 3):
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The prescribe medicine activity is marked as executed. This is consistent with

α.c.t = prescribe medicine.examine tests. Note that Definition 3.8) uses the in-

verse of the relabelling function of the new DCR graph to map α.c.t to activities,

thus marking as executed the two boxes of Figure 9 that correspond to labels

prescribe medicine and examine tests. Should the labelling function not be in-

jective, then one label in α.c.t may impact the marking of several activities in

the new DCR graph. This is a conservative choice, as it is impossible to know

which of the activities in the new graph correspond to a label that originates

from the old DCR graph. Thus, the use of non-injective labelling functions in

the new DCR graph must be done with care.

5.4.1. Building a Reconfiguration DCR graph

In Algorithm 1 we show how to produce a Reconfiguration DCR graph using

old and new DCR graphs (D and D′, respectively), a trace α ∈ traces(D), and

a solution to a DCU synthesis problem (Cu) for ED and ED′ and a transition

requirement T . Roughly, we replay α in Cu (lines 2-8) and then build a DCR

graph that has exactly the same behaviour as Cu from then on to the point

where the transition period has ended (i.e. startNewReq have occurred). This

is done in lines 9-30. We then add to the DCR graph a copy of the new DCR

graph with an initial marking consistent with the events seen so far in Cu (line

30-38). The resulting DCR graph follows a structure depicted in Figure 11.

We now present the algorithm in slightly more detail. Lines 2-8 consume

the trace α. For each action label in α it advances the current state of Cu and

changes the marking of D following Definition 3.3 to reflect that the activity

has occurred. To do so, at Line 5, it is necessary to get the activity that

corresponds to each action label from α. As D and D′ are deterministic DCR

graphs (Definition 3.7), we know that there are only one enabled activity for a

given action label. At Line 9, the current state of Cu is the state at which the

reconfiguration should begin. Hence, the next event in Cu which we consume is

beginReconf . The behaviour of Cu from this point on is what must be captured

by the Reconfiguration DCR.
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ALGORITHM 1: Pseudocode for building a DCR Reconfiguration.
1 DCRReconfiguration (α, Cu, D, D

′)
2 resultDCR ← DCR();
3 history ← α ;
4 foreach label in α do
5 Let activity ∈ (D.`−1(label) ∩D.enabled());
6 Cu.executeHappened(activity);
7 D.execute(activity); // update marking as Definition 3.3
8 end
9 Cu.execute(“beginReconf”);

10 lastNode ← Null;
11 event ← Cu.getEnableAbsEvent();
12 while event is not “startNewSpec” do
13 if event is not “stopOldSpec” then
14 activity ← event.toActivity();
15 D.execute(activity);
16 if D.hasActivity(activity) then
17 history.append(D.`(activity));
18 else
19 history.append(D′.`(activity));
20 if lastNode is not Null then
21 newNode ← resultDCR.addNode(activity);
22 resultDCR.addCondition(lastNode, newNode);
23 lastNode ← newNode;
24 else
25 lastNode ← resultDCR.addNode(activity);
26 resultDCR.addExclusion(lastNode, lastNode);
27 resultDCR.setPending(lastNode);
28 Cu.execute(event);
29 event ← Cu.getEnableAbsEvent();
30 end
31 if lastNode is Null then
32 return D′;
33 D′.setMarkingConsistentTo(history);
34 includedActivites ← D′.getIncludedActivities();
35 resultDCR.addDCRGraph(D′);
36 resultDCR.addInclusions(lastNode, includedActivities);
37 resultDCR.excludeActivities(includedActivities);
38 return resultDCR;
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Figure 11: DCR reconfiguration schema for D, D′, and a trace α. Activi-
ties act1 . . . actn represent the reconfiguration strategy to follow before reconfig-
uring to D′. Right hand side corresponds to D′ with an updated marking ac-
cording to α.act1 . . . actn, except that activities included in the initial marking of
δ(D,α.act1 . . . actn), depicted as shadowed activities, are also excluded but with an
inclusion edge from actn.

