
Optimal-size problem kernels for d-Hitting Set in linear time and space?

René van Bevern∗, Pavel V. Smirnov

Department of Mechanics and Mathematics, Novosibirsk State University, ul. Pirogova 1, 630090 Novosibirsk, Russian Federation

Abstract

The known linear-time kernelizations for d-Hitting Set guarantee linear worst-case running times using a quadratic-size data structure
(that is not fully initialized). Getting rid of this data structure, we show that problem kernels of asymptotically optimal size O(kd) for
d-Hitting Set are computable in linear time and space. Additionally, we experimentally compare the linear-time kernelizations for
d-Hitting Set to each other and to a classical data reduction algorithm due to Weihe.

Keywords: combinatorial optimization, NP-hard problem, data reduction, parameterized complexity, kernelization

1. Introduction

We study data reduction algorithms for the following combina-
torial optimization problem:

Problem 1 (d-Hitting Set, for constant d ∈ N).
Input: A hypergraph H = (V, E) with vertex set V = {1, . . . , n},

edge set E ⊆ {e ⊆ V : |e| ≤ d}, and k ∈ N.
Question: Is there a hitting set S ⊆ V of cardinality at most k,

that is, ∀e ∈ E : e ∩ S , ∅?
Throughout this work, we denote n := |V | and m := |E| and call
|H| = |V | + |E| the size of the hypergraph H.

The d-Hitting Set problem is an NP-complete [22] fundamental
combinatorial optimization problem, arising in bioinformatics
[25], medicine [24, 34], clustering [8, 21], automatic reason-
ing [11, 17, 31], feature selection [10, 20], radio frequency al-
location [33], software engineering [29], and public transport
optimization [9, 35].

Exact algorithms for NP-complete problems usually take time
exponential in the input size. Thus, an important preprocessing
step is data reduction, which has proven to significantly shrink
real-world instances of NP-hard problems [2, 7, 9, 24, 35]. The
main notion of data reduction with performance guarantees is
kernelization [19], here stated for d-Hitting Set:

Definition 2. A kernelization maps any d-Hitting Set instance
(Hin, kin) to an instance (Hout, kout) in polynomial time such that

1. Hin has a hitting set of size kin if and only if Hout has a
hitting set of size kout,

2. |Hout| + kout ≤ g(kin) for a computable function g : N→ N.

One calls (Hout, kout) the problem kernel and g(kin) its size. In
the kernelizations studied in our work, k := kin = kout.

?This work is based on the Bachelor thesis of the second author [32].
∗Corresponding author
Email addresses: rvb@nsu.ru (René van Bevern),

p.smirnov@g.nsu.ru (Pavel V. Smirnov)

The existence of problem kernels of size O(kd−ε) for any ε > 0
for d-Hitting Set results in a collapse of the polynomial-time
hierarchy [14]. There are two known O(n + m)-time kerneliza-
tions for d-Hitting Set that yield problem kernels of this optimal
size O(kd) [6, 16]. They can be implemented
(a) with expected linear running time and linear space using

hash tables with random hash functions, or
(b) with worst-case linear running time using a trie data struc-

ture, which may allocate Θ(nm) cells of random access
memory (of which only O(n + m) are initialized) [5].

In experiments, the memory usage of implementation (b) proved
to be prohibitively large, yet implementation (b) outperformed
implementation (a) when enough memory was available and
allocation of zero-initialized memory was cheap [5].

From a theoretical point of view, a natural question is whether
one can derandomize implementation (a), so that it runs in worst-
case linear time and space, or, equivalently, whether one can
lower the memory usage of implementation (b) to linear. From
a practical point of view, it is interesting how the two kernel-
izations compare to each other and to other data reduction algo-
rithms.

Our contributions and organization of this work. Section 2
shows the two known linear-time d-Hitting Set kernelizations.
We then describe our new contributions, which are two-fold:

In Section 3, we resolve the apparent paradox that the linear
worst-case running time of the known d-Hitting Set kerneliza-
tions hinges on quadratic-space data structures. To this end, we
show how to implement both of them in O(n+m) time and space.

In Section 4, for the first time, we experimentally compare
the two kernelizations to each other and to a well-known
data reduction algorithm due to Weihe [35], which runs in
superlinear time, does not yield problem kernels, but proved to
be very effective on instances of the Station Cover problem. We
will see that the kernelizations outperform Weihe’s algorithm
for small d and that combinations of kernelization and Weihe’s
algorithm may yield significantly stronger data reduction effects
than the individual algorithms.

ar
X

iv
:2

00
3.

04
57

8v
2

 [
cs

.D
S]

 4
 J

un
 2

02
0

Algorithm FK: Algorithm of Fafianie and Kratsch [16].
Input: Hypergraph (Vin, Ein), k ∈ N.
Output: Problem kernel ((Vout, Eout), k) with |Eout| ≤ (k + 1)d.
// Initially, ∀s ⊆ V : supersets[s] = 0.

1 Eout ← ∅

2 foreach e ∈ Ein do
3 if ∀s ⊆ e : supersets[s] < (k + 1)d−|s| then
4 Eout ← Eout ∪ {e}
5 foreach s ⊆ e do supersets[s]← supersets[s] + 1

6 Vout ←
⋃

e∈Eout e
7 return ((Vout, Eout), k)

Related work. There are several kernelizations for d-Hitting Set
[1, 3, 4, 13, 15, 18, 23, 26, 28]. Dell and van Melkebeek [14]
showed that the existence of a problem kernel with O(kd−ε) edges
for any ε > 0 for d-Hitting Set implies a collapse of the polyno-
mial-time hierarchy. Therefore, we do not expect polynomial-
size problem kernels for d-Hitting Set if d is not constant. There
are problem kernels with O(kd−1) vertices, however [1, 5, 26].

