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Abstract

This paper presents a state estimation-based robust optimal control strategy for influenza
epidemics in an interactive human society in the presence of modeling uncertainties.
Interactive society is influenced by random entrance of individuals from other human
societies whose effects can be modeled as a non-Gaussian noise. Since only the number
of exposed and infected humans can be measured, states of the influenza epidemics are
first estimated by an extended maximum correntropy Kalman filter (EMCKF) to provide
a robust state estimation in the presence of the non-Gaussian noise. An online quadratic
program (QP) optimization is then synthesized subject to a robust control Lyapunov
function (RCLF) to minimize susceptible and infected humans, while minimizing and
bounding the rates of vaccination and antiviral treatment. The joint QP-RCLF-EMCKF
meets multiple design specifications such as state estimation, tracking, pointwise con-
trol optimality, and robustness to parameter uncertainty and state estimation errors
that have not been achieved simultaneously in previous studies. The uniform ultimate
boundedness (UUB)/convergence of error trajectories is guaranteed using a Lyapunov
stability argument. Simulation results show that the proposed approach achieves appro-
priate tracking and state estimation performance with good robustness on the influenza
epidemics of an interactive human society with population of 16000.
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1. Introduction

Influenza viruses can cause epidemic human diseases that are currently a worldwide
health concern. Proper control of influenza epidemics is a crucial task that can mitigate
economic and epidemiological burdens. Recent years have witnessed numerous studies
in analysis, modeling, and control of influenza epidemiological systems [3, 36, 25,
28, 17, 11]. Mathematical model of influenza epidemics can provide an opportunity
to design model-based control strategies and to analyze the stability of closed-loop
systems. Several mathematical models have been proposed for influenza epidemic
systems [3, 26, 36]. In [3], compartmental models of the influenza were proposed while
considering the vaccination and antiviral treatment as control inputs. In [26], influenza
dynamics were modeled by a set of nonlinear differential equations. In [36], a nonlinear
SEIAR model of the influenza with two control inputs and five states was described. In
this model, the positive state variables S, E, I, A, and R are the Susceptible, Exposed,
Infected, Asymptomatic, and Recovered individuals while rates of vaccination and
antiviral treatment are considered positive control inputs.

To recover all individuals of a society, the best intervention strategy is desired to
be designed for the influenza epidemics. Optimal control is one of the widely-used ap-
proach that has been employed to determine the treatment strategies [25, 28, 21, 40, 14].
In [25], an optimal control problem was employed to minimize the number of infected
individuals at minimal efforts of the vaccination. Different optimal control strategies
were suggested in [28] to minimize the impact of influenza pandemics involving antiviral
treatment and/or the isolation measures. In [21], prevention of the pandemic influenza
was enhanced towards evaluating time-dependent optimal prevention policies and con-
sidering its execution cost. In [40], a dynamic model of an influenza pandemic model
was formulated with the existence of vaccination and treatment, and then analyzed in
terms of the vaccine intake variations. In [14], a prioritization scheme for allocation of a
sizeable quantity of influenza vaccine and antiviral drug was described for a stratified
population.

Note that the above-mentioned optimal control strategies were formulated with the
assumption of fully-known dynamic terms and parameters. However, mathematical
models of the influenza epidemics may contain modeling uncertainties that should be
taken into account in the control design structure. In [34], a least squares method was
employed to estimate unknown parameters of two influenza epidemic models. Although
the estimation performance was validated, no any control strategy was designed to
minimize the infected population. In [36], a robust adaptive sliding mode controller was
designed for a nonlinear SEIAR model of the influenza in the presence of parametric
uncertainties. In that work, convergence of susceptible and infected humans to zero
was provided by tracking some descending scenarios. Two robust terms were also
incorporated in their devised controller whose gains were updated using adaptation
laws to compensate for the parameter uncertainties. Stability of closed-loop influenza
epidemic system was then proved using a Lyapunov framework and the Barbalat’s
lemma.

2



S

EI

A

R

SEIAR Model
Society of Interest

Random Individuals 
(Non-Gaussian Noise)

Other Societies

Measurements  E, I

Rates of Vaccination and 
Antiviral Treatment 

Proposed Algorithm
21, uu

Estimate  S, E, I, A, R  

Minimize  S, I   

Minimize and Bound    21, uu

Maximize R   

Figure 1: Proposed structure for estimation and control of influenza epidemics in an interactive
human society. Influenza dynamics are modelled by an SEIAR model with Susceptible (S),
Exposed (E), Infected (I), Asymptomatic (A), and Recovered (R) individuals. An interactive
society is influenced by other human societies whose effects on the interactive society can be
modeled as a non-Gaussian noise.

However, that recent paper [36] suffers from several drawbacks. (i) The main one
is that the controller requires accurate measurement of state variables, while only the
population of exposed and infected humans can be measured in practice. (ii) In that
approach, studied human society was assumed to be isolated from other societies.
However, a random entrance of individuals from other societies into the main society
of interest results in degrading the control performance. This kind of society is called
”interactive society” and the effects from the other societies can be modelled as a non-
Gaussian noise as shown in Fig. 1. (iii) In their method, although the convergence
of system solutions was obtained and the robustness of closed-loop systems against
parametric uncertainties was demonstrated, control optimality, as an important design
specification, has not been taken into account. In other words, tracking, robustness, and
minimizing the rates of vaccination and antiviral treatment should be achieved at the
same time by devising an appropriate control strategy. (iv) In the normalized SEIAR
model, the control signals should be always positive and less than 1. However, the
approach in [36] was not able to bound the rates of vaccination and antiviral treatment
in the controller implementation while facing with high parameter uncertainties and
disturbances. It should also be noted that the rest of the above-mentioned papers suffer
from the shortcomings mentioned in Items (i) and (iv).

