
Community Smells - The Sources of Social Debt:

A Systematic Literature Review

Eduardo Caballero-Espinosaa,b, Jeffrey C. Carverc, Kimberly Stowersd

aCenter for Research, Development, and Innovation in Information and Communication
Technology (CIDITIC) - Technological University of Panama

bComputing Systems Engineering Department - Technological University of Panama
cDepartment of Computer Science, The University of Alabama, Tuscaloosa, AL, USA

dTim Fletcher, Co., San Jose, CA, USA

Abstract

Context : Social debt describes the accumulation of unforeseen project costs
(or potential costs) from sub-optimal software development processes. Com-
munity smells are sociotechnical anti-patterns and one source of social debt.
Because community smells impact software teams, development processes,
outcomes, and organizations, we to understand their impact on software en-
gineering.

Objective: To provide an overview of community smells in social debt,
based on published literature, and describe future research.

Method : We conducted a systematic literature review (SLR) to identify
properties, understand origins and evolution, and describe the emergence of
community smells. This SLR explains the impact of community smells on
teamwork and team performance.

Results : We include 25 studies. Social debt describes the impacts of poor
socio-technical decisions on work environments, people, software products,
and society. For each of the 30 community smells identified as sources of
social debt, we provide a detailed description, management approaches, or-
ganizational strategies, and mitigation effectiveness. We identify five groups
of management approaches: organizational strategies, frameworks, models,
tools, and guidelines. We describe 11 common properties of community
smells. We develop the Community Smell Stages Framework to concisely

Email addresses: eduardo.caballero@utp.ac.pa (Eduardo Caballero-Espinosa),
carver@cs.ua.edu (Jeffrey C. Carver), kim.stwrs@gmail.com (Kimberly Stowers)

Preprint submitted to Information and Software Technology September 23, 2022

ar
X

iv
:2

20
9.

10
67

1v
1

 [
cs

.S
E

]
 2

1
Se

p
20

22

describe the origin and evolution of community smells. We then describe the
causes and effects for each community smell. We identify and describe 8 types
of causes and 11 types of effects related to the community smells. Finally,
we provide 8 comprehensive Sankey diagrams that offer insights into threats
the community smells pose to teamwork factors and team performance.

Conclusion: Community smells explain the influence work conditions
have on software developers. The literature is scarce and focuses on a small
number of community smells. Thus, the community smells still need more
research. This review helps by organizing the state of the art about commu-
nity smells. Our contributions provide motivations for future research and
provide educational material for software engineering professionals.

Keywords: Community smells, Social Debt, Software Development Teams,
Systematic Literature Review, Teamwork, Team Performance

1. Introduction

Historically, software developers, customers, end-users, and other stake-
holders have viewed the software development process as an entirely tech-
nical activity. To produce high-quality software, organizations commonly
hire qualified professionals, provide adequate infrastructure, and use efficient
project management approaches. A number of methods, tools, standards,
and other technical approaches support these activities [1]. However, hu-
man involvement in the software development process has led stakeholders
to recognize that it is also social activity [2] in which the interactions among
people are central. Therefore, software development is a socio-technical ac-
tivity where both social factors and technical factors are essential for success.
This link between social and technical factors also helps explain Conway’s
law [3], which states that design systems match the communication structures
of the organizations that produce it.

Together the social and technical decisions shape the work environment,
including the policies, procedures, and tools, that ultimately affect devel-
opers’ psychology. Imagine a situation in which an organization allocates
developers to three teams who work together to develop a mobile applica-
tion. Then, in the middle of the process, the project leader reorganizes the
teams (a social change) and introduces a new development methodology (a
technical change). The developers’ reactions to these changes can be mis-
trust, irritation, and miscommunication. When these reactions persist, they

2

increase cost and introduce social debt.
Social debt describes unforeseen project costs (or potential project costs)

related to sub-optimal software development teams [4]. To explain social
debt, researchers focus on identifying poor socio-technical decisions and their
impact on software development organizations. Community smells describe
connections between the poor socio-technical decisions that shape work envi-
ronments and their adverse effects on individuals and software development
teams. Tamburri et al. [5] define community smells as “sets of organiza-
tional and social circumstances, having implicit causal relations.” Commu-
nity smells primarily produce powerful emotions, stress social interactions,
affect team performance, and decrease software quality. Thus, as long as
they remain in place, community smells result in additional project cost.

The concept of community smells is similar to the Technical Debt (TD)
concepts of code smells and architectural smells. Code smells are symptoms of
poor or postponed correct implementation decisions [6]. In the end, they are
evidence of structural problems in the source code, e.g., spaghetti code [7].
Architectural smells are architectural decisions that negatively impact the
systems’ internal quality, e.g., applying design abstractions at the wrong
level of granularity [8]. Both code smells and architectural smells represent
factors that contribute to TD [9].

Although poor decisions are common triggers for all three types of smells
(code, architecture, and community), these smell types differ in how they
impact the software development process. Architectural smells, which focus
on wrong architectural decisions that impact the software design and code
smells, which result from decisions that negatively affect code quality, both
focus on technical aspects of the software. Conversely, community smells
also include the social aspects of software by focusing on poor decisions that
shape software development work settings and influence people’s behavior.
Therefore, we excluded architectural smells and code smells from our SLR’s
target topics since they show clear differences from community smells in the
elements they impact.

Two motivations drive the design of our systematic literature review
(SLR). The first is to provide an overall picture of community smells and
social debt to researchers and professionals in software engineering. So they
can better understand the concepts and characteristics of community smells.

Also, research on community smells has basically focused on four com-
munity smells, Organizational Silo, Black Cloud, Lone Wolf, and Radio Si-
lence/Bottleneck, which have impact in real scenarios [10, 11, 12, 13, 14,

3

15, 16]. These studies analyzed these community smells and their impact
on coordination, communication, and cooperation, which are critical factors
for successful teamwork in software development teams. However, the more
general literature on teamwork provides six additional factors for good team-
work like composition and cognition [17, 18]. Therefore, we are extending the
previous group of community smells and teamwork factors and conducting a
fine-grained analysis to relate them.

Based on our motivations, the main goal of this SLR is to perform a
comprehensive review of the community smells as sources of social
debt, define the connections between community smells and factors
for effective teamwork, and identify opportunities for additional
research on community smells. The key contributions of this study are:

• The first secondary study on community smells as the sources of social
debt in the context of software engineering;

• A description of the properties of community smells;

• A framework for the origin and evolution of community smells in soft-
ware development teams and organizations; and

• A mapping of the theoretical connection between the community smells
and critical factors for effective teamwork.

• Educational material (e.g., definitions, management approaches, and
properties) for software engineering professionals from different set-
tings, including academia, open-source projects, and closed-source soft-
ware projects.

