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Universidad de Sevilla, Av. Reina Mercedes, 41012 Sevilla, Spain
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Abstract

A new distance in finite graphs is defined through a game-theoretic approach. This distance arises
when solving the problem about the fair cost, for a node in a graph, of attaining access to another
node. The distance indicates the level of difficulty in the communication between any pair of nodes,
on the understanding that the fewer paths there are between two nodes and the more nodes there
are that form those paths, the greater the distance is.
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1. Introduction

Myerson [6] studied cooperative games in situations in which there are limitations on the

communication among the players. He used the best-known value for cooperative transferable

utility (TU) games, the Shapley value, to define and characterize a value for games with

communication restrictions. These restrictions were modeled through graphs. Since then,

many studies in game theory have been carried out to deal with situations in which there is

a cooperative game and a graph that delimits the communication among the players. This

has led several game theorists to consider the study of graphs by using game-theoretic tools.

The basic idea is the following. Given a graph, whose nodes will be identified with players,

we can consider, instead of an exogenous game, a game determined by the graph itself. If the

game is properly chosen, we can obtain useful information about the graph by applying a

value to the game. Notable examples of this are the studies on centrality in graphs that have

been carried out by means of game-theoretic tools. The first of these studies was carried

out by Grofman and Owen [4]. They used one of the most important values studied in

cooperative game theory, the Banzhaf value, to study power in social networks, and gave

other graph-theoretic applications of this value. Later on, Gómez et al. [3], following the

approaches considered by Myerson [6] and Owen [7], studied centrality in graphs by means
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of the Shapley value of certain conveniently defined games. Suri and Narahari [10] used the

Shapley value to create an algorithm to find what they call influential nodes in a graph.

Michalak et al. [5] developed efficient algorithms to calculate the Shapley value of the game

used by Suri and Narahari and other games useful for the study of centrality in graphs. The

Shapley value has also been used to study centrality in directed graphs by del Pozo et al.

[8]. More recently, Gallardo et al. [2] used the Shapley value to study and measure power

in hierarchical structures. Other examples of the use of game theory in graph problems can

be found in [1] and [11].

Suppose that i and k are two nodes in a finite graph such that they are connected in the

graph and there is no edge between them. Let us suppose that the nodes in the graph are

agents, and that for agent i the capacity to get in contact with k produces a profit. Our

goal is to study how costly attaining access to k is for i, on the assumption that i will have

to pay a fair toll to the intermediary nodes between i and k in order to contact k. To this

end, we will proceed in a similar way as we explained above, that is, a suitable TU-game in

the set of nodes will be defined. In principle, one of the components of the Shapley value

of this game would provide the solution to our problem. However, considerations about the

possibility of using pivotal nodes will emerge. In order to determine whether the use of

pivotal nodes is advantageous or not, we will introduce certain function defined on the set

of pair of nodes. The problem of determining whether the strategy of using pivotal nodes is

useless or profitable will be equivalent to determining whether this function is a distance on

the set of nodes or not. The majority of this paper is devoted to proving that this function

is indeed a distance. This will be the central theoretical result of the paper. This result will

allow us to solve our initial problem about the cost, for a node in a graph, of attaining access

to another node.

The paper is organized as follows. In Section 2, several basic definitions concerning

cooperative games are recalled. In Section 3, we propose the graph problem that we aim to

solve. Moreover, a function on the set of pair of nodes is introduced. In Section 4, we prove

that this function is a distance. Finally, in Section 5, the conclusions are drawn.

2. Preliminaries

2.1. Cooperative TU-games

A transferable utility cooperative game or TU-game is a pair (N, v) where N is a finite

and nonempty set and v : 2N → R is a function with v (∅) = 0. The elements of N are

called players, the subsets E ⊆ N are called coalitions and v (E) is the worth of E. For each

coalition E, the worth of E can be interpreted as the maximal gain or minimal cost that

the players in this coalition can achieve by themselves. A TU-game (N, v) is often identified
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with the function v. The family of all the games with set of players N is denoted by GN .

