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Abstract

Time series data usually contains local and global patterns. Most of the

existing feature networks pay more attention to local features rather than the

relationships among them. The latter is, however, also essential yet more diffi-

cult to explore. To obtain sufficient representations by a feature network is still

challenging. To this end, we propose a novel robust temporal feature network

(RTFN) for feature extraction in time series classification, containing a tempo-

ral feature network (TFN) and an LSTM-based attention network (LSTMaN).

TFN is a residual structure with multiple convolutional layers. It functions as

a local-feature extraction network to mine sufficient local features from data.

LSTMaN is composed of two identical layers, where attention and long short-

term memory (LSTM) networks are hybridized. This network acts as a relation

extraction network to discover the intrinsic relationships among the features

extracted from different data positions. In experiments, we embed RTFN into

a supervised structure as a feature extractor and an unsupervised structure as

an encoder, respectively. The results show that the RTFN-based structures

achieve excellent supervised and unsupervised performance on a large number

of UCR2018 and UEA2018 datasets.

Keywords: attention mechanism, convolutional neural network, data mining,

LSTM, time series classification.
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1. Introduction

Time series data has been used in various domains, such as weather fore-

casting [74], traffic analysis [40, 65], human activity recognition [2, 73], clinical

diagnosis [7], human heart record [10], electricity demand [46], etc. Making

full use of the data in real-world applications is crucial, depending on how well

features are extracted. Different from other types of data, such as ImageNet

for image classification [12], SemEval-2014 for sentiment recognition [44], and

ICDAR2019 for natural scene text processing [63], a time series is a sequence

of time-ordered data points recording certain processes [3]. In time series data,

local patterns are local temporal features, while global patterns are relation-

ships among local ones. Recently, effective feature and relation extraction has

become a critical challenge, which is also a basis for time series classification

[3, 15, 28, 36].

So far, there have been two classes of approaches for addressing the challenge

above, including traditional algorithms and deep learning ones [15]. Traditional

approaches aim at mining features and regularizations from data by revealing

the significant differences and connections within the data. These approaches

are mainly distance-based and feature-based. Distance-based approaches ad-

dress a classification task by measuring the similarities between spatial features

of data. Combining the nearest neighbor (NN) and the dynamic time warping

(DTW) is widely adopted [3, 33], such as, DDDTW [37], DTDC [37], DTWI

[13], DTWD [45], DTWA [36], etc. Besides, there are a number of NN-DTW-

based ensemble approaches. For example, the elastic ensemble (EE) uses 11

1-NN-based elastic distance measures to achieve decent performance on various

time series datasets [33]. The collective of transformation ensembles (COTE)

considers over 35 weighted classifiers [15]. In addition, the hierarchical vote

collective of transformation-based ensembles (HIVE-COTE) [34] and the local

cascade ensemble (LCE) [13] are two representative algorithms in the literature.

On the other hand, feature-based approaches pay more attention to exploring
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representative features from time series data. For instance, Baydogan et al. [6]

introduce a bag-of-features framework for feature extraction via a truncated

discrete Fourier transform. The hidden state conditional random field (HCRF)

uses hidden variables to build the latent structure of the input [48]. Besides,

the learned pattern similarity (LPS) [5], the bag of SFA symbols (BOSS) [29],

the time series forest (TSF) [11], and the hidden unit logistic model (HULM)

[42] are also feature-based.

Apart from the distance- and feature-based approaches, research efforts have

also been dedicated to other techniques. For example, the ultra fast shapelets

(UFS) applies support vector machine and random forest to generate random

shapelets from the input [67]. The symbolic representation for multivariate time

series (SMTS) adopts random forest to divide time series data into leaf nodes

for local-pattern extraction [4]. Tuncel et al. [61] apply autoregressive forests

(mv-ARF) to mine representative shapelets from multivariate time series data.

Karlsson et al. [26] use generalized random shapelet forests (gRSF) to extract

significant features. WEASEL+MUSE utilizes a bag-of-patterns model with

various sliding window sizes for multivariate feature extraction [54].

On the other hand, the deep learning algorithms aim at unfolding the in-

ternal representation hierarchy of data, which helps to capture the intrinsic

connections among representations [31]. These algorithms are roughly classified

into two categories, namely single-network-based and dual-network-based mod-

els. To be specific, a single-network-based model uses one (usually hybridized)

network to handle both feature and relation extraction. These models pay at-

tention to mining the basic representation hierarchy of data and significant con-

nections within the hierarchy, e.g., ConvTimeNet [27], InceptionTime [16], and

OmniScale 1-dimensional convolutional neural network (OS-CNN) [60]. A dual-

network-based model is composed of a local-feature extraction network and a

relation extraction network in parallel. The first network, usually convolutional

structure based, concentrates on local features. In contrast, the second one

focuses on relationships among the features extracted, e.g. Transformer-based

model [23], ALSTM-FCN [24], etc. Compared with feature extraction, rela-
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tion extraction aims at capturing those hidden connections among the features

extracted before. In other words, a relation extraction network is able to com-

pensate for the loss of the representations ignored by its corresponding feature

extraction network. Hence, it is vital to design an effective relation extraction

network for different applications [3, 15, 23]. Nowadays, attention and long

short-term memory (LSTM) networks are widely used for relation extraction in

time series classification. That is because the attention mechanism can relate

different positions of a sequence to derive the relationships at certain positions

[62] and LSTM is able to explore long- and short-period dependencies in data,

both of which help to enhance the relation extraction [8, 20, 24].

Nowadays, hybridizing attention and LSTM networks for relation extraction

has attracted increasingly more research attention in time series classification.

There are mainly two ways to combine them, namely cascading and embedding

models. A cascading model stacks attention and LSTM networks one after an-

other to realize some specific functions. But, neither attention networks nor

LSTM networks require significant changes in their structures, e.g. the atten-

tion LSTM (AttLSTM) models [24, 25]. However, the cascading models usually

suffer from two drawbacks. Firstly, almost all attention networks are based on

fully connected networks, which are not sensitive to the intricate features hid-

den in data. Secondly, the useful representations extracted before are easily lost

as they go through subsequent networks. An embedding model, on the other

hand, integrates attention and LSTM networks in a compact manner. With

fewer layers of neural networks cascaded, fewer features are lost during data

transmission. Thus, more useful features and relationships are made use of by

the model. Such a model is sensitive to regular and periodic data and hence able

to concentrate on the local and periodical variations of data, e.g., LSTM with

trend attention gate (LSTMTAG) [35]. If not designed properly, an embedding

model may not be aware of the global variations of those non-periodical data, es-

pecially when handling long univariate and multivariate datasets. Theoretically

speaking, compared with fully connected networks, embedding LSTM networks

into an attention structure helps to provide it with significantly more tempo-
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ral features for calculation, improving its sensitivity to the global variations of

non-periodical data. Unfortunately, such a structure has not been considered

in the time series data mining community.

To take advantage of the dual-network-based model and the hybridization of

attention and LSTM networks, we propose a robust temporal feature network

(RTFN) for feature extraction in the area of time series classification. RTFN

consists of a temporal feature network as its local-feature extraction network

and an LSTM-based attention network as its relation extraction network. Our

main contributions are summarized below.

- The temporal feature network is a CNN-based residual structure, respon-

sible for extracting sufficient local features. Multi-head CNN layers are

used to diversify multi-scale features, and self-attention is adopted to re-

late different positions of the features extracted before. Besides, we use

the leaky rectified linear unit as the activation function to reduce the loss

of features during their transmission.

- The LSTM-based attention network contains two identical layers. In each

layer, instead of fully connected networks, LSTM networks are used to

obtain the query, key, and value matrices for their corresponding atten-

tion structure. Unlike the existing structures that combine attention and

LSTM networks, the LSTM-based attention network can pay attention to

the global variations of non-periodical data, which helps to mine useful

relationships among the features already learned.

- We embed RTFN into a supervised structure and test it on 85 UCR2018

datasets and 30 UEA2018 datasets, where the RTFN-based algorithm out-

performs a number of existing supervised algorithms on 39 UCR2018 and

15 UEA2018 datasets, respectively. Also, we embed RTFN into a simple

unsupervised clustering as an encoder. Our structure wins 9 out of 36

UCR2018 datasets, compared with 13 unsupervised algorithms.

The rest of the paper is organized as follows. Section 2 reviews the state-of-

the-art deep learning algorithms for time series classification and various com-

binations of attention and LSTM networks. Section 3 introduces the overview
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of RTFN, its key components, the RTFN-based supervised structure, and the

RTFN-based unsupervised clustering. Experimental results are given in Section

4. Section 5 concludes the paper.

2. Related Work

This section first reviews the deep learning algorithms for time series classi-

fication and then discusses the existing means to hybridize attention and LSTM

networks.

2.1. Deep Learning Algorithms

Since the introduction of the fully convolutional network (FCN) [66], increas-

ingly more algorithms have been proposed to address time series classification

problems [15]. In general, these algorithms are either single-network-based or

dual-network-based. Single-network-based algorithms focus on significant fea-

tures of data. For example, a 34-layer convolutional neural network was con-

structed to handle the ECG classification problem [49]. Serrà et al. developed a

universal encoder based on CNN and convolutional attention to mine the tem-

poral representations from input data [55]. In [27], an off-the-shelf deep CNN

(ConvTimeNet) with four convolutional blocks was proposed as a transferable

network to adapt quickly for the requirements of datasets. Fawaz et al. used

a fast gradient sign method to fool a ResNet model, called adversarial attacks

for time series classification, where a set of synthetic samples was generated

[14]. Besides, InceptionTime [16], and OS-CNN [60] are often regarded as two

representative single-network-based models, achieving decent performance on

many univariate time series datasets. InceptionTime uses an inception struc-

ture to explore multi-scale representations from data, and OS-CNN adopts 1-

dimensional CNN to mine local features and the relationships among the data.

On the other hand, as an emerging trend for time series classification, dual-

network-based models have not yet received much research attention. A few

LSTM-FCN-based models were designed to cope with univariate and multivari-

ate time series classification problems[24, 25], where FCN and LSTM were used
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for feature and relation extraction, respectively. In [23], Huang et al. proposed a

residual attention net (RAN) consisting of a ResNet-based feature network and

a transformer-based relation network, obtaining promising performance on UCR

datasets. Meanwhile, the dual-network-based algorithms usually achieved bet-

ter classification performance than those single-network-based ones [23, 24, 25].

2.2. Hybridization of Attention and LSTM

Hybridizing attention and LSTM models is an emerging solution to tempo-

ral and spatial relation extraction. The existing works mainly include cascading

and embedding models. The former simply stacks attention and LSTM struc-

tures together. For instance, an attention-LSTM model was adopted to cope

with univariate and multivariate time series classification on UCR and UEA

datasets, respectively [24, 25]. An attention-LSTM model was integrated into

the convolution–deconvolution word embedding to merge context-specific and

task-specific information [58]. In [71], an attention-based time-incremental CNN

cascaded attention and LSTM networks for temporal and spatial information

fusion of ECG signals. Besides, the cascading models have been applied to video

segmentation [64], semantic relation extraction [18], visual question answer [75],

urban flow prediction [52], and so on. On the other hand, the embedding models

focus on the compact integration of attention and LSTM networks. For instance,

a TAG-embedded LSTM model was devised to explore the local variations of

quasi-periodic time series data [35]. Wang et al. [77] proposed a novel online

attentional recurrent neural network (ARNN) model for video tracking, where

inter- and intra-attention models were embedded into a bi-directional LSTM to

distinguish different background scenarios. In [9], Chen et al. put forward an

identity-aware single shot multi-boxes detector for object detection, where an

attention-embedded LSTM structure was used to locate positions of interest-

ing objects. In [59], an attention-based LSTM was introduced to capture the

representation hierarchy of data in power consumption forecasting.
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2.3. Analysis and Motivation

The dual-network-based models realize feature and relation extraction by

two separate networks in parallel. Such a model usually performs better than a

single-network-based model in supervised classification and unsupervised clus-

tering, according to references [23, 24, 25] and our observations in Section 4.4.