Lowering the running time and space requirements of
d-Hitting Set kernelizations both have been in the focus of
research. The first linear-time kernelization is due to van
Bevern [5, 6]. The second, due to Fafianie and Kratsch [16], is
simpler and has smaller constant factors: the problem kernel
of van Bevern [6] has at most d! · dd+1 · (k + 1)d edges, whereas
the problem kernel of Fafianie and Kratsch [16] has at most
(k+1)d edges. Both kernelizations work in O(d ·n+2dd ·m) time.

Problem kernels of size O(kd log k) are computable in
O(kd log n) space and O(kdm) time [15], of size O(kd) in log-
arithmic space and O(md+2) time [16], and of exponential size
even in constant parallel time [4].

2. Known linear-time algorithms

There are two known linear-time kernelizations for d-Hitting Set:
FK and Bev. Both iterate over each input edge e ∈ Ein once and
decide whether to add e to the output edge set Eout as follows.

FK does not add e to Eout if e contains a subset s that is
contained in (k + 1)d−|s| edges of Eout. It can be shown that any
hitting set of size k for (Vout, Eout) has to intersect s, and thus e
[16]. Thus, for each s ⊆ e ∈ Ein, FK maintains the number of
supersets of s in Eout in a counter supersets[s], which is updated
for each s ⊆ e whenever adding an edge e to Eout.

Bev is based on finding sunflowers—sets of edges (called
petals) with mutually equal intersection (called the core).
If there is a sunflower with k + 1 petals, then any hitting set of
size k has to intersect its core. Thus, Bev does not add e to Eout if
it finds that e contains the core s of a sunflower with k + 1 petals
in Eout. To this end, for each s ⊆ e ∈ Ein, Bev maintains the
information of one sunflower with core s: petals[s] is its number
of petals and used[s][v] is true if and only if v ∈ V is contained
in one of them. Whenever adding an edge e to Eout, Bev
adds e to the sunflower with core s for each s ⊆ e (if possible).
Depending on the order of the input edges, Bev may not find a

Algorithm Bev: Algorithm of van Bevern [6].
Input: Hypergraph (Vin, Ein), k ∈ N.
Output: Kernel ((Vout, Eout), k) with |Eout| ≤ d!dd+1(k + 1)d.

// Initially, ∀s ⊆ V, v ∈ V : petals[s] = 0, used[s][v] = false.
1 Eout ← ∅

2 foreach e ∈ Ein do
3 if ∀s ⊆ e : petals[s] ≤ k then
4 Eout ← Eout ∪ {e}
5 foreach s ⊆ e do
6 if ∀v ∈ e \ s : used[s][v] = false then
7 petals[s]← petals[s] + 1
8 foreach v ∈ e \ s do used[s][v]← true

9 Vout ←
⋃

e∈Eout e
10 return ((Vout, Eout), k)

sunflower with k + 1 petals if it exists, yet if there is a sunflower
with d(k + 1) petals, it finds one with k + 1 petals for sure [5].

Access to supersets[s], used[s], and petals[s] for each
s ⊆ e ∈ Ein in FK and Bev can be organized in O(d) time
using a trie that can be initialized in O(dn + 2dd · m) time [5,
Lemma 5.3]. After initialization, FK and Bev work in O(2d · m)
and O(2dd · m) time, respectively. The culprit is that the trie
can allocate Θ(nm) random access memory, of which only
O(n + m) is initialized [5, Lemma 5.3].

3. Implementing FK and Bev in linear space and time

3.1. FK in linear space

To implement FK in linear space, we apply a series of prepro-
cessing steps. First, by iterating over Ein once, simultaneously
incrementing a counter, we assign to each edge e ∈ Ein a unique
index eid ∈ {1, . . . ,m}, in O(m) time giving a set

Eid := {(e, eid) : e ∈ Ein}. (1)

We will then show how to compute in linear time and space
a unique index sid ∈ {1, . . . , 2dm} for each s ⊆ e ∈ Ein and a
size-m array A[] satisfying

A[eid] = {(s, sid) : s ⊆ e} for each (e, eid) ∈ Eid. (2)

Then, instead of iterating over each e ∈ Ein, each s ⊆ e,
and looking up supersets[s] in a trie, it is enough to iterate
over each (e, eid) ∈ Eid, each (s, sid) ∈ A[eid], and look up
supersets′[sid] in O(1) time, where supersets′[] is an ordinary
array of length 2dm. The modified algorithm is shown in FK’.

Theorem 3. FK can be run in O(nd + 2dd · m) time and space.

Proof. To prove the theorem, we show how to compute the ar-
ray A[] and a unique index sid for each s ⊆ e ∈ Ein in linear
space and time. The tricky bit is that s may be a subset of several
edges in Ein, yet its index sid must be unique. Thus, we use the
following canonical encoding of edges: for any subset s ⊆ V =

{1, . . . , n} of size at most d, xsy ∈ (V∪{�})d is a d-tuple contain-
ing the elements of s in increasing order and padded with � at

2

Algorithm FK’: Linear-space version of FK.
Input: Hypergraph (Vin, Ein), k ∈ N.
Output: Problem kernel ((Vout, Eout), k) with |Eout| ≤ (k + 1)d.
// supersets′[] is a zero-initialized size-2dm array,
// Eid and A[] are as in (1) and (2).