2. Background

This section provides background information on social debt and commu-
nity smells. Then it describes factors for effective teamwork that we will use
to analyze the impact of community smells on software development teams’
performance.

2.1. Social debt and community smells

Social debt is a concept coined by sociological researchers over 50 years
ago [19]. This first definition of social debt adopted economic concepts to ex-
plain how the social obligations involved in repaying exchanged favors stress

4

the social relationships among the people involved in the transaction, i.e.,
creditors and debtors. The higher the number of strained relationships, the
larger the social debt.

Building on this concept, software engineering researchers have adopted
and applied social debt concepts to address the same phenomenon in software
development teams and their organizations [4, 5]. Over time, researchers
have focused on measuring social debt and identifying aspects of software
development teams that relate to the sources of social debt, i.e., community
smells [10, 11, 12, 20]. In other words, the presence of community smells
suggests that something is going wrong within the software development
teams, e.g., there are conflicts among teammates or there are no standards
for the team to follow. Over time, the presence of these community smells
leads to the accumulation of social debt.

2.2. Teamwork and factors for its effectiveness

Reviews on human resource management and psychology provides a con-
cise set of nine critical teamwork factors [17]. These nine factors were preva-
lent in studies about teamwork and showed high impact on team results. The
factors include six team properties and three conditions that affect the team
properties. Table 1 shows the nine factors.

Because effective teamwork is necessary for team performance, we believe
these factors can help produce additional valuable insight into the causes
and effects of the community smells. By analyzing the community smells in
light of these factors, we can provide more details about how the community
smells impact the intangible structure of teamwork and then the performance
of software development teams.

3. Methodology

We designed the methodology for this SLR following Kitchenham’s ap-
proach [21].

3.1. Defining the research questions

Cunningham first described TD as the postponed implementation of soft-
ware architecture decisions to reduce workload and allow for the release of
the most suitable functional software products for customers in the shortest

5

Table (1) Critical factors for teamwork effectiveness [17, 18]

Factor Description
1 Cooperation The mix of motivational drivers necessary for team-

work: the team’s attitudes, beliefs, and feelings.
2 Conflict The perceived incompatibilities in the interests, be-

liefs, or views held by at least one teammate.
3 Coordination The enactment of behavioral and cognitive mech-

anisms necessary to perform a task and transform
team resources into outcomes.

4 Communication The reciprocal process of sending and receiving in-
formation that forms and reforms teams’ attitudes,
behaviors, and cognition.

5 Coaching The enactment of leadership behaviors to establish
goals and set directions, leading to the successful ac-
complishment of these goals.

6 Cognition The shared understanding among teammates result-
ing from their interactions. Cognition includes knowl-
edge of roles and responsibilities, team objectives and
norms, and teammate knowledge, skills, and abilities.

7 Composition* The individual factors relevant to team performance:
good teammate’s features, the best configuration of
teammate knowledge, skills, attitudes, and diversity.

8 Context* The situational characteristics or events that influ-
ence the occurrence and meaning of behavior, and
the manner and degree to which various factors im-
pact team outcomes.

9 Culture* The assumptions people hold about relationships
with each other and the environment shared among
a group of people and manifest in individuals’ values,
beliefs, norms for social behavior, and artifacts.

* Influencing conditions

time [22]. In other words, teams trade software quality to speed up the de-
velopment process. To repay the TD, teams must refactor the software. Sub-
sequent TD researchers have focused on offering more definitions [23, 24, 25],
recognized other types of technical smells besides code smells [9, 26, 27],
causes [9], and awareness [28]. Other researchers have developed frameworks

6

for managing TD in large software development projects [29], agile software
development projects [30], and startups [31].

While TD focuses primarily on the technical aspects of software, develop-
ment teams can also face problems related to the social dimension of software
projects. A more recent concept in software engineering is social debt [4]. Re-
searchers adopted the idea of social debt from sociological research [19]. TD
and social debt have some similarities: risky decisions are common triggers
that affect software developers and software quality. However, there are dif-
ferences. TD focuses on postponed technical decisions and potential software
failures [9]. Social debt focuses on wrong socio-technical decisions that shape
work environments. These decisions then influence the welfare, social inter-
actions, and performance of software developers [5]. So, while TD focuses on
the technical aspects of software, social debt focuses on people.

As an initial step in clearly understanding social debt in software engi-
neering and the differences between social debt and TD, we start by analyzing
definitions. Therefore, the first research question is:

RQ1 - How have software engineering researchers defined so-
cial debt?

Social debt accumulation can start with one or more wrong socio-technical
decisions. The more bad decisions, the greater the negative effects. As long
as the bad decisions remain unfixed, their effects persist and their intensity
increases. As an analogy to code smells in TD, the connection between
wrong socio-technical decisions and adverse effects on software organizations
are called community smells. The ongoing presence of community smells
leads to the accumulation of social debt.

The community smells play a critical role in disrupting the organizational
and social structures that define software engineering communities. Besides
social interactions, community smells impact organizational finances and rep-
utation due to low-quality software products affecting customers. This chain
of events can put the business continuity of software development organiza-
tions at risk. To provide a broad overview of the potential sources of social
debt, the second research question is:

RQ2 - What community smells appear in the literature?

7

The prevalence of community smells in software engineering communities
lead to social debt. Such a dynamic process can be from social, technical,
and organizational perspectives. Consequently, it is crucial to identify and
examine how management approaches mitigate the community smell effects
and pay back the social debt. Therefore, the third research question is:

RQ3 - What approaches for community smells management
appear in the literature?

Social debt is a relatively young topic in software engineering. The social
debt literature does include studies that examine the effects of community
smells in the software development process. However, it is difficult to obtain a
consistent understanding of the characteristics of community smells because
the information is scattered throughout the available studies. Therefore, it
is necessary to construct a list of properties along with their descriptions.
Based on these motivations, the fourth research question is:

RQ4 - What are the properties of the community smells?

A previous paper indicated the need for more research to better under-
stand the birth and growth of community smells [32]. To address this need,
the fifth research question is:

RQ5 - How do community smells originate and evolve in soft-
ware development settings?

The standard representation for community smells is through cause and
effect models. However, we observed that the causes of the community smells
described events occurring or emerging in different ways. Prior to our formal
analysis of the papers, we identified the need to characterize the occurrence of
causes and effects of community smells using probability theory about types
of events, i.e., dependent or independent. This analysis can offer valuable
insights into the patterns that characterize the occurrence of the causes and
effects of community smells. Therefore, the sixth research question is:

8

RQ6 - What types of events characterize the causes and effects
of community smells?

Prior research described an approach to categorize community smells
based on teamwork factors, i.e., cooperation, communication, and coordi-
nation [5, 11]. However, the small number of factors and the limited number
of community smells that researchers have characterized motivated us to
search for robust theories on teamwork factors to extend the prior work. In
addition, there is a need to characterize all of the causes and effects of com-
munity smells and establish their connections with bad teamwork practices.
These connections can offer more insight into poor performance in software
development teams. Therefore, the last two research questions are:

RQ7 - What are the types of causes and effects of community
smells found in the literature?