From now on, the algorithm must traverse Cu to collect the behaviour it ex-

hibits until the transition period is over. To do so, it uses getEnableAbsEvent()

to obtain a happened, stopOldReq or startNewReq event that is available at the

current state of Cu. The current state of Cu will change inside a while loop

(Cu.execute(event) in Line 28) which stops when event is startNewReq. Inside

the loop, the algorithm adds to the Reconfiguration DCR one activity at a time

following a path in Cu, except for stopOldReq event that is filtered in Line 13.

Each activity has a corresponding action label that must be added to history

and it can be acquired with function `. However, as we do not know if the

activity is in D or in D′, the algorithm, at Line 16, does so. Later, in lines 20-

27 each activity is added to the Reconfiguration DCR in such a way that it is

chained to previous activities using a Condition relation (i.e ai→•ai+1 for all

i ≥ 0). Furthermore, for each of these added activities we include an exclusion

relation (Line 26) onto themselves to prohibit them being executed more than

once, and they are set as pending to require their execution (Line 27).

Note that the main loop terminates as it is guaranteed that any trace of

Cu satisfies rules (a) and (d) from Definition 3.15. Rule (a) assures Cu |=

(G ∧ ¬startNewReq) W stopOldReq (i.e., startNewReq is prohibited before

stopOldReq) and rule (d) assures Cu |= 2(beginReconf → (3 stopOldReq ∧ 3
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startNewReq)) (i.e., if beginReconf occur, then, startNewReq event will eventu-

ally occur). The while loop is traversing a trace of Cu from beginReconf until

startNewReq which exist because these two rules.

By Line 33, the transition period in Cu has ended and we change the mark-

ing of D′ according to history to build DCR graph δ(D′, history) (see Defini-

tion 3.9). We add this DCR graph to resultDCR relating last activity from

the transition period with inclusion edges to those activities that are included

in D′. Finally, we set all activities from D′ as not included to allow the tran-

sition period prevail. Since we set the inclusion edges, D′ becomes active when

transition period is over.

5.4.2. Algorithm Soundness

In the following we state and prove the soundness of Algorithm 1. By sound-

ness we mean that Algorithm 1 indeed produces a DCR Reconfiguration from

Definition 5.1.

Theorem 5.1. Let D and D′ be DCR graphs for the old specification and the
new specification, respectively, T be an FLTL formula representing a transition
requirement, α be a trace in D, Cu be a solution to the DCU problem defined by
transition requirement T and translating D and D′ to ED and ED′ , respectively.
If DRα is the output of Algorithm 1 with inputs (α, abs(Cu), D,D′), then DRα
is a DCR Reconfiguration for trace α from Definition 5.1.

Proof. Let ω be a trace ofDRα,D = (A, .,R,M0, Act, `) andD′ = (A′, .′, R′,M ′0,
Act′, `′). We will show that there exists finite traces c and t and an infinite trace
r such that ω = c.t.r with i) α.c ∈ traces(D), ii) α.beginReconf.c.stopOldReq .
t.startNewReq .r |= T , and, iii) r is an accepting run in (A′, .′, R′,M ′, Act′, `′)
where M ′ is consistent with M ′0 and α.c.t.

Following lines 2-33 in Algorithm 1, it is easy to see that there exists a trace
π ∈ Cu such that abs(π) = α′.beginReconf .c′.stopOldReq . t′.startNewReq .r′. We
define α, c, and t by replacing every ai_happened in α′, c′, and t′ with ai.

Following Definition 3.15 we know that (a) π |= GW stopOldReq , (b) π |= T ,
(c) π |= 2(startNewReq → G′) and (d) π |= 2(beginReconf → (3 stopOldReq ∧
3 startNewReq)).

From (a) we know that there exists k ∈ N0 (position where stopOldReq
occurs in π) such that for all position i ≤ k, π, i |= G. Thus, we can use
Lemma 4.2 to say that α′.beginReconf .c′ is a trace with “happened” events that
can be executed in D without beginReconf. Hence, α.c ∈ traces(D).