1 Eout ← ∅

2 foreach (e, eid) ∈ Eid do
3 if ∀(s, sid) ∈ A[eid] : supersets′[sid] < (k + 1)d−|s| then
4 Eout ← Eout ∪ {e}
5 foreach (s, sid) ∈ A[eid] do

supersets′[sid]← supersets[sid] + 1

6 Vout ←
⋃

e∈Eout e
7 return ((Vout, Eout), k)

the end. For example, for d = 4, x{3, 1, 2}y = (1, 2, 3,�). Obvi-
ously, xey for any edge e ∈ Ein is computable in O(d log d) time.
The preprocessing for FK now consists of three steps.

Step 1. Compute a list L = [(xsy, eid) : s ⊆ e, (e, eid) ∈ Eid]
of size at most 2dm by first computing xey for all e ∈ Ein in
O(m ·d log d) time and space and then enumerating all substrings
of xey for each (e, eid) ∈ Eid in O(2dd · m) time and space.

Step 2. Sort L by lexicographically non-decreasing xsy, where
we assume n < �. Since the xsy are d-tuples over {1, . . . , n,�},
this works in O(d(n + |L|)) = O(nd + 2dd · m) time and space
using radix sort [12, Section 8.3]. All pairs (xsy, eid) belonging
to the same subset s now occur consecutively in L.

Step 3. Initialize a size-m array A[] of empty lists and sid ← 1.
Iterate over L as follows. For the current pair (xsy, eid), add
(s, sid) to A[eid]. If there is a next pair (xs′y, e′id) on L and
xsy , xs′y, then increment sid ← sid + 1 and continue. Note
that A[eid] does not contain duplicates, so that the list is actually
a set, as required by (2).

This concludes the computation of the sid and the array A[].
The running time and space bottleneck is step 2. After this
preprocessing, FK can be implemented to run in O(2d · m) time
and space as shown in FK’.

3.2. Bev in linear space

To implement Bev in linear time and space, we replace ac-
cesses to tries petals[s] and used[s] for each s ⊆ e ∈ Ein
by accesses to arrays petals′[sid] and used′[sid], as we did for
FK. However, while petals[s] is a counter that translates into a
counter petals′[sid], used[s][] is a size-n array indexed by ver-
tices. Holding such an array in used′[sid][] would again use
Ω(nm) space. Instead, we organize used′[sid][] as follows. Let

V s :=
⋃
e∈Ein

(e \ s) for each s ⊆ e ∈ Ein. (3)

We will compute unique indices vs
id ∈ {1, . . . , |V

s|} for the ver-
tices v ∈ V s for each s ⊆ e ∈ Ein, unique indices se

id ∈ {1, . . . ,
2|e|} of the subsets s ⊆ e of each e ∈ Ein, an array B[] satisfying

B[eid] = {(s, sid, se
id) : s ⊆ e} for each (e, eid) ∈ Eid, (4)

Algorithm Bev’: Linear-space version of Bev.
Input: Hypergraph (Vin, Ein), k ∈ N.
Output: Kernel ((Vout, Eout), k) with |Eout| ≤ d!dd+1(k + 1)d.

// Eid, V s, B[], and C[][] are as in (1), (3), (4), and (5),
// petals′[] is a zero-initialized array of size 2dm,
// used′[] is an array of size 2dm,
// used′[sid] is a false-initialized array of size |V s|.

1 Eout ← ∅

2 foreach (e, eid) ∈ Eid do
3 if ∀(s, sid, se

id) ∈ B[eid] : petals′[sid] ≤ k then
4 Eout ← Eout ∪ {e}
5 foreach (s, sid, se

id) ∈ B[eid] do
6 if ∀vs

id ∈ C[eid][se
id] : used′[sid][vs

id] = false then
7 petals′[sid]← petals′[sid] + 1
8 foreach vs

id ∈ C[eid][se
id] do

9 used′[sid][vs
id]← true

10 Vout ←
⋃

e∈Eout e
11 return ((Vout, Eout), k)

and an array C[] of arrays satisfying

C[eid][se
id] = {vs

id : v ∈ e \ s} (5)
for each (e, eid) ∈ Eid, (s, sid, se

id) ∈ B[eid].

Bev can then be implemented using arrays petals′[] and used′[]
of size 2dm each, where for each sid, used′[sid][] is an array of
size |V s|: instead of iterating over each e ∈ Ein, each s ⊆ e,
each v ∈ e \ s, and looking up petals[s] and used[s][v] in tries,
Bev can iterate over each (e, eid) ∈ Eid, each (s, sid, se

id) ∈ B[eid],
each vs

id ∈ C[eid][se
id], and look up petals′[sid] and used′[sid][vs

id].
These are simple array accesses, each working in constant time.
The modified algorithm is shown in Bev’.

Theorem 4. Bev can be run in O(nd + 2dd · m) time and space.

Proof. We describe how to compute the indices vs
id, se

id, and
the arrays B[] and C[] in linear time and space. First, the in-
dices sid and array A[] in (2) are computed as in Theorem 3 in
O(nd + 2dd ·m) time and space. For Bev, we use three additional
preprocessing steps.

Step 1. Initialize a size-m array B[]. For each (e, eid) ∈ Eid,
compute B[eid] from A[eid] by iterating over each (s, sid) ∈
A[eid], simultaneously incrementing a counter se

id from 0 to 2|e|.
This works in time O(2d · m) and space.

Step 2. Iterating over each (e, eid) ∈ Eid and each (s, sid, se
id) ∈

B[eid], in O(2dd · m) time, generate a list

L := [(sid, v, se
id, eid) | v ∈ e \ s, s ⊆ e, e ∈ Ein].

Sort the list by lexicographically non-decreasing (sid, v). Since
these are pairs of numbers in {1, . . . , 2dm}∪{1, . . . , n}, this works
in O(n + 2dm + |L|) = O(n + 2dm) time using radix sort [12,
Section 8.3]. Thereafter, all quadruples belonging to the same sid
occur consecutively in L. Also, for each fixed sid, all quadruples
belonging to sid and the same v occur consecutively in L.