A game v ∈ GN is said to be monotonic if v(E) 6 v(F ) for every E ⊆ F ⊆ N . And v is

superadditive if v(E) + v(F ) 6 v(E ∪ F ) for every E,F ⊆ N with E ∩ F = ∅.

A payoff vector for a game on the set of players N is a vector x ∈ RN . A value on

GN is a function ψ : GN −→ RN that assigns a payoff vector to each game. Numerous

values have been defined for several families of games in the literature. The Shapley value,

introduced in [9], is the most important of these values. The Shapley value Sh (v) ∈ RN of

a game v ∈ GN is a weighted average of the marginal contributions of each player to the

coalitions. Let Π(N) denote the set of permutations on N . For every σ ∈ Π(N) and i ∈ N ,

let Pσ,i denote the set of players in N which precede i with respect to permutation σ, that

is, Pσ,i = {j ∈ N : σ(j) < σ(i)}. Then the Shapley value of v ∈ GN is defined as

Shi (v) =
1

|N |!
∑

σ∈Π(N)

(v(Pσ,i ∪ {i})− v(Pσ,i)) , for all i ∈ N.

It is easy to check that

Shi (v) =
∑

{E⊆N : i∈E}
pNE (v (E)− v (E \ {i})) , for all i ∈ N, (1)

where pNE =
(|N | − |E|)! (|E| − 1)!

|N |!
, for every E ∈ 2N \ {∅}.

Some desirable properties for a value ψ : GN → RN are the following:

Efficiency:
∑
i∈N ψi (v) = v (N) for all v ∈ GN .

Additivity: ψ (v1 + v2) = ψ (v1) + ψ (v2) for all v1, v2 ∈ GN .

Null player property: If i ∈ N is a null player in v ∈ GN , that is, v (E) = v(E \ {i}) for all

E ⊆ N , then ψi (v) = 0.

Symmetry: If i, j ∈ N are symmetric with respect to v ∈ GN , that is, v(E∪{i}) = v(E∪{j})
for every E ⊆ N \ {i, j}, then ψi (v) = ψj (v).

The Shapley value is the unique value satisfying efficiency, additivity, null player property

and symmetry.

3. Proposed methodology

Throughout this paper, N will denote a finite set. Let G = (N,L) be a graph, where

N is the set of nodes and L is the set of edges. Let us suppose that the nodes represent
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agents that can interact, cooperate and negotiate. Suppose that i, k are two (different)

agents in N with {i, k} /∈ L. Suppose that attaining communication with agent k means

certain economic profit for agent i. In order to contact k, agent i will need the cooperation

of other intermediary agents, who can form a path between i and k. It is reasonable for these

intermediaries to demand a part of the profit that i obtains from being in contact with k.

Therefore i will have to transfer a percentage of the profit to them. Our goal is to determine

the proportion of profit that i will be able to retain, assuming that the profit sharing is done

fairly. Notice that, depending on the connection situation of i and k in G, it will be more

or less costly for i to get in contact with k. In order to illustrate this, consider the graph

represented by the following diagram:

Suppose that 1 obtains a profit from achieving contact with 3, and 3 obtains a profit

from achieving contact with 6. In order to contact 3, agent 1 needs the cooperation of 2, in

the sense that if agent 2 refuses to cooperate then 1 will not obtain any profit. Therefore,

in a fair negotiation between 1 and 2, agent 1 will have to transfer to agent 2 half of the

profit that 1 can obtain from attaining access to 3. Agent 3 obtains a profit from achieving

contact with 6. In order to receive that profit, agent 3 needs the cooperation of either 4 or

5. Therefore, the position of 3 in negotiation with 4 and 5 is better than the position of 1 in

negotiation with 2. Agent 3 will be able to retain more than half of the profit that she/he

can obtain from achieving contact with 6.

In order to solve the problem proposed, cooperative game theory will be used. Firstly, we

will consider the TU-games which model the cooperative situation described at the beginning

of this section.

