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Abstract

Attention-based models have been widely used in many areas, such as com-
puter vision and natural language processing. However, relevant applications
in time series classification (TSC) have not been explored deeply yet, causing
a significant number of TSC algorithms still suffer from general problems of
attention mechanism, like quadratic complexity. In this paper, we promote
the efficiency and performance of the attention mechanism by proposing our
flexible multi-head linear attention (FMLA), which enhances locality aware-
ness by layer-wise interactions with deformable convolutional blocks and on-
line knowledge distillation. What’s more, we propose a simple but effective
mask mechanism that helps reduce the noise influence in time series and de-
crease the redundancy of the proposed FMLA by masking some positions of
each given series proportionally. To stabilize this mechanism, samples are
forwarded through the model with random mask layers several times and
their outputs are aggregated to teach the same model with regular mask
layers. We conduct extensive experiments on 85 UCR2018 datasets to com-
pare our algorithm with 11 well-known ones and the results show that our
algorithm has comparable performance in terms of top-1 accuracy. We also
compare our model with three Transformer-based models with respect to the
floating-point operations per second and number of parameters and find that
our algorithm achieves significantly better efficiency with lower complexity.
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1. Introduction

Nowadays, a huge amount of time series data is stored and analyzed ev-
ery second in areas like healthcare monitoring, intelligent manufacturing, and
many other applications in the Internet of Things [3][9]. All these scenarios
desire effective time series data mining. In particular, time series classifica-
tion (TSC) has drawn increasingly more attention in the past few years. A
univariate time series is a series of digits that are regularly collected to record
the real-time condition of a process for further analysis, for classifying which,
a general purpose is to extract temporal representation from the series.

Similar to images in computer vision and sentences in natural language
processing, time series data contains global and local patterns [17]. However,
different from images and sentences, a time series consists of continuous and
non-stationary data with shapelets [38] that may not be truncated randomly.
Different kinds of time series data generally have various original lengths
and diverse forms of shapelets. The spans of these shapelets also change
even in the same application area. For instance, one can easily recognize
whether an object is a dog or a cat only through partial features, like eyes
or claws, wherever they are. Nevertheless, a segment of the ECG series is
normally meaningless. That’s why many techniques, like jigsaw puzzles [34],
are normally powerful to pretrain models in computer vision, but powerless
for time series analysis.

For sequence modeling, long-short term memory networks (LSTMs) can
naturally discover temporal features. There are also many attempts that
use convolutional neural networks (CNNs) for local feature extraction. Both
LSTMs and CNNs have troublesome disadvantages for time series analysis.
The former cannot process series data in parallel and may forget meaning-
ful information previously extracted while the latter is usually limited by its
inductive bias. Unlike these networks, Transformers allow data to be pro-
cessed in parallel and have global receptive field, which are widely used in
sequence modeling especially for analyzing time series data [42][59][23][21].
However, Transformers suffer from a complexity of O(N2) [50] mainly due to
the multi-head attention structure adopted. This widely-recognized problem
makes it hard to apply to long sequence mining because of the unacceptable
time and memory consumption. Therefore, several variants, Linformer [54],
Swin Transformer [36], Swin Transformer V2 [35], Big Bird [58], Longformer
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[1], Poolingformer[60], have been proposed to overcome the problem above in
the past few years and their advantages and disadvantages are summarized
in [50].

To solve different problems, there are two kinds of attention mechanisms,
local attention and global attention. In general implementations of local at-
tention mechanisms [30], window-size selection is an unavoidable issue that
may destroy the shapelets in a sequence if not addressed properly. Mean-
while, it has been proven that local attention is not superior to those well-
designed CNNs in terms of local feature extraction [16]. Global attention is
able to extract features with all positions in the given sequence considered,
which makes it well adapted to various time series. To reduce the complexity,
several implementations try to approximate the attention maps linearly, like
Linformer[54], and SOFT[37]. They can neither approximate the attention
maps accurately nor avoid the noise influence efficiently. Besides, the feature
redundancy between multiple heads may also influence the results of classi-
fication and hinder the flexibility of an attention-based classification model.
To sum up, it is hard for pure Transformer architecture to solve the TSC
problem.

According to [14][29], the original Transformer is designed for global pat-
tern extraction whereas mining local patterns is one of the essential abilities
for time series analysis. In TSC, the shapelets hidden in a given time se-
ries are normally of various forms and spans. This is why feature extractors
require global and local perception. In this regard, there have been many at-
tempts up to now. Some of them designed loosely-coupled Transformer-CNN
structures [11][40][41] while others implemented Transformers in a CNN-like
manner [36][35]. How to enhance Transformers’ local feature extraction abil-
ity by CNNs becomes one of the most attractive research directions.

Besides, TSC also suffers from the notorious noise interference in many
fields, such as finance [27], weather [24], and audio [12]. It is easy for human
beings to ignore noise because one does not have to analyze a given time
series one digit after another which is the actual way for machines. The
fluctuations caused by noise may lead to deteriorated performance for local
pattern recognition. How to address the noise interference problem is still
challenging.

We focus on a new variant of Transformer adapted to TSC problem with
less complexity and good performance. To this end, we propose a flexible
multi-head linear attention (FMLA) model which can generate high-quality
attention maps and avoid noise to some extent. To further reduce the impact
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of noise and capture useful shapelets, we present a plug-in mask mechanism
for model optimization at the training and testing stages. In the meanwhile,
we use online distillation to enhance the locality awareness of the proposed
FMLA model. Our contributions are summarized below:

• Our FMLA integrates deformable mechanism proposed in deformable
convolutional networks (DCN) [5] into a collaborative linear attention
mechanism (CLA) enlightened by [54], [37] and [30], ensuring accurate
approximation to position-wise low-rank attention maps. In CLA, the
collaborative attention mechanism [4] is applied for reducing the re-
dundancy and filter out noise between multiple heads. The proposed
model realizes lower complexity than the vanilla Transformer model
[53] in terms of feature extraction.