From (b) and the fact that T does not refer to the events abstracted by abs
and does not use the X temporal operator, we can conclude that abs(π) |= T .
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Finally, from (c) we have that π, j |= G′ for all j > k where k is the position
of startNewReq in π. This is equivalent to saying that r′, 0 |= G′ with fluents
initialised to reflect their valuation at position k of π. More precisely, if π, j |=d

G′ for all j > k then r′, 0 |=d′ G
′ where fluent definition d′ is such that for all

fluent f , π, k |=d f if and only fd′ .Init.
LetM ′0 = (Ex′0, Re

′
0, In

′
0). We defineM ′ = (δEx(Ex′0, α.c.t), δRe(Re

′
0, α.c.t),

δIn(In′0, α.c.t)). By construction M ′ is consistent with D′ and α.c.t. What re-
mains to be shown is that r is a run of (A′, .′, R′,M ′, Act′, `′). This follows
from Lemma 4.2 from the fact that the fluent definition d′ initialises fluents
consistently with marking M ′.

6. Validation

We aim to show applicability of the approach by taking a variety of busi-

ness process reconfigurations and computing both reconfiguration workflows and

reconfiguration DCRs.

In addition to the motivational example, we use three business processes

taken from BPM Academic Initiative BPMAI (2020) that were also modelled in

the DCR graph Tool Marquard et al. (2016): A Doctor assessment Process, An

Insurance Process, and a Computer Repair Process. We chose these business

processes to avoid bias in producing our own DCR graphs from workflows.

Each of the four case studies require two DCR graphs, a source and a target

for reconfiguration. We manually produced one variant for each case study and

used domain independent transition requirement (T∅ and TImm, see Section 5.1)

in addition to domain specific ones. All examples were run using an extension

of the MTSA tool D’Ippolito et al. (2008) and can be found at MTSA (2020).

Overall, 14 reconfigurations were defined and solved, corresponding to different

choices of transition requirements for each case study. In Table 1 we report

on examples, the number of distinct activities and constraints they involve,

the size of the resulting reconfiguration workflow and of its minimised version

(this involves hiding all enable, disable, and menu events). We also produced

Reconfiguration DCRs for each case study using various pairs of α and transition

requirements.
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Case Study # Activities # Arrows
Transition

Requirement
Reconfiguration

Workflow (# States)
Abstract Reconf.

Workflow (# States)

Oncology Hospital 6 13

T> 18667 54
TImm 9817 34
T∅ 9817 34
Th 11155 39
T ′
h 15094 54

Doctor Assessment
Process

10 25
TImm 22448 39
T∅ 22448 39
TD 27512 42

Insurance
Process

11 25
TImm - -
T∅ 15484 51
TI 14233 48

Computer Repair
Process

14 26
TImm - -
T∅ 43307 59
TC 52652 63

Table 1: Case study summary. The hyphen (-) represents a not realizable controller.

6.1. Oncology Hospital

This case study, extensively discussed above, is the only one for which

both reconfiguration source and target DCR graphs existed. Both were taken

from Mukkamala (2012). We modelled various alternative transition require-

ments and built business process reconfiguration for each of them.

We first used a trivial transition requirement (T> = >) to confirm that a

reconfiguration strategy exists but it allows undesired behaviour. Indeed the

reconfiguration process allowed: beginReconf, stopOldReq, give medicine, start-

NewReq . . . The trace is one in which a live instance for which no activities

have occurred starts to be reconfigured, the old business process requirements

are dropped and before the new ones are enforced the patient is given medicine

(without a signed prescription by a doctor!). This problem arises because T>

allows any activity during reconfiguration.

The use of a domain independent transition requirement, TImm = beginReconf

=⇒ ((
∧
a∈A ¬a_happened) W startNewReq), to require an immediate recon-

figuration as defined by Ellis et al. (1995) also yields a reconfiguration strategy.

However, as discussed in Section 2, this strategy is a health risk for patients who

have had their medicine prescribed and signed for. Allowing a delayed reconfig-

uration using T∅ = 2((StopOldReq ∧ ¬StartNewReq) →
∧
a∈A ¬a_happened)

does not solve the issue. The resulting reconfiguration strategy allows the same
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scenario. Thus, the need for a domain dependent transition requirement arises.

We considered two domain specific transition requirement. The first, Th =

2(stopOldReq → ((
∧
a∈A\{et} ¬a_happened) W (et.Executed ∧ startNewReq)))

as discussed in Section 5.1 states that no activities are allowed in the transition

period except examining test results. This requirement eliminates the scenario

in which new tests arrived while under the old business process requirements

(and consequently not registered) and a reconfiguration allows a doctor to give

the patient the medicine without checking these tests.