Definition 1. Let G = (N,L) be a graph. Let i, k be two (different) nodes in N . We define

Ai,kG : 2N → {0, 1} as

Ai,kG (S) =



1 if there exist j1, . . . , jr ∈ S such that j1 = i, {jq, jq+1} ∈ L
for all q = 1, . . . , r − 1 and {jr, k} ∈ L,

0 otherwise,

for any S ⊆ N .
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Notice that Ai,kG (S) is equal to 1 if and only if i ∈ S and i can achieve contact with k

without leaving S. If we suppose that i obtains a profit equal to 1 from achieving contact

with k, then the coalitions which are able to obtain that profit are the coalitions S with

Ai,kG (S) = 1. Notice that Ai,kG is a {0, 1}-game in N . The Shapley value of this game provides

a fair allocation of the profit among i and those agents that can enable i to achieve contact

with k. Hence, agent i would finally retain a profit equal to Shi(A
i,k
G ). It seems that we have

solved the problem proposed at the beginning of this section. However, there is an objection

that we explain below.

Suppose we have a graph G = (N,L), and i, j, k three different nodes in N such that

{i, k} /∈ L, i and j are connected in G and that j and k are also connected in G. For

simplicity we will suppose that i is not in any minimal path between j and k. We assume

that i obtains a profit equal to 1 from achieving contact with k. Since {i, k} /∈ L, agent i will

have to negotiate with intermediary agents. We know that, as a result of that negotiation, i

will have to cede a part of the profit. But now suppose that, instead of negotiating to obtain

access to agent k, agent i considers the following strategy. Agent i assigns a part of the profit

to agent j. Agent j then negotiates her/his access to agent k. In this negotiation, agent j

will have to cede a part of the quantity that has been received from agent i. Meanwhile, i

only has to negotiate for access to j. In this negotiation, agent i will have to cede a part of

the quantity that she/he retained. Let us calculate the profit that i will be able to retain if

she/he follows the strategy described above. Firstly, an amount equal to α will be allocated

to j. Agent j will use this amount to negotiate access to k. We know that, as a result of this

negotiation, j will be able to keep αShj(A
j,k
G ). This is the final profit obtained by j. On the

other hand, i has an amount of 1−α to negotiate access to j. As a result of this negotiation,

i will be able to keep (1−α)Shi(A
i,j
G ). It now has to be taken into consideration that agent

j is essential in this strategy. Therefore, it is fair that agents i and j obtain the same profit.

Hence, it must be αShj(A
j,k
G ) = (1− α)Shi(A

i,j
G ). We obtain

α =
Shi(A

i,j
G )

Shi(A
i,j
G ) + Shj(A

j,k
G )

.

Therefore, the final profit that i will obtain is (1− α)Shi(A
i,j
G ), which is equal to

Shi(A
i,j
G )Shj(A

j,k
G )

Shi(A
i,j
G ) + Shj(A

j,k
G )

. (2)

Of course, the question that arises is whether the strategy followed has been profitable for i.

Remember that if agent i negotiates with all the intermediaries for access to k then she/he
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would receive an amount of

Shi(A
i,k
G ). (3)

Our goal will be to prove that the strategy of using a pivotal agent in the sense explained

above is never advantageous, that is, (3) is greater or equal to (2). This will be done by

proving that certain function on N2 is a distance on N . This function is introduced in the

following definition.

Definition 2. Let G = (N,L) be a graph. We define dShG : N2 → [0,+∞] as

dShG (i, k) =



0 if i = k,

1

Shi(A
i,k
G )

if i 6= k and there is a path in G connecting i and k,

+∞ otherwise.

Notice that (2) can be rewritten as

1
1

Shi(A
i,j
G )

+ 1

Shj(Aj,k
G )

,

which is equal to

=
1

dShG (i, j) + dShG (j, k)
.

On the other hand, (3) is equal to
1

dShG (i, k)
.