• FMLA adopts the mask mechanism to reduce the noise interference by
adding random and regular mask layers right after the end of each CLA
block. We apply self distillation to random mask layers, which stabilizes
and speeds up the training process. Through position-wise random
masks in the training process and frequency-based regular masks in
the inference process, FMLA avoids local optimum and is more robust
when addressing TSC problems.

• FMLA uses online distillation to circulate those deformable local fea-
tures captured by DCN blocks within the entire FMLA model, includ-
ing all the CLA and DCN blocks. Thus, FMLA strengthens its local
feature extraction ability via the distillation loss in the backward prop-
agation process. Since the features forwarded are also generated from
DCN blocks, we realize forward-backward bidirectional circulation so
that FMLA can extract various shapelets from time series data.

• We compare the proposed model with 11 state-of-the-art TSC algo-
rithms and our model obtains the best accuracy on 36 out of the 85
UCR2018 datasets. What’s more, our model ranks first in terms of av-
erage rank. Thanks to the linear complexity structure, FMLA achieves
significantly better performance with fewer parameters, compared with
a number of variants of the vanilla Transformers.

The rest of the paper is organized as follows. In Section 2, we review relevant
studies on TSC and Transformers, in particular, how to enhance Transform-
ers with knowledge distillation. The proposed FMLA is detailed in Section

4



Teacher

Student

𝐿𝑜𝑠𝑠!

In
pu

tE
m

be
dd

in
g

𝐿𝑜𝑠𝑠"

Collaborative 
Linear

Attention
Block 1

Re
gM

Ra
nM

De
fo

rm
ab

le
 

Co
nv

De
fo

rm
ab

le
 

Co
nv

De
fo

rm
ab

le
 

Co
nv

DCN Block 1

Collaborative 
Linear 

Attention 
Block 2

Re
gM

Ra
nM

De
fo

rm
ab

le
 

Co
nv

De
fo

rm
ab

le
 

Co
nv

De
fo

rm
ab

le
 

Co
nv

DCN Block 2

Collaborative 
Linear 

Attention 
Block 3

Re
gM

Ra
nM

De
fo

rm
ab

le
 

Co
nv

De
fo

rm
ab

le
 

Co
nv

De
fo

rm
ab

le
 

Co
nv

DCN Block 3

Collaborative 
Linear 

Attention 
Block 4

Re
gM

Ra
nM

Sq
ue

ez
e

G
AP

De
fo

rm
ab

le
 

Co
nv

De
fo

rm
ab

le
 

Co
nv

De
fo

rm
ab

le
 

Co
nv

DCN Block 4

FMLA Block 3FMLA Block 2 FMLA Block 4

𝐿𝑜𝑠𝑠# : C
lassification

𝐹!

FMLA Block 1

𝑦$%&

𝑦%'(

Figure 1: Structure of our algorithm. We use 4 FMLA blocks as an example.

3. In Section 4, performance evaluation and result analysis are provided.
Section 5 concludes the work.

2. Related Work

Firstly, this section reviews traditional algorithms and deep learning ones
for TSC. Secondly, a number of well-known variants of Transformer and their
trends are given. Thirdly, the existing work on how to enhance Transformer-
like structures by knowledge distillation is provided.

2.1. Traditional and Deep Learning TSC Algorithms

Traditional Algorithms. Traditional TSC algorithms are usually sta-
tistical machine learning based and some important achievements are re-
viewed below. Lines et al. focused on five temporal modules and introduced
HIVE-COTE [32] which integrated several classifiers to hierarchically vote
for classification. HIVE-COTE2 [39] improved HIVE-COTE by two well-
designed classifiers. There have been many other ensemble classifiers, such
as Rocket [7], MiniRocket [8], and MultiRocket [49]. Rocket used a num-
ber of random convolutional kernels to extract diverse features, all of which
then went through a linear classifier to obtain final results. MiniRocket well
tuned the hyperparameters and used fixed and small convolutional kernels to
speed up the training process. Based on MiniRocket, MultiRocket introduced
four additional pooling operators and avoided overfitting by multiple com-
binations of transformation. Compared with its predecessor, MultiRocket
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achieved better performance in terms of processing speed and accuracy. Prox-
imity Forest [38], like the random forest, made each decision by multiple
random proximity trees. This method used parameterized distance measure
to compare unclassified samples with each exemplar randomly chosen from
each class so that the decision could go through the related branches of a
tree. TS-CHIEF [45] was based on the Proximity Forest and organized many
advanced classifiers in a tree structure.

Deep Learning Algorithms. With a large number of parameters, deep
learning algorithms are capable of capturing detailed and various levels of in-
formation. Compared with traditional ones, these algorithms usually achieve
better classification results by adaptively learning rich representations from
each time series during training. InceptionTime [15] was a successful appli-
cation of the Inception networks [48] in time series. However, this model was
only good at capturing local patterns due to the Inception block adopted.
MACNN [2] used the attention mechanism to improve the classification per-
formance of multi-scale CNNs. Hao et al. presented CA-SFCN [17], which
adopted variable and temporal attention modules to tackle multi-variate TSC
problems. Huang et al. [21] proposed a dual-network-based architecture
combining Transformer and ResNet [18] for TSC, with their outputs con-
catenated for the final classification. This architecture extracted global and
local features separately. Xiao et al. [57] developed another dual-network
architecture, RTFN, placing attention and CNN modules in parallel. Simi-
larly, the features captured by them were concatenated before the classifier.
Dual-network architectures are able to extract sufficient and flexible infor-
mation from a given time series. However, one branch cannot make full
use of the hidden states of the other during feature extraction since final
classification results are simply generated by concatenating the outputs of
the two branches. That motivates us to try layer-wise integration of de-
formable mechanism and attention mechanism to thoroughly utilize their
hidden states, increasing the classification accuracy.