RQ8 - How do the community smells affect teamwork in soft-
ware development teams?

3.2. The source selection and search

To identify more relevant studies, we used three keywords. First, we in-
cluded the keyword community smell because it is the focus of our work.
Second, community smells are part of the larger social debt concept. Third,
we included software engineering to help us exclude studies from other do-
mains, like social science where social debt originated [19]. With the aim of
guaranteeing the coverage of research on community smells as sources of so-
cial debt in software engineering, we executed query strings on the advanced
search interfaces of the following databases: ACM, IEEE Xplore, Science
Direct, Springer, Scopus, and Science Citation Index (Web of Science), and
Google Scholar.

To ensure broad coverage and identify papers that describe community
smells in various research contexts, we searched in full text, all fields, and
anywhere. Table 2 provides the search details for each database.

9

Table (2) Search Strings

Database Search string Search based on
1 ACM DL (”community smells” AND ”social

debt”) AND ”software engineering”
Keywords anywhere

2 IEEE
Xplore

(”community smells” AND ”social
debt”) AND ”software engineering”

Keywords in full text
and metadata

3 Science
Direct

(”community smell” OR ”social
debt”) AND ”software engineering”

Keywords

4 Springer social AND debt AND software
AND engineering AND ”commu-
nity smells”

Words and an exact
phrase

5 SCOPUS (”community smells” AND ”social
debt”) AND ”software engineering”

Keywords in all fields

6 Web of
Science

TS=(community smells* OR social
debt) AND SU=Computer Science

Topic & research
area

7 Google
Scholar

”community smells” + ”social
debt” + ”software engineering”

Keywords anywhere

3.3. Selection criteria

Table 3 provides the inclusion/exclusion criteria. While most of the se-
lection criteria are standard, we did need some specific inclusion criteria
because community smells and social debt are relatively new topics in soft-
ware engineering. The first criterion helped us select those papers examin-
ing community smells as socio-technical triggers of social debt. Although
an SLR regularly compiles empirical studies, our second inclusion criterion
helps identify non-empirical studies to cover the development of new theories
and corresponding future work. Also, the sixth inclusion criterion is there
because the seminal paper on social debt was published in 2013 [4].

3.4. Review execution

The search identified 95 studies. The first author read the abstracts, key-
words, and conclusions for each study and determined that the information in
these sections was insufficient for determining inclusion and exclusion. Thus,
the first applied the inclusion and exclusion criteria to examine the full text
of the papers. This full-text review identified in 25 studies for inclusion.

To illustrate the reason for this step, the paper “Interpersonal conflicts
during code review” [33] was not relevant according to the abstract, key-

10

Table (3) Inclusion and exclusion criteria

Inclusion criteria # Exclusion criteria
1 Relevant studies to community

smells as phenomena explaining so-
cial debt accumulation in software
engineering

1 Studies not written in English

2 Empirical and theoretical studies,
either qualitative or quantitative,
examining community smells

2 Unavailable or unpublished
studies

3 Studies discussing approaches to
manage community smells

3 Extended abstracts

4 Replication studies 4 Position and duplicated papers
5 Publications from peer-reviewed

venues such as journals, confer-
ences, and workshops

5 Book chapters

6 Studies published since 2013 6 Tutorials and magazines

words, and conclusion. However, a full-text review of the paper, searching
for “community smells,” shows that it is relevant because it discusses the
relationship between interpersonal conflicts and community smells.

As another illustration, a study about challenges to DevOps in indus-
try [34] did not contain explicit information about community smells in the
abstract, keywords, and conclusion. However, a full-text analysis found the
study discussed eight challenges that undermine the adoption of DevOps
practices. Three of those eight challenges reflected the effects of community
smells, where a limited number of qualified personnel was a constant source
of problems. Consequently, process delay or waste of time was a common
community smell effect.

To validate the first author’s results, the second author applied the inclu-
sion and exclusion criteria to a randomly selected 20% of the studies. The
first and second authors agreed on all of these papers. Then the first au-
thor went back and examined the remaining papers to ensure there were no
potential problems. This review resulted in no other changes.

Finally, we used a standard backward snowballing process. After iden-
tifying the final list of included studies from the literature search above,
we checked the references of each study, using the same inclusion approach
described above. However, we did not identify any additional papers that

11

needed to be included.

3.5. Data extraction

To extract data about community smells from the 25 included studies,
we used the data items shown in Table 4. This table also indicates which
research questions motivated the inclusion of each data item.

Table (4) Items for data extraction

Data item Description RQ
Study identifier A unique digit identifier for a paper -
Title The title of the paper -
Research con-
tributions

Research results, e.g., definitions, models, and
tools

1, 2, 3

Property A qualitative or quantitative attribute describ-
ing the nature of community smells.

4, 5, 6

Community
smell

Because the representation of community smells
is a causality model, this data item registers the
names assigned to every model.

7, 8

Causes The sociotechnical events triggering the effects
of community smells.

7, 8

Effects The sociotechnical events produced by the
causes of community smells.

7, 8

Type of cause The feature assigned to a community smell
cause based on its connection with a critical
teamwork factor.

7, 8

Type of effect The feature assigned to a community smell ef-
fect based on its connection with a critical team-
work factor.

7, 8

3.6. Data analysis

To answer RQ1, we first listed the definitions of social debt identified in
the literature. Next, we include definitions of two related concepts: socio-
technical debt focuses on problems that arise from social causes; and social
sustainability debt focuses on the impact social debt has on society. Finally,
we synthesized this information to provide a common understanding of social
debt in software engineering.

12

For RQ2, we extracted information that describes the origin and causal
relationship of each community smell. The information included the causes,
effects, and descriptions of each smell. While the literature did indicate the
possibility of additional community smells, the ones presented here are the
ones that were most frequently reported.

To answer RQ3, we collected data on the research contributions from the
included studies. The data included the contribution name, description, and
application. Then we performed a topic-independent classification according
to Petersen, et al.’s updated guidelines [35]. We listed and explained cate-
gories to classify the types of research contributions according to the context
of our study. Appendix A provides the details for each category.

To answer RQ4, the first author extracted data from the results and
discussions of the included studies to construct the features and behaviors of
community smells. Then he drafted a list of properties and their descriptions
for the community smells. The second author reviewed the properties and
suggested adjustments to arrive at the final version.

For RQ4, to provide a straightforward explanation of the origin and evo-
lution of community smells, we borrowed a metaphor from public health to
represent the community smells as chronic conditions. A chronic condition
is “a health condition or disease that is persistent or otherwise long-lasting
in its effects or a disease that comes with time” [36]. Thus, it seemed fitting
to use this metaphor to describe community smells that behave like chronic
conditions in software development teams and organizations.