Therefore, in order to achieve our goal it is enough to prove that

dShG (i, k) 6 dShG (i, j) + dShG (j, k). (4)

Notice that this expression reminds of the triangle inequality of a distance. In fact, this is

the case. In the following section it will be shown that dShG is a distance on N . If, for the

moment, we assume that result, we have proved (4) and, consequently, the fact that using

a pivotal agent is never advantageous. At this point, one could consider a strategy based

on using a sequence of pivotal agents. Each one of these pivotal agents would negotiate

for access with the next one, except for the last one, who would negotiate for access to k.

It can be checked, in a similar way as we have done in the case of one pivotal agent, that

following this strategy will not increase the final profit retained by i. Again, the key point
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is the fact that dShG is a distance on N . Therefore, we have solved the problem proposed at

the beginning of this section. We can assert that if attaining communication with agent k

means certain economic profit for agent i, then the proportion of this profit that i can expect

to retain is equal to 1
dSh
G (i,k)

.

The following section is devoted entirely to proving that dShG is a distance on N for every

graph G = (N,L).

4. Results

In order to prove that dShG is a distance, we need some previous lemmas and propositions.

The first lemma is a well-known result in game theory, but, for the sake of completeness, we

provide a proof.

Lemma 1. Let M be a finite and nonempty set. Then

∑
{D⊆M :E⊆D}

pMD =
1

|E|

for every E ∈ 2M \ {∅}.

Proof. Let M be a finite and nonempty set and let E ∈ 2M \ {∅}. Consider uE ∈ GM

defined as

uE (D) =

 1 if E ⊆ D,

0 otherwise,

for every D ⊆M .

Take i ∈ E. On the one hand, from the properties of efficiency, null player and symmetry

of the Shapley value, it follows that

Shi(uE) =
1

|E|
.

On the other hand, we have

Shi(uE) =
∑

{D⊆M : i∈D}
pMD (uE(D)− uE(D \ {i})) =

∑
{D⊆M :E⊆D}

pMD .

2

Lemma 2. Let M,N be finite, nonempty and disjoint sets. Then

∑
{C,D⊆M :C∩D=E}

pMC pM∪ND∪T +
∑

{R,S⊆N :R∩S=T}
pNR p

M∪N
E∪S = pME pNT
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for every E ∈ 2M \ {∅} and T ∈ 2N \ {∅}.

Proof. Let M,N be finite, nonempty and disjoint sets. The equality stated in the lemma

will be proved by strong induction on k = |M |+ |N | − |E| − |T |.

1. Base case. If k = 0, that is, E = M and T = N , we have

pMM pM∪NM∪N + pNN p
M∪N
M∪N =

1

|M |
1

|M |+ |N |
+

1

|N |
1

|M |+ |N |
=

1

|M |
1

|N |
= pMM pNN .

2. Inductive step. Take E ∈ 2M \ {∅} and T ∈ 2N \ {∅}. By induction hypothesis we

know that

∑
{C,D⊆M :C∩D=A}

pMC pM∪ND∪Z +
∑

{R,S⊆N :R∩S=Z}
pNR p

M∪N
A∪S = pMA pNZ (5)

for every A ∈ 2M \ {∅} and Z ∈ 2N \ {∅} with E ⊆ A, T ⊆ Z and (A,Z) 6= (E, T ).

On the one hand, we have

∑
{A⊆M,Z⊆N :E⊆A, T⊆Z}

Ñ ∑
{C,D⊆M :C∩D=A}

pMC pM∪ND∪Z +
∑

{R,S⊆N :R∩S=Z}
pNR p

M∪N
A∪S

é
=

∑
{A⊆M,Z⊆N :E⊆A, T⊆Z}

∑
{C,D⊆M :C∩D=A}

pMC pM∪ND∪Z

+
∑

{A⊆M,Z⊆N :E⊆A, T⊆Z}

∑
{R,S⊆N :R∩S=Z}

pNR p
M∪N
A∪S

=
∑

{Z⊆N :T⊆Z}

∑
{C,D⊆M :E⊆C∩D}

pMC pM∪ND∪Z

+
∑

{A⊆M :E⊆A}

∑
{R,S⊆N :T⊆R∩S}

pNR p
M∪N
A∪S

=

Ñ ∑
{C⊆M :E⊆C}

pMC

éÑ ∑
{D⊆M,Z⊆N :E⊆D,T⊆Z}

pM∪ND∪Z

é
+

Ñ ∑
{R⊆N :T⊆R}

pNR

éÑ ∑
{A⊆M,S⊆N : E⊆A, T⊆S}

pM∪NA∪S

é
=

1

|E|
1

|E|+ |T |
+

1

|T |
1

|E|+ |T |
=

1

|E|
1

|T |
(6)

where we have used Lemma 1.
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And, on the other hand,