2.2. Transformer and Its Variants

Low-complexity Transformers. The vanilla Transformer [53] and its
application in Computer Vision, ViT [10], suffered from quadratic time and
space complexity [50]. ViT divided original data into patches which were
projected into a low-dimensional space for attention computation. However,
it is difficult for a window-based algorithm to always choose suitable win-
dow sizes for various lengths of time series. An improper window size may
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truncate complete shapelets, including those critical ones. This definitely
influences the quality of the features extracted since it is hard to analyze
truncated features in TSC different from those in computer vision. There-
fore, there have been many attempts to deal with the high-complexity and
feature truncation problems above. Swin Transformer [36] strengthened its
local feature extraction ability by means of a CNN-like architecture. The
shift windows technique could, to some extent, relieve the feature truncation
problem. However, Swin Transformer also suffered from the problems CNNs
encountered. It had to stack more Swin Transformer blocks and required an
additional shift layer per block to expand the receptive field [56]. Besides,
both ViT and Swin Transformer could not well recognize long-span features.
In [29], Li et al. used convolutional self-attention for local-feature aware-
ness and LogSparse and restart attention mechanisms for memory reduction.
Nevertheless, the LogSparse attention might lose useful information while it
was hard for the restart attention to choose an appropriate range for a given
time series. All the variants above belong to local attention mechanisms. As
a global attention mechanism, Linformer [54] did not encounter the prob-
lems above. It used linear projection to reduce the length of a given input
sequence. It was actually a rough approximation to the attention map in the
vanilla Transformer model, which definitely led to serious information loss
[37]. In addition, noise data increased the probability that Linformer con-
verged to a local optimum point [14][29]. SOFT [37] sampled several tokens
as queries and achieved a more accurate linear attention through decompos-
ing attention maps. However, it could not reduce the influence in time series.
What’s worse, one token was usually associated with several others, causing
two irrelevant tokens might be identified as related ones in all the attention
algorithms mentioned above. Hence, it was possible that the mismatched
tokens were then assigned larger weight values wrongly [14].

Transformers enhanced by CNNs. To focus more on the local in-
formation, there have been a number of attempts for effectively integrating
CNN into Transformer. ConViT [11] used gate units in each layer, optimiz-
ing the weights of Transformer and CNN blocks in the training process. In
this way, the model could adaptively learn the relative importance of each
component for different data. ACmix [40] merged the projection processes
of Transformer and CNN and then executed the dot-product operations in
the former and shift operations in the latter separately. Peng et al. [41]
found that Transformers were not good at capturing local features. The au-
thors constructed a two-branch structure, Transformer and CNN, where the
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hidden states of one branch were added to the other commutatively for fea-
ture supplementation purposes. On the other hand, traditional CNNs have
fixed kernel shapes, which cannot extract features with various shapes since
local features even in the same class are not always the same under noisy
situations. Zhu et al. [63] introduced Deformable DERT that generated K
coordinates for deformable kernels. For each query vector, its linear trans-
formation was adopted for attention computation. However, K was a fixed
hyperparameter, which could not handle problems with various levels of dif-
ficulty. Xia et al. proposed a deformable attention module that generated
offsets of key and value vectors based on a uniform grid using a lightweight
network [63]. In canonical attention computation, different queries shared
shifted keys and values with each other. The deformable attention module
was effective for extracting meaningful features from noisy data.

2.3. Knowledge Distillation in Transformers

Knowledge distillation [20] promotes knowledge flows from teacher to stu-
dent networks, achieving significant parameter compression with acceptable
performance degradation. Jiao et al. [22] applied knowledge distillation to
the well-known BERT model. The authors distilled on the embedding layer
initially and matched the student’s layers to the teacher’s according to the
ratio of the number of layers in the teacher network to that in the student
network, where distillation of attention maps and hidden states was imple-
mented between each pair of layers. DistilBERT [44] was another attempt
on distilled BERT model. The student network had the same architecture as
the teacher network but only with half of the layers. DistilBERT achieved
similar classification performance as the teacher network and was 60% faster
than the teacher. DeiT [51] used a different way to distill from the Trans-
former model. It defined a distillation token that was optimized with all other
tokens together just like the CLS token in the BERT model. Experiments
showed that it was better for Transformer-like algorithms to use CNN as the
teacher. Microsoft raised BERT-PKD [47] with two distillation strategies,
PKD-Last and PKD-Skip. In BERT-PKD, students could either learn from
the last K layers or from each K layers.

On the other hand, self-distillation[61][62], where the teacher and student
lie in the same model, has been more and more useful. It can accelerate the
training process, compress parameters and even boost the performance. In
[33], Liu et al. proposed FastBERT, where they added the same classifier
as the teacher’s after each Transformer block and used the output of the
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Figure 2: Components of our flexible multi-head linear attention

last layer to guide the training process of the students. In this way, they
realized adaptive inference to reduce the time consumption without perfor-
mance degradation according to the uncertainty of each level of students.
The applications of self-distillation have not been exploited sufficiently. In
this paper, we try to use self-distillation to stabilize the mask mechanism in
our FMLA.

3. Flexible Multi-head Linear Attention (FMLA)

In this section, we first demonstrate the principle of FMLA through how
DCN and CLA blocks interact with each other. Then, we introduce the
mask mechanism, including the inspiration and implementation. Finally, the
online distillation technique adopted is detailed. The overview of FMLA is
shown in Fig. 1.

3.1. Flexible Attention Based on Deformable Convolution Networks

Existing well-known Transformers, like Swin Transformer [36], SOFT [37]
and Linformer [54], try to strike a balance between high-complexity compu-
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tation and effective feature extraction. However, the window-based method
in Swin Transformer limits its potential to extract features with various sizes.
The sampling technique in SOFT may lose meaningful information with the
reduction of complexity. The low-rank assumption and rough approximation
in Linformer break the consistency between keys and values. To overcome
these problems, we specifically propose a global-local linear attention mech-
anism, namely FMLA, which realizes accurate attention computation under
the guidance of DCN as shown in Fig. 2.