Nevertheless, designing a dual-network-based model is quite challenging since its

structure should meet datasets’ requirements, especially its relation extraction

network. The hybridization of attention and LSTM offers a promising means to

discover the relationships among the representations obtained from data. But,

the existing cascading and embedding models cannot well handle the global

variations of non-periodical time series data. The above is the motivation why

we design a dual-network-based algorithm for time series classification and why

we embed LSTM into an attention structure for relation extraction.

3. RTFN

This section first overviews the structure of RTFN and then describes two

important components, namely a convolutional neural block and an LSTM-

based attention layer. In the end, the RTFN-based supervised structure and

unsupervised clustering are introduced, respectively.

3.1. Overview

The structure of RTFN is shown in Fig. 1. It primarily consists of a temporal

feature network (TFN) and an LSTM-based attention network (LSTMaN). In

TFN, a convolutional neural block, namely ’Conv1D’, is seen as a basic building

block responsible for capturing the local features from the input. Two multi-

head convolutional neural layers, each consisting of four Conv1D blocks, are

used to discover higher-level multi-scale features from the lower-level features

extracted before. Besides, we place a self-attention layer [62] between the two

multi-head layers to relate the positions of the local features obtained by the

first multi-head layer, which enriches the input features of the second multi-

head layer. Detailed observations can be found in Section 4.3. LSTMaN is
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Figure 1: Structure of RTFN.

composed of two LSTM-based attention layers, aiming at digging out the in-

trinsic relationships among the features learned from the input, which helps to

compensate for the loss of the representations ignored by TFN. TFN and LST-

MaN are used as the local-feature and relation extraction networks, respectively.

Combining them provides RTFN with sufficient features and relationships. In

this paper, RTFN is embedded into a supervised structure in Section 3.4 and

an unsupervised clustering in Section 3.5, respectively.

3.2. Convolutional Neural Block (Conv1D)

A Conv1D block consists of a 1-dimensional CNN module, a batch normal-

ization module, and a leaky rectified linear unit (LeakReLU) activation function

[51], as defined in Eq. (1).

OConv1D = fLeakReLU (fBN (fconv(x))) (1)

where, OConv1D and x are the output and input of the Conv1D block, respec-

tively. fLeakReLU , fBN , and fconv denote the LeakReLU activation, batch

normalization, and CNN functions, respectively.
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The CNN module is used to explore the local features from the input [31],

as defined in Eq. (2).

fconv(x) = Wcnn ⊗ x+ bcnn (2)

where, Wcnn and bcnn are the weight and bias matrices of CNN, respectively.

⊗ is the convolutional computation operation.

Let xbn = {a1, a2, ..., aN} be the input of the batch normalization module,

where ai and N are the i-th instance and the batch size, respectively. Let

µ = 1
N

∑N
i=1 ai and δ =

√
1
N

∑N
i=1 (ai − µ)2 denote the mean and standard

deviation of xbn, respectively. fBN (xbn) is defined in Eq. (3).

fBN (a1, a2, ..., aN ) = (γ
a1 − µ
δ + ε

+ β, γ
a2 − µ
δ + ε

+ β, ..., γ
aN − µ
δ + ε

+ β) (3)

where, γ ∈ R+ and β ∈ R are the parameters to be learned during training and

ε>0 is an arbitrarily small number.

The batch normalization module eliminates the internal covariate shift and

thus ensures a faster training process. Also, it regularizes the proposed model

and enhances its local-feature extraction ability in supervised classification and

unsupervised clustering. Meanwhile, different from the rectified linear unit

(ReLU) that only considers positive numbers, LeakReLU takes care of both

positive and negative numbers, reducing the loss of features during the data

transmission process. Detailed observations are shown in Section 4.3. The

LeakReLU activation is defined in Eq. (4).

fLeakReLU (xactv) =

 αxactv, xactv<0

xactv, xactv ≥ 0

(4)

where, xactv is the input of the LeakReLU unit and α is a coefficient for negative

numbers. Following the widely recognized YOLOv3 [51], we set α = 0.1 in this

paper.

3.3. LSTM-based attention Layer

As aforementioned, LSTMaN is proposed for relation extraction, including

two LSTM-based attention layers. The two layers have the same structure, as
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shown in Fig. 2, where ’MatMul’ is a matrix multiplication operation. The first

layer is used to extract basic relationships from the input, while the second layer

is responsible for mining the intricate connections among them. By extending

the details of the relationships obtained before, the second layer helps to extract

more complex regularizations hidden in data than the first layer.

Figure 2: Structure of the LSTM-based attention layer.

Unlike the existing models that hybridize attention and LSTM networks (see

Section 2.2), an LSTM-based attention layer incorporates LSTM networks into

an attention structure. In this network, a temporal query and a set of key-

value pairs are mapped to an output, where Query, Key, and Value are matrices

obtained from the feature extraction by the LSTM networks. The output is

defined as a weighted sum of the values with sufficient representations. In this

paper, each value is obtained by a compatibility function that mines the hidden

relationships between a query and its corresponding key that already carry

basic features. The query, key, and value matrices output by the three LSTM

networks, Iq, Ik, Iv, are defined in Eqs. (5), (6) and (7), respectively.

Iq = fLSTM−Q(x) (5)

Ik = fLSTM−K(x) (6)

Iv = fLSTM−V (x) (7)

where, x is the input of the layer and fLSTM−Q, fLSTM−K and fLSTM−V are the

LSTM functions for obtaining the query, key, and value matrices, respectively.

Note that each of the three LSTM networks involves the same computational

procedure at time step t as a traditional LSTM network [22]. The following
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describes the computation operations in an LSTM network. Let xt and ht be the

input vector and the hidden state vector of the LSTM network at t, respectively.

Let gut , gft , got , and gct are the activation vectors of the input, forget, output, and

cell state gates at t, respectively. Denote the elementwise multiplication by �.

Let σ and tanh denote the logistic sigmoid and hyperbolic tangent functions,

respectively. Let Wux, Wfx, Wox, and Wcx be the weight matrices of xt at gates

gut , gft , got , and gct , respectively. Let Wuh, Wfh, Woh, and Wch denote the weight

matrices of ht at gates gut , gft , got , and gct , respectively. Let bu, bf , bo, and bc be

the bias matrices of ht at gates gut , gft , got , and gct , respectively. gut , gft , got , gct ,

and ht are defined in Eqs. (8)-(12), respectively.

gut = σ(Wuxxt +Wuhht−1 + bu) (8)

gft = σ(Wfxxt +Wfhht−1 + bf ) (9)

got = σ(Woxxt +Wohht−1 + bo) (10)

gct = gft � gct−1 + gut � tanh(Wcxxt +Wchht−1 + bc) (11)

ht = got � tanh(gct ) (12)

After x goes through the LSTM networks, Iq, Ik, and Iv carry sufficient

long- and short-term features. They are then fed into the attention structure,

and its output matrix, OAtt, is defined in Eq. (13).

OAtt = fSoftMax(Iq · ITk ) · Iv (13)

where, fSoftMax is a commonly used function to compute the possibilities of a

certain matrix, and ITk is the transpose of Ik.

Note that we concatenate the local features obtained by TFN and the global

relationships obtained by LSTMaN in RTFN. Let OTFN and OLSTMaN denote

the output matrices of TFN and LSTMaN, respectively. The output of RTFN,

ORTFN , is defined in Eq. (14).

ORTFN = fconcat([OTFN , OLSTMaN ]) (14)

where, fconcat is the CONCAT function.
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Figure 3: RTFN-based supervised structure.

3.4. RTFN-based Supervised Structure

The RTFN-based supervised structure is shown in Fig. 3, where a dropout

layer and a fully-connected layer are cascaded to the output of RTFN. To be

specific, we introduce the dropout layer to avoid overfitting during the training

process. The fully-connected layer performs as the classifier. That we simply

use the dropout and fully-connected layers is because the features extracted

by RTFN are sufficiently good, and thus a complicated classifier network is

not necessary. Like other commonly used supervised algorithms [3, 15, 23, 25],

we use the cross-entropy function to compute the average difference between

the ground truth labels and their corresponding prediction results, Lsuper, as

written in Eq. (15).

Lsuper = − 1

n

n∑
i=1

(Ŷ traini log(pi)) (15)

where, n is the number of samples, and Ŷ traini and pi, i = 1, 2, ..., n, are the

ground truth label of the i-th sample and its corresponding prediction output,

respectively.

3.5. RTFN-based Unsupervised Clustering

The RTFN-based unsupervised clustering is based on a widely adopted auto-

encoder unsupervised structure, as shown in Fig. 4. It is primarily composed
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Figure 4: RTFN-based unsupervised clustering.

of an RTFN-based encoder, a decoder, and a K-means algorithm [21]. RTFN

is responsible for obtaining as many useful representations from the input as

possible. The decoder is made up of four fully-connected layers, helping to

reconstruct the features captured by RTFN. Besides, the K-means algorithm

acts as the unsupervised classifier.

Different from taking the k-means loss into account [19, 36, 39], the RTFN-

based unsupervised clustering only depends on the reconstruction loss (i.e., the

mean square error), Lrec, as defined in Eq. (16).

Lrec =
1

n

n∑
i=1

(X̆train
i −Xrec

i )2 (16)

where X̆train
i and Xrec

i , i = 1, 2, ..., n, are the input and the decoder output of

the i-th sample, respectively.

No matter the supervised or unsupervised structure, our goal is to minimize

its loss function, L, by finding the optimal parameters, θ∗, where L(θ∗) is in-

finitely close to 0. This paper uses the gradient-descent method to approximate

θ∗ for our proposed structure. Let θt and lrate denote the parameters and the

learning rate at the t-th training epoch, respectively. θt is updated by Eq. (17).

θt = θt−1 − lrate∇θt−1
L(θt−1) (17)

where, ∇θt−1
represents the gradient at the (t− 1)-th training epoch.
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4. Experiments and Analysis

This section first introduces the experimental setup and performance metrics

and then focus on the ablation study. Finally, the RTFN-based supervised

structure and unsupervised clustering are evaluated, respectively.

4.1. Experimental Setup

Extensive experiments in supervised classification and unsupervised cluster-

ing have been conducted. This section introduces the standard datasets first

and the implementation details later.

Supervised Classification Datasets. A univariate time series refers to

a series of time-ordered data points associated with a time-dependent variable.

Such a sequence contains local and global patterns of data. Local patterns show

significant changes in the data, and global patterns reflect the overall trend of

data [10]. A multivariate time series consists of multiple concurrent univariate

time series, each associated with a time-dependent variable. Like univariate

time series, a multivariate time series also contain local and global pattern

information. Besides, as each variable has some dependency on other variables,

a multivariate time series contains relationship information between variables

[2]. In the supervised area, time series data are labeled. A supervised algorithm

learns the characteristics of the input data and maps the data to labels. For

a univariate time series, a supervised algorithm needs to mine the local and

global patterns from the data, such as EE [33], COTE [15], LPS [5], LCE [13],

ConvTime [27], ResNet-Transformer models [23], etc. For a multivariate time

series, a supervised algorithm focuses on not only the local and global patterns

of each variable but also the relationships between variables, e.g., HUML [42],

SMTS [4], mv-ARF [61], WEASEL + MUSE [54], TapNet [76], FCN-MLSTM

[25], and so on.