∑
{A⊆M,Z⊆N :E⊆A, T⊆Z}

pMA pNZ =

Ñ ∑
{A⊆M :E⊆A}

pMA

éÑ ∑
{Z⊆N :T⊆Z}

pNZ

é
=

1

|E|
1

|T |
(7)

where we have used again Lemma 1.

From (5), (6) and (7) we obtain the equality in the lemma.

2

Cooperative games that only take the values 0 and 1 are called {0, 1}-games. Given a

finite and nonempty set N , a {0, 1}-game v ∈ GN is said to be a simple game if it is monotonic

and v(N) = 1. We need to deal with simple superadditive games. Let SGN denote the set

of all simple superadditive games on N .

Notice that if v ∈ SGN , i ∈ N and v(N \ {i}) = 0 then

Shi(v) =
∑

{E⊆N :E 6=∅}
pNE v (E) .

We will use this equality in the following propositions.

Proposition 3. Let M,N be finite, nonempty and disjoint sets. Let u ∈ SGM and v ∈ SGN .

Let i ∈ M , j ∈ N be such that u(M \ {i}) = v(N \ {j}) = 0. Let us define w ∈ SGM∪N as

w(E ∪ T ) = u(E) ∧ v(T ) for every E ⊆M and every T ⊆ N . Then,

1

Shi(u)
+

1

Shj(v)
>

1

Shi(w)
.

Proof. We will prove the equivalent equality

Shi(u)Shj(v) 6 Shi(u)Shi(w) + Shj(v)Shi(w).

We have

Shi(u)Shj(v) =

Ñ ∑
{E⊆M :E 6=∅}

pME u(E)

éÑ ∑
{T⊆N :T 6=∅}

pNT v(T )

é
=

∑
{E⊆M,T⊆N :E,T 6=∅}

pME p
N
T u(E) v(T )
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which, by Lemma 2, is equal to

∑
{E⊆M,T⊆N :E,T 6=∅}

∑
{C,D⊆M :C∩D=E}

pMC pM∪ND∪T u(E) v(T )

+
∑

{E⊆M,T⊆N :E,T 6=∅}

∑
{R,S⊆N :R∩S=T}

pNR p
M∪N
E∪S u(E) v(T )

=
∑

{C,D⊆M,T⊆N :T 6=∅, C∩D 6=∅}
pMC pM∪ND∪T u(C ∩D) v(T )

+
∑

{E⊆M,R,S⊆N :E 6=∅, R∩S 6=∅}
pNR p

M∪N
E∪S u(E) v(R ∩ S)

=
∑

{C,D⊆M,T⊆N :C,D,T 6=∅}
pMC pM∪ND∪T u(C ∩D) v(T )

+
∑

{E⊆M,R,S⊆N :E,R,S 6=∅}
pNR p

M∪N
E∪S u(E) v(R ∩ S)

6
∑

{C,D⊆M,T⊆N :C,D,T 6=∅}
pMC pM∪ND∪T u(C)u(D) v(T )

+
∑

{E⊆M,R,S⊆N :E,R,S 6=∅}
pNR p

M∪N
E∪S u(E) v(R) v(S)

=
∑

{C,D⊆M,T⊆N :C 6=∅, D∪T 6=∅}
pMC pM∪ND∪T u(C)u(D) v(T )

+
∑

{E⊆M,R,S⊆N :R 6=∅, E∪S 6=∅}
pNR p

M∪N
E∪S u(E) v(R) v(S)