FMLA consists of a DCN block and a CLA block in each layer to extract
local and global representations with linear complexity. As for a CLA block in
Fig. 3, values are regenerated based on the features output by the deformable
mechanism and keys are generated based on the new values. We assume that
X and Y are the inputs for queries and keys and X = Y in self attention.
Eqs. (1) and (2) redefine the implementation of attention computation and
generation of keys in head i, H̄i:

H̄i = Attention(XWQ
i , Ki, FiYW

V
i ), (1)

Ki = Conv(FiViW
V
i ), (2)

where WQ
i and WV

i are projection matrices. The compressed mapping, Fi,
is defined in Eq. (3)

Since Ki is generated based on Vi through the Conv() operation with
a kernel size of 1 in each head, position-wise relations can be directly con-
structed and FMLA avoids unnecessary pair-wise inner-product computa-
tion. Moreover, there may be several quite different sub-optimal strategies
for compression in algorithms like SOFT or Linformer if we train the model
on the same dataset several times, which is caused by the instability of sam-
pling or approximation process and is referred to as local optima. Therefore,
a proper mapping strategy can reduce model complexity and enable linear
attention, i.e. CLA in this paper, to extract more flexible features with less
interference. To this end, we project the input sequence in each CLA block
based on the output of its counterpart DCN block, hGi

DCN, as shown in

Fi = Convi(h
Gi
DCN), (3)

where Fi is the well-designed projection matrix for head i. Convi() is the
i-th group convolution with a kernel size of 1 that projects feature maps to
weights, Fi. Gi indexes the input channels of the i-th group convolution.
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hGi
DCN is the hidden states of group i in the counterpart layer of DCN. The

number of channels, C, in Fi equals the length of compressed values in the
CLA block, namely each channel, Wi, represents the weights to generate each
vector in the regenerated values as shown in Fig. 2. In this way, each channel
group guides one head of the multi-head attention mechanism in each CLA
block. As a special branch of CNNs, DCNs are also considered low-level
feature extractors. Integrating DCN blocks into CLA blocks enhances their
ability to mine local representations and filter noise data.

The linear projections in FMLA clearly lose much information due to
the large ratio of compression, which may lead higher layers hard to train.
Therefore, we apply the residual pooling connection from MViT [13][30] to
FMLA. Originally, this technique contains pooling operations on the queries,
keys and values and the residual connection from queries to the output of
the related attention block for reducing the complexity and facilitating the
training process. To avoid losing too much information in the linear projec-
tion process of the FMLA and minimize the noise influence in the queries,
we only add pooled query matrices to the output of each attention block as a
low-resolution complement as shown in Eq. (4), where Hi is the output of the
i-th head and WO is the compressed mapping of the aggregated information
from Nh heads in each FMLA block.

MultiHead(X, Y ) = Concat
i∈[Nh]

[H̄i + Pooling(XWQ
i )]WO (4)

In the canonical attention mechanism, each head extracts information
individually. The outputs of all heads are concatenated with a squeeze oper-
ation for the same-size output, which results in redundant features between
heads. To reduce the redundancy, mix vectors are used to represent the
unique information of each head before the dot product calculation, as writ-
ten in Eqs. (5) and (6), which is referred to as the collaborative multi-head
attention [4]:

H̄i = Attention(XW̃Qdiag(mi), Y W̃
K, Y WV

i ), (5)

CollabHead(X, Y ) = Concati∈[Nh][H̄i]WO, (6)

where W̃Q and W̃K are shared across multiple heads. mi is the mix vector
for the unique information extracted in each head and diag() extends the
mix vector to a square matrix.
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As known, it is necessary for feature extractors to distinguish noise from
shapelets since each head focuses on some of the useful information and
unavoidable noise. With the collaboration of multiple heads, a feature ex-
tractor can summarize the common features that appear in each head with
low noise interference. This is why we implement the collaborative multi-
head attention, Eq. (5), in FMLA as Eq. (7) , where m is the mix vector
for distinguishing the unique knowledge learned by different heads so that
projection for each query per head is no longer needed. Since only one key
is shared between multiple queries and values in the collaborative attention,
we can naturally obtain one key generated by the linear projection from all
values as defined in Eq. (8), retaining the position-wise relation between
the keys and values. In this way, the attention maps calculated from the
dot-product of queries and keys are directly used for weighting the values,
YW V

i .

Hi = Attention(XW̃Qdiag(mi), K̂, FiYW
V
i ), (7)
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K̂ = Conv(Concat(F1V1W
V
1 , F2V2W

V
2 , ..., FiViW

V
h )), (8)

where the shape of K̂ is the same as that of FiViW
V
i .

3.2. Mask Mechanism

Time series are generally generated with a fixed sampling interval. One
can assume that the macroscopic waveforms and critical shapelets are re-
tained as long as we properly lengthen the sampling interval and lower the
sampling frequency in most cases. In TSC, there are no such necessary data
points that directly affect the classification result since time series specify a
continuous process. Recent research [31] shows that only a few query-key
pairs contribute to each related task, which means we may reduce the influ-
ence of noise and the redundancy of models by dropping the data in multiple
positions of a given time series. In each layer of FMLA, this paper uses
position-wise random masks based on Bernoulli distribution in the training
process and frequency-based regular masks in the testing process. To be spe-
cific, different heads use different random masks and the positions masked
are resampled in each iteration. In this way, the FMLA will not overfit spe-
cific local features and there is no need to worry about permanent loss of
important information. For instance, we randomly mask the data in 50% of
the positions in the sequence, like X = {x1, x2, 0, 0, x5, 0, x7, x8, 0, 0}, during
training. In the inference process, the sequence is regularly masked according
to the ratio adopted in the training process, i.e. 50% in the instance above.
We mask the data at the second (or first) position of each two consecutive
positions during the testing process, like X = {x1, 0, x3, 0, x5, 0, x7, 0, x9, 0}.
In this way, low-frequency resampling is achieved. The mask technique used
in this paper can also be considered as a grouped version of Dropout [46],
where we group all weights according to their associated positions and drop
those weights in the chosen groups together. That’s why the mask mechanism
has the ability to resist overfitting (like the original Dropout). Actually, our
experimental results show the mask mechanism can work well with Dropout.
Details can be found in Subsection 4.2.