We evaluate the performance of the RTFN-based supervised structure by a

number of univariate and multivariate time series datasets. For the univariate

time series, UCR2018 [10] is one of the authoritative data archives, which con-

tains 128 datasets with different lengths in a variety of application areas. We
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Table 1: Details of 85 univariate time series datasets. Those marked with ’YES’ are also used

for unsupervised clustering experiments.
Dataset TrainSize TestSize Classes SeriesLength Type Unsupervised

Adiac 390 391 37 176 Image

ArrowHead 36 175 3 251 Image YES

Beef 30 30 5 470 Spectro YES

BeetleFly 20 20 2 512 Image YES

BirdChicken 20 20 2 512 Image YES

Car 60 60 4 577 Sensor YES

CBF 30 900 3 128 Simulated

ChlorineConcentration 467 3840 3 166 Sensor YES

CinCECGTorso 40 1380 4 1639 Sensor

Coffee 28 28 2 286 Spectro YES

CricketX 390 390 12 300 Motion

CricketY 390 390 12 300 Motion

CricketZ 390 390 12 300 Motion

DiatomSizeReduction 16 306 4 345 Image YES

DistalPhalanxOutlineAgeGroup 400 139 3 80 Image YES

DistalPhalanxOutlineCorrect 600 276 2 80 Image YES

Earthquakes 322 139 2 512 Sensor

ECG200 100 100 2 96 ECG YES

ECG5000 500 4500 5 140 ECG

ECGFiveDays 23 861 2 136 ECG YES

FaceFour 24 88 4 350 Image

FacesUCR 200 2050 14 131 Image

FordA 3601 1320 2 500 Sensor

FordB 3636 810 2 500 Sensor

GunPoint 50 150 2 150 Motion YES

Ham 109 105 2 431 Spectro YES

HandOutlines 1000 370 2 2709 Image

Haptics 155 308 5 1092 Motion

Herring 64 64 2 512 Image YES

InlineSkate 100 550 7 1882 Motion

InsectWingbeatSound 220 1980 11 256 Sensor

ItalyPowerDemand 67 1029 2 24 Sensor

Lightning2 60 61 2 637 Sensor YES

Lightning7 70 73 7 319 Sensor

Mallat 55 2345 8 1024 Simulated

Meat 60 60 3 448 Spectro YES

MedicalImages 381 760 10 99 Image

MiddlePhalanxOutlineAgeGroup 400 154 3 80 Image YES

MiddlePhalanxOutlineCorrect 600 291 2 80 Image YES

MiddlePhalanxTW 399 154 6 80 Image YES

MoteStrain 20 1252 2 84 Sensor YES

OliveOil 30 30 4 570 Spectro

OSULeaf 200 242 6 427 Image YES

Plane 105 105 7 144 Sensor YES

ProximalPhalanxOutlineAgeGroup 400 205 3 80 Image YES

ProximalPhalanxOutlineCorrect 600 291 2 80 Image

ProximalPhalanxTW 400 205 6 80 Image YES

ShapeletSim 20 180 2 500 Simulated

ShapesAll 600 600 60 512 Image

SonyAIBORobotSurface1 20 601 2 70 Sensor YES

SonyAIBORobotSurface2 27 953 2 65 Sensor YES

Strawberry 613 370 2 235 Spectro

SwedishLeaf 500 625 15 128 Image YES

Symbols 25 995 6 398 Image YES

SyntheticControl 300 300 6 60 Simulated

ToeSegmentation1 40 228 2 277 Motion YES

ToeSegmentation2 36 130 2 343 Motion YES

Trace 100 100 4 275 Sensor

TwoPatterns 1000 4000 4 128 Simulated YES

TwoLeadECG 23 1139 2 82 ECG YES

UWaveGestureLibraryAll 896 3582 8 945 Motion

UWaveGestureLibraryX 896 3582 8 315 Motion

UWaveGestureLibraryY 896 3582 8 315 Motion

UWaveGestureLibraryZ 896 3582 8 315 Motion

Wafer 1000 6164 2 152 Sensor YES

Wine 57 54 2 234 Spectro YES

WordSynonyms 267 638 25 270 Image YES

ACSF1 100 100 10 1460 Device

BME 30 150 3 128 Simulated

Chinatown 20 345 2 24 Traffic

Crop 7200 16800 24 46 Image

DodgerLoopDay 78 80 7 288 Sensor

DodgerLoopGame 20 138 2 288 Sensor

DodgerLoopWeekend 20 138 2 288 Sensor

GunPointAgeSpan 135 316 2 150 Motion

GunPointMaleVersusFemale 135 316 2 150 Motion

GunPointOldVersusYoung 136 315 2 150 Motion

InsectEPGRegularTrain 62 249 3 601 EPG

InsectEPGSmallTrain 17 249 3 601 EPG

MelbournePedestrian 1194 2439 10 24 Traffic

PowerCons 180 180 2 144 Power

Rock 20 50 4 2844 Spectrum

SemgHandGenderCh2 300 600 2 1500 Spectrum

SemgHandMovementCh2 450 450 6 1500 Spectrum

SemgHandSubjectCh2 450 450 5 1500 Spectrum

SmoothSubspace 150 150 3 15 Simulated

UMD 36 144 3 150 Simulated
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Table 2: Details of 30 multivariate time series datasets. Abbreviations: AS - Audio Spectra,

ECG - Electrocardiogram, EEG - Electroencephalogram, HAR - Human Activity Recognition,

MEG - Magnetoencephalography.

Index Dataset TrainSize TestSize NumDimensions SeriesLength Classes Type

AWR ArticularWordREcognition 275 300 9 144 25 Motion

AF AtrialFibrillation 15 15 2 640 3 ECG

BM BasicMotions 40 40 6 100 4 HAR

CT CharacterTrajectories 1422 1436 3 182 20 Motion

CR Critcket 108 72 6 1197 12 HAR

DDG DuckDuckGeese 50 50 1345 270 5 AS

EW EigenWorm 128 131 6 17894 4 Motion

EP Epliyepsy 137 138 3 206 4 HAR

EC EthanolConcentration 261 263 3 1751 4 HAR

ER ERing 30 270 4 65 6 Other

FD FaceDetection 5890 3524 144 62 2 EEG/MEG

FM FingerMovements 316 100 28 50 2 EEG/MEG

HMD HandMovementDirection 160 74 10 400 4 EEG/MEG

HW Handwriting 150 850 3 152 26 HAR

HB Heartbeat 204 205 61 405 2 AS

IW InsectionWingbeat 30000 20000 200 30 10 AS

JV JapaneseVowels 270 370 12 29 9 AS

LIB Libras 180 180 2 45 15 HAR

LSST LSST 2459 2466 6 36 14 Other

MI MotorImagery 278 100 64 3000 2 EEG/MEG

NATO NATOPS 180 180 24 51 6 HAR

PD PenDigits 7494 3498 2 8 10 EEG/MEG

PEMS PEMSF 267 173 963 144 7 EEG/MEG

PS Phoneme 3315 3353 11 217 39 AS

RS RacketSports 151 152 6 30 4 HAR

SRS1 SelfRegulationSCP1 268 293 6 896 2 EEG/MEG

SRS2 SelfRegulationSCP2 200 180 7 1152 2 EEG/MEG

SAD SpokenArbicDigits 6599 2199 13 93 10 AS

SWJ StandWalkJump 12 15 4 2500 3 ECG

UW UWaveGuestureLibrary 120 320 3 315 8 HAR

select 85 standard datasets from the UCR2018 archive, consisting of 65 ’short-

medium’ and 20 ’long’ time series datasets. In this paper, a ’long’ dataset is

a dataset with a length of over 500. The details of these datasets are shown

in Table 1. As for the multivariate time series, UEA2018 [2] is a commonly

used data archive, including 30 datasets in seven application areas, i.e., audio

spectra, electrocardiogram, electroencephalogram, human activity recognition,

motion, eagnetoencephalography and other. Their details are listed in Table 2.

Unsupervised Clustering Datasets. In the unsupervised area, time se-

ries data are not labeled. An unsupervised algorithm discovers the previously

undetected patterns in a dataset. For a univariate time series, an unsupervised

algorithm aims to learn the underlying structure or distribution in the data,
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such as K-means [21], UDFS [70], K-shape [41], DTCR [36], IDEC [19], etc.

For a multivariate time series, an unsupervised algorithm learns not only the

underlying structure or distribution of each variable but also the relationships

between variables, e.g., USAD [1].

Following the protocol used in [19, 36, 39], we verify the performance of the

RTFN-based unsupervised clustering by 36 standard datasets selected from the

UCR2018 archive. They are marked with ’YES’ in column ’Unsupervised’ in

Table 1.

Implementation Details. Firstly, we introduce the parameter settings for

TFN. As mentioned in Section 3.2, each Conv1D block contains a 1-dimensional

CNN module. In the Conv1D block directly connected to the residual junction,

the 1-dimensional CNN module also has 128 channels, each with a kernel size

of 1. In each multi-head Conv1D layers, each of the four 1-dimensional CNN

modules has 32 channels. Motivated by InceptionTime [16], we set the kernel

sizes of the four CNN modules to 5, 8, 11, and 17, respectively. Following the

previous works in [8, 20, 23, 51], we set the decay value of the batch normal-

ization module to 0.9, which helps to accelerate the training by reducing the

internal covariate shift of time series data.

In the two Conv1D blocks next to the input of RTFN, each 1-dimensional

CNN module has 128 channels, each with a kernel size of 11. The following

explains why 11 is chosen. As references [16, 23, 24, 27, 60, 66] suggest, we

choose 3, 5, 7, 9, 11, and 13 as the candidate kernel sizes for the two Con-

vlD blocks above. We select eight univariate and four multivariate datasets

from the UCR2018 and UEA2018 archives, respectively. The eight univariate

datasets contain four ‘short-medium’ and four ‘long’ time series datasets. Table

3 shows the top-1 accuracy results with six different kernel sizes used in the two

Conv1D blocks. A larger kernel size usually leads to higher accuracies because

such a kernel has a broader receptive field and thus captures richer local features.

Clearly, kernel sizes 11 and 13 result in better performance than 3, 5, 7, and

9. Kernel sizes 11 and 13 lead to similar accuracy results on each dataset. On

the other hand, a larger kernel size means the corresponding convolutional op-
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erations consume more computing resources. To compromise between accuracy

and complexity, we set the kernel size of the two Conv1D blocks to 11.

Table 3: Results of the top-1 accuracy vs. the kernel size.
Type Dataset Kernel size = 3 Kernel size = 5 Kernel size = 7 Kernel size = 9 Kernel size = 11 Kernel size = 13

Univariate Time Series

ECG200 0.9 0.91 0.91 0.92 0.92 0.93

Lighting7 0.863014 0.876712 0.890411 0.90411 0.90411 0.90411

Ham 0.761905 0.761905 0.780952 0.780952 0.809524 0.809524

Wine 0.87037 0.87037 0.888889 0.888889 0.907407 0.907407

SemgHandGenderCh2 0.876667 0.96 0.91 0.913333 0.923333 0.923333

SemgHandMovementCh2 0.6 0.616667 0.66667 0.716667 0.757778 0.757778

SemgHandSubjectCh2 0.788889 0.816667 0.833333 0.85 0.897778 0.897778

Rock 0.84 0.84 0.84 0.86 0.88 0.88

MeanACC 0.812606 0.831540 0.840032 0.854244 0.874991 0.876241

Multivariate Time Series

AF 0.467 0.467 0.533 0.533 0.533 0.533

FD 0.629 0.631 0.649 0.656 0.67 0.67

HMD 0.649 0.649 0.662 0.662 0.662 0.662

HB 0.727 0.748 0.751 0.751 0.785 0.785

MeanACC 0.618 0.624 0.649 0.651 0.663 0.663

Secondly, we introduce the parameter settings for LSTMaN. As described

in Section 3.3, there are two LSTM-based attention layers. In each layer, as

references [24, 25] suggest, we set the number of hidden units in each LSTM

network to 128.