The Kalman filter [22] is still the most common method for state estimation of linear
systems because of its optimality and simplicity. However since the mathematical model
of the influenza comprises a set of nonlinear differential equations, the extension of
Kalman filters, namely the extended Kalman filter (EKF), the unscented Kalman filter
(UKF), and particle filters [33, 35, 41, 38, 15, 5, 6, 20, 39], can be alternatively used for
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Abbreviations

MMSE Minimum mean square error
EKF Extended Kalman filter
UKF Unscented Kalman filter

SEIAR Susceptible, exposed, infected, asymptomatic, and recovered
PWMC Pointwise min-norm control
EMCKF Extended maximum correntropy Kalman filter

QP Quadratic programming
ES-CLF Exponentially stabilizing control Lyanpunov function
RCLF Robust control Lyapunov function
UUB Uniform ultimate boundedness

the state estimation purpose. A Kalman filter is derived based on the minimum mean
square error (MMSE) criterion, which follows that it uses only second-order information
of the signal and it is optimal until the gaussianity of noises is preserved. However,
in this paper, the performance of the ordinary EKF may break down for the influenza
epidemics of an interactive society that is disturbed by non-Gaussian noise (when the
society is not isolated). To solve this issue, the maximum correntropy Kalman filter
(MCKF) can be utilized to provide robustness for the Kalman filter in the presence
of non-Gaussian noise or large outliers [9, 19, 30]. The MCKF uses the correntropy
criterion instead of MMSE through which higher-order information of process and
measurement noises is used [29, 16].

Motivated by the aforementioned shortcomings of the existing controllers, that have
been already designed for the influenza epidemic systems, and the desire to develop
a new multi-objective controller for such systems, this work is the first step towards
designing a state estimation-based robust optimal controller for influenza epidemics
in an interactive human society (demonstrated in Fig. 1) in the presence of modeling
uncertainties and non-Gaussian noise. The main contributions of this paper are as
follows: (i) the state estimation of the influenza epidemics in an interactive human
society; (ii) the design of a robust optimal controller to minimize the population of
susceptible and infected humans, while minimizing and bounding the rates of vaccination
and antiviral treatment; (iii) the proof of the UUB/convergence of tracking errors; and
(iv) the robustness of the proposed algorithm in the presence of parameter perturbation
and random entrance of individuals from the other societies.

In this paper, we begin by formulating an extended MCKF (EMCKF) algorithm
to estimate the states of an influenza dynamical system while using the number of
exposed and infected humans as measurement. With the aim of achieving the bounded-
ness/convergence of system’s errors with a minimal control effort, an online quadratic
program (QP) is synthesized subject to a robust control Lyapunov function (RCLF). The
joint QP-RCLF finds the optimal balance between control effort and stability of closed-
loop system. The robust term is incorporated in the QP-RCLF framework to compensate
for state estimation error and modeling uncertainties. The unified state estimation-based
controller QP-RCLF-EMCKF provides the convergence of susceptible and infected
populations to a small neighborhood around the origin, while minimizing and bounding
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the control effort. The UUB/convergence of tracking errors is finally proven using
a Lyapunov stability argument. To assess the performance of the proposed approach
QP-RCLF-EMCKF, simulation results are carried out for the influenza epidemic model.
Results show that the proposed controller successfully achieves the promised design
specifications such as tracking and state estimation for this epidemiological system.
Tests show that the QP-RCLF-EMCKF strategy provides appropriate robustness in
the presence of parametric uncertainties and random entrance of humans from other
societies to the society of interest.

The paper is organized as follows. Section 2 describes an influenza epidemic model
and the problem statement. Section 3 presents the state estimation framework using
EMCKF algorithm. Section 4 presents our proposed control strategy QP-RCLF-EMCKF.
Section 5 provides the simulation results. Section 6 presents discussion, conclusion, and
future work.

2. Influenza Epidemic Model and Problem Statement

In this section, we begin by describing a dynamical model for the influenza epidemics
and then present the problem statement.

2.1. Influenza epidemic model

A state space representation of the influenza epidemics can be described by the
following nonlinear SEIAR model [36]:

ż1 =−β z1 (εz2 +(1−q)z3 +δ z4)− z1u1

ż2 = β z1 (εz2 +(1−q)z3 +δ z4)−κz2

ż3 = pκz2−αz3−u2z3

ż4 = (1− p)κz2−ηz4

ż5 = αζ z3 + z1u1 + z3u2 +ηz4, (1)

where z = [z1,z2,z3,z4,z5]
T = [S,E, I,A,R]T ∈ ℜ5 denotes the state variables of the

system with positive values; z1 represents the population that is susceptible to get
infected with influenza; z2 is the number of people who are infected with influenza
but not yet infectious (exposed); z3 stands for population that is infected and also
infectious with influenza symptoms; z4 represents the number of individuals who are
influenza carriers but without any symptoms (asymptomatic); z5 denotes the number of
recovered humans; u = [u1,u2]

T ∈ℜ2 is the vector of normalized control inputs such
that 0≤ ui ≤ 1 for i = 1,2; u1 is the rate of vaccination of the susceptible population z1;
and u2 is the rate of antiviral treatment of the infected population z3. More details about
this epidemiological model can be found in [4, 27, 36].

2.2. Problem statement

This paper aims to design a robust optimal controller to decrease the number of
susceptible z1 and infected z3 populations while using the minimum possible rates of
vaccination u1 and antiviral treatment u2. More importantly, the normalized control
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inputs must be bounded between 0 and 1, which requires a set of control constraints to
be incorporated in the controller design. For this purpose, an online QP control strategy
is formulated by considering the RCLF and the above-mentioned input constraints to
generate a pointwise optimal control effort, while achieving the convergence of system’s
errors.

Since only z2 and z3 are measurable in practice, the proposed controller uses the
estimate of system’s states (populations) as feedback in closed-loop system. To achieve a
robust state estimation of the influenza epidemics in an interactive human society in the
presence of non-Gaussian noise, an EMCKF algorithm is employed and specifically de-
veloped for this dynamical system. A robust term is also designed to robutify the system
against state estimation error and parametric uncertainties. The resulting state estimation-
based control strategy QP-RCLF-EMCKF meets multiple design objectives such as
tracking, control optimality, state estimation, and robustness. The UUB/convergence of
all system solutions is proven using a Lyapunov framework and the proposed controller
is finally validated by comprehensive simulation studies.