Clearly, our mask mechanism has randomness due to the predefined fre-
quency which may prevent our model from convergence. Self-distillation is
invoked to stabilize and speed up the training process as illustrated in Fig.
5. We feed the input time series to the model with random mask layers
a predefined number of times. We calculate the average output value and
distill the related knowledge to the model above with regular mask layers
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for the consistency of training and testing processes as shown in Eq. (9).
In this way, we not only stabilize the training process but also make use of
the advantages of Bagging in ensemble learning, i.e., variance reduction and
random fluctuation stabilization.

Loss1 = βDKL(
1

N

N∑
t=1

RandomMask(FMLA(x)),

RegularMask(FMLA(x))),

(9)

where N represents a predefined number of times each input time series are
fed to the model with random mask layers, RandomMask().

3.3. Deformable Attention by Online Distillation

According to [51], CNN-like algorithms can be excellent teachers for su-
pervising Transformers. Inspired by this, we distill knowledge from the out-
put of DCN and transfer it to the entire FMLA model, i.e., Loss2 in Eq. (10).
Compared with CNN, DCN has better representation ability and can weaken
the influence of noise, helping improve the locality awareness of FMLA and
concentrate more on deformable features. We utilize the DCN in the FMLA
as the teacher. We add the outputs of the last CLA and DCN blocks for clas-
sification, which helps retain the independence of DCN. By using DCN blocks
to guide the compressed mapping in the forward propagation and adopting
the online distillation loss to optimize the backward propagation, we realize
a bidirectional circulation of knowledge mined by DCN, which enhances the
vanilla attention mechanism in terms of locality awareness, and noise and
complexity reduction.

Loss2 = αDKL(yDCN, yCLA), (10)

DKL(p, q) =
∑
x∈X

p(x) log
p(x)

q(x)
, (11)

where yDCN and yCLA are the output of two branches. DKL means the
Kullback-Leibler divergence implemented by Eq. (11). It is used to mea-
sure the difference between two distributions, i.e., using distribution q(x) to
fit distribution p(x).

As the loss decreases during training, the FMLA model is likely to pay
more attention to the deformable local features captured by DCN blocks.
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Figure 4: Implementation of online knowledge distillation at the last layers of FMLA and
DCN

Share
Parameter

AVG

CLA Block

Random Mask

CLA Block

Random Mask

Figure 5: Implementation of self-distillation in the mask mechanism

How much attention is paid can be adjusted by the hyperparameter α in Eq.
(10). In this way, our model achieves a promising perception of global and
local patterns. The skeleton of our online distillation method is shown in
Fig. 4.

Loss3 in Eq. (12) is the cross entropy for classification implemented as
Eq. (13), and the final loss function consisting of Loss1, Loss2, and Loss3,
for optimizing the algorithm shown in Eq. (14).

Loss3 = H(ŷ, y) (12)

H(p, q) =
n∑

i=1

p(xi)log(q(xi)) (13)

Loss = Loss1 + Loss2 + Loss3 (14)
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4. Experiments and Analysis

We first introduce the experimental setup and ablate the three important
improvements of the FMLA, including the DCN-enhanced multi-head atten-
tion, mask mechanism, and online distillation. Then, the complexity of our
model and its comparison with a number of algorithms is analyzed.

4.1. Experimental Setup

We evaluate the performance of the FMLA model by comparing it with
11 state-of-the-art TSC algorithms including [21] against ‘win’/‘tie’/‘lose’,
MeanACC, and AVG rank based on top-1 accuracy on 85 out of the 128
UCR2018 datasets [6]. Specifically, the ‘win’ indicates that on how many
datasets an algorithm achieves the unique best results compared with all
other algorithms. The ‘tie’ means on how many datasets the algorithm
gets the same results as the best ones. The ‘lose’ represents on how many
datasets the algorithm does not achieve the best results. The number of
‘best’ is the summation of the number of cases of ‘win’ and ‘tie’ for each
algorithm. ‘MeanAcc’ is used to compare the general accuracy of different
algorithms and ‘AVG Rank’ is the result of the Friedman test for ranking all
algorithms in the whole dataset averagely. The 85 datasets are composed of
65 ‘short’ or ‘medium’ and 20 ‘long’ time series datasets. ‘Existing SOTA’,
‘TS-CHIEF’ and ‘MACNN’ only have publically available benchmark results
on 65 datasets for performance comparison. There are four FMLA blocks in
our experiments, where each block normally has 4 heads. We compress the
length of each input sequence to 16 by the projection matrices generated by
each DCN block for most cases. We mask the data in 50% of the positions
of the output after each CLA block. As for activation functions, we use the
ReLU function in DCN blocks and GELU [19] in each CLA block. We use
128 kernels in the first two DCN blocks, 64 in the last two as [21] suggested
and set the kernel size to 3 for feature extraction and position generation
layers. Note that the parameter settings above are used in the ablation
study and overall performance comparison. There may be small adjustments
of hyperparameter setting in a few special datasets, e.g., for complex and
long input sequences, we utilize more heads in the attention mechanism and
higher ratios in the mask mechanism.

Table 1: The top-1 accuracy results of the 5 models on 85 UCR2018 datasets.

Dataset ResNet-Transformer CLAwDCN CLAwDCN-M CLAwDCN-M-SD FMLA
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Adiac 0.849105 0.810742 0.808184 0.836317 0.85422
ArrowHead 0.891429 0.771429 0.834286 0.834286 0.857143

Beef 0.866667 0.633333 0.8 0.7 0.833333
BeetleFly 1 0.8 0.85 1 1

BirdChicken 0.95 0.85 0.95 1 1
Car 0.866667 0.883333 0.9 0.9 0.916667
CBF 1 0.987778 0.997778 0.998889 1

ChlorineCon. 0.409375 0.782813 0.8125 0.829948 0.815365
CinCECGTorso 0.89058 0.902899 0.782609 0.805797 0.832609

Coffee 1 1 1 1 1
CricketX 0.810256 0.751282 0.771795 0.738462 0.787179
CricketY 0.825641 0.769231 0.771795 0.776923 0.794872
CricketZ 0.128205 0.764103 0.761538 0.761538 0.8