Last but not least, we dynamically adjust the learning rate during the train-

ing process. Let the total number of training epochs and the size of each decay

period denoted by Ntot and Ndec, respectively. Let lrate(j), j = 1, 2, ..., J , de-

note the learning rate of the j − th decay period, where J = dNtot/Ndece − 1.

Its definition is written in Eq. (18).

lrate(j) = (1− drate)× lrate(j − 1) (18)

where drate and J are the decay rate of lrate and the total number of the decay

periods, respectively. In this paper, we set lrate(0) = 0.01 and drate = 0.1.

Once lrate is smaller than 0.0001, we fix it to 0.0001. The RMSPropOptimizer

of Tensorflow 1 is used to tune the parameters of our proposed RTFN structures

for supervised classification and unsupervised clustering. According to [53], we

set the RMSPropOptimizer’s momentum term to 0.9 to avoid falling into local

minima during training. Besides, we use the dropout layer and L2 regularization

1https://tensorflow.google.cn/
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to avoid overfitting during the training process. As references [8, 49, 52, 75, 77]

suggest, the dropout layer’s ratio value is set to 0.5.

All experiments are run on a computer with Ubuntu 18.04 OS, an Nvidia

GTX 1070Ti GPU with 8GB, an Nvidia GTX 1080Ti GPU with 11GB, and an

AMD R5 1400 CPU with 16G RAM.

4.2. Performance Metrics

To evaluate the performance of various algorithms in terms of supervised

classification and unsupervised clustering, we adopt a number of well-known

performance metrics explained below.

Supervised Classification. Three metrics are used to rank different su-

pervised algorithms in terms of the top-1 accuracy, including ‘win’/‘tie’/‘lose’,

mean accuracy (MeanACC), and AVG rank. To be specific, for an arbitrary

algorithm, its ‘win’, ‘tie’, and ‘lose’ values indicate on how many datasets this

algorithm performs better than, equivalent to, and worse than the others, re-

spectively. For each algorithm, the ‘best’ value is the summation of its cor-

responding ‘win’ and ‘tie’ values, while the ‘total’ value is the total number

of datasets tested. In addition, the AVG rank score measures the average dif-

ference between the accuracy values of a model and the best accuracy values

among all models [15, 13, 38, 23].

Unsupervised Clustering. Note that the top-1 accuracy is not applica-

ble to unsupervised clustering. Instead, we use a widely adopted performance

indicator, the rand index (RI) [50], RI, as defined in Eq. (19).

RI =
PTP +NTP

s(s− 1)/2
(19)

where PTP and NTP are the numbers of the positive and negative time series

pairs in the clustering, respectively, and s is the dataset size. Besides, we denote

the average RI value of a certain algorithm by ‘AVG RI’.

4.3. Ablation Study

As shown in Fig. 1, RTFN mainly consists of a temporal feature network

for local-feature extraction, i.e., TFN, and an LSTM-based attention network
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for relation extraction, i.e., LSTMaN.

Table 4: The top-1 accuracy results of different supervised algorithms on 12 selected datasets.
Type Dataset SeriesLength TFN TFN w ReLU TFN w/o SelAtt TFN+1LSTMaL TFN+2LSTMaL TFN+3LSTMaL TFN+AttLSTM TFN+LSTMTAG

Univariate Time

Series

ECG200 96 0.84 0.82 0.8 0.9 0.92 0.92 0.91 0.89

Lighting7 319 0.821918 0.808219 0.808219 0.849315 0.90411 0.90411 0.849315 0.849315

Ham 431 0.714286 0.619048 0.619048 0.761905 0.809524 0.809524 0.780952 0.761905

Wine 234 0.833333 0.611111 0.555556 0.888889 0.907407 0.907407 0.888889 0.87037

SemgHandGenderCh2 1500 0.796667 0.783333 0.651667 0.866667 0.923333 0.923333 0.91 0.84

SemgHandMovementCh2 1500 0.595555 0.56 0.513333 0.611111 0.757778 0.757778 0.56 0.56

SemgHandSubjectCh2 1500 0.793333 0.788889 0.74 0.8 0.897778 0.897778 0.873333 0.74

Rock 2844 0.7 0.64 0.62 0.82 0.88 0.88 0.86 0.68

MeanACC 0.761887 0.703825 0.663478 0.812236 0.874991 0.874991 0.829061 0.773949

Multivariate Time

Series

AF 640 0.4 0.333 0.267 0.467 0.533 0.533 0.467 0.2

FD 62 0.555 0.545 0.519 0.614 0.67 0.67 0.631 0.555

HMD 400 0.544 0.481 0.5 0.649 0.662 0.662 0.649 0.649

HB 405 0.547 0.535 0.515 0.761 0.785 0.785 0.727 0.547

MeanACC 0.512 0.474 0.450 0.623 0.663 0.663 0.619 0.488

Table 5: The RI results of different unsupervised algorithms on four selected datasets.

Dataset TFN TFN w ReLU TFN w/o SelAtt TFN+1LSTMaL TFN+2LSTMaL TFN+3LSTMaL TFN+AttLSTM TFN+LSTMTAG

Beef 0.6267 0.5945 0.5402 0.7034 0.7655 0.7655 0.7057 0.7034

Car 0.6418 0.6354 0.626 0.6708 0.7169 0.7028 0.6898 0.6418

ECG200 0.6533 0.6315 0.6018 0.7018 0.7285 0.7285 0.7018 0.7018

Lighting2 0.5373 0.5119 0.4966 0.5729 0.6230 0.6230 0.5770 0.5770

AVG RI 0.6148 0.5933 0.5662 0.6622 0.7085 0.7050 0.6686 0.6560

4.3.1. Temporal Feature Network

TFN is featured with LeakReLU -based activation and self-attention. To

study the effectiveness of the two components, we compare three TFN variants

listed below.

- TFN: the proposed TFN, where LeakReLU and self-attention are used.

- TFN w ReLU : TFN with ReLU instead of LeakReLU .

- TFN w/o SelAtt: TFN without the self-attention layer.

For the performance comparison of supervised classification, we select 12

datasets from the UCR2018 and UEA2018 archives, including eight univariate

and four multivariate datasets. These datasets are also used in Table 3. For the

performance comparison of unsupervised clustering, we select four univariate

datasets from the UCR2018 archive.

The top-1 accuracy and RI results obtained by different supervised and un-

supervised algorithms are shown in Tables 4-5, respectively. It is easily observed
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that TFN outperforms TFN w ReLU on each dataset for supervised classifica-

tion or unsupervised clustering. For example, the top-1 accuracy values of TFN

and TFN w ReLU are 0.833333 and 0.611111, respectively. Unlike ReLU that

focuses on positive numbers only, LeakReLU makes use of both positive and

negative numbers, helping to avoid the loss of the extracted features during

their transformation. Thus, LeakReLU can mine more local features from the

input. That is why LeakReLU improves both the supervised and unsupervised

performance of TFN, compared with ReLU . We then compare TFN and TFN

w/o SelAtt in terms of the supervised classification and unsupervised cluster-

ing. TFN overweighs TFN w/o SelAtt on all the datasets. That is because

the SelAtt layer can relate different positions of time series data, enriching the

extracted features. So, embedding the SelAtt layer in TFN helps to enhance

its supervised and unsupervised performance. Therefore, LeakReLU and self-

attention are necessary for TFN.

4.3.2. The LSTM-based Attention Network

In RTFN, LSTMaN consists of two LSTM-based attention layers. To inves-

tigate the effectiveness of LSTMaN, we compare five RTFN structures with the

following relation-extraction components.

- 1LSTMaL: one LSTM-based attention layer.

- 2LSTMaL: two LSTM-based attention layers, i.e. the proposed LSTMaN.

- 3LSTMaL: three LSTM-based attention layers.

- AttLSTM: a cascading attention-LSTM model, where attention and LSTM

layers simply pile up [25].

- LSTMTAG: an embedding attention-LSTM model, where a trend atten-

tion gate is embedded into an LSTM structure [35].

To make a fair comparison, TFN is used in each RTFN structure as the

local-feature extraction network. In other words, no matter for supervised clas-

sification or unsupervised clustering, the corresponding RTFN structures are

exactly the same, except for their relation-extraction components.

Firstly, we study the impact of the number of LSTM-based attention layers
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on the performance of RTFN. Between TFN+2LSTMaL and TFN+1LSTMaL,

the former always performs better than the latter. In the 2LSTMaL structure,

the second layer unfolds the details of the relationships among the features

captured by the first layer and hence can discover those complicated represen-

tations ignored before. That is why 2LSTMaL mines more intricate relation-

ships hidden in the data than 1LSTMaL. If comparing TFN+2LSTMaL and

TFN+3LSTMaL, one can see that the two achieve equivalent performance in

almost all cases except dataset ’Car’, as illustrated in Tables 4-5. The following

explains why. In the 3LSTMaL structure, the third layer is supposed to further

extend the details of the relationships among those features extracted by the first

and second layers. However, all intrinsic details have been explicitly unveiled

in the second layer. In this case, the third layer only acts as an information

transmission layer. This layer not only may lead to loss of features during their

transmission but also consumes additional computing resources, especially on

complicated datasets. 2LSTMaL aims at striking a balance between accuracy

and model complexity. To further support this, we show the model complexity

comparison of different supervised algorithms on four long time series datasets

in Table 6. It is easily seen that TFN+2LSTMaL has a lower model complexity

than TFN+3LSTMaL, e.g., their CPU time on dataset ’SemgHandGendeCh2’

is 32.421894s and 35.440211s, respectively.