=
∑

{C,D⊆M,T⊆N :C 6=∅, D∪T 6=∅}
pMC pM∪ND∪T u(C)w(D ∪ T )

+
∑

{E⊆M,R,S⊆N :R 6=∅, E∪S 6=∅}
pNR p

M∪N
E∪S v(R)w(E ∪ S)

=

Ñ ∑
{C⊆M :C 6=∅}

pMC u(C)

éÑ ∑
{D⊆M,T⊆N :D∪T 6=∅}

pM∪ND∪T w(D ∪ T )

é
+

Ñ ∑
{R⊆N :R 6=∅}

pNR v(R)

éÑ ∑
{E⊆M,S⊆N :E∪S 6=∅}

pM∪NE∪S w(E ∪ S)

é
= Shi(u)Shi(w) + Shj(v)Shi(w).
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2

Proposition 4. Let N be a finite nonempty set. Let u, v ∈ SGN . Let i, j ∈ N be such that

u(N \ {i}) = v(N \ {j}) = 0. Then,

1

Shi(u)
+

1

Shj(v)
>

1

Shi(u ∧ v)
.

Proof. We can suppose that N = {1, . . . , |N |}.
For any H ⊆ N we consider uH , vH , wH ∈ SGN∪(−H) defined as

uH(E) = u(E ∩N),

vH(E) = v((E ∩ (N \H)) ∪ ((−E) ∩H)),

wH(E) = uH(E) ∧ vH(E),

for every E ⊆ N ∪ (−H).

We aim to prove that, for every H $ N and l ∈ N \H,

Shi(wH∪{l}) 6 Shi(wH). (8)

Let H $ N and l ∈ N \ H. Let us consider the game w′H ∈ SGN∪(−H)∪{−l} defined as

w′H(E) = wH(E \ {−l}) for every E ⊆ N ∪ (−H) ∪ {−l}. It can be easily verified that

Shi(wH) = Shi(w
′
H). Therefore, in order to prove (8), we can show that

Shi(wH∪{l}) 6 Shi(w
′
H). (9)

It can easily be proved that, for every E ⊆ N ∪ (−H) ∪ {−l},

wH∪{l}(E) =



wH(E) if l,−l /∈ E,
uH(E) ∧ vH(E \ {l}) if l ∈ E and − l /∈ E,
uH(E \ {−l}) ∧ vH((E \ {−l}) ∪ {l}) if l /∈ E and − l ∈ E,
wH(E \ {−l}) if l,−l ∈ E.

(10)
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We have

Shi(wH∪{l}) =
∑

{E⊆N∪(−H)∪{−l}:E 6=∅}
p
N∪(−H)∪{−l}
E wH∪{l}(E)

=
∑

{E⊆N∪(−H)∪{−l}: l,−l /∈E,E 6=∅}
p
N∪(−H)∪{−l}
E wH∪{l}(E)

+
∑

{E⊆N∪(−H)∪{−l}: l,−l∈E}
p
N∪(−H)∪{−l}
E wH∪{l}(E)

+
∑

{E⊆N∪(−H)∪{−l}: l∈E,−l /∈E}
p
N∪(−H)∪{−l}
E wH∪{l}(E)

+
∑

{E⊆N∪(−H)∪{−l}: l /∈E,−l∈E}
p
N∪(−H)∪{−l}
E wH∪{l}(E)

=
∑

{E⊆N∪(−H)∪{−l}: l,−l /∈E,E 6=∅}
p
N∪(−H)∪{−l}
E wH(E)

+
∑

{E⊆N∪(−H)∪{−l}: l,−l∈E}
p
N∪(−H)∪{−l}
E wH(E \ {−l})

+
∑

{E⊆N∪(−H)∪{−l}: l∈E,−l /∈E}
p
N∪(−H)∪{−l}
E wH∪{l}(E)

+
∑

{E⊆N∪(−H)∪{−l}: l∈E,−l /∈E}
p
N∪(−H)∪{−l}
(E\{l})∪{−l} wH∪{l}((E \ {l}) ∪ {−l})

=
∑

{E⊆N∪(−H)∪{−l}: l,−l /∈E,E 6=∅}
p
N∪(−H)∪{−l}
E w′H(E)

+
∑

{E⊆N∪(−H)∪{−l}: l,−l∈E}
p
N∪(−H)∪{−l}
E w′H(E)

+
∑

{E⊆N∪(−H)∪{−l}: l∈E,−l /∈E}
p
N∪(−H)∪{−l}
E

Ä
wH∪{l}(E) + wH∪{l}((E \ {l}) ∪ {−l})

ä
.