3. State Estimation Using Extended Maximum Correntropy Kalman Filter (EM-
CKF)

In this section, an EMCKF algorithm is described and presented to estimate the
system states. This filter only uses the number of exposed and infected humans (z2
and z3) as possible measurements. Consider the following general form of a nonlinear
stochastic continuous-time system for the influenza epidemic model (1)

ż = f (z,u,Θ, t)+w(t)

y = h(z, t)+ v(t), (2)

where h(z, t) = [z2,z3]
T ∈ ℜ2 is the vector of measurable variables (populations) in

the influenza epidemics; w(t) ∈ℜ5 is the continuous-time process noise vector of the
system with covariance matrix Q∈ℜ5×5; v(t)∈ℜ2 is the continuous-time measurement
noise with covariance R ∈ℜ2×2; and Θ is the vector of actual system parameters as

Θ = [β ,ε,q,δ ,κ, p,α,η ,ζ ]T ∈ℜ
9. (3)

Assumption 1. The noises w(t) and v(t) are both uncorrelated, Gaussian, and zero-

mean. However, a shot noise is enforced to the measurement noise v(t) to model the

effects from the other societies on the main interactive society, which results in a

non-Gaussian noise as

w(t)∼ N(0,Q)

v(t)∼ N(0,R)+ shot noise. (4)
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Assumption 2. The nonlinear functions f (.)∈ℜ5 and h(.)∈ℜ2 are sufficiently smooth

in z, such that they can be linearized using the Taylor series expansions.

The EMCKF is similar to the EKF as they are based on linearization using first-order
Taylor series expansion. Therefore, the following Jacobian matrices are used to linearize
the system:

A =
∂ f
(
z,u,Θ̂, t

)
∂ z

∣∣∣∣∣
ẑ

∈ℜ
5×5, C =

∂h
∂ z

∣∣∣∣
ẑ
∈ℜ

2×5, (5)

where ẑ and Θ̂ are the estimations of z and Θ, respectively. The initialization of the filter
is given as:

ẑ(0) = E [z(0)]

P(0) = E[(z(0)− ẑ(0))(z(0)− ẑ(0))T ], (6)

where E(.) stands for the expected value operation; P(0) is the covariance of the
initial estimate; and z(0) and ẑ(0) show the initial value of the states and its estimates,
respectively.

The state estimate and the EMCKF gain for the continuous-time nonlinear system (1)
are formulated as follows [37, 12]:

˙̂z = f (ẑ,u,Θ̂, t)+K [y(t)−h(ẑ, t)]

K(t) = P(t)ν(t)CT (t)R−1(t) (7)

in which the time-varying gain ν(t) and the estimation error covariance matrix P(t) are
defined as

ν(t) =Gσ

(
‖y(t)−C(t)ẑ(t)‖R(t)−1

)
Ṗ =A(t)P(t)+P(t)AT (t)+Q(t)

−P(t)CT (t)R−1(t)C(t)P(t) (8)

with the kernel function Gσ (‖ · ‖) defined as

Gσ (‖ · ‖) = exp
(
−‖ ·‖2

2σ2

)
, (9)

where ‖.‖ stands for the Euclidean norm of a vector; ‖.‖R(t)−1 denotes a weighted
Euclidean norm of a vector (i.e., ‖x‖2

R(t)−1 = xT R(t)−1x with R(t)1 as a positive definite
matrix); and σ is the user-specified bandwidth (kernel size).

The EMCKF algorithm is robust against large outliers or non-Gaussian noises,

1It should be pointed out that in this paper, the covariance matrices R and Q are considered to be constant
and diagonal.
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because when the system is perturbed by such noises, then ν(t)→ 0 which prevents the
divergence of the filter. It can be seen that by picking a large value of σ , ν(t)→ 1 and
the EMCKF reduces to the ordinary EKF.

Assumption 3. We assume that under the EMCKF algorithm, the state estimation error

ee = z− ẑ ∈ℜ5 is bounded.

Remark 1. The EMCKF algorithm uses the estimate of system parameters Θ̂, the

measurements (z2,z3), and the control signal u.

The next section will formulate a state-estimation robust optimal control while
utilizing the estimate of system’s states provided by the EMCKF algorithm.

4. Proposed Controller QP-RCLF-EMCKF

With the estimate of the system’s states from the previous section in hand, this
section is devoted to formulating the proposed controller in order to minimize the
susceptible and infected populations. Defining ze = [z1,z3]

T ∈ℜ2, the tracking objective
reduces to the convergence of ze to its desired minimum value zd

e . To achieve this
objective, the first and third equations of Eq. (1) are taken into account and can be
written as follows

że = Y (z,θ)−Zeu (10)

with

Y (z,θ) =
[

θ T
1 Φ1(z)

θ T
2 Φ2(z)

]
, (11)

where the basis functions Φ1(z) and Φ2(z), the parameter vectors θ1 and θ2, and the
control map Ze including positive diagonal elements are defined as

Φ1(z) =[−z1z2,−z1z3,−z1z4]
T ∈ℜ

3

Φ2(z) =[z2,−z3]
T ∈ℜ

2

θ1 =[εβ ,β (1−q),βδ ]T ∈ℜ
3

θ2 =[pκ,α]T ∈ℜ
2

Ze =diag(z1,z3) ∈ℜ
2×2. (12)

Let us define e = ẑe− zd
e as the tracking error vector. Defining ẑe = [ẑ1, ẑ3]

T and
ee1,3 = [ee1 ,ee3 ]

T = ze− ẑe, the tracking error can be redefined as

e = ze− ee1,3 − zd
e . (13)
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Assumption 4. Assume that the desired value zd
e is bounded and of class C 1 (i.e., zd

e is

continuously differentiable)2.

Using Eqs. (10) and (13), the error dynamics are obtained as

ė = Y −Zeu− żd
e − ėe1,3 . (14)

Using the notion of the feedback linearization, assuming that ėe1,3 = 0, and picking
the following feedback control law

u = Z−1
e (Y −µ− żd

e ), (15)

the error dynamics (14) are transferred to the linear system ė = µ with µ as the virtual
input vector.