Table 6: Computational complexity comparison of TFN+1LSTMaL, TFN+2LSTMaL and

TFN+3LSTMaL in terms of the supervised classification. Abbreviations: M – Measured in

Millions, s – Measured in Seconds.
Algorithm Dataset Parameters (M) CPU only (s) With GPU 1080Ti (s) With GPU 1070Ti (s)

TFN+1LSTMaL

SemgHandGendeCh2

2.546755 30.277891 1.506916 1.603434

TFN+2LSTMaL 2.851651 32.421894 2.127678 2.410963

TFN+3LSTMaL 3.262915 35.440211 2.893432 3.129045

TFN+1LSTMaL

SemgHandMovementCh2

3.315015 21.771511 1.30519 1.537834

TFN+2LSTMaL 3.620167 24.561916 1.865625 2.028537

TFN+3LSTMaL 4.031431 26.660317 2.345234 2.834242

TFN+1LSTMaL

SemgHandSubjectCh2

3.12295 20.742758 1.303414 1.529351

TFN+2LSTMaL 3.428038 24.695192 1.864818 2.040713

TFN+3LSTMaL 3.839302 26.723078 1.934696 2.783453

TFN+1LSTMaL

Rock

4.747221 6.989958 1.293770 1.352977

TFN+2LSTMaL 5.042245 8.887336 1.360002 1.370617

TFN+3LSTMaL 5.453509 10.771745 1.636234 2.103425

Secondly, we investigate the effectiveness of the proposed LSTMaN by com-
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paring it with two well-recognized models based on attention and LSTM. It can

be seen that TFN+2LSTMaL beats TFN+AttLSTM and TFN+LSTMTAG on

each dataset for supervised classification or unsupervised clustering. The follow-

ing explains the reasons. On the one hand, AttLSTM lacks in-depth attention

to the internal connections among the already extracted representations during

their transmission, and thus insufficient features are mined from data. Mean-

while, LSTMTAG is able to concentrate on the local variations of periodical

data due to the LSTM structure with TAG embedded. However, it is not sen-

sitive to the global variations of non-periodical data, which is not beneficial to

discover complex connections hidden in the data, especially when facing long

univariate datasets and multivariate ones. For instance, for TFN+LSTMTAG,

its top-1 accuracy values on datasets ’Rock’ and ’AF’ are only 0.68 and 0.2,

respectively. On the other hand, compared with TFN, TFN+2LSTMaL always

obtains a higher accuracy value on each dataset, no matter in the aspect of su-

pervised classification or unsupervised clustering. It clearly demonstrates that

LSTMaN plays a non-trivial role in performance improvement. That is because

2LSTMaL extracts those intricate representations that may be ignored by TFN.

In other words, LSTMaN and TFN complement each other in RTFN.

4.4. Evaluation of the RTFN-based Supervised Structure

To evaluate the performance of the RTFN-based supervised structure, we

compare it with a number of existing supervised algorithms against ‘win’/‘lose’/‘tie’,

MeanACC, and AVG rank on 85 univariate and 30 multivariate datasets (see

Tables 1-2), respectively.

4.4.1. Performance Comparison on Univariate Time Series

Table 7 shows the top-1 accuracy results obtained by different supervised

algorithms on the 85 selected datasets in the UCR2018 archive. For each dataset,

the existing SOTA represents the best algorithm on that dataset [23], including

ConvTimeNet[27], the elastic ensemble (EE) [33], COTE [15], BOSS [29] and

so on; similarly, for each dataset, the Best:lstm-fcn is the best-performance
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Table 7: Results of different supervised algorithms on 85 selected datasets.

Dataset
Existing

SOTA

USRL-

FordA[17]

Inception-

Time[16]

Combined

(1NN)[17]

OS-

CNN[60]

Best:

fcn-lstm[24]

Vanilla:RN-

Transformer

[23, 62]

ResNet-

Transformer1

[23]

ResNet-

Transformer2

[23]

ResNet-

Transformer3

[23]

Ours

Adiac 0.857 0.76 0.841432 0.645 0.838875 0.869565 0.84399 0.849105 0.849105 0.849105 0.792839

ArrowHead 0.88 0.817 0.845714 0.817 0.84 0.925714 0.891429 0.891429 0.891429 0.891429 0.851429

Beef 0.9 0.667 0.7 0.6 0.83333 0.9 0.866667 0.866667 0.866667 0.866667 0.9

BeetleFly 0.95 0.8 0.8 0.8 0.8 1 1 0.95 0.95 1 1

BirdChicken 0.95 0.9 0.95 0.75 0.9 0.95 1 0.9 1 0.7 1

Car 0.933 0.85 0.883333 0.8 0.933333 0.966667 0.95 0.883333 0.866667 0.3 0.883333

CBF 1 0.988 0.998889 0.978 0.998889 0.996667 1 0.997778 1 1 1

ChlorineConcentration 0.872 0.688 0.876563 0.588 0.84974 0.816146 0.849479 0.863281 0.409375 0.861719 0.894271

CinCECGTorso 0.9949 0.638 0.853623 0.693 0.830435 0.904348 0.871739 0.656522 0.89058 0.31087 0.810145

Coffee 1 1 1 1 1 1 1 1 1 1 1

CricketX 0.821 0.682 0.853846 0.741 0.846154 0.792308 0.838462 0.8 0.810256 0.8 0.771795

CricketY 0.8256 0.667 0.851282 0.664 0.869231 0.802564 0.838462 0.805128 0.825641 0.808766 0.789744

CricketZ 0.8154 0.656 0.861538 0.723 0.861538 0.807692 0.820513 0.805128 0.128205 0.1 0.787179

DiatomSizeReduction 0.967 0.974 0.934641 0.967 0.980392 0.970588 0.993464 0.996732 0.379085 0.996732 0.980392

DistalPhalanxOutlineAgeGroup 0.835 0.727 0.733813 0.669 0.755396 0.791367 0.81295 0.776978 0.467626 0.776978 0.719425

DistalPhalanxOutlineCorrect 0.82 0.764 0.782608 0.683 0.771739 0.791367 0.822464 0.822464 0.822464 0.793478 0.771739

Earthquakes 0.801 0.748 0.741007 0.64 0.683453 0.81295 0.755396 0.755396 0.76259 0.755396 0.776978

ECG200 0.92 0.83 0.93 0.85 0.91 0.91 0.94 0.95 0.94 0.93 0.92

ECG5000 0.9482 0.94 0.940889 0.925 0.940222 0.948222 0.941556 0.943556 0.944222 0.940444 0.944444

ECGFiveDays 1 1 1 0.999 1 0.987224 1 1 1 1 1

FaceFour 1 0.83 0.954545 0.864 0.943182 0.943182 0.954545 0.965909 0.977273 0.215909 0.924045

FacesUCR 0.958 0.835 0.97122 0.86 0.96439 0.941463 0.957561 0.947805 0.926829 0.95122 0.95122

FordA 0.9727 0.927 0.961364 0.863 0.958333 0.976515 0.948485 0.946212 0.517424 0.940909 0.939394

FordB 0.9173 0.798 0.861782 0.748 0.813580 0.792593 0.838272 0.830864 0.838272 0.823457 0.823547

GunPoint 1 0.987 1 0.833 1 1 1 1 1 1 1

Ham 0.781 0.533 0.714286 0.533 0.714286 0.809524 0.761905 0.780952 0.619048 0.514286 0.809524

HandOutlines 0.9487 0.919 0.954054 0.832 0.956757 0.954054 0.937838 0.948649 0.835135 0.945946 0.894595

Haptics 0.551 0.474 0.548701 0.354 0.512987 0.558442 0.564935 0.545455 0.600649 0.194805 0.600649

Herring 0.703 0.578 0.671875 0.563 0.609375 0.75 0.703125 0.734375 0.65625 0.703125 0.75

InsectWingbeatSound 0.6525 0.599 0.638889 0.506 0.637374 0.668687 0.522222 0.642424 0.53859 0.536364 0.651515

ItalyPowerDemand 0.97 0.929 0.965015 0.942 0.947522 0.963071 0.965015 0.969874 0.962099 0.971817 0.964043

Lightning2 0.8853 0.787 0.770492 0.885 0.819672 0.819672 0.852459 0.852459 0.754098 0.868852 0.836066

Lightning7 0.863 0.74 0.835616 0.795 0.808219 0.863014 0.821918 0.849315 0.383562 0.835616 0.90411

Mallat 0.98 0.916 0.955224 0.994 0.963753 0.98081 0.977399 0.975267 0.934328 0.979104 0.938593

Meat 1 0.867 0.933333 0.9 0.983333 0.883333 1 1 1 1 1

MedicalImages 0.792 0.725 0.794737 0.693 0.768421 0.798684 0.780263 0.765789 0.759211 0.789474 0.793421

MiddlePhalanxOutlineAgeGroup 0.8144 0.623 0.551948 0.506 0.538961 0.668831 0.655844 0.662338 0.623377 0.662338 0.662388

MiddlePhalanxOutlineCorrect 0.8076 0.839 0.817869 0.722 0.807560 0.841924 0.848797 0.848797 0.848797 0.835052 0.744755

MiddlePhalanxTW 0.612 0.555 0.512987 0.513 0.564935 0.603896 0.564935 0.577922 0.551948 0.623377 0.62377

MoteStrain 0.95 0.823 0.886581 0.853 0.939297 0.938498 0.940895 0.916933 0.9377 0.679712 0.875399

OliveOil 0.9333 0.9 0.833333 0.833 0.833333 0.766667 0.966667 0.9 0.933333 0.9 0.966667

Plane 1 0.981 1 1 1 1 1 1 1 1 1

ProximalPhalanxOutlineAgeGroup 0.8832 0.839 0.84878 0.805 0.843902 0.887805 0.887805 0.892683 0.882927 0.892683 0.878049

ProximalPhalanxOutlineCorrect 0.918 0.869 0.931271 0.801 0.900344 0.931271 0.931271 0.931271 0.683849 0.924399 0.910653

ProximalPhalanxTW 0.815 0.785 0.77561 0.717 0.775610 0.843902 0.819512 0.814634 0.819512 0.819512 0.834146

ShapeletSim 1 0.517 0.955556 0.772 0.827778 1 1 0.91111 0.888889 0.9777778 1

ShapesAll 0.9183 0.837 0.928333 0.823 0.923333 0.905 0.923333 0.876667 0.921667 0.933333 0.876667

SonyAIBORobotSurface1 0.985 0.84 0.8685552 0.825 0.978369 0.980525 0.988353 0.978369 0.708819 0.985025 0.881864

SonyAIBORobotSurface2 0.962 0.832 0.946485 0.885 0.961175 0.972718 0.976915 0.974816 0.98426 0.976915 0.854145

Strawberry 0.976 0.946 0.983784 0.903 0.981081 0.986486 0.986486 0.986486 0.986486 0.986486 0.986486

SwedishLeaf 0.9664 0.925 0.9774 0.891 0.9696 0.9792 0.9792 0.9728 0.9696 0.9664 0.9376

Symbols 0.9668 0.945 0.980905 0.933 0.976884 0.98794 0.9799 0.970854 0.976884 0.252261 0.892462

SyntheticControl 1 0.977 0.996667 0.977 1 0.993333 1 0.996667 1 1 1

ToeSegmentation1 0.9737 0.899 0.964912 0.851 0.956140 0.991228 0.969298 0.969298 0.97807 0.991228 0.982456

ToeSegmentation2 0.9615 0.9 0.938462 0.9 0.938462 0.930769 0.976923 0.953846 0.953846 0.976923 0.938462

Trace 1 1 1 1 1 1 1 1 1 1 1

TwoPatterns 1 0.992 1 0.998 1 0.99675 1 1 1 1 1

TwoLeadECG 1 0.993 0.99561 0.988 0.999122 1 1 1 1 1 1

UWaveGestureLibraryAll 0.9685 0.865 0.951982 0.838 0.941653 0.961195 0.856784 0.933277 0.939978 0.879118 0.9685

UWaveGestureLibraryX 0.8308 0.784 0.824958 0.762 0.817700 0.843663 0.780849 0.814629 0.810999 0.808766 0.815187

UWaveGestureLibraryY 0.7585 0.697 0.767169 0.666 0.749860 0.765215 0.664992 0.71636 0.671413 0.67895 0.752094

UWaveGestureLibraryZ 0.7725 0.729 0.764098 0.679 0.757956 0.795924 0.756002 0.761027 0.760469 0.762144 0.757677

Wafer 1 0.995 0.99854 0.987 0.998864 0.998378 0.99854 0.998215 0.99854 0.999027 1

Wine 0.889 0.685 0.611111 0.5 0.555556 0.833333 0.851852 0.87037 0.87037 0.907407 0.907407