DiatomSizeRe. 0.379085 0.630719 0.934641 0.937908 0.996732
DistalPhalanxO.A.G 0.467626 0.769784 0.798561 0.798561 0.805755
DistalPhalanxO.C. 0.822464 0.797101 0.793478 0.822464 0.826087

Earthquakes 0.76259 0.798561 0.776978 0.805755 0.798561
ECG200 0.94 0.92 0.93 0.93 0.96
ECG5000 0.944222 0.942 0.939778 0.945333 0.944222

ECGFiveDays 1 1 0.930314 0.974448 0.977933
FaceFour 0.977273 0.806818 0.943182 0.795455 0.977273
FacesUCR 0.926829 0.949268 0.952683 0.953659 0.954146

FordA 0.517424 0.940152 0.935606 0.935606 0.939394
FordB 0.838272 0.823457 0.828395 0.822222 0.82716

GunPoint 1 1 1 1 1
Ham 0.619048 0.809524 0.938095 0.809524 0.838095

HandOutlines 0.835135 0.948649 0.943243 0.951351 0.959459
Haptics 0.600649 0.519481 0.535714 0.564935 0.564935
Herring 0.65625 0.703125 0.703125 0.75 0.71875

InsectWingbeatS. 0.535859 0.636869 0.461616 0.532323 0.835341
ItalyPowerDemand 0.962099 0.96793 0.969874 0.969874 0.971817

Lightning2 0.754098 0.885246 0.836066 0.836066 0.901639
Lightning7 0.383562 0.821918 0.780822 0.849315 0.849315

Mallat 0.934328 0.882729 0.945416 0.957783 0.975693
Meat 1 0.916667 0.983333 0.983333 1

MedicalImages 0.759211 0.767105 0.761842 0.756579 0.756579
MiddlePhalanxO.A.G. 0.623377 0.662338 0.655844 0.675325 0.668831
MiddlePhalanxO.C. 0.848797 0.862543 0.848797 0.872852 0.869416
MiddlePhalanxTW 0.551948 0.580909 0.590909 0.61039 0.623377

MoteStrain 0.9377 0.861821 0.901757 0.881789 0.930511
OliveOil 0.933333 0.933333 0.933333 0.933333 0.966667

Plane 0.371492 1 1 1 1
ProximalPhalanxO.A.G. 0.882927 0.897561 0.887805 0.892683 0.897561
ProximalPhalanxO.C. 0.683849 0.924399 0.931271 0.927835 0.938144
ProximalPhalanxTW 0.819512 0.84878 0.84878 0.853659 0.853659

ShapeletSim 0.888889 0.922222 0.955556 1 1
ShapesAll 0.921667 0.928333 0.93 0.921667 0.933333

SonyAIBORobotSur.1 0.708819 0.960067 0.956739 0.976705 0.985025
SonyAIBORobotSur.2 0.98426 0.940189 0.951731 0.965373 0.965373

Strawberry 0.986486 0.986486 0.983784 0.986486 0.989189
SwedishLeaf 0.9696 0.9664 0.9584 0.9632 0.968

Symbols 0.976884 0.849246 0.935678 0.955779 0.982915
SyntheticControl 1 1 1 1 1

ToeSegmentation1 0.97807 0.850877 0.872807 0.921053 0.982456
ToeSegmentation2 0.953846 0.892308 0.907692 0.938462 0.938462

Trace 1 1 1 1 1
TwoLeadECG 1 0.979807 1 1 1
TwoPatterns 1 1 1 1 1

UWaveGestureL.All 0.939978 0.892797 0.919598 0.904802 0.893076
UWaveGestureL.X 0.810999 0.789782 0.800391 0.805974 0.805974
UWaveGestureL.Y 0.671413 0.687046 0.68928 0.698492 0.698492
UWaveGestureL.Z 0.760469 0.758515 0.735064 0.719314 0.738693

Wafer 0.99854 0.99708 0.993835 0.993511 0.99562
Wine 0.87037 0.851852 0.907407 0.814815 0.962963

WordSynonyms 0.636364 0.564263 0.559561 0.540752 0.592476
ACSF1 0.93 0.91 0.91 0.9 0.93
BME 1 0.973333 1 0.986667 1

Chinatown 0.985507 0.976676 0.982507 0.988338 0.988338
Crop 0.746012 0.72869 0.725238 0.705952 0.725119

DodgerLoopDay 0.4625 0.575 0.575 0.575 0.6125
DodgerLoopGame 0.550725 0.818841 0.92029 0.913043 0.905797

DodgerLoopWeekend 0.949275 0.971014 0.971014 0.978261 0.985507
GunPointAgeSpan 1 0.993671 0.996835 1 1
GunPointMaleV.F. 0.996835 1 1 1 1
GunPointOldV.Y. 1 1 1 0.993651 1

InsectEPGRegularT. 1 0.911647 0.947791 1 1
InsectEPGSmallT. 0.971888 0.714859 0.823293 0.763052 0.919679
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MelbournePedestrian 0.904898 0.899549 0.893399 0.895449 0.889299
PowerCons 0.927778 0.938889 0.961111 0.977778 0.977778

Rock 0.82 0.88 0.8 0.78 0.78
SemgHandG.Ch2 0.848333 0.836667 0.818333 0.845 0.87
SemgHandM.Ch2 0.391111 0.511111 0.431111 0.511111 0.533333
SemgHandS.Ch2 0.666667 0.831111 0.713333 0.831111 0.8
SmoothSubspace 0.993333 0.986667 0.986667 1 1

UMD 1 1 1 1 1

MeanAcc 0.82304 0.856361471 0.867943388 0.873686094 0.893739259

4.2. Ablation Study

To validate the effectiveness of the techniques proposed in this paper,
we conduct an incremental ablation study with 85 UCR2018 datasets. The
incremental models are listed below.

- ResNet-Transformer: a well-known dual-network model that consists of
a ResNet branch and a vanilla Transformer branch, i.e., vanilla Transformer-
based model [21].

- CLAwDCN: the collaborative linear attention with DCN integrated, in
Subsection 3.1.