However, it should be pointed out that (i) the vector ėe1,3 is nonzero, (ii) the actual
system parameters θ are not perfectly known, and (iii) the accurate measurement of
state variables z is not available to the controller. To include the estimated state ẑ and
parameters (θ̂1, θ̂2) (Items ii and iii), the feedback law (15) is modified as

u = Ẑ−1
e (Ŷ −µ− żd

e ), (16)

where

Ŷ = [Ŷ1,Ŷ2]
T =

[
θ̂ T

1 Φ̂1

θ̂ T
2 Φ̂2

]
, Ẑe = diag(ẑ1, ẑ3),

Φ̂1 = [−ẑ1ẑ2,−ẑ1ẑ3,−ẑ1ẑ4]
T , Φ̂2 = [ẑ2,−ẑ3]

T ,

θ̂1 = [ε̂ β̂ , β̂ (1− q̂), β̂ δ̂ ]T , θ̂2 = [p̂κ̂, α̂]T . (17)

Substituting the control law (16) into the error dynamics (14) in the presence of a
nonzero ėe1,3 (Item i), one has

ė = Y −ZeẐ−1
e

(
Ŷ −µ− żd

e

)
− żd

e − ėe1,3 . (18)

By rewriting the control map as

Ze = diag(ẑ1 + ee1 , ẑ3 + ee3), (19)

the term ZeẐ−1
e can be stated as

ZeẐ−1
e = I +diag(

ee1

ẑ1
,

ee3

ẑ3
), (20)

where ee1 = z1− ẑ1 and ee3 = z3− ẑ3. Then, by defining ∆Φi =Φi−Φ̂i and ∆θi = θi− θ̂i

2A function is said to be of class C n if its first n derivatives all exist and are continuous.
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for i = 1,2, the vector Y can be expressed as

Y =

[
(θ̂ T

1 +∆θ T
1 )(Φ̂1 +∆Φ1)

(θ̂ T
2 +∆θ T

2 )(Φ̂2 +∆Φ2)

]
= Ŷ +∆1 (21)

in which ∆1 ∈ℜ2 is defined as

∆1 =

[
θ̂ T

1 ∆Φ1 +∆θ T
1 Φ̂1 +∆θ T

1 ∆Φ1

θ̂ T
2 ∆Φ2 +∆θ T

2 Φ̂2 +∆θ T
2 ∆Φ2

]
. (22)

Now, substituting Eqs. (20) and (21) into Eq. (18) yields

ė = µ +∆ (23)

for which the uncertainty term ∆ ∈ℜ2 is described as

∆ = ∆1 +∆2− ėe1,3 , (24)

where ∆2 ∈ℜ2 is

∆2 =−diag(
ee1

ẑ1
,

ee3

ẑ3
)
(

Ŷ −µ− żd
e

)
. (25)

In the next section, to provide the context for the uncertainty term ∆, its properties
will be studied in detail.

4.1. Properties of the uncertainty term ∆

Throughout this section, we rely on the following property.

Property 1. Let us define the whole population of the society as N = ∑
5
i=1 zi whose

variation can be obtained by the summation of all compartmental dynamics presented

in (1)

Ṅ =−α(1−ζ )z3, (26)

where α > 0 denotes the recovery rate for the symptomatic infected people and 0 <

ζ << 1 is the fatality rate of the influenza. In view of (26), it follows that the whole

population N is a decaying upper bounded time-varying function such that N(t)≤ N0,

where N0 > 0 is its initial magnitude. Hence, all compartmental variables zi for i =

1, . . . ,5 remain bounded during the treatment time such that zi ≤ N(t)≤ N0. Whereby,

according to Assumption 3, the estimates of all system variables zi are also bounded.
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In the following, we begin by expanding each of the components in (24) and then
describe the uncertainty term ∆ as a linear function of ‖e‖ plus a bounded term.

4.1.1. Term ∆1

Utilizing the definitions of the tracking and estimation errors from Assumption 3
and Eq. (13), the vectors ∆Φ1, ∆Φ2, and Φ̂1 can be written as

∆Φ1 =

 −z1z2 + ẑ1ẑ2
−z1z3 + ẑ1ẑ3
−z1z4 + ẑ1ẑ4

= A1e+W1,

∆Φ2 =

[
ee2
−ee3

]
, Φ̂1 = A2e+W2 (27)

with

A1 =−

 ee2 0
ee3 ee1
ee4 0

 , A2 =−

 ẑ2 0
ẑ4 0
0 ẑ1


W1 =−

 ee2zd
e1
+ ee1z2

ee1ee3 + ee1zd
e2
+ ee3zd

e1
ee4zd

e1
+ ee1z4

 W2 =−

 ẑ2zd
e1

ẑ4zd
e1

ẑ1zd
e2

 . (28)

In view of (27) and (28), the term ∆1 has the alternative form

∆1 = A3e+W3 (29)

where

A3 =

[
θ T

1 A1 +∆θ T
1 A2

0

]
,W3 =

[
θ T

1 W1 +∆θ T
1 W2

θ T
2 ∆Φ1 +∆θ T

2 Φ̂1

]
.

According to Assumptions 3 and 4, and Property 1, all terms in the matrices A1,
A2, and W1 and the vectors W2, ∆Φ2, and Φ̂2 are bounded. This coupled with the
boundedness of the vectors θi, θ̂i, and ∆θi for i = 1,2 concludes that the term ∆1 is
bounded by a linear function of ‖e‖ plus a bounded term W3 such that

‖∆1‖ ≤ Ā3‖e‖+W̄3, (30)

where Ā3 and W̄3 are positive scalars such that ‖A3‖ ≤ Ā3 and ‖W3‖ ≤ W̄3.

4.1.2. Term ∆2

In view of (16), one obtains µ = Ŷ − żd
e − Ẑeu using which the term ∆2 reduces to

∆2 =−W4u (31)

with

W4 =

[
ee1 0
0 ee3

]
. (32)
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In Section 4.3, we will synthesize a QP optimization problem through which the
control input ui for i = 1,2 is enforced to always stay between 0 and 1, i.e., ‖u‖ ≤ u0
with a positive scalar u0. This bounding of the control signal along with the boundedness
of ee1 and ee3 implies that

‖∆2‖ ≤ W̄4u0, (33)

where ‖W4‖ ≤ W̄4 with W̄4 > 0.

4.1.3. Term ėe1,3

In view of Eq. (7), the derivative of the estimation error for the number of susceptible
and infected populations is

ėe1,3 =że− ˙̂ze

=Y −Zeu− Ŷ + Ẑeu−K1,3(y− ŷ), (34)

where K1,3 ∈ ℜ2×2 is a matrix whose rows represent the first and third rows of the
Kalman gain. Utilizing the definitions eei = zi− ẑi for i = 1, . . . ,5, and ∆Φi = Φi− Φ̂i
and ∆θi = θi− θ̂i for i = 1,2, one has

ėe1,3 =

[
θ T

1 ∆Φ1 +∆θ T
1 Φ̂1

θ T
2 ∆Φ2 +∆θ T

2 Φ̂2

]
−W4u+W5 (35)

with W5 =−K1,3 [ee2 ,ee3 ]
T . A careful inspection of Eq. (35) reveals that the first term

is equal to the term ∆1 and therefore, one can write

ėe1,3 = A3e+W3−W4u+W5 (36)

in which since A3, W3, W4, W4, K1,3, and u are all bounded, the bound for ‖ėe1,3‖ is
obtained as

‖ėe1,3‖ ≤ Ā3‖e‖+W̄3 +W̄4u0 +W̄5, (37)

where W̄5 is a positive scalar such that ‖W5‖ ≤ W̄5.