We used the National Cancer Institute’s framework for the stages of can-
cer (a chronic condition)1 to represent the origin and evolution of community
smells. This stage-based representation can help teams diagnose the status
of community smells as their effects worsen and spread. The first author
developed the initial version of the framework. The second author reviewed
and suggested adjustments to arrive at the final version.

To answer RQ6, the first author extracted the causes and effects of the
community smells. Then all three authors met to review the collected data.
The authors recognized that causes had different patterns in how they occur
or emerge. Therefore, the authors agreed to characterize the causes and ef-
fects of the 30 community smells. The first author characterized the causes
and effects as either dependent, meaning they rely upon other events or inde-

1Cancer staging systems

13

https://www.cancer.gov/about-cancer/diagnosis-staging/staging

pendent, meaning they do not. Finally, the second author reviewed the first
author’s work and made suggestions to arrive at the final version.

To answer RQ7 and RQ8, we coded information about the causes and
effects of the community smells. The following subsections explain the design
and execution of our coding process.

3.6.1. Defining the need for coding

The three authors met and reviewed the causes and effects of the 30 com-
munity smells. Because we observed large amount of qualitative information
present, we decided it was important to code this information to produce
more concrete results.

3.6.2. Generating the codes

The first step in the coding process is to generate the set of codes. To gen-
erate the codes, the first author reviewed teamwork literature [17, 18] and the
papers included in the SLR. He extracted high-level concepts, sub-concepts,
and descriptions. Then he organized the concepts into core categories (based
on high-level concepts) and subcategories (based on sub-concepts). The 12
core categories consisted of the nine critical factors for effective teamwork
(Table 1) and three concepts from the included studies: economic impact,
technical debt effect, and community smell. The 29 sub-concepts comprised
the subcategories. Appendix B provides the list of codes and descriptions.

3.6.3. Reviewing the codes

The three authors met and reviewed the initial list of codes and descrip-
tions. The second and third authors made suggestions to clarify the codes.
The three authors then met again and tested out the codes on a random
set of causes and effects for the community smells. The results of this test
indicated that the codes were useful for characterizing the sample of causes
and effects. Therefore, we launched the process of coding the full dataset.

3.6.4. Conducting the coding

We used an iterative coding process, conducted primarily by the first and
third authors. For the initial iteration, the first author performed the high-
level and fine-grained coding. Using a online spreadsheet as an interaction
mechanism, he provided the code along with his rationale. Then, the third
author went through these comments and either agreed or provided feedback
about how to adjust the codes.

14

In cases where the third author did not fully understand the code or the
rationale, the authors discussed the cause or effect to arrive at a common
understanding. For instance, the authors discussed some of the details about
the causes and effects of community smells described in the papers to ensure
we had the same understanding. In other cases, we had to infer information
from the papers when the information was either ambiguous or incomplete.

In addition, the structure of the community smells consists of causes and
effects. Most causes and effects include two or more specific socio-technical
events. We split the descriptions of causes and effects containing multiple
socio-technical events into more atomic items. However, some causes and
effects still required two codes to characterize them. We used the label dual
nature for double codes as we wanted to identify the essence of every single
cause and effect of community smells.

Over the whole process, we interacted through 333 comments in the on-
line spreadsheets. After this process, all three authors met to discuss the
strategies to visualize the results.

3.7. Visualization

We used R to plot the results on bar charts and Sankey diagrams. A
Sankey diagram is a flow diagram used to illustrate the flow of values (e.g.
energy, material, or cost) within systems [37, 38]. The Sankey diagrams have
been useful in supporting the analysis of systems flows in medicine [39] and
energy [40, 41, 38]. These studies show that Sankey diagrams help clearly
visualize the connections among multiple variables. Because our work links
causes to community smells to effects, we found Sankey diagrams to be a
helpful visualization of the relationships.

In our case, the Sankey diagrams consist of three sets of nodes to show the
connections between the causes and effects of community smells. The nodes
on the left side of the diagrams represent the causes of community smells.
The nodes in the middle represent the community smells. The node on the
right side of the diagram represents the effects, categorized by teamwork
factors (e.g., cooperation, coordination, and communication).

The flows in the diagrams represent connections between the causes and
effects for the community smells and teamwork factors. The label for each
node also includes the number of incoming and outgoing connections. The
relationships represented here are many-to-many relationships.

15

4. Reporting the results

Appendix C lists the 25 studies included in the SLR. We categorized
24 studies as empirical and one as theoretical according to Appendix A.
Empirical studies conducted by Tamburri [5, 11, 20, 42] and Palomba [10]
offer information about the identification of the causes and effects of commu-
nity smells in practice, information about the impact on work settings, and
management approaches. The remaining included studies provide further
information on community smells in relationship with development commu-
nities and processes [14, 32, 33, 34, 43, 44, 45, 46] and research contribu-
tions such as models [12, 13, 16, 47, 48, 49, 50, 51, 52, 53], organizational
strategies [15], and tools [54]. We organized our results around the research
questions described in Section 3.

4.1. RQ1: How have software engineering researchers defined social debt?

The first researchers to define social debt in software engineering based
their definition on sociological concepts that help explain how socio-technical
problems affect software projects. This seminal work informally defined so-
cial debt as “unforeseen project costs connected to a suboptimal development
community.” The initial description of social debt focused on unforeseen
project costs resulting from poor socio-technical decisions that affect the so-
cial interaction and performance of software development communities. This
work describes the primary difference between technical debt and social debt
is that the latter impacts people [4].

A later empirical study identified the core concepts that shaped the for-
mal definition of social debt. An interpretative framework modeled the inter-
action among these concepts and demonstrated how software development
organizations could accumulate social debt. The elements that play a crucial
role in explaining social debt include: Socio-technical decisions, community
smells, sub-optimal team organizational, and sub-optimal social structures .
Thus, the authors formally define social debt as “a cumulative and increasing
cost in the current state of things, connected to invisible and adverse effects
within a development community” [5].

The relationship between social debt and technical debt suggests another
important concept. Socio-technical debt is the result of social debt that
includes technical problems in software artifacts, e.g., documentation and
software components. Like social problems, these technical problems can

16

also arise from incorrect socio-technical decisions. In other words, TD can
be a consequence of social debt [20].

Finally, social sustainability debt is the hidden effect of past decisions
about software systems that negatively affect social justice, equity, and fair-
ness, or which lead to an erosion of trust in society [55]. For instance,
software built based on wrong socio-technical decisions that lead to social
debt may affect social relationships between the developers and society, e.g.
customer organizations or social communities. Because later papers include
aspects of social sustainability debt as part of the standard definition of social
debt (e.g. by including community smells related to software development
organizations or society [42]), we do not find any concepts that expand the
definition of social debt.