We considered another scenario, in which the nurse acts as a proxy for pos-

sible new tests having arrived but not having been registered. In this case, we

assume that the nurse will have indicated a lack of trust in the prescription. As

a result we require that the new requirements not be put in place if the nurse

has indicated lack of trust: Th′ = T∅ ∧ 2((dt.Executed ∧ ¬gm.Executed) →

¬stopOldReq ). The requirement not only requires an empty transition period

(T∅) but also restricts dropping the old specification (stopOldReq) if a don’t trust

event has occurred and the patient has not been given medicine. The resulting

reconfiguration strategy eliminates the undesired beahviour discussed previously

as long as it is true that the availability of new tests triggers a don’t trust event

by the nurse.

We show the DCR graph depiction of the reconfiguration strategy produced

for the requirement Th for an instance in which only prescribe medicine has

occured (i.e., the DCR reconfiguration graph for Th and α = pm) in Figure 10

of Section 5.4.

We also show the DCR reconfiguration graph for Th′ for an instance that

requires a delayed reconfiguration (i.e., α = pm, s, dt). This scenario could be

exhibited for a patient that has had their medicine prescribed and signed for,

and then as a result of new tests a nurse indicating that the prescription is not

trustworthy. The DCR reconfiguration graph in Figure 12 shows that before

switching business process, a new prescription must be made and signed for.
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Figure 12: Reconfiguration DCR for Th′ and α = prescribe medicine, sign, don’t trust

6.2. Doctor Assessment Process

An assessment process for doctors in a hospital must coordinate a manager

and reviewers to ensure that doctors are periodically assessed. The rules involve

managing that reviewing deadlines are met, replacements are set in case of

unresponsive reviewers and also that reviewers are appropriately paid. We used

the original DCR graph as the new business rule for reconfiguration and removed

one activity to produce the old DCR graph. We considered a process that

initially does not pay experts for their evaluation and that is to be reconfigured

to support paying expert revision fees.

Using the transition requirement T∅ to disallow activities in the transition

period, we obtain a reconfiguration that can be performed immediately at any

point of the execution of the first process. This is because the activity of paying

experts simply adds to the end of the current process an additional activity.

However, T∅ may result for some instances in paying experts that had agreed

to do a review for free in the old process.

Using TImm that is a stronger transition requirement does not solve this

issue either. To avoid this scenario we need a domain specific requierement TD

stating that if reconfiguration is requested after receiving expert review, the

expert must not be paid: TD = T∅ ∧ (2(startNewReq ∧ recExp.Executed) →

2¬pay.Executed) where recExp is the activity representing the reception of

expert review. Note that TD forces a delayed reconfiguration under certain
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Figure 13: Reconfiguration DCR for transition requirement TD and
α = interviewPatients, askExpertToReview, makeReview, sendExpertise,
receiveExpertise.

circumstances. This differs from T∅ which allows delaying reconfiguration if

performing it immediately leads to a violation of the new business process re-

quirements.

We built a Reconfiguration DCR for this case study with transition re-

quirement TD and α = interviewPatients, askExpertToReview, makeReview,

sendExpertise, receiveExpertise. This reconfiguration, as shown in Figure 13

delays the change of specification until after the time in which the final report

was already created. By doing so, the workflow execution is finished, and there-

fore, it is impossible to pay to a reviewer, thus avoiding payment of a reviewer

that had accepted to review for free. A long delay like this is guaranteed with

a DCR graph that has a long sequence of activities related by condition arrows.

The execution of the last activity in this sequence, includes the node that has all

the relations corresponding to the new DCR graph. However, all these activities

are marked as already executed, so the workflow has finished.
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6.3. Insurance Process

The business process for an insurance company includes two roles: agents

and clerks. Originally, the clerk must, upon receiving a new customer claim,

call the agent to check the claim and create a new customer case. The new

requirement we devised to be put in place states that create a new case must

happen before call the agent (this corresponds to the classic parallel to sequential

reconfiguration Van der Aalst and Stefan (2000)). We solved the reconfiguration

for two different transition requirements.

Requiring an immediate reconfiguration (TImm) makes the DCU reconfigura-

tion problem unrealisable and MTSA reports so. The reason for unrealisability

is that in some states of the old business process an immediate reconfiguration

will violate the new business process requirements. More specifically, if activity

call the agent has occurred, then create a new case cannot occur leading to a

state in the new business process in which no activity is allowed (a deadlock).