Step 3. Initialize a size-m array C[], and for each (e, eid) ∈
Eid, a size-2|e| array C[eid][] of empty lists. Iterate over

3

Algorithm Wei: Algorithm due to Weihe [35]
Input: Hypergraph (Vin, Ein).
Output: Hypergraph (Vout, Eout) that has a hitting set of size k if

and only if (Vin, Ein) has.

Exhaustively apply the following two data reduction rules:
1. If, for some vertex v, all edges containing v also contain some

vertex u , v, then delete v.

2. If there are two edges e ⊆ e′, then delete e′.

Return the result (Vout, Eout).

each (sid, v, se
id, eid) ∈ L. If there is no predecessor on L or

the predecessor (s′id, v
′, se

id
′, e′id) satisfies sid , s′id, then initial-

ize vs
id ← 1. If sid = s′id but v , v′, then increment vs

id ← vs
id + 1.

Add vs
id to C[eid][se

id] and continue.
Note that, as a by-product, Step 3 also computes |V s|, which

is just the largest vs
id. The running time for the preprocessing is

dominated by O(nd+2dd ·m) for computing array A[] as in Theo-
rem 3. The space used additionally to Theorem 3 is the array B[]
of overall size O(2dd · m), and the size-m array C[]. Each entry
of C[] is an array of size at most 2d, whose entries are lists of
length at most d. Thus, C[] takes at most O(2dd · m) total space.

After preprocessing, Bev can be implemented to run in
O(2dd · m) time as shown in Bev’: it uses arrays petals′[]
and used′[] with 2d · m entries each. For each s ⊆ e ∈ Ein,
used′[sid][] is an array indexed by {1, . . . , |V s|}, where∑

s⊆e∈Ein

|V s| ≤
∣∣∣{(s, e, v) | s ⊆ e ∈ Ein, v ∈ e \ s}

∣∣∣ ≤ 2dd · m.

Thus, the total size of used′[][] is O(2dd · m).

4. Experiments

In this section, we compare the kernelizations FK and Bev and
the well-known data reduction algorithm Wei. Wei does not
yield problem kernels (as it does not give size bounds), does not
work in linear time, yet works independently of k.

Section 4.1, describes our experimental setup, Section 4.2
presents time and memory measurements. We analyze the effect
of data reduction on instances arising in data clustering (Sec-
tion 4.3) and public transportation optimization (Section 4.4).

4.1. Experimental setup

FK, Bev and Wei were implemented in C++.1 The experi-
ments were conducted on a 3.60 GHz processor with 16 GB of
RAM. The running time is measured with the standard C++

library ctime. The memory consumption is measured using the
valgrind memory measurement tool. The data reduction effect
is measured by comparing the number |Ein| of input edges to the
number |Eout| of output edges.

1The source code is freely available at https://gitlab.com/

PavelSmirnov/hs-lintimespace.

Implementation of FK and Bev. We implemented three variants
of data structures for supersets[], petals[], and used[]:

• using arrays with constant worst-case look-up time after
linear-time precomputations, as described in Section 3,

• using hash tables (the unordered map type in C++), with
O(d) expected look-up time (we account O(d) time for
computing the hash value of a set of size d),

• using balanced search trees (the map type in C++), with
O(d log 2dm) ⊆ O(d2 log n) worst-case look-up time (a fac-
tor d is for lexicographically comparing sets of size d).

All implementations use linear space. Additionally to the data
reduction described in Section 3, FK and Bev also delete all
edges that are supersets of other edges (it is easy to add this data
reduction without increasing their running time or space usage).

Implementation of Wei. Our implementation of Wei uses hash
tables and runs in O(z · (n2 + nm)) time, where z is the number
of vertices deleted by Wei and we omit factors depending on
hash-table look-up and d.

Combinations of algorithms. We analyze the data reduction ef-
fect of the individual algorithms as well as of their combinations,
applying one data reduction algorithm to the output of previous
data reduction algorithms. Since the data reduction effect of the
algorithms may depend on the processing order of the edges [5,
Fig. 5.3], each algorithm is applied to a random permutation
of edges. This excludes the possibility that instance genera-
tors or previous data reduction algorithms generate particularly
“friendly” input orders. The order of combining the algorithms
is determined by their running times: since the running time of
Wei is non-linear, it is applied last, so that it is run on a problem
kernel with size independent of n + m. Bev is slower than FK,
so it is applied after FK.

Computing k. The algorithms FK and Bev require an upper
bound k on the minimum hitting set size as input. We compute k
using a greedy approach: repeatedly pick a vertex with a max-
imum number of incident edges, add it to the hitting set, and
remove all incident edges, until all edges are hit.

4.2. Time and memory measurements
In the following, we present measurements of the running time
and memory usage.

Data generation. We randomly generate one instance for each
combination of d ∈ {1, . . . , 5} and m ∈ {i · 105 | i ∈ {1, . . . , 10}},
consisting of n = 100 vertices and m edges of size d, each
chosen with equal probability. We observed these instances to
be reluctant to data reduction: the result of applying FK, Bev,
and Wei to these hypergraphs was exactly the same and was
limited to deleting edges that are supersets of other edges. The
greedily computed upper bound k was too high for FK and Bev
to apply any k-dependent data reduction. Thus, the random data
gives a pessimistic estimate of the running time of FK and Bev:
both algorithms iterate over each subset of each input edge and

4

https://gitlab.com/PavelSmirnov/hs-lintimespace
https://gitlab.com/PavelSmirnov/hs-lintimespace

d = 1; d = 2; d = 3; d = 4; d = 5

0 2 4 6 8 10

0
2

4
6

8
10

Time used by Bev [s]

Ti
m

e
us

ed
by

FK
[s

]

0 2 4 6 8

0
2

4
6

8
Time used by Wei [s]

Ti
m

e
us

ed
by

FK
[s

]

0
2

4
6

|Ein| [105]

Ti
m

e
us

ed
by

FK
[s

]

1 2 3 4 5 6 7 8 9

Memory used by Bev [GB]

M
em

or
y

us
ed

by
FK

[G
B

]

0 0.5 1

0
0.