However, social sustainability debt may be a helpful category for commu-
nity smell effects that impact the final software users in society.

In summary, organizations that incur social debt have leaders or project
managers who make decisions that negatively impact people’s well-being,
team performance, and software quality. When these wrong decisions remain
unfixed, software development teams and organizations accumulate socio-
technical effects, including 1) adverse human reactions, 2) strained social
relationships, 3) faulty software artifacts, 4) low-quality software products,
and 5) and economic impact. Therefore, organizations need to address poor
socio-technical decisions and repay the social debt.

4.2. RQ2: What community smells appear in the literature?

The 30 community smells listed and described in Table 5 are those most
frequently reported in the software engineering literature [5, 20, 42, 10, 11].
Researchers represent a community smells through a cause and effect model.
Appendix D shows the causes and effects of the 30 identified community
smells. The causes are adverse social and organizational situations resulting
from the incorrect socio-technical decisions. The effects depict the impact of
the incorrect socio-technical decisions on software development teams, e.g.,
tense social interactions, personal and professional misconduct, and faulty
software artifacts.

17

Table (5) Community smells found in the literature

Name Description

1 Architecture by
osmosis

This smell describes people making architecture deci-
sions based on inappropriate information management.
While some teammates manage and filter information
through undefined communication channels or methods,
others use different standards to document change re-
quests. These actions cause problems with locating ar-
chitecture decision sources, waste of time, and unstable
architecture configuration [20].

2 Architecture
hood

The smell emerges when decision-making teams in
charge of architecture decisions work remotely or dis-
tant from teammates. Thus, cooperation is challenging.
Developers cannot exchange communications with the
software architects responsible for those decisions caus-
ing implementation problems [5].

3 Black cloud This smell is present when organizations do not pro-
vide the conditions for social interactions and effective
communication between teammates. Thus, the condi-
tions do not support the exchange of knowledge during
software development processes, e.g., professional expe-
rience or understanding of projects in progress [5, 10].

4 Class cognition In this smell, refactoring makes the modular struc-
tures and refactored classes more difficult to understand.
Thus, other teammates, including current developers
and newcomers, spend time and effort understanding
the new environment version and file locations [10].

5 Code red It is a smell denoting the existence of highly complex
classes. Thus, a limited number of developers, i.e., 1–2
people at most, can manage such classes [10].

6 Cognitive dis-
tance

In software engineering, it is the distance that devel-
opers perceive on the physical, technical, social, and
cultural levels concerning peers with considerable back-
ground differences. The effects are associated with, for
example, resource management issues, conflicts among
teammates, and code smells [42].

Continued on next page

18

Table 5 – continued from previous page

Name Description

7 Cookbook
development

Developers are stuck in how they usually work accord-
ing to old-framework-based cookbooks, e.g., the water-
fall model. They do not accept innovative ideas or new
ways of working, e.g., agile methods, that change their
comfort zones. Consequently, software product features
do not fulfill customer’s expectations [42].

8 DevOps clash The smell describes clashes between development and
operations teams from multiple geographical locations
with contractual obligations to either development or
operations activities. These clashes lead to a slower de-
velopment process and ineffective operations [42].

9 Disengagement It is a situation where developers think the software
product is mature enough. Then they send it to op-
erations technicians even though the software is unfin-
ished. This circumstance reflects a lack of curiosity from
the developers’ side, ending in missing software features
or applying wild assumptions [42].

10 Dispersion This community smell concerns a fix or refactoring that
causes the fragmentation of an existing group, working
in or being part of a collaboration network. Functional-
ity rearrangements also lead to haphazard work. Finally,
coordinating and carrying out maintenance activities is
more challenging [10].

11 Dissensus It is the inability to achieve consensus on how to proceed
despite repeated attempts at doing it. Therefore, code
smells detected in software components remain without
the required adjustments [10].

12 Hyper commu-
nity

The smell refers to a highly connected community sen-
sible to groupthink. It also influences smaller subcom-
munities in its network. Consequently, it leads to social
turbulence and faulty software components [42].

13 Informality ex-
cess

Excessive informality is the relative absence of informa-
tion management and control protocols. These condi-
tions lead to information spillover and low accountabil-
ity of teammates [42].

Continued on next page

19

Table 5 – continued from previous page

Name Description

14 Institutional
isomorphism

It is the similarity of processes or structures of one soft-
ware development group or sub-community to those of
another. This condition can be the result of imitation or
independent development under the same constraints.
The effects can include lack of innovation, stagnancy,
and communication [42].

15 Invisible archi-
tecting

It is a situation in which teammates document software
architecture decisions and register meeting agreements
inconsistently. Consequently, the descriptions of such
decisions, necessary for the software architecture pro-
cess, become invisible. The lack of accurate information
generates, for example, decision unawareness and con-
flicts among teammates [20].

16 Leftover techie This smell consists of a broken collaborative network.
Also, there is no effective communication between de-
velopers and technicians (e.g., help desk, operation, and
maintenance). The technicians are not usually involved
in multiple aspects of the software development process
to have a shared knowledge of software features [5].

17 Lone wolf This smell occurs when defiant teammates carry out
their work irrespective or regardless of their peers. This
smell reflects poor communication addressing project
needs. The effects are, for instance, unsanctioned archi-
tecture decisions across the development process, code
smells, and project delays [11, 12].

18 Lonesome archi-
tecting

Non-architect teammates see the need to make archi-
tecture decisions because the current architects are too
few and far apart. These non-architects make decisions
without consulting with experts involved in such deci-
sions. From a social perspective, developers are unaware
of what they are doing. Also, this scenario leads to in-
compatibility problems and faster decision-making [20].

19 Newbie free-
riding

Newcomer teammates must understand by themselves
what to do and for whom, which leads to the free-riding
of older employees. This unfriendly work environment
adds more pressure to the team and affects people’s psy-
chological state [42].

Continued on next page

20

Table 5 – continued from previous page

Name Description

20 Obfuscated ar-
chitecting

It occurs when multiple subteams of a development net-
work lack the organizational and the socio-technical vi-
sion required for harmonized operations. For instance,
projects need new developers to implement changes to
legacy and new products. However, newcomers included
in projects lack the technical background to deal with
legacy products. Among effects, teams faced waste of
time, code smells, and developers’ frustration [20].

21 Organizational
silo

This community smell is associated with task coordina-
tion problems. Software development tasks are some-
times not interconnected with each other. This smell
sets challenges to check task dependencies and non-
conducive conditions for effective communication among
teammates performing tasks. This scenario puts the
socio-technical congruence at risk [5, 11].

22 Organizational
skirmish

An organizational skirmish is a scenario where teams
have differences over their organizational cultures. It
makes the work of project managers difficult. The im-
pact is notorious on productivity, e.g., project delays [5].