Using the previously computed bounds, the uncertainty term ∆ can be stated as a
linear function of ‖e‖ plus a bounded term

‖∆‖ ≤‖∆1‖+‖∆2‖+‖ėe1,3‖
≤Ā3‖e‖+W̄3 +W̄4u0 + Ā3‖e‖+W̄3 +W̄4u0 +W̄5

= 2Ā3︸︷︷︸
Ā

‖e‖+2(W̄3 +W̄4u0)+W̄5︸ ︷︷ ︸
W̄

, (38)

where Ā and W̄ are two positive scalars.
Employing the proposed feedback control law (16), the error dynamics (14) are

partially linearized as presented in Eq. (23). Then, the problem reduces to designing the
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virtual input µ to guarantee the UUB/convergence of error trajectory e while compen-
sating for the uncertainty ∆. For this purpose, the next subsection will present a RCLF
to ensure boundedness/convergence of the tracking error in a pointwise optimal fashion.

4.2. Robust control Lyapunov function (RCLF)
In this section, we begin by considering the special case of ∆ = 0 based on which

the system (23) reduces to
ė = µ. (39)

A function V (e) is an exponentially stabilizing control Lyanpunov function (ES-
CLF) for the system (39), if the following conditions are met [1]:

a1‖e‖2 ≤V (e)≤ a2‖e‖2 (40)
V̇ (e)≤−λV (e), (41)

where a1,a2,λ > 0. A candidate ES-CLF for the system (39) is then suggested as

V (e) =
1
2

eT e (42)

whose time derivative is

V̇ (e) = eT ė = eT
µ. (43)

Now, by choosing µ =−λe and based on Eq. (41), V is ES-CLF. As an alternative,
V̇ (e) in Eq. (43) can be expressed in terms of the main control input u.

For this purpose, substituting the virtual input µ from Eq. (16) into V̇ (e) yields

V̇ (e) = L fV (e)+LgV (e)u (44)

with L fV (e) ∈ℜ and LT
g V (e) ∈ℜ2 as

L fV (e) = eT (Ŷ − żd
e )

LgV (e) =−eT Ẑe (45)

based on which φ0 ∈ℜ and φ1 ∈ℜ2 are defined as

φ0(e) = L fV (e)+λV (e)

φ1(e) = LT
g V (e). (46)

Then, substituting Eq. (44) into Eq. (41), and using the definitions of φ0 and φ1 from
Eq. (46), the inequality constraint (41) can be expressed as

φ0 +φ
T
1 u≤ 0, (47)

which is called the CLF constraint.
Now, a family of controllers that can minimize the control input u w.r.t. the inequality

constraint (47) can be defined using the following pointwise min-norm control (PWMC)
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law [13]:

u(φ0,φ1) =

{
− φ0(e)φ1(e)

φT
1 (e)φ1(e)

if φ0(e)> 0

0 if φ0(e)≤ 0
. (48)

However, this control law can only guarantee the exponential convergence of e to
zero in the absence of the quantity ∆. We now consider the general case in which ∆ 6= 0
for the error dynamics (23).

Theorem 1. Consider the Lyapunov function (42) and the control law (48). Under the

Assumptions 1, 2, 3, and 4 and Property 1, the tracking error norm remains less than

Br = 2W̄/Λ with Λ = λ −2Ā > 0 at all time for all Θ ∈ℜ9, any e(0) ∈ℜ2, and any

bounded ee(0) ∈ℜ5.

Proof 1. In the presence of the uncertainty ∆, V̇ (e) in Eq. (44) converts to

V̇ (e) = eT (µ +∆) = L fV (e)+LgV (e)u+ eT
∆. (49)

By substituting the PWMC law (48) into Eq. (49) when φ0(e)> 0, one can write

V̇ (e) =−λ

2
eT e+ eT

∆ (50)

which implies that

V̇ (e)≤−λ

2
‖e‖2 +‖e‖‖∆‖. (51)

Substitute the calculated bound for ‖∆‖ from Section 4.1 to have

V̇ (e)≤− λ

2
‖e‖2 +‖e‖

(
Ā‖e‖+W̄

)
=− 1

2
(λ −2Ā)‖e‖2 +W̄‖e‖. (52)

By defining Λ = λ −2Ā > 0 with λ > 2Ā, V̇ (e)< 0 outside the set

S0 = {e : ‖e‖ ≤ 2W̄
Λ

= Br}. (53)

This implies that the tracking error norm remains less than Br at all time when
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φ0(e)> 0. In case that φ0(e)≤ 0, we have u = 0 for which Eq. (49) becomes

V̇ (e) = L fV (e)+ eT
∆. (54)

On the other hand, φ0(e)≤ 0 implies that

L fV (e)≤−λV (e) =−λ

2
eT e. (55)

Using Eq. (54) and Eq. (55) and following the same steps as in Eq. (52), we conclude

that e is bounded in the same ball Br as in Eq. (53).

The analysis can be further extended to show the exponential convergence of the

tracking error vector to the set S0. For this purpose, apply the YoungâC™s inequality

for (52) on the term W̄‖e‖ to obtain

V̇ (e)≤− Λ̄

2
‖e‖2 +

W̄ 2

2
≤−Λ̄V (e)+

W̄ 2

2
, (56)

where Λ̄ = Λ−1 > 0 with Λ > 1. Applying the Comparison lemma [23] (Lemma 3.4),

one obtains

V (e)≤ e−Λ̄tV (0)+
W̄ 2

2Λ̄
. (57)

This implies that V exponentially converges to a ball of size W̄ 2/(2Λ̄) with exponen-

tial converge rate Λ̄. Hence, since ‖e‖≤
√

2V (e), the tracking error e will exponentially

converge to the small compact set S0.

Remark 2. The size of the convergence ball Br is determined by the parameter Λ and

the bound W̄ , where the former can be tuned by users and the latter depends on the

parameter uncertainties and the state estimation error.