5
1

Memory used by Wei [GB]

M
em

or
y

us
ed

by
FK

[G
B

]

0 0.1 0.2 0.3 0.4 0.5 0.6

0
0.

2
0.

4
0.

6

|Ein| [105]

M
em

or
y

us
ed

by
FK

[G
B

]

0 2 4 6 8 10

0
0.

2
0.

4
0.

6

Figure 1: Comparison of running time and memory usage of FK, Bev, and Wei on the data set described in Section 4.2. Each point represents an instance. The
leftmost column shows that FK outperforms Bev. The rightmost column shows time and memory usage of FK. The middle column compares FK to Wei: on this
particular data set, Wei does run in linear time and outperforms FK for d = 5.

add almost all of them to the output hypergraph, updating their
data structures. However, the random data gives a too optimistic
estimate of the running time of Wei, since the number n of
vertices is constant and it does not delete any vertex. Thus, on
this data set, Wei also exhibits linear running-time behavior.

Results. On each generated instance, an implementation of FK
and Bev using hash tables ran about three times faster than the
implementation using arrays and uses about four times less mem-
ory. This is not surprising since the intricate precomputation
described in Section 3, iterates over the input hypergraph three to
four times, building four helper arrays and lists whose size each
is linear in that of the input hypergraph. Thus, it seems that using
tries (with O(nm) pre-initialized memory) remains the only way
to outperform hash tables [5]. The balanced tree variant on each
instance uses roughly the same amount of memory as the hash
table variant and is only about 1.5 times faster than the array vari-
ant. Thus, hash tables are the most reasonable choice to imple-
ment FK and Bev in linear space. In the following, we only com-
pare the hash table implementations of FK, Bev, and Wei. The re-
source consumption of these implementations is shown in Fig. 1.

4.3. Cluster Vertex Deletion

In this section, we analyze the data reduction effect of FK, Bev,
and Wei on 3-Hitting Set instances arising from the Cluster
Vertex Deletion problem: the task is to delete at most k vertices
from a graph so that each connected component in the remaining
graph is a clique [21]. A Cluster Vertex Deletion instance (G, k)

with G = (V, E) can be reduced to a 3-Hitting Set instance (H, k)
with H = (V, {e ⊆ V : G[e] is a path on three vertices}) [21].

Data acquisition. We used Cluster Vertex Deletion instances
arising when clustering real-world protein similarity graphs ini-
tially used by Rahmann et al. [30].2 In fact, they used these
graphs as instances for the weighted Cluster Editing problem,
where one adds and deletes edges instead of deleting vertices.
As suggested by Rahmann et al. [30], we create an edge be-
tween two proteins if their similarity score is positive. Since our
problem is unweighted, we ignore edge weights. The data set
contains hypergraphs up to 108 edges. However, due to the high
running time of Wei, we only used those with up to 106 edges in
our comparison (discarding 12 hypergraphs).

Results. FK processed each instance in under 1.1 seconds, Bev
in under 2.5 seconds, Wei in under 7.3 seconds.

Fig. 2 shows that the data reduction effect of FK and Bev is
about the same—stronger than that of Wei. Indeed, it shows that
FK and Bev work well on the very same instances, which is sur-
prising, since they are based on different data reduction criteria
and it seems that Bev should be able to apply data reduction
earlier than FK.

Fig. 3 shows the absolute and relative data reduction effect
of FK, Bev, Wei, and their combinations. Combining any of

2Available at https://bio.informatik.uni-jena.de/data/ as
biological bielefeld.zip

5

https://bio.informatik.uni-jena.de/data/

|Eout| for Bev

|E
ou

t|
fo

rF
K

103 104 105 106

10
3

10
4

10
5

10
6

|Eout| for Bev

|E
ou

t|
fo

rW
ei

103 104 105 106

10
3

10
4

10
5

10
6

Figure 2: Comparison between Bev, FK, and Wei on the 3-Hitting Set instances described in Section 4.3. Each point represents an instance. The left-hand plot shows
that FK and Bev are about on par. Thus, the right-hand plot shows that FK and Bev outperform Wei.

|E
ou

t|
[1

03]

N W F B FW BW FBW

0
2

4
6

8

0.
0

0.
4

0.
8

|E
ou

t|
/|

E
in
|

W F B FW BW FBW

(a) 1 000 ≤ |Ein| ≤ 10 000.

|E
ou

t|
[1

04]

N W F B FW BW FBW

0
2

4
6

8

0.
0

0.
4

0.
8

|E
ou

t|
/|

E
in
|

W F B FW BW FBW

(b) 10 000 ≤ |Ein| ≤ 100 000.

|E
ou

t|
[1

05]

N W F B FW BW FBW

1
3

5
7

0.
0

0.
4

0.
8

|E
ou

t|
/|

E
in
|

W F B FW BW FBW

(c) 100 000 ≤ |Ein| ≤ 1 000 000.