(11)

Now we will prove that, for every E ⊆ N ∪ (−H) ∪ {−l} with l ∈ E and −l /∈ E, the

following holds:

wH∪{l}(E) + wH∪{l}((E \ {l}) ∪ {−l}) 6 w′H(E) + w′H((E \ {l}) ∪ {−l}). (12)

Let E ⊆ N ∪ (−H) ∪ {−l} with l ∈ E and −l /∈ E. We consider the following three

12



cases:

a) If wH∪{l}(E) = 1 and wH∪{l}((E \ {l}) ∪ {−l}) = 0, then

1 = wH∪{l}(E) = uH(E) ∧ vH(E \ {l})

6 uH(E) ∧ vH(E) = wH(E) = wH(E \ {−l}) = w′H(E).

Therefore, w′H(E) = 1, from which we can derive (12).

b) If wH∪{l}(E) = 0 and wH∪{l}((E \ {l}) ∪ {−l}) = 1, then

1 = wH∪{l}((E \ {l}) ∪ {−l}) = uH(E \ {l}) ∧ vH(E)

6 uH(E) ∧ vH(E) = wH(E) = wH(E \ {−l}) = w′H(E).

Hence, w′H(E) = 1, and we conclude (12).

c) If wH∪{l}(E) = 1 and wH∪{l}((E \ {l}) ∪ {−l}) = 1, then

1 = wH∪{l}(E) = uH(E) ∧ vH(E \ {l}),

1 = wH∪{l}((E \ {l}) ∪ {−l}) = uH(E \ {l}) ∧ vH(E).

From these equalities we obtain uH(E \ {l}) = vH(E \ {l}) = 1. Therefore,

w′H((E \ {l}) ∪ {−l}) = wH(E \ {l}) = uH(E \ {l}) ∧ vH(E \ {l}) = 1,

w′H(E) = wH(E \ {−l}) = wH(E) = uH(E) ∧ vH(E) = 1.

Hence, (12) holds.

From (11) and (12) it follows that
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Shi(wH∪{l}) 6
∑

{E⊆N∪(−H)∪{−l}: l,−l /∈E,E 6=∅}
p
N∪(−H)∪{−l}
E w′H(E)

+
∑

{E⊆N∪(−H)∪{−l}: l,−l∈E}
p
N∪(−H)∪{−l}
E w′H(E)

+
∑

{E⊆N∪(−H)∪{−l}: l∈E,−l /∈E}
p
N∪(−H)∪{−l}
E (w′H(E) + w′H((E \ {l}) ∪ {−l}))

=
∑

E⊆N∪(−H)∪{−l}: l,−l /∈E,E 6=∅}
p
N∪(−H)∪{−l}
E w′H(E)

+
∑

{E⊆N∪(−H)∪{−l}: l,−l∈E}
p
N∪(−H)∪{−l}
E w′H(E)

+
∑

{E⊆N∪(−H)∪{−l}: l∈E,−l /∈E}
p
N∪(−H)∪{−l}
E w′H(E)

+
∑

{E⊆N∪(−H)∪{−l}: l /∈E,−l∈E}
p
N∪(−H)∪{−l}
E w′H(E)

= Shi(w
′
H). (13)

We have proved (9) and, consequently, (8) is also proved.