Remark 3. The error trajectory e converges to a smaller ball for smaller state estima-

tion error and parameter estimation error (smaller W̄ ). The effect of the uncertainty ∆

can be also mitigated by choosing a sufficiently large value of λ . However, this may

cause higher control effort and unpleasant system solutions.
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It is seen that the PWMN control law (48) with defined φ0 provides the boundedness
of e in a compact ball with size Br. With the aim of compensating the uncertainty term
∆ and reducing the size of the ultimate ball without manipulating the convergence rate,
the robust term

Crob = Kr‖e‖, Kr > 0 (58)

is incorporated into φ0 to obtain

φ0rob = L fV (e)+λV (e)+Crob. (59)

Employing Eq. (59), the inequality constraint (47) can be rewritten as

φ0rob +φ
T
1 u≤ 0 (60)

which is called the RCLF constraint.
So now, the modified control law based upon φ0rob is suggested as

u(φ0rob ,φ1) =

−
φ0rob (e)φ1(e)

φT
1 (e)φ1(e)

if φ0rob(e)> 0

0 if φ0rob(e)≤ 0
. (61)

Theorem 2. Consider the Lyapunov function (42), the robust component (58), and the

control law (61). Under the Assumptions 1, 2, 3, and 4 and Property 1, if Kr < W̄ , then

‖e‖ remains less than Brrob = 2(W̄ −Kr)/Λ at all time for all Θ ∈ℜ9, any e(0) ∈ℜ2,

and any bounded ee(0) ∈ℜ5. The convergence of e to the compact ball Brrob is globally

exponential. However if Kr ≥ W̄ , then e asymptotically converges to zero as t→ ∞.

Proof 2. Utilizing the control law (61) in case that φ0(e)> 0, V̇ (e) of Eq. (50) can be

written as

V̇ (e) =−λ

2
eT e+∆eT −Kr‖e‖. (62)

Hence,

V̇ (e)≤−λ

2
‖e‖2 +‖∆‖‖e‖−Kr‖e‖. (63)
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Once again, using the calculated bound of ‖∆‖ from Section 4.1, one has

V̇ (e)≤−1
2

Λ‖e‖2 +(W̄ −Kr)‖e‖. (64)

Here, two cases can be considered on selecting the robust gain Kr:

Case 1 (Kr < W̄ : uniform ultimate boundedness). In this case, V̇ (e) < 0 outside the

set

S1 = {e : ‖e‖ ≤ 2(W̄ −Kr)

Λ
= Brrob}, (65)

which follows that the size of the new convergence ball is 2(W̄ −Kr)/Λ. This implies

that employing the robust term Crob with a positive gain that satisfies Kr < W̄ reduces

the size of the ultimate bound on the tracking error e. In this case, the size of Brrob is

determined by the parameter Λ and the discrepancy between the gain Kr and the bound

W̄ .

Once again, to ensure that the convergence of e to the set S1 is exponential, we

apply the YoungâC™s inequality for (64) on the term (W̄ −Kr)‖e‖ to have

V̇ (e)≤− Λ̄

2
‖e‖2 +

(W̄ −Kr)
2

2
≤−Λ̄V (e)+

(W̄ −Kr)
2

2
, (66)

for which applying the Comparison lemma yields

V (e)≤ e−Λ̄tV (0)+
(W̄ −Kr)

2

2Λ̄
. (67)

This concludes exponential convergence of V to a small neighborhood around the

origin for which the size of the neighborhood is (W̄ −Kr)
2/(2Λ̄) and the exponential

convergence rate is Λ̄. This coupled with the the radial unboundedness of the Lyapunov

function V follows that the convergence of e to the set S1 is globally exponential.

Case 2 (Kr ≥ W̄ : asymptotic convergence). In this case, picking a sufficiently large
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Table 1: Parameters of the nonlinear SEIAR model (1) [36]

Parameter Description Values
κ Transition rate for the exposed 0.526
α Recovery rate for the infected 0.244
η Recovery rate for the asymptomatic 0.244
p Fraction of developing symptoms 0.667
ζ Fatality rate 0.98
ε Infectivity reduction factor for the exposed 0
δ Infectivity reduction factor for the asymptomatic 1
q Contact reduction by isolation 0.5

robust gain in such a way that Kr = W̄ +κr with κr > 0 results in

V̇ (e)≤−λ

2
‖e‖2−κr‖e‖. (68)

This concludes that V̇ becomes negative definite, which implies that e asymptotically

converges to zero as t→ ∞.

Remark 4. Although the larger robust gain Kr provides better tracking performance, it

results in a higher control signal (Kr directly contributes to the control law u). On the

other hand, the smaller Kr provides a better control optimality, while the tracking error

possesses a larger ultimate bound. Thus, a trade off should be made between control

optimality and tracking performance when choosing the robust gain Kr.

Remark 5. The proposed control strategy with the RCLF structure renders stronger

conclusion for the stability of closed-loop system in the presence of uncertainty ∆.

With the formulation of the RCLF in hand, the next subsection will unify the
EMCKF and the RCLF through synthesizing a QP optimization framework.

4.3. Unified controller QP-RCLF-EMCKF

The quadratic program-based CLF (QP-CLF) technique is a contemporary con-
trol approach that guarantees stability of closed-loop systems while minimizing and
bounding the control inputs [1, 2]. However, modeling uncertainties and state estimation
errors, i.e., ∆ 6= 0, degrade the performance of such controllers [8, 7]. To mitigate this
issue, in this section, we aim to design a robust optimal controller by the unification
of the EMCKF algorithm (Section 3) and the RCLF (Section 4.2) while utilizing the
estimate of the system states. For this purpose, a QP optimization problem is employed
to generate the same PWMC signal u(φ0rob ,φ1), which enables the incorporation of the
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Table 2: Design parameters of the proposed QP-RCLF-EMCKF

Parameter Value Location

Filter

P(0) 1I5 Eq. (6)
R 0.01I2 Eq. (7)
Q 1I5 Eq. (8)
σ 0.01 Eq. (9)

Controller

λ 1 Eq. (59)
K 2 Eq. (59)
c 10 Eq. (73)

ū1, ū2 1 Eq. (74)
u1, u2 0 Eq. (74)

Figure 2: State measurements (z2,z3) affected by a shot noise

RCLF constraint (60) as well as the required control bounds while using the estimates
of the states and the system parameters.