We also explored a different variation of requirements, including in the new

DCR graph a kill activity that excludes all other activities, modelling the killing

of an instance. Then a transition requirement that forces kill when call the

agent has been executed before create a new case can be specified as TI = T∅ ∧

2((call.Executed∧¬create.Executed∧startNewReq)→ (¬ED W kill.Executed)),

where ED is the disjunction of disable events for all activities except kill plus

enableAll.

Two different Reconfiguration DCRs were computed to capture both the

possibility of an immediate reconfiguration and one in which the instance must

be killed. The first uses α = receive a new claim, create a new case and TI

producing an immediate change and the second sets α = receive a new claim,

call the agent. The result is the Reconfiguration DCR from Figure 14 that has

kill activity as the only one in the sequence, followed by DCR graph D′ with kill

activity as the only enabled which prohibits the execution of any other activity.
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Figure 14: Reconfiguration DCR for transition requirement TI and α =
receive a new claim, call the agent.

6.4. Computer Repair Process

A computer repair service starts when a customer brings a defective com-

puter. If the service provider and customer agree on a budget, then hardware

and software repair activities are performed. We added a new role, that of a

supervisor, that must approve a budget before it is sent to the customer. We

used three activities for this: send to supervisor, approve, and reject.

As with the previous example, an immediate reconfiguration requirement

(TImm) cannot be met as instances in which the budget has been sent to the

customer cannot be reconfigured to comply to the new business process require-

ments.

Requiring a weaker transition requirement, delayed reconfiguration (T∅) yields

a reconfiguration strategy that, as expected, delays reconfiguration for instances

in which the budget has already been sent to the customer. Similarly to the

previous case study, depending the activities that have been executed (i.e., dif-

ferent α’s), the resulting Reconfiguration DCR exhibits an immediate or delayed

reconfiguration.

Delaying the reconfiguration in this case study may not be desirable: If

the customer has already been sent a budget, it may still be worth requesting
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supervisor approval. If the supervisor rejects the budget, then the customer

could be contacted and apologies offered. The following formula (where sup

is the activity send to supervisor) captures this reconfiguration requirement:

TC = 2((stopOldReq ∧ ¬RepairStart) → (¬Happens W (sup.Executed ∧

startNewReq))) where Happens is the disjunction of happened events for all

activities except approve, reject, and sup.

For this transition requirement we built two Reconfiguration DCRs. The

first is for an instance in which the repair has already started. The result-

ing Reconfiguration DCR from Figure 15 follows an immediate reconfiguration

strategy, since the repair process has started and the final decision is to continue

with that. The DCR graph does not have a sequence of activities, but instead,

it allows to continue trace α with a suffix of a consistent marking in D′.

The second reconfiguration DCR is for an α in which the customer has

received the budget but repair has not started (Figure 16). The resultant Re-

configuration DCR has a transition sequence which forces to do the send to

supervisor activity and then an approve.

Note that rather than approve, a reject could have been selected. It is

the Reconfiguration DCR algorithm that decides which to pick (see method

getEnableAbsEvent() in Algorithm 1). Should this choice not be desirable, the

transition requirement can be refined to force one or the other.

6.5. Validation Conclusions

For each case study we identified one plausible evolution of the business pro-

cess and showed that it required a domain specific transition requirement (e.g.,

Th, TD, TI and TC) to ensure that any instance, independently of in which state

it is in, when reconfigured exhibits correct behaviour. In other words, we showed

that domain independent transition requirements such as immediate reconfig-

uration (TImm = beginReconf =⇒ ((
∧
a∈A ¬a_happened) W startNewReq))

can lead to a inconsistencies in certain states in which an instance may be at

the time of reconfiguration. While delayed reconfiguration with no transition

period for mitigation actions (T∅) forces in some cases the reconfiguration to be
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Figure 15: Reconfiguration
DCR for transition requirement
TC and α = bringsComputer,
calculateCost, costAccepted,
checkAndRepairHardware,
checkAndRepairSoftware which
produce and immediate reconfiguration.