- CLAwDCN-M: CLAwDCN with mask mechanism in Subsection 3.2.
- CLAwDCN-M-SD: CLAwDCN-M with self-distillation in Subsection

3.2.
- FMLA: CLAwDCN-M-SD with online distillation in Subsection 3.3, i.e.,

the proposed model in this paper.
In terms of accuracy, the performance comparison between CLAwDCN

and ResNet-Transformer [21] is shown in Fig. 6. The two models have the
same structure. CLAwDCN and ResNet-Transformer are close runners with
85 datasets considered. CLAwDCN promotes the mean accuracy to about
0.856163 as shown in Table 1. CLAwDCN wins in 36 cases and loses in 39
cases, reflecting that CLAwDCN does not lead to performance deterioration,
compared with the vanilla Transformer-based model. ResNet-Transformer
extracts local and global features separately, which is actually an advanced
voting algorithm based on two kinds of features. Different from CNN, DCN
can emphasize local features with various shapes and the compressed matrices
for each head are generated by different channel groups in the associated
DCN block. Thus, CLAwDCN can calculate the similarity between useful
data points based on the inputs filtered by DCN blocks, which helps avoid
the influence of fluctuation and capture more accurate information rather
than the noise in time series.

Then, we evaluate the effectiveness of the mask mechanism without self-
distillation by comparing CLAwDCN-M and CLAwDCN with respect to

18



0.5

0.6

0.7

0.8

0.9

1

0.5 0.6 0.7 0.8 0.9 1.0

CLAwDCN

ResNet-Trans

Win/Tie/Lose
36/10/39

Figure 6: Accuracy plot showing the performance difference between ResNet-Transformer
and CLAwDCN.

their performance on accuracy. In theory, different mask frequency values
can be used in the shallow and deep layers of CLAwDCN-M. For simplic-
ity purposes, we only adopt the same frequency, i.e., 50%, in all layers in
the experiment. The mean accuracy was promoted by CLAwDCN-M to
about 0.873686 as shown in Table 1. The performance comparison between
CLAwDCN-M and CLAwDCN is shown in Fig. 7, where the former wins 40
cases and loses 29 cases. If we only use the Dropout [46] technique which ran-
domly drops the weights of neural networks, the output of each position the
weights associated with still exists and the relevant influence also remains.
In addition, we speculate that in the attention mechanism the classification-
related data generally obtains higher weights after the dot product operation,
which means that even if some specific positions are dropped, they may also
remain in other positions in the form of a weighted summation.

As mentioned in Subsection 3.2, self-distillation is applied to the mask
mechanism to stabilize the training process. We evaluate the effectiveness
of self-distillation by comparing CLAwDCN-M-SD and CLAwDCN-M re-
garding accuracy. We feed the input time series to CLAwDCN-M with ran-
dom mask layers 3 times. The averaged output is used to teach the same
model with regular mask layers, i.e., CLAwDCN-M-SD. The mean accuracy
of CLAwDCN-M-SD is boosted to 0.873686 by self-distillation as shown in
Table 1. The accuracy plots of CLAwDCN-M-SD vs. CLAwDCN-M are
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Figure 7: Accuracy plot showing the performance difference between CLAwDCN and
CLAwDCN-M.

shown in Fig. 8. CLAwDCN-M-SD wins CLAwDCN-M in 44 cases and
loses in 21 cases. The mask mechanism can reduce the influence of noise,
and the data in the masked positions may not break the whole waveform of
the time series ideally. However, mask operations may appear at different
positions in different iterations. This may enhance the model’s robustness
but makes it hard to train. The self-distillation technique used here is for
accelerating the training process under randomness.

Finally, we evaluate the effectiveness of the online distillation by compar-
ing CLAwDCN-M-SD and FMLA. Obviously, FMLA overweighs CLAwDCN-
M-SD in terms of ‘win’/‘tie’/‘lose’ as shown in Fig. 9. The final accuracy of
FMLA is 0.893739 and it is the winner of 48 cases and the loser of 11 cases.
Online distillation helps realize the forward-backward bi-directional circu-
lation in our FMLA. Therefore, the locality awareness of attention in the
FMLA is further strengthened. This also proves the proposition in [51] that
CNN-like architectures can be good teachers for Transformer-like algorithms
in knowledge distillation.
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Figure 8: Accuracy plot showing the performance difference between CLAwDCN-M and
CLAwDCN-M-SD.
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Figure 9: Accuracy plot showing the performance difference between CLAwDCN-M-SD
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Figure 10: Results of AVG rank of 12 algorithms on 85 univariate datasets

Table 3: Performance summary of 12 algorithms on 85 UCR2018 datasets

Existing SOTA Best:LSTM-FCN Vanilla:ResNet-Trans ResNet-Trans 1 ResNet-Trans 2 ResNet-Trans 3
Total 65 85 85 85 85 85
Win 5 13 2 0 2 0
Tie 13 10 21 16 15 19
Lose 47 62 62 69 68 66
Best 18 23 23 16 17 19

MeanAcc 0.9001 0.8932 0.8866 0.8833 0.8230 0.8077
Avg rank 6.1588 5.1823 5.3176 5.9588 6.8294 6.5058

TS-CHIEF ROCKET InceptionTime MACNN ResNet-50 SC FMLA
Total 65 85 85 65 85 85
Win 1 7 3 9 1 14
Tie 8 10 7 14 6 22
Lose 56 68 75 42 78 49
Best 9 17 10 23 7 36

MeanAcc 0.8679 0.8814 0.8653 0.8692 0.8249 0.8937
Avg rank 8.1470 6.6941 7.1117 5.4461 8.2882 4.8176

4.3. Experimental Analysis

To evaluate the performance of FMLA, we compare it with 11 advanced
algorithms including deep learning-based algorithms and traditional ones,
with experiments on 85 UCR2018 datasets conducted as shown in Tables 2
and 3. All these models are listed below.

- Existing SOTA: a well-known benchmark consisting of the highest accu-
racy on each dataset obtained by STC [43], HC [28], gRSF [26] and mv-ARF
[52].

- Best:LSTM-FCN [25]: a dual-network algorithm consisting of an attention-
based LSTM branch and an FCN branch.