We begin by recovering the virtual input µ from the main control signal (16) as

µ = Ŷ − żd
e − Ẑeu. (69)

To formulate the QP-RCLF-EMCKF controller while minimizing the virtual input
µ , the following cost function should be minimized:

µ
T

µ =ẑ2
1u2

1 + ẑ2
3u2

2 +2ẑ1(żd
e1
− Ŷ1)u1 +2ẑ3(żd

e2
− Ŷ2)u2

−2(Ŷ1żd
e1
+ Ŷ2żd

e2
)+ żd2

e1
+ żd2

e2
+ Ŷ 2

1 + Ŷ 2
2 . (70)

The control input u has to be also restricted between its prescribed minimum and
maximum values such that u≤ ui ≤ ū, for i = 1,2 with u = 0 and ū = 1. Therefore, a
QP optimization problem with the aforementioned tracking and control objectives can
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Figure 3: State estimation and tracking performance

Figure 4: Control signals and RCLF constraint performance

be formulated as:

x∗ = argmin
x=(h,u)T∈ℜ3

µ
T

µ + ch2

s.t.

RCLF constraint : φ
T
1 u+φ0rob ≤ h

Control bound : u≤ u≤ ū (71)

where c is a relaxation coefficient for the RCLF constraint (60) when the control bound
is enforced. Formally defining a QP problem, the above optimization can be presented
in the following form

u∗ =argmin
x∈ℜ3

1
2

uT Hu+BT u

s.t.
A1u≤ b1

A2u≤ b2 (72)
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with

H = 2

 c 0 0
0 ẑ2

1 0
0 0 ẑ2

3

 , B = 2

 0
ẑ1(żd

e1
− Ŷ1)

ẑ3(żd
e2
− Ŷ2)

 (73)

and

A1 =
[
−1 φ T

1
]
, b1 =−φ0rob

A2 =


0 1 0
0 0 1
0 −1 0
0 0 −1

 , b2 =


ū1
ū2
u1
u2

 . (74)

Equations (72), (73), and (74) show that the proposed controller uses the estimated
states (by using EMCKF algorithm in Section 3), the estimated parameters (best guess),
tracking error, and the first derivative of the desired trajectory as a four-tuple (ẑ, θ̂ ,e, żd

e ).
The general structure of the proposed QP-RCLF-EMCKF for the influenza epidemics in
an interactive human society is illustrated in Fig. 1.
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(a) ∆Θ =+50%

(b) ∆Θ =−50%

Figure 5: State estimation and tracking performance under ±50% parameter uncertainty

(a) ∆Θ =+50% (b) ∆Θ =−50%

Figure 6: Vaccination rate u1 and antiviral treatment rate u2 under ±50% parameter uncertainty

22



5. Simulation Results

In this section, the proposed control methodology QP-RCLF-EMCKF is imple-
mented on the influenza epidemic model (1) whose parameters are shown in Table 1.
We aim to minimize the susceptible and infected individuals in an interactive human
society with population of 16000. The initial value of the state variables is considered

z(0) = [15000,200,500,300,0]T

that is assumed to be different from the initial value of the filter states

ẑ(0) = [11000,800,1000,700,2500]T .

Note that the summation of initial state variables is equal to the population of the
main society. The simulation runs for 40 days. Table 2 provides the design parameters
of the proposed approach for the state estimation algorithm explained in Section 3 and
the controller formulated in Section 4. The design parameters are tuned to provide a
good performance of the proposed approach.

The effects from the other human societies on the main interactive society is modeled
by a shot noise. Thus, the measurement noise is regarded as a non-Gaussian noise,
which is a Gaussian noise that is affected by a shot noise as described in Eq. (4). In
the simulation, the shot noise is seen as 20 impulses with magnitude of 200, which
is randomly enforced to the measurement noise. This shot noise models the random
entrance of 200 exposed and infected individuals from the other human societies into
the human society of population 16000. Thus, the measurements (z2,z3) are affected by
these 200 individuals during the simulation as shown in Fig. 2.

5.1. State estimation, tracking performance, and control effort
Figure 3 shows the state estimation performance for the influenza epidemics along

with the convergence of populations z1 and z3. It is seen that the proposed EMCKF
algorithm is able to accurately estimate the state variables while only measuring the
populations z2 and z3. This accurate estimation is achieved when the shot noise is
enforced to the measurement noise, which represents an impulsive random entrance
of the exposed and infected populations to the main human society of 16000. This
implies that the proposed estimation algorithm has a strong robustness when the system
is perturbed by non-Gaussian noises.

Figure 3 also shows that the susceptible z1 and infected z3 individuals of the interac-
tive human society are minimized in 14 days under the proposed control strategy. The
convergence of variables z1 and z3 results in the convergence of populations z2 and z4,
and in turn the entire population z5 is recovered. This implies that the proposed controller
is able to recover all individuals of the human society with the population of 16000,
even when the external infected individuals from other societies randomly invade the
main society during a treatment time of 40 days. These results are in agreement with our
main results presented in Section 4.2 and Theorem 2 based on which UUB/convergence
of system’s errors is guaranteed.

Figure 4 illustrates the rate of vaccination for susceptible individuals u1 and the rate
of antiviral treatment for the infected individuals u2. It is seen that the control signals
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generated by the proposed control technique fairly decreases to zero at the end of the
treatment time. It can be also noted that none of the control signals hit the maximum
control bound ū as the peak controls are u1max = 0.49 and u2max = 0.64. Figure 4 also
demonstrates the RCLF constraint violation during the simulation. It is seen that the
RCLF violation is bounded by 0.05 when the relaxation coefficient is tuned as c = 10.
A smaller value of c relaxes the RCLF constraint and decreases the possibility of its
conflict with the control bound constraint; however, smaller c increases h and in turn
deteriorates the tracking performance. For higher relaxation coefficient c, h is relatively
zero and the RCLF constraint is never violated, but the QP may be infeasible due to the
conflict of the RCLF constraint with the control bounds. Thus, the penalty coefficient c
should be carefully selected to make a trade off between the tracking performance and
the control constraints.