Figure 3: Compression of the 3-Hitting Set instances described in Section 4.3 for different orders of magnitude of |Ein |. Each dot represents an instance. The boxes
show the first quartile, the median, and the third quartile. The whiskers extend up to 1.5 times the interquartile range. The columns are: N — no data reduction (repeats
the distribution of |Ein |); W — Wei; F — FK; B — Bev; FW — FK followed by Wei; BW — Bev followed by Wei; FBW — FK, Bev, and Wei applied in this order.

6

0 50 100 150

0.
0

0.
4

0.
8

k

|E
ou

t|
/|

E
in
|
fo

rB
ev

Figure 4: Data reduction effect on the d-Hitting Set instances described in
Section 4.3, in dependence of k.

0
40

80
12

0

d d̄

Figure 5: Maximum and average edge cardinalities, d and d̄, respectively, of the
instances in Section 4.4. The boxes show the first quartile, the median, and the
third quartile. The whiskers extend up to 1.5 times the interquartile range.

FK and Bev with Wei significantly improves the data reduction
effect compared to the single algorithms, whereas combining
all three algorithms shows no improvement. Also, the data
reduction effect on larger instances can be seen to be lower
than that on smaller instances. As Fig. 4 shows, this effect is
mainly determined by k: not much data reduction is happening
for k ≥ 50, and we observed that almost all instances with
|Ein| ≥ 105 have k ≥ 50 for our greedily computed value of k.

4.4. Station Cover

Wei is well known for its data reduction effect on the Station
Cover problem in real-world transportation networks [35]. In
this section, we compare FK, Bev, and Wei on the corresponding
d-Hitting Set instances.

Data acquisition. We applied FK, Bev, and Wei to twelve d-
Hitting Set instances modeling the Station Cover problem in Eu-
ropean transportation networks (of cities, rural areas, and coun-
tries) that were kindly made available to us by Bläsius et al. [9]

Results. As shown by Fig. 5, the hypergraphs in this data set
have much larger edges than the ones arising from Cluster Vertex
Deletion in Section 4.3. Thus, as shown in Fig. 6, Wei obviously
outperforms FK and Bev. Moreover, FK and Bev work equally
bad and even combining all three algorithms did not yield any
additional data reduction effect compared to Wei.

Indeed, due to high values of d, Wei outperforms FK and
Bev even with respect to running time. FK and Bev are not even

0
40

0
80

0
12

00
|E

ou
t|

N W F B FBW

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

|E
ou

t|
/|

E
in
|

W F B FBW

Figure 6: Compression of the instances described in Section 4.4. Each dot
represents an instance. The boxes show the first quartile, the median, and the
third quartile. The whiskers extend up to 1.5 times the interquartile range. The
columns are as follows: N — no data reduction (repeats the distribution of |Ein |);
W — Wei; F — FK; B — Bev; FBW — FK, Bev, and Wei applied in this order.

applicable to the shown instances right away: it is infeasible
to iterate over all 2d subsets of an edge e of size d when d is
large (say, 10). In such cases, we do not iterate over all subsets
of e, but only over intersections of e with other edges and its
subsets of size bounded by d′ ≤ d (we used d′ = 1). That is,
we do not iterate over 2d subsets, but only over m subsets of e.
Using this implementation trick, the running times of FK and
Bev were under six seconds on each instance, the running time
of Wei was under one second on each instance.

5. Conclusion

We presented the first linear-time and linear-space kernelizations
for d-Hitting Set, and thus resolved the apparent paradox that
worst-case linear running times of d-Hitting Set kernelizations
hinge on quadratic-size and partly initialized memory [5, 16].

We also conducted the first experimental evaluation of FK,
significantly extended previous experimental results for Bev, and
compared them to the well-known Wei data reduction algorithm.
The experiments show that Wei is outperformed by FK and Bev
on hypergraphs of small edge cardinality when one has good up-
per bounds on the hitting set size. Otherwise, Wei outperforms
FK and Bev. The data reduction effect of Wei can be strength-
ened by applying FK and Bev in advance. Thus, the algorithms
complement each other. We have also seen that, the data reduc-
tion of FK and Bev is about equal, yet FK is significantly faster.

Given that FK often kernelizes instances within a fraction of
a second and yields good data reduction results when k is small,

7

it seems to be a good candidate for effectively applying the
technique of interleaving kernelization and branching [27]: in
a branch-and-bound algorithm for computing minimum hitting
sets, FK can be applied with k set to the size of the smallest
hitting set found so far, giving a good upper bound. Herein,
there is no need to apply FK to the input hypergraph each time,
but to the hypergraphs already kernelized on higher levels of
the search tree.

Acknowledgments. We thank the anonymous referees for their
comments and Bläsius et al. [9] for making available their data.

Funding. The work in Sections 3, 4.2 and 4.3 was supported
by the Russian Foundation for Basic Research, project 18-501-
12031 NNIO a, work in Section 4.4 by Mathematical Center in
Akademgorodok, agreement No. 075-15-2019-167 with the Min-
istry of Science and Higher Education of the Russian Federation.

References

[1] F. N. Abu-Khzam, A kernelization algorithm for d-Hitting Set,
Journal of Computer and System Sciences 76 (2010) 524–531,
doi:10.1016/j.jcss.2009.09.002.

[2] J. Alber, N. Betzler, R. Niedermeier, Experiments on data reduction for
optimal domination in networks, Annals of Operations Research 146
(2006) 105–117, doi:10.1007/s10479-006-0045-4.

[3] M. Bannach, Z. Heinrich, R. Reischuk, T. Tantau, Dynamic kernels for
Hitting Set and Set Packing, ECCC preprint TR19-146, 2019, URL https:

//eccc.weizmann.ac.il/report/2019/146/.
[4] M. Bannach, T. Tantau, Computing hitting set kernels by AC0-circuits,

Theory of Computing Systems 62 (2020) 374–399, doi:10.1007/s00224-
019-09941-z.