WordSynonyms 0.779 0.641 0.733542 0.633 0.747649 0.680251 0.661442 0.65047 0.636364 0.678683 0.659875

ACSF1 — 0.73 0.92 0.85 0.92 0.9 0.96 0.91 0.93 0.17 0.9

BME — 0.96 0.99333 0.947 1 0.993333 1 1 1 1 0.986667

Chinatown — 0.962 0.985423 0.936 0.982609 0.982609 0.985507 0.985507 0.985507 0.985507 0.985507

Crop — 0.727 0.772202 0.695 0.770179 0.74494 0.743869 0.742738 0.746012 0.740476 0.774702

DodgerLoopDay — — 0.15 — 0.5625 0.6375 0.5357 0.55 0.4625 0.5 0.675

DodgerLoopGame — — 0.855072 — 0.920290 0.898551 0.876812 0.891304 0.550725 0.905794 0.905797

DodgerLoopWeekend — — 0.971014 — 0.978261 0.978261 0.963768 0.978261 0.949275 0.963768 0.985507

GunPointAgeSpan — 0.987 0.987342 0.991 1 0.996835 0.996835 0.996835 1 0.848101 0.990506

GunPointMaleVersusFemale — 1 0.993671 0.994 1 1 1 1 0.996835 0.996835 1

GunPointOldVersusYoung — 1 0.965079 1 1 0.993651 1 1 1 1 1

InsectEPGRegularTrain — 1 1 1 1 0.995984 1 1 1 1 1

InsectEPGSmallTrain — 1 0.943775 1 0.473896 0.935743 0.955823 0.927711 0.971888 0.477912 1

MelbournePedestrian — 0.947 0.913899 0.914 0.908163 0.913061 0.912245 0.911837 0.904898 0.901633 0.95736

PowerCons — 0.933 0.944444 0.894 1 0.994444 0.933333 0.9444444 0.927778 0.927778 1

Rock — 0.54 0.8 0.5 0.56 0.92 0.78 0.92 0.82 0.76 0.88

SemgHandGenderCh2 — 0.84 0.816667 0.863 0.876667 0.91 0.866667 0.916667 0.848333 0.651667 0.923333

SemgHandMovementCh2 — 0.516 0.482222 0.709 0.577778 0.56 0.513333 0.504444 0.391111 0.468889 0.757778

SemgHandSubjectCh2 — 0.591 0.824444 0.72 0.713333 0.873333 0.746667 0.74 0.666667 0.788889 0.897778

SmoothSubspace — 0.94 0.993333 0.833 1 0.98 1 1 0.99333 1 1

UMD — 0.986 0.986111 0.958 0.993056 0.986111 1 1 1 1 1

Total 65 82 85 82 85 85 85 85 85 85 85

Win 7 0 3 1 2 12 2 1 1 2 8

Tie 15 7 9 6 16 15 25 22 21 23 31

Lose 43 75 73 75 67 58 58 62 63 60 46

Best 22 7 12 7 18 27 27 23 22 25 39
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Table 8: Results of eight traditional algorithms and our structure on 65 selected datasets.

Dataset DDDTW [37] DTDC [37] TSF [11] TSBF [6] LPS [5] BOSS [29] EE [33] COTE [15] Ours

Adiac 0.701 0.701 0.731 0.77 0.77 0.765 0.665 0.79 0.792839

ArrowHead 0.789 0.72 0.726 0.754 0.783 0.834 0.811 0.811 0.851429

Beef 0.667 0.667 0.767 0.567 0.6 0.8 0.633 0.867 0.9

BeetleFly 0.65 0.65 0.75 0.8 0.8 0.9 0.75 0.8 1

BirdChicken 0.85 0.8 0.8 0.9 1 0.95 0.8 0.9 1

Car 0.8 0.733 0.767 0.783 0.85 0.833 0.833 0.9 0.883333

CBF 0.997 0.98 0.994 0.988 0.999 0.998 0.998 0.996 1

ChlorineConcentration 0.708 0.713 0.72 0.692 0.608 0.661 0.656 0.727 0.894271

CinCECGTorso 0.725 0.725 0.983 0.712 0.736 0.887 0.942 0.995 0.810145

Coffee 1 1 0.964 1 1 1 1 1 1

CricketX 0.754 0.754 0.664 0.705 0.697 0.736 0.813 0.808 0.771795

CricketY 0.777 0.774 0.672 0.736 0.767 0.754 0.805 0.826 0.789744

CricketZ 0.774 0.774 0.672 0.715 0.754 0.746 0.782 0.815 0.787179

DiatomSizeReduction 0.967 0.915 0.931 0.899 0.905 0.931 0.944 0.928 0.980392

DistalPhalanxOutlineAgeGroup 0.705 0.662 0.748 0.712 0.669 0.748 0.691 0.748 0.719425

DistalPhalanxOutlineCorrect 0.732 0.725 0.772 0.783 0.721 0.728 0.728 0.761 0.771739

Earthquakes 0.705 0.705 0.748 0.748 0.64 0.748 0.741 0.748 0.776978

ECG200 0.83 0.84 0.87 0.84 0.86 0.87 0.88 0.88 0.92

ECG5000 0.924 0.924 0.939 0.94 0.917 0.941 0.939 0.941 0.944444

ECGFiveDays 0.769 0.822 0.956 0.877 0.879 1 0.82 0.999 1

FaceFour 0.83 0.818 0.932 1 0.943 1 0.909 0.898 0.924045

FacesUCR 0.904 0.908 0.883 0.867 0.926 0.957 0.945 0.942 0.95122

FordA 0.723 0.765 0.815 0.85 0.873 0.93 0.736 0.957 0.939394

FordB 0.667 0.653 0.688 0.599 0.711 0.771 0.662 0.804 0.823547

GunPoint 0.98 0.987 0.973 0.987 0.993 1 0.993 1 1

Ham 0.476 0.552 0.743 0.762 0.562 0.667 0.571 0.648 0.809524

HandOutlines 0.868 0.865 0.919 0.854 0.881 0.903 0.889 0.919 0.894595

Haptics 0.399 0.399 0.445 0.49 0.432 0.461 0.393 0.523 0.600649

Herring 0.547 0.547 0.609 0.641 0.578 0.547 0.578 0.625 0.75

InsectWingbeatSound 0.355 0.473 0.633 0.625 0.551 0.523 0.595 0.653 0.651515

ItalyPowerDemand 0.95 0.951 0.96 0.883 0.923 0.909 0.962 0.961 0.964043

Lightning2 0.869 0.869 0.803 0.738 0.82 0.836 0.885 0.869 0.836066

Lightning7 0.671 0.658 0.753 0.726 0.74 0.685 0.767 0.808 0.90411

Mallat 0.949 0.927 0.919 0.96 0.908 0.938 0.94 0.954 0.938593

Meat 0.933 0.933 0.933 0.933 0.883 0.9 0.933 0.917 1

MedicalImages 0.737 0.745 0.755 0.705 0.746 0.718 0.742 0.758 0.793421

MiddlePhalanxOutlineAgeGroup 0.539 0.5 0.578 0.578 0.578 0.545 0.558 0.636 0.662388

MiddlePhalanxOutlineCorrect 0.732 0.742 0.828 0.814 0.773 0.78 0.784 0.804 0.744755

MiddlePhalanxTW 0.487 0.5 0.565 0.597 0.526 0.545 0.513 0.571 0.62377

MoteStrain 0.833 0.768 0.869 0.903 0.922 0.879 0.883 0.937 0.875399

OliveOil 0.833 0.867 0.867 0.833 0.867 0.867 0.867 0.9 0.966667

Plane 1 1 1 1 1 1 1 1 1

ProximalPhalanxOutlineAgeGroup 0.8 0.795 0.834 0.849 0.849 0.834 0.805 0.854 0.878049

ProximalPhalanxOutlineCorrect 0.794 0.794 0.849 0.828 0.873 0.849 0.808 0.869 0.910653

ProximalPhalanxTW 0.766 0.771 0.8 0.815 0.81 0.8 0.766 0.78 0.834146

ShapeletSim 0.611 0.6 1 0.478 0.961 1 0.817 0.961 1

ShapesAll 0.85 0.838 0.908 0.792 0.185 0.908 0.867 0.892 0.876667

SonyAIBORobotSurface1 0.742 0.71 0.632 0.787 0.795 0.632 0.704 0.845 0.881864

SonyAIBORobotSurface2 0.892 0.892 0.859 0.81 0.778 0.859 0.878 0.952 0.854145

Strawberry 0.954 0.957 0.967 0.965 0.952 0.976 0.946 0.951 0.986486

SwedishLeaf 0.901 0.896 0.922 0.914 0.915 0.922 0.915 0.955 0.9376

Symbols 0.953 0.963 0.967 0.915 0.946 0.967 0.96 0.964 0.892462

SyntheticControl 0.993 0.997 0.987 0.993 0.98 0.967 0.99 1 1

ToeSegmentation1 0.807 0.807 0.741 0.781 0.877 0.939 0.829 0.974 0.982456

ToeSegmentation2 0.746 0.715 0.815 0.8 0.869 0.962 0.892 0.915 0.938462

Trace 1 0.99 0.99 0.98 0.98 1 0.99 1 1

TwoLeadECG 0.978 0.985 0.759 0.866 0.948 0.981 0.971 0.993 1

TwoPatterns 1 1 0.991 0.976 0.982 0.993 1 1 1

UWaveGestureLibraryAll 0.935 0.938 0.957 0.926 0.966 0.939 0.968 0.964 0.9685

UWaveGestureLibraryX 0.779 0.775 0.804 0.831 0.829 0.762 0.805 0.822 0.815187

UWaveGestureLibraryY 0.716 0.698 0.727 0.736 0.761 0.685 0.726 0.759 0.752094

UWaveGestureLibraryZ 0.696 0.679 0.743 0.772 0.768 0.695 0.724 0.75 0.757677

Wafer 0.98 0.993 0.996 0.995 0.997 0.995 0.997 1 1

Wine 0.574 0.611 0.63 0.611 0.63 0.741 0.574 0.648 0.907407

WordSynonyms 0.73 0.73 0.647 0.688 0.701 0.638 0.779 0.757 0.659875

Total 65 65 65 65 65 65 65 65 65

Win 0 0 1 3 0 0 2 11 33

Tie 4 3 6 3 3 10 3 9 10

Lose 61 62 58 59 62 55 60 45 22

Best 4 3 7 6 3 10 5 20 43
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Table 9: Results of different supervised algorithms on 20 ’long’ time series datasets.