Figure 16: Reconfiguration DCR
for transition requirement TC and
α = bringsComputer, calculateCosts,
costAccepted

delayed indefinitely (i.e, the instance finally exhibits the complete behaviour of

the old requirements). Thus, we showed that there is a need for domain specific

transition requirements in all case studies.

Note, however, that using a domain dependent transition requirement for a

particular reconfiguration may result in some instances reconfiguring immedi-

ately, others delaying and others performing intermediate remediation activities.

See for instance the Computer Repair case study, in which we show two reconfig-

uration graphs for two different states in which an instance may be in. Figure 16

shows a reconfiguration scenario in which a transition period is needed, while

Figure 15, shows for the same transition requirement, a scenario in which re-

configuration occurs immediately.
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The last case study shows a weakness of the Reconfiguration DCR definition.

The LTS computed as a solution to the DCU problem restricts minimally the

options given to the environment to progress towards the new business process

(i.e., approve and reject in the Computer Repair case study). The Reconfigura-

tion DCR definition (see 5.1) does not require all these options to be available

in the resulting DCR graph. In fact, the Algorithm 1 chooses an extreme so-

lution Reconfiguration DCR by picking only one of many sequence of activities

needed to satisfy the transition requirement and eventually arrive at a consistent

marking of the target DCR.

Picking one sequence that leads to the new business process may not be satis-

factory (i.e., it may be desirable to let the supervisor choose whether to approve

or reject). What would be a more general solution is to generate tree-shaped

Reconfiguration DCR that would adapt to what the environment is willing to

perform. This would require a modification of Algorithm 1 and significant tool

support to show the resulting DCR which could be large as potentially multiple

copies of the new business process specification (with different markings) may

be needed. In this formulation, trees would still be required to preserve the

behaviour as expressed in Definition 5.1.

7. Discussion and Related Work

This paper is an extension of Nahabedian et al. (2019). Here, we formally

define the control problems required to synthesis workflows from DCR graphs

and prove that the transformation is sound and complete. Additionally, we

include a DCR graph extraction method that outputs a model characterizing

the reconfiguration activities described by the solution presented in Nahabedian

et al. (2019) in the form of a Labelled Transition System. This extension allows

users to consistently provide and receive feedback in only one language.

In this paper we use controller synthesis to produce a correct-by-construction

solution that guarantees safety and liveness properties posed as requirements.

However, we assume that these requirements are well-written and free of bugs.

This is a strong assumption that can be addressed by using test-driven modelling
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techniques such as Zugal et al. (2011); Slaats et al. (2018). In Zugal et al. (2011)

they introduce Cheetah Experimental Platform to improves the communication

between domain experts and model builders. Later, Slaats et al. (2018) presents

a generalisation of Zugal et al. (2011) by producing open-tests. These tests

capture both forbidden and must-seen traces that the model should have during

a reconfiguration. This technique allows any kind of change as presented here,

such as adding, removing or changing an activity or a rule.

7.1. Business Process Reconfiguration

The essence of business process reconfiguration has been studied extensively

as dynamic workflow evolution Casati et al. (1996); Reichert and Dadam (1998),

dynamic workflow change Ellis et al. (1995), business process flexibility (e.g, Re-

ichert and Weber (2012); Van Eijndhoven et al. (2008)), business process ver-

sioning (e.g, Kradolfer and Geppert (1999); Zhao and Liu (2007)), or simply

business process change (e.g, Van der Aalst and Stefan (2000); Van der Aalst

(2001)).

Our work is related to all of these, but is the first to allow specification of

domain dependent transition requirements, including transitions that require

intermediate mitigation and corrective activities, together with an automated

synthesis technique for building correct-by-construction workflows that satisfy

these requriements.

In its origins, works such as Ellis et al. (1995); Badouel and Oliver (1998);

Van der Aalst (2001) approached reconfiguration as the problem of defining

dynamic transitions from one state of current workflow to another one in the

new one. Without transition periods, changes can be partitioned into immediate

or delayed Ellis et al. (1995).