23 Power distance The distance that less powerful software development
teammates perceive with those power-holder team-
mates, e.g., experienced teammates or decision-makers.
It finally disrupts the software process and impacts or-
ganizational finances [42].

24 Priggish mem-
bers

They are pedant teammates demanding of others point-
lessly precise conformity or exaggerated propriety, which
is annoying. The attitude frustrates teammates and af-
fects the software process [42].

25 Prima donnas This smell indicates the presence of teammates working
in isolation. They are unwilling to welcome the change
of legacy products and support from other teammates.
These teammates prevent the organization from innova-
tive solutions or processes and effective communication
and collaboration [5].

Continued on next page

21

Table 5 – continued from previous page

Name Description

26 Radio silence or
Bottleneck

It is a scenario where leaders and teammates perform
tasks in very formal and complex organizations. Un-
der these conditions, team communication structures are
not conducive to spread information across the teams ef-
ficiently. For instance, a person working as a unique in-
formation intermediary for different teams leads to com-
munication overload and massive delays [5, 11].

27 Sharing villainy This community smell depicts work environments where
the goal of sharing reliable knowledge or information is
a challenge. Organizations do not provide the expected
conditions for knowledge sharing, like opportunities for
meetings and incentives. Hence, some teammates do
not see knowledge sharing as a productive activity for
projects’ completion [5].

28 Solution defi-
ance

This smell describes conflicts between teams. Team-
mates with similar deep-level factors (e.g., technical
background) and organizational cultural beliefs (e.g.,
values and norms) create subteams. Then they go into
conflicts in decision-making meetings since every group
supports their opinions on potential solutions [5].

29 Time warp After changes in organizational structures and processes,
experienced teammates wrongly assume time frames for
exchanging communications and no need for explicit co-
ordination. Some effects of this community smell are
unsatisfied customers and faulty software [42].

30 Unlearning Components of training courses, e.g., technological in-
novations and best practices, become unfeasible learning
material when it is shared with older teammates. These
teammates show a very high experience diversity. Con-
sequently, the updated accumulated knowledge is at risk
of being gradually lost [42].

4.3. RQ3: What approaches for community smells management appear in
the literature?

This section describes the five types of management approaches we identi-
fied based on the classification scheme in Appendix A: organizational strate-
gies, frameworks, models, tools, and guidelines. The management approaches

22

can help monitor and mitigate community smells and pay back the accumu-
lated social debt. Table 6 provides an overview of the approaches. The
following subsections provide more detail on each type.

Table (6) Approaches to managing social debt

Group Approach Key aspects

Organizational
strategies

Socio-technical decisions Strategies aimed at mitigating the
effects of community smells in
practice [5, 15, 20, 42]

Frameworks

DAHLIA Metrics-based framework: deci-
sion popularity, decision aware-
ness, mean architecture incommu-
nicability, and average per-person
delay [20]

Socio-technical Quality
framework

40 socio-technical quality metrics
comprising five categories: Devel-
oper Social network, Sociotechni-
cal, Core Community Members,
Turnover, and Social Network
Analysis [11, 13, 53]

Models

Statistical Prediction models for correlat-
ing community smells and code
smells [10], predicting bug-prone
code components [47], examining
the impact of gender diversity in
teams on mitigating community
smells [12, 16], automatically de-
tecting community smells in open-
source projects with high preci-
sion [48, 49, 50], and predicting
community smells on software de-
velopers based on sentiment anal-
ysis [51, 52]

Social Network Social-network-based models for
building formal definitions of com-
munity smells [11] and quantify
forms of social debt in software ar-
chitecture activities [20]

Continued on next page

23

Table 6 – continued from previous page

Group Approach Key aspects

Tools

CodeFace4Smell Extension of CodeFace tool that
detects Organizational silo, Black
cloud, Lone wolf, and Radio si-
lence [11]

YOSHI Identify development communi-
ties, diagnose their health based on
six factors, and potential for mon-
itoring social debt [54]

Guidelines
Managing team compo-
sition

List of 13 software engineering
communities and their relevant
features [42]

4.3.1. Organizational strategies

Organizational strategies are socio-technical decisions designed and im-
plemented by the organizations studied by researchers [5, 42, 20]. The pur-
pose of these strategies is to mitigate community smells and pay back the
accumulated social debt. We identified 35 organizational strategies in the lit-
erature. Table 7 shows the organizational strategies, the target community
smells, and the mitigation effectiveness.

Table (7) Organizational strategies found in the literature

Organizational strategy Community smell Effectiveness

Stand-up voting [5] Architecture hood Partial

Create communication plan [15] Black cloud Full

Social wiki [5]

Black cloud

No data1
Organisational silo
Prima donnas
Sharing villainy
Solution defiance

Architecture knowledge exchange
through redocumentation, workshops,
and presentations [42]

Cognitive distance Full

Architect-as-a-coach [42]
Cross-functional and community-wide
review of code, designs, and operations
procedures [42]

Continued on next page

24

Table 7 – continued from previous page

Organizational strategy Community smell Effectiveness
Designing an architecture on the basis
of the perceived cognitive distance [42]
Professional communication intermedi-
aries [42]
Stimulating engagement in newcomers,
and designing architecture to accommo-
date buddy pairing [42]

Expectation management, and man-
agers and architects using knowledge
brokers to disseminate and oversee ex-
pectations [42]

Cookbook develop-
ment

Full

Using agile methods: in particular, em-
ploying the protecting and interface role
of Scrum master [42]

Community-wide engagement, includ-
ing operations staff, clients, and user
panels [42]

DevOps clash Full

Knowledge brokers and a new service
or community coordinator for efficient
working [42]
Nearshoring [42]
Standardization of software design and
implementation, then separation be-
tween development and operations, and
then operations offshoring [42]

Designing a people-oriented rather than
feature-oriented architecture [42]

Disengagement Full

DevOps shift-left approach to address
earlier development issues and having
operations staff also act as develop-
ers [42]

Architect-as-a-coach [42] Hyper community Full
Inciting doubt through discussion and
reverse logic [42]

Daily stand-ups, and keeping track of
actions, agreements, and expectations
through work-division artifacts [42]

Institutional isomor-
phism

Full

Continued on next page

25

Table 7 – continued from previous page

Organizational strategy Community smell Effectiveness
Open communication and informality,
and model-based mediation of knowl-
edge [42]

Architecture board [20]
Invisible architect-
ing Partial
Lonesome architect-
ing
Obfuscated archi-
tecting

Full circle [5] Leftover techie Partial

Mentoring [15] Lone wolf Full
Restructure the community [15]

Restructure the community [15] Organizational silo Full
Create communication plan [15]
Mentoring [15]