Notice that u∅ = u and v∅ = v. Therefore, w∅ = u ∧ v. From (8) we can derive that

Shi(wN) 6 Shi(w∅). Hence,

Shi(wN) 6 Shi(u ∧ v) (14)

and, therefore
1

Shi(wN)
>

1

Shi(u ∧ v)
. (15)

Consider v′ ∈ SG−N defined as v′(T ) = v(−T ) for every T ⊆ −N . Notice that wN(F ∪
T ) = u(F ) ∧ v′(T ) for every F ⊆ N and T ⊆ −N . From Proposition 3, we obtain

1

Shi(u)
+

1

Sh−j(v′)
>

1

Shi(wN)
.

Taking into consideration that Sh−j(v
′) = Shj(v), we have

1

Shi(u)
+

1

Shj(v)
>

1

Shi(wN)
,
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and this, together with (15), leads to

1

Shi(u)
+

1

Shj(v)
>

1

Shi(u ∧ v)
.

2

Theorem 5. Let G = (N,L) be a graph. Then, dShG is a distance on N .

Proof. The only non-trivial part is the proof of the triangular inequality. Let i, j, k ∈ N .

We must prove that

dShG (i, k) 6 dShG (i, j) + dShG (j, k).

We can suppose that dShG (i, j) < +∞ and dShG (j, k) < +∞.

Notice that Ai,kG (S) > Ai,jG (S) ∧ Aj,kG (S) for every S ⊆ N . We can easily derive that

Shi(A
i,k
G ) > Shi(A

i,j
G ∧ A

j,k
G )

which leads to
1

Shi(A
i,k
G )

6
1

Shi(A
i,j
G ∧ A

j,k
G )

. (16)

From Proposition 4, we know that

1

Shi(A
i,j
G ∧ A

j,k
G )

6
1

Shi(A
i,j
G )

+
1

Shj(A
j,k
G )

. (17)

From (16) and (17) we obtain

1

Shi(A
i,k
G )

6
1

Shi(A
i,j
G )

+
1

Shj(A
j,k
G )

,

which completes the proof.

2

Finally, we give an example that illustrates the different natures of the Shapley distance

and the best-known distance in graphs, the geodesic distance.

Example. Let us take the graph G considered in Section 3:
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Notice that the geodesic distance between 1 and 3 is equal to the geodesic distance

between 3 and 6. Let us see that, for the Shapley distance dShG , 3 and 6 are closer than 1

and 3.

In order to calculate dShG (1, 3), notice that 3, 4, 5 and 6 are null players in A1,3
G . This

implies that Sh1(A1,3
G ) = Sh1(A1,3

G |{1,2}), where A1,3
G |{1,2} denotes the restriction of A1,3

G to

2{1,2}. We have

A1,3
G ({1}) = A1,3

G ({2}) = 0, A1,3
G ({1, 2}) = 1,

from which we obtain Sh1(A1,3
G |{1,2}) = 1

2
. Thus, Sh1(A1,3

G ) = 1
2
. Therefore, dShG (1, 3) = 2.

In order to calculate dShG (3, 6), notice that 1, 2 and 6 are null players in A3,6
G . This implies

that Sh3(A3,6
G ) = Sh3(A3,6

G |{3,4,5}), where A3,6
G |{3,4,5} denotes the restriction of A3,6

G to 2{3,4,5}.

We have

A3,6
G ({3}) = A3,6

G ({4}) = A3,6
G ({5}) = A3,6

G ({4, 5}) = 0,

A3,6
G ({3, 4}) = A3,6

G ({3, 5}) = A3,6
G ({3, 4, 5}) = 1,

from which we can easily obtain that Sh3(A3,6
G |{3,4,5}) = 2

3
. Hence, Sh3(A3,6

G ) = 2
3
. Therefore,

dShG (3, 6) = 3
2
.

5. Conclusions

Given a graph, we have identified the nodes with agents, and supposed that each agent

can obtain a profit from achieving contact with another agent. However, if there is no

edge between these two agents, then a percentage of that profit must be given to other

intermediary agents. Our goal was to calculate, for a node in a graph, the cost of attaining

access to another node. This has been done by proving that certain function is a distance

on the set of nodes. This new distance in graphs indicates the level of difficulty in the

communication between any pair of nodes.
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