5.2. Robustness to parameter uncertainty

Different societies and populations can result in the influenza model (1) with dif-
ferent values of the system parameters Θ. To evaluate the robustness of the proposed
control scheme against the parameter perturbation, the system parameters are deviated
by±50% from their nominal values. Figure 5 illustrates the state estimation and tracking
performance of the influenza epidemics when the system parameters are perturbed by
±50%. It is seen that the proposed EMCKF algorithm can still provide an accurate
state estimation under either case. Under +50% parameter perturbation, the number
of susceptible z1 and infected z3 populations converges to a small ultimate ball around
zero in 14 days using the proposed controller. In case that ∆Θ =−50%, although the
estimated states z2 and z4 have a sluggish convergence to the actual states, the EMCKF
algorithm can render a general convenient estimation performance. In this case, the con-
vergence of z1 and z3 is also achieved in the same days as of ∆Θ = 0% and ∆Θ =+50%.
This demonstrates that the proposed approach achieves good robustness against the
parameter perturbation. These findings support the claim of our main results presented
in Theorem 2 in which UUB/convergence of the tracking errors is ensured even in the
presence of parameter uncertainties and state estimation error.

Figure 6 shows the control signals under±50% parameter uncertainty. It is observed
that the rate of vaccination for z1 (u1) under both cases ∆Θ =+50% and ∆Θ =−50%
has relatively similar magnitude and behavior compared to u1 in no perturbation case.
Under both ∆Θ =+50% and ∆Θ =−50%, the maximum value of u1 is u1max = 0.49.
However, the rate of antiviral treatment for z3 (u2) under ∆Θ =+50% meets a higher
magnitude in the first 10 days (u2max = 0.75), which is 17% higher than u2max in the
case of no perturbation. Under ∆Θ =−50%, although u2 hits the control bound ū = 1
during t ∈ [15,22], convergence of z3 is maintained. This implies that there is no
conflict between the control bounds and the RCLF constraint such that they can be
achieved at the same time. This demonstrates that the proposed approach is able to
achieve convergence of system solutions and to satisfy the constraints in the presence of
parameter perturbation and state estimation errors.
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Figure 7: State estimation and tracking performance using the ordinary EKF

Figure 8: Control signal and RCLF constraint performance using the ordinary EKF

5.3. Superiority of the EMCKF algorithm over the ordinary EKF for the influenza
epidemics

In this section, we highlight superiority of the EMCKF algorithm over the ordinary
EKF when the system is affected by the shot noise introducing the random entrance of
exposed and infected individuals from other societies to the society of interest. Figure 7
illustrates the state estimation and tracking performance of the influenza epidemic
system under the proposed controller but when an ordinary EKF is employed. It is seen
that the estimated states z2, z3, and z4 contain unpleasant impulses stemming from the
shot noise and in turn do not converge to their actual states. This results in a steady
state estimation error for the state ẑ5. Thus, it is seen that the estimation performance
deteriorates when the system is disturbed by the shot noise and the EKF is employed.

Since the proposed controller uses the estimated states, inconvenient state estimation
of the EKF negatively impacts the generated control signals as shown in Fig. 8. Both
the rate of vaccination for z1 and the rate of antiviral treatment for z3 intensively chatter
after day 20 and even u2 hits the control bound ū. This shows that improper estimation
performance of the EKF in the presence of shot noise causes the control signal chattering,
resulting in higher control cost. Figure 8 also shows that the RCLF constraint violation
is not smooth and chatters after day 20. This demonstrates that the proposed controller
can not preserve its robustness for an interactive human society (when the main human
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society is not isolated from the other societies i.e., existing of non-Gaussian noise) when
the ordinary EKF is employed instead of the proposed EMCKF algorithm.

6. Discussion, Conclusions, and Future Work

6.1. Discussion

Control of influenza epidemics in a human society is an important global health
concern that imposes economic and epidemiological burdens. The optimal control
strategy is one of the most popular design approaches that has been employed to control
the influenza epidemics. However, previous optimal control approaches have been
designed with the assumptions of fully-known dynamics and fully-measurable states
in addition to considering an isolated human society. The adaptive control strategy is
an efficient design method for controlling the influenza epidemics in the presence of
dynamic uncertainties. To cope with the modeling inaccuracies, an adaptive control
method has been recently designed in [36] while still assuming that the system’s states
are measurable and the human society is isolated. In addition, that controller did not
take the optimality of the vaccination and antiviral treatment rates into account.

Since the influenza dynamic models are a set of nonlinear differential equations, the
EKF is a convenient algorithm for the state estimation of such systems. However, since
the human society of interest is not isolated from the other societies (it is an interactive
society that is impacted by non-Gaussian noise), performance of the ordinary EKF
deteriorates in the presence of other societies’ interactions.

6.2. Conclusions

Motivated by the aforementioned shortcomings of the existing works applied for the
influenza epidemics and the aim of devising a new multi-objective controller for such
systems, this paper presented a state estimation-based robust optimal control strategy
for the influenza epidemics in an interactive human society in the presence of modeling
uncertainties. An EMCKF algorithm was presented for state estimation purpose and a
QP optimization problem was formulated w.r.t. a RCLF to recover the entire population
of an interactive human society while compensating the state estimation error and the
modeling error in an optimal fashion. The proposed QP-RCLF-EMCKF controller
achieved multiple design specifications such as state estimation, tracking, control opti-
mality, and robustness against the modeling error and the non-Gaussian noise stemming
from the other societies’ effects. A Lyapunov stability argument was used to prove the
boundedness of the susceptible and infected populations to a small neighborhood around
the origin. The convergence of the error solutions was also discussed under a proper
selection of the robust gain. This boundedness/convergence was achieved at minimal
rates of the vaccination and antiviral treatment. Simulation results illustrated that the
proposed approach is able to provide accurate state estimation, tracking performance,
and robustness to the modeling inaccuracies and the non-Gaussian noise associated with
the nature of the interactive human societies. This was achieved in an optimal control
fashion.
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6.3. Future works

The control strategy developed in this study can be modified to be employed for a
wide range of epidemiological diseases such as tuberculosis [31], malaria [32], Hepatitis
C virus (HCV) [24], HIV/AIDS [10], and COVID-19 [18]. In terms of future studies,
the following items will be considered:

1. In this paper, the system parameters Θ have to be guessed for use in the controller.
However, to relieve the engineer of the need for such guess, future work is planned
to design an adaptation mechanism to estimate these unknown parameters.

2. As illustrated in Figs. 3, 5, and 7, the exposed population z2 peaks at the beginning
of the simulation. It implies that the number of people who are infected with
influenza but not yet infectious initially increases and then vanishes as time goes
on. Future work is planned to design a controller such that the exposed population
is maintained below a number during the treatment period.

These items naturally encourage us to extend the presented approach by estimating
the system parameters and creating a safe control structure in which the exposed
population is kept below a specified level.
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