- Vanilla: ResNet-Transformer [21]: a dual-network algorithm consisting
of a ResNet branch and a vanilla Transformer branch.

- ResNet-Transformer 1, 2, 3 [21]: three dual-network algorithms consist-
ing of a ResNet branch and a Transformer branch with a different number
of blocks.
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- TS-CHIEF [45]: a tree classifier based on the Proximity Tree algorithm.
- ROCKET [7]: an ensemble algorithm consisting of a large number of

random convolutional kernels.
- InceptionTime [15]: an application of the Inception network in TSC
- MACNN [2]: an attention-based multi-scale CNN.
- ResNet-50 SC [55]: a ResNet-50 architecture with different classifiers

on different datasets.
- FMLA: the proposed model in this paper.
As shown in Table 3, the proposed FMLA performs the best among the

12 algorithms. To be specific, it obtains the best top-1 accuracy results on
36 out of the 85 datasets and wins 22 cases. FMLA ranks first regarding
the average ranking shown in Fig. 10. Besides, it is obvious that the top
five algorithms are all based on the attention mechanism, which, to some
extent, proves the potential of attention. LSTM-FCN has a slightly lower
performance compared with ours. The LSTM improved by attention mech-
anism makes LSTM-FCN acquire similar advantages to Transformer-based
algorithms. However, its intrinsic disadvantage, namely being biased on the
latest information, still exists. This may lose previous information in long
time series, leading to weakened performance. Moreover, FMLA outperforms
the 4 Transformer-based models in [21], one of which achieves the third place
in the average ranking. These four models perform similarly in terms of ‘Best’
but obtain different mean accuracy values. This means they have similar fea-
ture extraction abilities but are adaptive to datasets with different sizes based
on their Params. As for the fourth algorithm in average ranking, MACNN,
it applies the attention block after each multi-scale CNN block to aggregate
the multi-scale information obtained, meaning that the relative importance
of the features extracted by CNN blocks can be distinguished so that more
useful features contribute more to the classification result. The average rank
of MACNN is slightly lower than the vanilla:ResNet-Transformer model but
outperforms the other 3 variants Transformer-based model.

Both Rocket and InceptionTime use multiple kernels for multi-scale fea-
ture extraction, wherein the large number of random convolutional kernels
used in Rocket guarantee to extract abundant features compared with ‘In-
ceptionTime’. However, both of them cannot well analyze the importance of
each feature extracted without the attention mechanism. The ‘TS-CHIEF’
and ‘ResNet-50 SC’ are the worst two algorithms since they use regular meth-
ods to extract monotonous features. It is thus difficult for them to extract
flexible shapelets in TSC with noise influence.
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Figure 11: Complexity comparison in terms of FLOPs and Params

To sum up, FMLA achieves the best performance in terms of ‘win’/‘tie’/‘lose’,
MeanACC, and AVG rank. On the one hand, FMLA inferences more effi-
ciently than the vanilla attention-based and LSTM-based algorithms accord-
ing to its better parallelism and lower complexity. On the other hand, FMLA
performs better than all the other attention-irrelevant algorithms as it is able
to provide a better combination of local and global features through the in-
tegration of DCN and CLA blocks.

4.4. Parallelism and Complexity Analysis

LSTM-FCN [25] is one of the pioneering studies on TSC. It processes
a sequence token by token to obtain global representations. However, the
weak parallelism causes its training time highly dependent on the length of
a given series and it needs more parameters to remember more previous in-
formation. To overcome these problems, attention-based models with better
parallelism have been proposed, like ResNet-Transformer [21] and MACNN
[2]. Attention treats information in sequences as query-key pairs, which leads
to quadratic complexity. Assume d is the dimension of input vectors and n
is the length of the input sequence. There are mainly four processes di-
rectly related to the complexity of the vanilla attention mechanism in [21]
and [2], including the projection of queries, keys and values with O(3nd2),
dot-product calculation of similarity with O(n2d), SoftMax calculation of
similarity with O(n2) and weighted sum calculation of values with O(n2d).

In order to reduce the complexity of vanilla attention, we compress the
length of values based on the low-level features extracted by DCN blocks and
the keys are generated from the compressed values. The projections of keys
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in the vanilla attention are omitted so the complexity in this stage is reduced
to O(2nd2). Otherwise, FMLA has a linear complexity of O(Cnd), in the
dot-product, SoftMax and weighted sum calculation processes. The mask
mechanism is actually a broadcast operation with a complexity of O(nd) and
the knowledge distillation techniques are actually none-parameter operations
that do not influence the complexity directly. All in all, the complexity of
our model, O(n), is much lower than that of the vanilla Transformer-based
model, O(n2), and our parallelism is better than the vanilla attention-based
models.

The FLOPs and Params of the FMLA model are compared with those of
three Transformer-based models, as shown in Fig. 11. ResNet-Transformer2
and ResNet-Transformer3 own the same number of blocks as ours but their
FLOPs increases quadratically. The ResNet-Transformer1 has fewer FLOPs
in the early stage because it only uses one Transformer block. However, as
the length of the given sequence grows, the FLOPs demonstrate the advan-
tages of FMLA in efficiency. In terms of Params, all four algorithms grow
linearly, where the growth mainly happens in the final classification layers.
In FMLA, we squeeze the outputs of two branches and add to the results
before classification without a specific classifier. Therefore, the number of
parameters we used grows slower than the others with the growth of the
sequence length.

5. Conclusion

In this paper, we propose a global-local attention model, namely FMLA,
for time series classification. FMLA integrates the deformable convolution
network and the collaborative attention mechanism, a mask mechanism and
online knowledge distillation. The FMLA realizes global and local feature
awareness, low noise interference and model redundancy reduction. Sufficient
and comprehensive experiments are conducted on 85 datasets from UCR2018
and FMLA achieves the best results on 36 datasets, which outperforms all
other comparing algorithms in accuracy. Based on our extensive experiments
and analysis, our model can also extract features with lower complexity for
time series classification compared with other deep learning algorithms.
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