Our work fits well with the notion of progressive workflow evolution Casati

et al. (1996) in which different decisions on how to evolve a workflow are made

depending on the state or history of the a particular workflow instance. Var-

ious progressive evolution strategies are discussed in Casati et al. (1996) but

classification of instances into groups that require different treatment is man-
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ual. In Reichert and Dadam (1998) consistency and correctness of evolutions is

studied. A set of complete and minimal change operations that support users

in evolving workflows at runtime is defined and with which consistency and cor-

rectness are guaranteed. However, these notions of correctness and consistency

are domain independent. In the approach herein, it is possible to define domain

dependent correctness requirements and change operations are automatically

synthesised

In Van Eijndhoven et al. (2008), the idea of isolating parts of a process to

facilitate change is studied. Additionally, Reichert and Weber (2012) presents

many challenges, methods and technologies to increase the ability of business

processes to react to changes in its environments in a flexible way. Workflow

versioning is a different take on reconfiguration (e.g., Kradolfer and Geppert

(1999); Zhao and Liu (2007)) where multiple workflow versions are running

simultaneously. In all cases, and in contrast to our work, there is no a transition

period in which remedial or compensatory activities (that do not belong to either

the old or new processes) can be implemented. In Van der Aalst and Stefan

(2000) classification is provided of potential errors that may arise from process

changes. In Rinderle et al. (2004) authors present a survey of correctness criteria

guaranteed by dynamic change techniques. Finally, a taxonomy of reasons for

reconfiguration is presented in Schonenberg et al. (2008).

7.2. Workflow specification languages

We require declarative workflow specifications as opposed to operational de-

scriptions in the form of a workflows. Both modelling methods were extensively

studied (e.g., Fahland et al. (2009); Pichler et al. (2011)) showing their advan-

tages and disadvantages.

Many declarative modelling approaches for business processes have been

studied. The ConDec Pesic and Van der Aalst (2006) language based on lin-

ear temporal logic (LTL Pnueli (1977)) was introduced for modelling business

process. Rule based descriptions of business process requirements have also

been proposed (e.g., Mejia Bernal et al. (2010); Vasilecas et al. (2016)). These
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approaches, in addition to DCR graphs Hildebrandt and Mukkamala (2010)

support changing rules during the execution of a workflow, however there is

no support for understanding or guaranteeing properties of the reconfiguration.

Thus, understanding if a delayed or a immediate change is needed must be done

before introducing a new rule. Our approach requires a declarative description

of business process requirements in a rather general language (FLTL) and pro-

vides guarantees over the reconfiguration process. The choice of DCR graphs

as a starting point is accidental, we could have applied a similar translation for

other declarative languages.

We make an observation regarding the branching structure of the LTS con-

trollers we build when compared with the branching structure of the process-

algebraic semantics of DCR graphs as reported in Debois et al. (2018a): Theo-

rem 4.1 only states that traces are the same. However, the deterministic version

of the controller after hiding auxiliary events makes it bisimilar Milner (1980)

to the process-algebraic semantics of the DCR graphs. Requiring some sort of

bisimulation for the reconfiguration is too strong as it is sometimes necessary to

reduce the available behaviours to satisfy user provided transition requirements.

Although this paper builds on DCR graphs Hildebrandt and Mukkamala

(2010) as a means to describe business processes, we believe that the approach

could be adapted for other declarative languages such as ConDec Pesic and

Van der Aalst (2006), and DECLARE Pesic et al. (2007), or even rule based

approaches such as Mejia Bernal et al. (2010); Vasilecas et al. (2016). Auto-

matic generation of a reconfiguration workflow requires a translation to LTL

and LTS. Recasting the synthesised reconfiguration workflow back to the orig-

inal specification language may be much more challenging. Application of the

concepts described in this paper to more operational style languages such as

BPMN White (2004), Workflow Nets Van der Aalst (1997) and others Peterson

(1977); Jensen (1987) is not as straightforward. Controller synthesis is natu-

rally oriented towards bridging the gap between a declarative description of a

problem and its operational solution. To apply synthesis for these languages

may require some form of reverse engineering of rules and constraints.
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There are many extensions of DCR graphs that allows users to define a busi-

ness process with data Seco et al. (2018); Slaats et al. (2013), subprocesses De-

bois et al. (2014) and time Hildebrandt et al. (2013). The technique presented

in this paper does not support these extended features of DCR graphs. To re-

configure a business process with data, subprocesses and/or time, we need to

change definitions 4.1- 4.3 to map these type of DCR graphs into an LTS con-

trol problem. However, how to perform these definition changes requires further

investigations.