Architect-as-a-coach [42] Newbie free-riding Full
Coordination management and engage-
ment creation [42]
Explicit empowerment of architecture
decision changes [42]
Organizational monitoring—for exam-
ple, anonymous mood polling [42]

Harmonizing responsibilities, and using
Scrum and agile methods [42]

Priggish members Full

Culture conveyors [5] Prima donnas Partial
Sharing villainy

Community-based contingency plan-
ning [5]

Prima donnas Full

Solution defiance

Cohesion Exercising [15] Radio silence or Bot-
tleneck

Full

Mentoring [15]
Create communication plan [15]
Learning community [5] Partial

Architect-as-a-coach [42] Time warp Full

Continued on next page

26

Table 7 – continued from previous page

Organizational strategy Community smell Effectiveness
Better syncing of coordination and
communication of architecture deci-
sions and better time estimation or
evidence-based scheduling [42]
Devoting more resources to risk engi-
neering [42]

Ad hoc individual training for the more
experienced developers [42]

Unlearning Full

More active organizational approaches
and resources for architecture knowl-
edge sharing [42]

According to our findings, the team leaders who design and implement or-
ganizational strategies to mitigate community smells and pay back social debt
should possess an appropriate background. In addition to project and team
management skills, leaders should have experience making socio-technical de-
cisions and tracking their impact. They should be familiar with social debt
and community smells to identify them in practice. They also need a deep
understanding of the standards, polices, and procedures of the organization.
These skills will help leaders to build more effective organizational strategies,
avoid side effects, and adjust the work environment, if needed.

4.3.2. Frameworks

We identified two frameworks that address social debt in software devel-
opment settings.

The first framework is the Socio-technical Quality framework [11]. The
framework consists of 40 socio-technical quality factors along with their met-
rics that researchers extracted from the literature. These metrics help define
stability thresholds where the occurrences of community smells do not in-
creases over time. The thresholds allow development teams to predict and
mitigate the effects of the community smells. For example, one of the 40
metrics is the number of developers or community members. The metric in-
dicates that community smells increase as long as the number of community
members is higher than 50 and less than 200.

1The strategy was being implemented when the study finished the data analysis.

27

Further work by Catolino, et. al, defined thresholds to predict the vari-
ability of community smells [13]. The socio-technical factors helped deter-
mine how much a community smell increases or decreases in software devel-
opment teams over time. Also, Palomba assessed the performance of within-
and cross-project models for community smell prediction based on the 40
socio-technical quality factors [53]. According to the results, in case of a
lack of historical data of projects, cross-project models represent a promis-
ing solution, yet they still need improvement. Additional research defined
statistical prediction models using metrics from this Socio-technical Quality
framework [10, 12]. The next section discusses the prediction models.

Second, the DAHLIA framework quantifies social debt attributes related
to the dissemination of software architecture decisions to teammates. DAHLIA
contains of four metrics that systematically measure problems with communi-
cating architecture decisions and estimate the social debt in monetary terms.
Although DAHLIA’s metrics resulted from empirical data, this theoretical
framework still requires more empirical validation [20].

The two frameworks described above may help reveal the causes of com-
munity smells and anticipate the effects that lead to social debt. The pre-
ventive feature of these frameworks contrasts with the corrective nature of
the organizational strategies, which appear only after a problem exists. Al-
though the two frameworks are potentially helpful, they need more empirical
research to generalize benefits and refinement.

4.3.3. Models

We identified a series of models that assess and represent community
smells and social debt. In the following subsections, we define two groups of
models: statistical models and social network models.

Statistical models

A code smells intensity prediction model used community smells to pre-
dict the future intensity of code smells with high accuracy [10]. This predic-
tion model consisted of three sub-models. The first includes only technical
factors. The second adds community smells. The third adds socio-technical
factors. The study evaluated four community smells, Black cloud, Lone wolf,
Organizational silo, and Radio silence and five code smells, long method,
feature envy, blob class, spaghetti code, and misplace class. Examples of
technical and socio-technical factors used in this study are lines of code, to-
tal commits, truck-factor, and developers turnover. The models related the

28

factors and developers involved in community smells who modified classes to
explain their relationships with code smells intensity.

The models revealed that community smells have more effect on the oc-
currence of code smells than socio-technical factors do. However, each com-
munity smell was highly significant in explaining the variation of intensity of
specific code smells. For example, Black cloud and Organizational silo were
significant predictors for long method, while Lone wolf was significant for
feature envy and spaghetti code.

To predict bug-prone code components, researchers developed seven bug
prediction models [47]. This study compared community smells with process
metrics as method for bug prediction. Researchers used CodeFace4Smells
to extract data and build the models based on code smells (e.g., God class
and Long method) and community smells (e.g., Organizational silo and Ra-
dio silence). The models also include a code smell intensity metric (i.e., the
severity of code smells) and structural code metrics (e.g., lines of code and
the number of methods). Researchers built bug prediction models contain-
ing community smells, while other models excluded the community smells for
comparison. The models showed no significant differences in terms of recall
and F-measure. Nonetheless, the contribution of the community smells is
statistically significant in terms of AUC. Also, combining smell-related infor-
mation to build prediction models does not significantly improve the models’
performance in predicting bugs in software components. The authors found
that both code and community smells are good indicators in bug prediction
models, but the performance of the models depends on project features and
validation strategies.

The third model assessed the impact of gender diversity on four com-
munity smells [12]. The statistical model consisted of four sub-models, i.e.,
one for each community smell and the socio-technical factors related to that
smell. The target community smells were the same for the code smells inten-
sity prediction model described above. However, this model included more
socio-technical factors, including the number of women in teams, committers
or contributors, team size, and project age.

The results showed community smell instances are lower in gender-diverse
teams. Women play a significant role in reducing community smells that af-
fect communication and coordination. More specifically, the participation of
women was significant in mitigating Black cloud and Radio silence. How-
ever, gender diversity did not affect the occurrence of Lone wolf and Orga-
nizational silo. The researchers performed a follow-up study [16] to provide

29

more understanding of the potential gender diversity has in mitigating the
community smells. In this study, software engineering professionals perceived
gender diversity as less essential than team size and professional experience
in mitigating the community smells. Despite the results, some profession-
als still found gender diversity important for enhancing their teams’ culture,
social interaction, and communication. Although the study results contrast,
more studies can be conducted to learn about gender diversity in the software
industry.

Almarimi et al. implemented csDetector, a machine learning-based de-
tection approach [48]. This automated approach learns and classifies seven
of the nine community smells defined by Tamburri et al. [5], Organizational
silo, Prima donnas, Sharing villainy, Organizational skirmish, Radio silence,
Black cloud, and Solution defiance. The csDetector obtained an average AUC
of 0.94 and achieved an average accuracy of 96% in detecting the target
community smells on 74 open-source projects. The model also outperformed
CodeFace4smell with a high detection accuracy from 94% to 98%. Addition-
ally, the model identifies influential metrics (e.g., the ratio of commits per
time zone and developers per community) for improving community smell
detection, such as Organizational silo and Prima donnas.