[5] R. van Bevern, Fixed-Parameter Linear-Time Algorithms for NP-hard
Graph and Hypergraph Problems Arising in Industrial Applications, Uni-
versitätsverlag der TU Berlin, Berlin, Germany, volume 1 of Foundations
of Computing, chapter 5, 2014, pp. 123–150, doi:10.14279/depositonce-
4131.

[6] R. van Bevern, Towards optimal and expressive kernelization for d-Hitting
Set, Algorithmica 70 (2014) 129–147, doi:10.1007/s00453-013-9774-3.

[7] R. van Bevern, T. Fluschnik, O. Yu. Tsidulko, On approximate data reduc-
tion for the Rural Postman Problem: Theory and experiments, Networks
(accepted for publication, 2020), URL https://arxiv.org/abs/1812.

10131.
[8] R. van Bevern, H. Moser, R. Niedermeier, Approximation and tidying—a

problem kernel for s-Plex Cluster Vertex Deletion, Algorithmica 62 (2012)
930–950, doi:10.1007/s00453-011-9492-7.

[9] T. Bläsius, P. Fischbeck, T. Friedrich, M. Schirneck, Understanding
the effectiveness of data reduction in public transportation networks,
in: K. Avrachenkov, P. Prałat, N. Ye (Eds.), WAW 2019, Springer, vol-
ume 11631 of Lecture Notes in Computer Science, 2019, pp. 87–101,
doi:10.1007/978-3-030-25070-6 7.

[10] T. Bläsius, T. Friedrich, J. Lischeid, K. Meeks, M. Schirneck, Efficiently
enumerating hitting sets of hypergraphs arising in data profiling, in:
S. Kobourov, H. Meyerhenke (Eds.), 2019 Proceedings of the Meeting on
Algorithm Engineering and Experiments (ALENEX), SIAM, 2019, pp.
130–143, doi:10.1137/1.9781611975499.11.

[11] G. Brewka, M. Thimm, M. Ulbricht, Strong inconsistency, Artificial Intel-
ligence 267 (2019) 78–117, doi:10.1016/j.artint.2018.11.002.

[12] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Introduction to
Algorithms, MIT Press, Cambridge, Massachusetts, USA, 2nd edition,
2001.

[13] P. Damaschke, Parameterized enumeration, transversals, and imperfect
phylogeny reconstruction, Theoretical Computer Science 351 (2006) 337–
350, doi:10.1016/j.tcs.2005.10.004.

[14] H. Dell, D. van Melkebeek, Satisfiability allows no nontrivial sparsification
unless the polynomial-time hierarchy collapses, Journal of the ACM 61
(2014) 23, doi:10.1145/2629620.

[15] S. Fafianie, S. Kratsch, Streaming kernelization, in: E. Csuhaj-Varjú,
M. Dietzfelbinger, Z. Ésik (Eds.), MFCS 2014, Springer, volume 8635 of
Lecture Notes in Computer Science, 2014, pp. 275–286, doi:10.1007/978-
3-662-44465-8 24.

[16] S. Fafianie, S. Kratsch, A shortcut to (sun)flowers: Kernels in logarithmic
space or linear time, in: G. F. Italiano, G. Pighizzini, D. T. Sannella
(Eds.), MFCS 2015, Springer, volume 9235 of Lecture Notes in Computer
Science, 2015, pp. 299–310, doi:10.1007/978-3-662-48054-0 25.

[17] K. Fazekas, F. Bacchus, A. Biere, Implicit hitting set algorithms for max-
imum satisfiability modulo theories, in: D. Galmiche, S. Schulz, R. Se-
bastiani (Eds.), IJCAR 2018, Springer, volume 10900 of Lecture Notes in
Computer Science, 2018, pp. 134–151, doi:10.1007/978-3-319-94205-6 -
10.

[18] J. Flum, M. Grohe, Parameterized Complexity Theory, Texts in Theoretical
Computer Science, An EATCS Series, Springer, 2006, doi:10.1007/3-540-
29953-X.

[19] F. V. Fomin, D. Lokshtanov, S. Saurabh, M. Zehavi, Kernel-
ization, Cambridge University Press, Cambridge, England, 2019,
doi:10.1017/9781107415157.

[20] V. Froese, R. van Bevern, R. Niedermeier, M. Sorge, Exploit-
ing hidden structure in selecting dimensions that distinguish vec-
tors, Journal of Computer and System Sciences 82 (2016) 521–535,
doi:10.1016/j.jcss.2015.11.011.

[21] F. Hüffner, C. Komusiewicz, H. Moser, R. Niedermeier, Fixed-parameter
algorithms for cluster vertex deletion, Theory of Computing Systems 47
(2010) 196–217, doi:10.1007/s00224-008-9150-x.

[22] R. M. Karp, Reducibility among combinatorial problems, in: R. E. Miller,
J. W. Thatcher, J. D. Bohlinger (Eds.), Complexity of Computer Computa-
tions, The IBM Research Symposia Series, Springer, 1972, pp. 85–103,
doi:10.1007/978-1-4684-2001-2 9.

[23] S. Kratsch, Polynomial kernelizations for MIN F+Π1 and MAX NP, Algo-
rithmica 63 (2012) 532–550, doi:10.1007/s00453-011-9559-5.

[24] D. Mellor, E. Prieto, L. Mathieson, P. Moscato, A kernelisation
approach for multiple d-hitting set and its application in optimal
multi-drug therapeutic combinations, PLOS ONE 5 (2010) e0013055,
doi:10.1371/journal.pone.0013055.