7.3. Adaptive Systems

It is also possible to position this work in the context of self-healing and self-

adaptive systems in that infrastructure for facilitating business process change

is provided, although manual intervention is needed to specify both the new

business process requirements and any transition requirements. While motiva-

tion to self-adaptation and particularly self-healing is to cope with quality of

service degradation or recovering from unhealthy state (typically failures) Baird

et al. (2011); Halima et al. (2008); Psaier and Dustdar (2011), our work ad-

dresses change of business rules given declaratively. Our work is oblivious to

the reason why and how business rules have changed (e.g., evolutionary, con-

tingent or necessary adaptation due to change in business or legal regulations

or business performance issues, amongst others) and it focuses on supporting

self-configuration, or more precisely process instance reconfiguration Baird et al.

(2011).

The continuous availability (of a business) is consistent with the the MAPE-

K framework Iglesia and Weyns (2015). We focus on on providing an automatic

and versatile support to plan change but our approach is largely orthogonal to

the monitor, analyze or knowledge based aspects Psaier and Dustdar (2011)

which in our case are not even required to be automated. We emphasise the

versatility of our technique in contrast to most self-adaptation techniques that

have pre-defined plans and choose and adjust parameters from a repertoire of

reaction strategies which typically boil down into architecture-level reconfigura-
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tions (e.g., binding to new web-services Halima et al. (2008), pre-stated alternate

choices for workflow paths Baird et al. (2011)). In fact, our technique does not

require the designer to choose a priori explicitly between instance reconfigura-

tion strategies Baird et al. (2011); Sadiq et al. (2000) like abort, flush, restart or

migrate but, indeed, the adequate strategy to business availability is computed

from old and new rules and what transition requirement states regarding busi-

ness or legal regulations that must always be satisfied. The resulting business

workflow could be understood as a declarative recipe that, depending on what

the instance state is, it reconfigures it. Humans can recast that strategy as an

abort, flush, restart, or, an ad-hoc migration on a per instance basis.

The problem of business process reconfiguration has many commonalities

with that of dynamic software updates. These have also been studied extensively

(e.g., Kramer and Magee (1990); Ghezzi et al. (2012); Nahabedian et al. (2018)).

7.4. Discrete Event System Control

We build on a body of work related to the automatic construction of con-

trollers for discrete event systems, embodied by supervisory control (e.g. Ra-

madge and Wonham (1989)), synthesis of reactive designs (e..g., Pnueli and

Rosner (1989)) and automated planning (e.g., Cimatti et al. (2003)). Here,

we build on synthesis of discrete event controllers and in particular the work

presented in D’Ippolito et al. (2013) that uses LTS and FLTL as the input for

synthesis. We strongly build on the result presented in Nahabedian et al. (2018)

where a general technique for updating at runtime a controller. In this paper we

adapt and apply this technique in the context of business process reconfiguration

for DCR graph specifications.

8. Conclusions

In this paper we discuss the problem of assuring the reconfiguration of busi-

ness processes. We show that the provision of a framework for the specification

of domain dependent reconfiguration requirements that supports non-trivial in-

termediate mitigation and corrective activities, can be supported with an auto-
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mated synthesis technique that deliver building correct-by-construction work-

flows that satisfy these requirements. A precondition for such an approach is

the existence of a declarative specification of business processes. Hence, in this

paper we adopt DCR graphs, however alternative declarative languages could

be used. We show not only how to automatically construct workflows in the

form of Labelled Transition Systems from DCR graphs by setting and solving

a discrete event controller synthesis problem. We also show how to produce a

workflow that guaranteed correct reconfiguration using controller synthesis, and

then how to produce a DCR graph that models how a particular instance that

is running the workflow of the business rules to be replaced must be treated to

consistently transition into a workflow that is consistent with the new business

rules.

This work does not provide a completely unified specification formalism for

reconfiguration as transition requirement requirements must be provided in logic

rather than in a formalism that is closer to (or even within) DCR graphs. Inves-

tigation as to common transition requirement patterns and appropriate graph-

ical representation of them is one line of future work. In addition, as reported

in the conclusions of the validation section, we foresee that predicating on the

branching structure of the behaviours allowed when transitioning between spec-

ifications may be a useful extension to the work.
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