Dataset Classes SeriesLength
Existing

SOTA

USRL-

FordA[17]

Inception-

Time[16]

Combined

(1NN)[17]

OS-

CNN[60]

Best:

lstm-fcn [24]

Vanilla:RN-

Transformer

[23, 62]

ResNet-

Transformer1

[23]

ResNet-

Transformer2

[23]

ResNet-

Transformer3

[23]

Ours

BeetleFly 2 512 0.95 0.8 0.8 0.8 0.8 1 1 0.95 0.95 1 1

BirdChicken 2 512 0.95 0.9 0.95 0.75 0.9 0.95 1 0.9 1 0.7 1

CinCECGTorso 4 1639 0.9949 0.638 0.853623 0.693 0.830435 0.904348 0.871739 0.656522 0.89058 0.31087 0.810145

Car 4 577 0.933 0.85 0.88333 0.8 0.933333 0.966667 0.95 0.883333 0.866667 0.3 0.883333

Earthquake 2 512 0.801 0.748 0.741007 0.64 0.683453 0.81295 0.755396 0.755396 0.76259 0.755396 0.776978

HandOutlines 2 2709 0.9487 0.919 0.954054 0.832 0.956757 0.954054 0.937838 0.948649 0.835135 0.945946 0.894595

Haptics 5 1092 0.551 0.474 0.548701 0.354 0.512987 0.558442 0.564935 0.545455 0.600649 0.194805 0.600649

Herring 2 512 0.703 0.578 0.671875 0.563 0.609375 0.75 0.703125 0.734375 0.65625 0.703125 0.75

Lighting2 2 637 0.8853 0.787 0.770492 0.885 0.819672 0.819672 0.852459 0.852459 0.754098 0.868852 0.836066

Mallat 8 1024 0.98 0.916 0.955224 0.994 0.963753 0.98081 0.977399 0.975267 0.934328 0.979104 0.938593

OliveOil 4 570 0.9333 0.9 0.833333 0.833 0.833333 0.766667 0.966667 0.9 0.933333 0.9 0.966667

ShapesAll 60 512 0.9183 0.837 0.928333 0.823 0.923333 0.905 0.923333 0.876667 0.921667 0.933333 0.876667

UWaveGestureLibraryAll 8 945 0.9685 0.865 0.951982 0.838 0.941653 0.961195 0.856784 0.933277 0.939978 0.879118 0.9685

ACSF1 10 1460 — 0.73 0.92 0.85 0.92 0.9 0.96 0.91 0.93 0.17 0.9

InsectEPGRegularTrain 3 601 — 1 1 1 1 0.995984 1 1 1 1 1

InsectEPGSmallTrain 3 601 — 1 0.943775 1 0.473896 0.935743 0.955823 0.927711 0.971888 0.477912 1

SemgHandGendeCh2 2 1500 — 0.84 0.816667 0.863 0.876667 0.91 0.866667 0.916667 0.848333 0.651667 0.923333

SemgHandMovementCh2 6 1500 — 0.516 0.482222 0.709 0.577778 0.56 0.513333 0.504444 0.391111 0.468889 0.757778

SemgHandSubjectCh2 5 1500 — 0.591 0.824444 0.72 0.713333 0.873333 0.746667 0.74 0.666667 0.788889 0.897778

Rock 4 2844 — 0.54 0.8 0.5 0.56 0.92 0.78 0.92 0.82 0.76 0.88

Best 4 2 1 2 1 5 5 2 3 3 11

MeanACC — 0.77145 0.8314531 0.77235 0.7914879 0.87124325 0.85910825 0.8415111 0.8336637 0.6893953 0.8830541

approach on that dataset, e.g. it involves LSTM-FCN and ALSTM-FCN in [24].

Note that the existing SOTA did not consider the last 20 of the 85 datasets.

It is seen that the proposed RTFN-based supervised structure performs the

best in ‘tie’ and the second best in ‘win’, guaranteeing its first position in ‘best’.

To be specific, ours wins in 8 cases and performs no worse than any other

algorithm in 31 cases, which leads to 39 ‘best’ cases in the competition. Besides,

the Best: lstm-fcn and the Vanilla: ResNet-Transformer achieve the second and

third best performance, with respect to the ‘best’ score. Especially, the former

is a winner of 12 datasets, indicating its outstanding performance. On the other

hand, USRLFordA is the worst algorithm, with 7 ‘tie’ scores only. Besides, Table

8 compares eight traditional algorithms and our structure on 65 selected UCR

datasets in terms of the top-1 accuracy. These traditional algorithms include

DDDTW [37], DTDC [37], TSF [11], TSBF [6], LPS [5], BOSS [29], EE [33],

and COTE [15]. Our structure obtains better ‘win’, ‘tie’, ‘lose’, and ‘best’ scores

than the rest of the algorithms.

In addition, to emphasize the performance of the proposed structure in long

time series cases, we show the top-1 accuracy results of different algorithms in

Table 9, where all the 20 ‘long’ time series datasets in Table 1 are tested. It
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is easily observed that the RTFN-based supervised structure, i.e., ours, is the

best algorithm as it obtains the highest ‘Best’ and MeanACC values. That is

because RTFN can mine sufficient local features and the relationships among

them, thanks to the efficient cooperation of TFN and LSTMaN. Especially,

LSTMaN relates different locations of the obtained representations and can thus

capture their intrinsic regularizations during the data transmission process.

On the other hand, Best:lstm-fcn also achieves decent performance regarding

the ‘best’ value and mean accuracy because its LSTM helps to extract additional

features from the input data to enrich the features obtained by the fcn networks.

Vanilla:ResNet-Transformer is undoubtedly the one with the best performance

among all the transformer-based networks for comparison. The reason is that

the embedded attention mechanism can further link different positions of time

series data and thus enhance the accuracy.

4.4.2. Performance Comparison on Multivariate Time Series

Table 10 shows the top-1 accuracy results obtained by different supervised

algorithms on all 30 datasets in the UEA2018 archive. For each dataset, the ex-

isting SOTA represents the best algorithm on that dataset, including STC [45],

HC [30], gRSF [26], mv-ARF [61] and so on; similarly, Best:DTW, Best:DTWN,

and Best:EDN are the best performance DTW-based (e.g., involving DTWI

and DTWA in [13]), DTWN-based (e.g., involving DTW-1NNI(n) and DTW-

1NND(n) [13].) and ED-NN-based (e.g., involving ED-1NN and ED-1NN (Nor-

malized) [45]) approaches on that dataset, respectively.

It is observed that the RTFN-based supervised structure, i.e., ours, performs

the best among all algorithms for comparison since ours obtains the highest

MeanACC and ‘best’ values, namely, 0.763 and 15, and the smallest AVG rank

score, namely 3.817. Meanwhile, MF and LCEM are the second and third best

algorithms, while Best:EDN is the worst one. The following explains why. On

the one hand, ours takes advantage of TFN and LSTMaN to mine sufficient

features from the input data. In particular, LSTMaN can discover the relation-

ships among not only the representations associated with each variate, but also
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Table 10: Results of different supervised algorithms on all UEA2018 datasets. Abbreviations:

MF – MLSTM-FCN [25], WM – WEASEL + MUSE [54].
Dataset

Index

Existing

SOTA

Best:

DTW [45]

Best:

DTWN [13]

Best:

EDN [45]
LCEM [13] XGBM [30] RFM [57] WM [45] CBOSS [29] MLCN [25] RISE [67] TSF [11] TapNet [76] MUSE [54] MF [13, 25] Ours

AWR 0.99 0.987 0.987 0.97 0.993 0.99 0.99 0.993 0.99 0.957 0.963 0.953 0.987 0.993 0.986 0.993

AF 0.267 0.267 0.267 0.267 0.467 0.4 0.333 0.267 0.267 0.333 0.267 0.2 0.333 0.4 0.2 0.533

BM 1 1 1 0.675 1 1 1 1 1 0.875 1 1 1 1 1 1

CT 0.986 1 0.969 0.964 0.979 0.983 0.985 0.99 0.986 0.917 0.986 0.931 0.997 0.986 0.993 0.993

CR — — 1 0.944 0.986 0.972 0.986 0.986 — — — — 0.958 – 0.986 0.986

DDG 0.48 0.58 0.6 0.275 0.375 0.4 0.4 0.575 0.48 0.38 0.22 0.46 0.575 0.58 0.675 0.6

EW 0.749 0.517 0.618 0.55 0.527 0.55 1 0.89 0.511 0.33 0.626 0.712 0.489 – 0.809 0.685

EP 1 1 0.978 0.667 0.986 0.978 0.986 0.993 0.979 0.732 0.979 1 0.971 0.993 0.964 0.978

EC 0.882 0.361 0.323 0.293 0.372 0.422 0.433 0.316 0.304 0.373 0.445 0.487 0.323 0.476 0.274 0.38

ER 0.97 0.926 0.133 0.133 0.2 0.133 0.133 0.133 0.919 0.941 0.881 0.859 0.133 0.974 0.133 0.941

FD 0.656 0.529 0.529 0.519 0.614 0.629 0.614 0.545 0.513 0.555 0.64 0.508 0.556 0.631 0.555 0.67

FM 0.582 0.53 0.53 0.55 0.59 0.53 0.569 0.54 0.519 0.58 0.581 0.562 0.53 0.551 0.61 0.63

HMD 0.414 0.224 0.306 0.279 0.649 0.541 0.5 0.378 0.292 0.544 0.481 0.312 0.378 0.362 0.378 0.662

HW 0.478 0.601 0.607 0.531 0.287 0.267 0.267 0.531 0.504 0.305 0.359 0.191 0.357 0.518 0.547 0.454

HB 0.64 0.604 0.717 0.62 0.761 0.693 0.8 0.727 0.564 0.458 0.535 0.518 0.751 0.515 0.714 0.785

IW — — 0.115 0.128 0.228 0.237 0.224 — — — — — 0.208 — 0.105 0.467

JV — — 0.959 0.949 0.978 0.968 0.97 0.978 — — — — 0.965 — 0.992 0.973

LIB 0.9 0.883 0.894 0.833 0.772 0.767 0.783 0.894 0.894 0.85 0.806 0.806 0.85 0.894 0.922 0.922

LSST 0.391 0.458 0.575 0.456 0.652 0.633 0.612 0.628 0.458 0.39 0.161 0.265 0.568 0.435 0.646 0.451

MI 0.61 0.59 0.51 0.51 0.6 0.46 0.55 0.5 0.39 0.51 0.48 0.55 0.59 — 0.53 0.6

NATO 0.889 0.883 0.883 0.85 0.916 0.9 0.911 0.883 0.85 0.9 0.8 0.839 0.939 0.906 0.961 0.967

PD 0.941 0.977 0.977 0.939 0.977 0.951 0.951 0.969 0.939 0.979 0.892 0.831 0.98 0.967 0.987 0.987

PEMS 0.981 0.981 0.734 0.705 0.942 0.983 0.983 — 0.73 0.745 0.982 0.994 0.751 — 0.653 0.936

PS 0.321 0.195 0.151 0.104 0.288 0.187 0.222 0.19 0.151 0.151 0.137 0.269 0.175 — 0.275 0.33

RS 0.898 0.891 0.868 0.842 0.941 0.928 0.921 0.914 0.854 0.856 0.895 0.823 0.868 0.933 0.882 0.862

SRS1 0.854 0.806 0.775 0.771 0.839 0.829 0.826 0.744 0.765 0.908 0.84 0.724 0.652 0.697 0.867 0.922

SRS2 0.533 0.539 0.539 0.533 0.55 0.483 0.478 0.522 0.533 0.506 0.483 0.494 0.55 0.528 0.522 0.622

SAD — — 0.963 0.967 0.973 0.97 0.968 0.982 — — — — 0.983 — 0.994 0.986

SWJ 0.467 0.333 0.333 0.2 0.4 0.333 0.467 0.333 0.333 0.4 0.333 0.267 0.4 0.267 0.467 0.667

UW 0.897 0.903 0.903 0.881 0.897 0.894 0.9 0.903 0.869 0.859 0.775 0.684 0.894 0.931 0.857 0.903

Best 4 3 3 0 4 1 2 2 1 0 1 3 1 4 6 15

MeanACC 0.626 0.586 0.658 0.597 0.691 0.668 0.692 0.643 0.553 0.532 0.552 0.541 0.657 0.502 0.683 0.763

AVG rank 6.817 8.517 8.633 11.800 5.900 8.417 6.917 7.833 11.117 10.583 10.450 11.433 8.083 8.933 6.750 3.817

those associated with different variates. That is why ours achieves the best per-

formance. Due to the efficient coordination of LSTM and FCN networks, MF

(i.e., MLSTM-FCN) can learn significant connections among the features asso-

ciated with multiple variates as many as possible. In the meantime, LCEM uses

an explicit boosting-bagging approach to explore the interactions among the

dimensions. It allows LCEM to capture enough complex relationships among

dimensions at different timestamps. That is why MF and LCEM also achieve

decent performance in supervised classification. On the other hand, Best:EDN

is based on the traditional DTW-1NN approach, making it quite challenging to

simultaneously focus on the useful representations in univariate data and their

relationships in multivariate data. That is why deep learning approaches have

attracted increasingly more research attention. The AVG rank results obtained
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by different supervised algorithms on 30 multivariate datasets are shown in Fig.