[25] E. Moreno-Centeno, R. M. Karp, The implicit hitting set approach
to solve combinatorial optimization problems with an application
to multigenome alignment, Operations Research 61 (2013) 453–468,
doi:10.1287/opre.1120.1139.

[26] H. Moser, Finding Optimal Solutions for Covering and Matching Prob-
lems, Cuvillier, Göttingen, Germany, 2010, URL https://www.hmoser.

info/diss_moser.pdf.
[27] R. Niedermeier, P. Rossmanith, A general method to speed up fixed-

parameter-tractable algorithms, Information Processing Letters 73 (2000)
125–129, doi:10.1016/S0020-0190(00)00004-1.

[28] R. Niedermeier, P. Rossmanith, An efficient fixed-parameter algorithm
for 3-Hitting Set, Journal of Discrete Algorithms 1 (2003) 89–102,
doi:10.1016/S1570-8667(03)00009-1.

[29] R. O’Callahan, J.-D. Choi, Hybrid dynamic data race detection, in:
R. Eigenmann, M. Rinard (Eds.), PPoPP’03, ACM, 2003, pp. 167–178,
doi:10.1145/781498.781528.

[30] S. Rahmann, T. Wittkop, J. Baumbach, M. Martin, A. Truss, S. Böcker, Ex-
act and heuristic algorithms for weighted cluster editing, in: P. Markstein,
Y. Xu (Eds.), Computational Systems Bioinformatics, World Scientific
Publishing, volume 6, 2007, pp. 391–401, doi:10.1142/9781860948732 -
0040.

[31] R. Reiter, A theory of diagnosis from first principles, Artificial Intelligence
32 (1987) 57–95, doi:10.1016/0004-3702(87)90062-2.

[32] P. V. Smirnov, Reduktsiya dannykh dlya zadachi o vershinnom pokrytii
gipergrafa za lineinoe vremya s lineinoi pamyat’yu, Bachelor’s thesis,
Novosibirsk State University, Novosibirsk, Russian Federation, 2018, URL
http://rvb.su/pdf/Smi18.pdf.

[33] M. Sorge, H. Moser, R. Niedermeier, M. Weller, Exploiting a hypergraph
model for finding Golomb rulers, Acta Informatica 51 (2014) 449–471,
doi:10.1007/s00236-014-0202-1.

[34] A. Vazquez, Optimal drug combinations and minimal hitting sets, BMC
Systems Biology 3 (2009) 81, doi:10.1186/1752-0509-3-81.

[35] K. Weihe, Covering trains by stations or the power of data reduction, in:
R. Battiti, A. A. Bertossi (Eds.), Proceedings of Algorithms and Experi-
ments (ALEX 1998), 1998, pp. 1–8.

8

http://dx.doi.org/10.1016/j.jcss.2009.09.002
http://dx.doi.org/10.1007/s10479-006-0045-4
https://eccc.weizmann.ac.il/report/2019/146/
https://eccc.weizmann.ac.il/report/2019/146/
http://dx.doi.org/10.1007/s00224-019-09941-z
http://dx.doi.org/10.1007/s00224-019-09941-z
http://dx.doi.org/10.14279/depositonce-4131
http://dx.doi.org/10.14279/depositonce-4131
http://dx.doi.org/10.1007/s00453-013-9774-3
https://arxiv.org/abs/1812.10131
https://arxiv.org/abs/1812.10131
http://dx.doi.org/10.1007/s00453-011-9492-7
http://dx.doi.org/10.1007/978-3-030-25070-6_7
http://dx.doi.org/10.1137/1.9781611975499.11
http://dx.doi.org/10.1016/j.artint.2018.11.002
http://dx.doi.org/10.1016/j.tcs.2005.10.004
http://dx.doi.org/10.1145/2629620
http://dx.doi.org/10.1007/978-3-662-44465-8_24
http://dx.doi.org/10.1007/978-3-662-44465-8_24
http://dx.doi.org/10.1007/978-3-662-48054-0_25
http://dx.doi.org/10.1007/978-3-319-94205-6_10
http://dx.doi.org/10.1007/978-3-319-94205-6_10
http://dx.doi.org/10.1007/3-540-29953-X
http://dx.doi.org/10.1007/3-540-29953-X
http://dx.doi.org/10.1017/9781107415157
http://dx.doi.org/10.1016/j.jcss.2015.11.011
http://dx.doi.org/10.1007/s00224-008-9150-x
http://dx.doi.org/10.1007/978-1-4684-2001-2_9
http://dx.doi.org/10.1007/s00453-011-9559-5
http://dx.doi.org/10.1371/journal.pone.0013055
http://dx.doi.org/10.1287/opre.1120.1139
https://www.hmoser.info/diss_moser.pdf
https://www.hmoser.info/diss_moser.pdf
http://dx.doi.org/10.1016/S0020-0190(00)00004-1
http://dx.doi.org/10.1016/S1570-8667(03)00009-1
http://dx.doi.org/10.1145/781498.781528
http://dx.doi.org/10.1142/9781860948732_0040
http://dx.doi.org/10.1142/9781860948732_0040
http://dx.doi.org/10.1016/0004-3702(87)90062-2
http://rvb.su/pdf/Smi18.pdf
http://dx.doi.org/10.1007/s00236-014-0202-1
http://dx.doi.org/10.1186/1752-0509-3-81

	1 Introduction
	2 Known linear-time algorithms
	3 Implementing ?? and ?? in linear space and time
	3.1 ?? in linear space
	3.2 ?? in linear space

	4 Experiments
	4.1 Experimental setup
	4.2 Time and memory measurements
	4.3 Cluster Vertex Deletion
	4.4 Station Cover

	5 Conclusion