5.

Figure 5: Results of the AVG ranks of different algorithms on 30 multivariate datasets.

4.5. Evaluation of the RTFN-based Unsupervised Clustering

To evaluate the performance of the RTFN-based unsupervised clustering, we

compare it with a number of state-of-the-art unsupervised algorithms against

three performance metrics, namely ‘best’ based on the results of ‘win’/‘tie’/‘lose’,

AVG RI, and AVG rank in Section 4.2.

Following some well-recognized research works [19, 36, 39, 41, 69], we select

36 representative datasets from the UCR2018 archive for performance evalua-

tion, and they are marked with ’YES’ in Table 1. The RI results obtained by

different unsupervised algorithms on the 36 datasets are shown in Table 11.

DTCR and our RTFN-based unsupervised clustering rank the best and sec-

ond best among all algorithms for comparison. DTCR takes advantage of a

seq2seq structure to explore sufficient temporal features for a K-means classi-

fier. This algorithm uses the classifier’s loss to update its model parameters,

encouraging the representations extracted from data to form a cluster structure.

That is why DTCR is good at mining cluster-specific representations from in-

put data. Its complicated structure is, however, for addressing cluster-specific

problems only. On the contrary, ours simply adopts an auto-encoding structure

to update our model’s parameters and utilizes a K-means algorithm to classify

the features obtained by RTFN. Although it is quite simple in structure, ours

achieves decent performance on the 36 selected datasets, which depends on the

strong feature extraction ability of RTFN.
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Table 11: The RI results of different unsupervised algorithms on 36 selected datasets.
Dataset K-means[21] UDFS[70] NDFS[32] RUFS[47] RSFS[56] KSC[69] KDBA[43] K-shape[41] Ushapelet[72] DTC[39] DEC[68] IDEC[19] DTCR[36] Ours

ArrowHead 0.6095 0.7254 0.7381 0.7476 0.7108 0.7254 0.7222 0.7254 0.6460 0.6692 0.5817 0.6210 0.6868 0.6460

Beef 0.6713 0.6759 0.7034 0.7149 0.6975 0.7057 0.6713 0.5402 0.6966 0.6345 0.5954 0.6276 0.8046 0.7655

BeetFly 0.4789 0.4949 0.5579 0.6053 0.6516 0.6053 0.6052 0.6053 0.7314 0.5211 0.4947 0.6053 0.9000 0.6632

BirdChicken 0.4947 0.4947 0.7361 0.5579 0.6632 0.7316 0.6053 0.6632 0.5579 0.4947 0.4737 0.4789 0.8105 0.7316

Car 0.6345 0.6757 0.6260 0.6667 0.6708 0.6898 0.6254 0.7028 0.6418 0.6695 0.6859 0.6870 0.7501 0.7169

ChlorineConcentration 0.5241 0.5282 0.5225 0.5330 0.5316 0.5256 0.5300 0.4111 0.5318 0.5353 0.5348 0.5350 0.5357 0.5367

Coffee 0.7460 0.8624 1.0000 0.5467 1.0000 1.0000 0.4851 1.0000 1.0000 0.4841 0.4921 0.5767 0.9286 0.8624

DiatomSizeReduction 0.9583 0.9583 0.9583 0.9333 0.9137 1.0000 0.9583 1.0000 0.7083 0.8792 0.9294 0.7347 0.9682 0.9583

DistalPhalanxOutlineAgeGroup 0.6171 0.6531 0.6239 0.6252 0.6539 0.6535 0.6750 0.6020 0.6273 0.7812 0.7785 0.7786 0.7825 0.7786

DistalPhalanxOutlineCorrect 0.5252 0.5362 0.5362 0.5252 0.5327 0.5235 0.5203 0.5252 0.5098 0.5010 0.5029 0.5330 0.6075 0.6095

ECG200 0.6315 0.6533 0.6315 0.7018 0.6916 0.6315 0.6018 0.7018 0.5758 0.6018 0.6422 0.6233 0.6648 0.7568

ECGFIveDays 0.4783 0.5020 0.5573 0.5020 0.5953 0.5257 0.5573 0.5020 0.5968 0.5016 0.5103 0.5114 0.9638 0.5964

GunPoint 0.4971 0.5029 0.5102 0.6498 0.4994 0.4971 0.5420 0.6278 0.6278 0.5400 0.4981 0.4974 0.6398 0.6471

Ham 0.5025 0.5219 0.5362 0.5107 0.5127 0.5362 0.5141 0.5311 0.5362 0.5648 0.5963 0.4956 0.5362 0.5963

Herring 0.4965 0.5099 0.5164 0.5238 0.5151 0.4940 0.5164 0.4965 0.5417 0.5045 0.5099 0.5099 0.5790 0.5322

Lighting2 0.4966 0.5119 0.5373 0.5729 0.5269 0.6263 0.5119 0.6548 0.5192 0.5770 0.5311 0.5519 0.5913 0.6230

Meat 0.6595 0.6483 0.6635 0.6578 0.6657 0.6723 0.6816 0.6575 0.6742 0.3220 0.6475 0.6220 0.9763 0.7175

MiddlePhalanxOutlineAgeGroup 0.5351 0.5269 0.5350 0.5315 0.5473 0.5364 0.5513 0.5105 0.5396 0.5757 0.7059 0.6800 0.7982 0.6800

MiddlePhalanxOutlineCorrect 0.5000 0.5431 0.5047 0.5114 0.5149 0.5014 0.5563 0.5114 0.5218 0.5272 0.5423 0.5423 0.5617 0.5909

MiddlePhalanxTW 0.0983 0.1225 0.1919 0.7920 0.8062 0.8187 0.8046 0.6213 0.7920 0.7115 0.8590 0.8626 0.8638 0.8062

MoteStrain 0.4947 0.5579 0.6053 0.5579 0.6168 0.6632 0.4789 0.6053 0.4789 0.5062 0.7435 0.7342 0.7686 0.6826

OSULeaf 0.5615 0.5372 0.5622 0.5497 0.5665 0.5714 0.5541 0.5538 0.5525 0.7329 0.7484 0.7607 0.7739 0.7513

Plane 0.9081 0.8949 0.8954 0.9220 0.9314 0.9603 0.9225 0.9901 1.0000 0.9040 0.9447 0.9447 0.9549 0.9619

ProximalPhalanxOutlineAgeGroup 0.5288 0.4997 0.5463 0.5780 0.5384 0.5305 0.5192 0.5617 0.5206 0.7430 0.4263 0.8091 0.8091 0.8180

ProximalPhalanxTW 0.4789 0.4947 0.6053 0.5579 0.5211 0.6053 0.5211 0.5211 0.4789 0.8380 0.8189 0.9030 0.9023 0.8180

SonyAIBORobotSurface1 0.7721 0.7695 0.7721 0.7787 0.7928 0.7726 0.7988 0.8084 0.7639 0.5563 0.5732 0.6900 0.8769 0.7812

SonyAIBORobotSurface2 0.8697 0.8745 0.8865 0.8756 0.8948 0.9039 0.8684 0.5617 0.8770 0.7012 0.6514 0.6572 0.8354 0.7066

SwedishLeaf 0.4987 0.4923 0.5500 0.5192 0.5038 0.4923 0.5500 0.5533 0.6154 0.8871 0.8837 0.8893 0.9223 0.8893

Symbols 0.8810 0.8548 0.8562 0.8525 0.9060 0.8982 0.9774 0.8373 0.9603 0.9053 0.8841 0.8857 0.9168 0.9053

ToeSegmentation1 0.4873 0.4921 0.5873 0.5429 0.4968 0.5000 0.6143 0.6143 0.5873 0.5077 0.4984 0.5017 0.5659 0.6143

ToeSegmentation2 0.5257 0.5257 0.5968 0.5968 0.5826 0.5257 0.5573 0.5257 0.5020 0.5348 0.4991 0.4991 0.8286 0.7825

TwoPatterns 0.8529 0.8259 0.8530 0.8385 0.8588 0.8585 0.8446 0.8046 0.7757 0.6251 0.6293 0.6338 0.6984 0.6298

TwoLeadECG 0.5476 0.5495 0.6328 0.8246 0.5635 0.5464 0.5476 0.8246 0.5404 0.5116 0.5007 0.5016 0.7114 0.6289

Wafer 0.4925 0.4925 0.5263 0.5263 0.4925 0.4925 0.4925 0.4925 0.4925 0.5324 0.5679 0.5597 0.7338 0.8093

Wine 0.4984 0.4987 0.5123 0.5021 0.5033 0.5006 0.5064 0.5001 0.5033 0.4906 0.4913 0.5157 0.6271 0.5471

WordSyonyms 0.8775 0.8697 0.8760 0.8861 0.8817 0.8727 0.8159 0.7844 0.8230 0.8855 0.8893 0.8947 0.8984 0.8973

Best 0 0 1 3 2 3 2 4 2 0 1 1 17 9

AVG RI 0.5957 0.6077 0.6403 0.6477 0.6542 0.6582 0.6335 0.6419 0.6402 0.6238 0.6351 0.6515 0.7714 0.7233

AVG rank 10.8194 9.6944 7.2361 7.4306 6.8750 7.1667 7.9722 8.0000 8.1250 8.6111 8.7778 7.6389 2.7778 3.6250

In order to further evaluate the effectiveness of RTFN in unsupervised clus-

tering, we compare the RTFN-based K-means algorithm with a separate K-

means algorithm on the 36 datasets above and show the RI results in Fig. 6.

One can see that ours outperforms the separate K-means algorithm on all but

two datasets. That is because our unsupervised clustering is provided with suf-

ficient features obtained by the proposed RTFN, especially those hiding deeply

in the input data beyond the exploration abilities of ordinary feature extraction

networks. The AVG rank results of all unsupervised algorithms for comparison

are shown in Fig. 7.
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Figure 6: The RI values obtained by the K-means algorithm and ours.

Figure 7: AVG ranks of different unsupervised algorithms.

5. Conclusion

In the proposed RTFN, the temporal feature network is responsible for ex-

tracting local features, while the LSTM-based attention network aims at dis-

covering intrinsic relationships among the representations learned from data.

Experimental results demonstrate that our RTFN achieves decent performance

in both supervised classification and unsupervised clustering. Specifically, our

RTFN-based supervised algorithm performs the best on 39 out of 85 univari-

ate datasets in the UCR2018 archive and 15 out of 30 multivariate datasets in

the UEA2018 archive, respectively, compared with the latest results from the

supervised classification community. In particular, ours wins 11 out of 20 long

univariate dataset cases. Our RTFN-based unsupervised algorithm is the sec-

ond best when considering all 36 datasets. Last but not least, the experimental

results also indicate that RTFN has good potential to be embedded in other

32



learning frameworks to handle time series problems of various domains in the

real world.
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