Almarimi et al. also conducted follow-up studies to reformulate the com-
munity smells detection. A study proposed smell detection as a multi-label
learning problem [49]. The approach identified all target community smells
with an average accuracy of 89% and outperformed nine multi-label learning
techniques that rely on different meta-algorithms and underlying learning
algorithms. Based on the performance of both models, researchers evalu-
ated csDetector on 143 open-source projects from GitHub [50]. The model
achieved high performance with an average accuracy of 84% on the commu-
nity smells. Although the accuracy was lower than in the previous study [48],
the average AUC was similar, i.e., 0.93.

Huang et al. developed and enhanced the performance of a prediction
model that detects community smells based on sentiment analysis in three
scenarios, i.e., cross-project, within-project, and time-wise validation [51, 52].
The study included ten process metrics to capture developers’ activities. The
model predicts the impact of Organizational silo, Radio silence, and Lone
wolf on software developers. It also predicts whether a developer quits their
development communities due to the impact of the smells. As a result, the
model predicted the occurrence of the target community smells on developers
in most cases. It achieves mean F-measures ranging from 73% to 92% in the

30

three scenarios. Also, process metrics improve the AUC-ROC of smelly quit-
ter prediction by 19% to 37%. Moreover, community smells affect impolite
developers, those with a higher workload, and those who hardly communi-
cate. Besides recommending the model to refactor community smells, the
authors plan to integrate more process metrics, and community smells to
strengthen the model.

Like frameworks, the statistical models also work as preventive manage-
ment approaches. The statistical models predict and quantitatively explain
the impact of community smells and social debt on several aspects of software
development settings. Although the research contexts restrict the implemen-
tations and performance of each model, these limitations provide motiva-
tion for further empirical evaluations. For instance, Eken et al. [47] devel-
oped models that include two community smells. The models proposed by
Palomba et al. [10], Catolino et al. [12], and Almarimi et al. [48, 49] de-
tect more community smells. By including more types of community smells,
the models may identify more instances of community smells depending on
project features, which can influence the models’ performance metrics. Fur-
ther empirical evaluations may include the rest of the community smells
reported in this SLR in different research settings. Also, the limitations are
understandable since the research progress in community smells and social
debt is recent.

Social-Network-based models

Social Network Analysis (SNA) can help explain the social interactions
among individuals in software teams. SNA also helps visualize scenarios
where community smells affect the quality of communication, collaboration,
and coordination in a software development network.

An empirical study used SNA to construct formal definitions of four com-
munity smells frequently observed in practice, Black cloud, Lone wolf, Or-
ganizational silo, and Radio silence. The formal definitions of the four com-
munity smells helped define four developer social networks to represent the
effects of the four community smells on communication and collaboration
interactions [11].

In a second study, researchers used weak-ties hypotheses to represent
the dependency between decision-makers and dependent teammates. This
strategy also visualizes the efficiency of the communication and explains the
impact of community smells on making and sharing software architecture
decisions. For example, teammates with weak ties require longer to learn

31

about decisions. This work resulted in the DAHLIA framework that provides
a rough estimate of social debt in monetary terms. However, the DAHLIA
framework’s implementation only focuses on community smells that affect
the dissemination of software architecture decisions across the software de-
velopment teams [20].

4.3.4. Tools

The literature describes two tools that provide a beginning for automated
and more efficient management of community smells and social debt. The
tools have been evaluated in real settings. The functionalities of these tools
include recognizing, predicting, and monitoring the community smell effects
that lead to social debt.

First, CodeFace4Smells, a deployed tool, identifies community smells in
open-source projects. Its current capability is limited to four community
smells: Black cloud, Lone wolf, Organizational silo, and Radio silence [11]. As
discussed in section 4.3.3, researchers formally defined the effects of these four
community smells on communication and collaboration through developer so-
cial networks. The tool analyzes contributors’ commit history to determine
the effects of community smells on collaboration. Regarding communication,
the tool mines communication from the mailing lists. CodeFace4Smells has
shown high accuracy in detecting the effects of community smells on commu-
nication and collaboration over the implemented developer social networks.
The tool also supported research on community smells and their relationships
with code smells intensity [10] and gender-diverse teams [12].

Second, YOSHI, a deployed tool, extracts information from project repos-
itories to identify types of software engineering communities by detecting and
measuring six characteristics: cohesion, formality, geodispersion, longevity,
people’s engagement, and structure or developers’ network. YOSHI compares
the measurements to empirical thresholds from ethnographical research to
determine the characteristic levels (i.e., high or low) and the types of com-
munities [54]. Organizations can use the results produced by YOSHI to
monitor the six characteristics and identify potential problems with devel-
opers’ social and organizational relationships. For example, YOSHI can use
access control to repositories to establish the level of formality. A high levels
of formality can lead to community smells like Radio silence. YOSHI needs
more empirical research to better understand the relationships between its
characteristics and community smells.

The tools implement various results from social debt research. These tools

32

cover a limited set of community smells, so researchers need to extend them to
be more comprehensive. In addition, the tools need further development and
evaluation in diverse settings. Finally, the tools need usability evaluation.

4.3.5. Guidelines

The literature contained empirically-based guidelines. These guidelines
provide recommendations for managing team composition based on features
of teams or communities [42].

The guideline provides a matrix to support the management of software
development teams or communities. One axis shows 13 types of software
engineering communities, while the other axis shows related features. The
matrix contains the level of relevance of each feature to every community
type. Team leaders can use this matrix to define the most suitable team
composition based on projects’ needs The primary benefit is that well-defined
teams increase their synergy and reduce the impact of community smells. The
matrix can also help strengthen task coordination to achieve socio-technical
congruence.

4.4. RQ4: What are the properties of the community smells?

The software engineering literature reported 30 recurring community smells.
The literature also provides research results about the characteristics, behav-
ior, and impact of the community smells in practice. Based on our analysis
of the literature, we identified the following 11 properties that characterize
all 30 community smells:

1. Occur with agile methods: These community smells emerge as a
result of the use of agile methods [5, 20, 10, 32].

2. Create a debtor relationship: The people who make poor socio-
techinical decisions are the debtors. The wrong decisions must be cor-
rected before their effects get worse over time (i.e. debt interest). The
danger occurs when the accumulated interest on the debt take the form
of hazards, e.g., software failures [4, 5, 20].

3. Dynamic: Community smells emerge in organizational scenarios where
people perform different roles during the software development pro-
cess [5, 42, 20, 10, 11, 32]. Every organizational scenario consists of
particular elements (e.g., policies, procedures, and standards) that in-
fluence people’s psychological state. At the same time, behaviors can
arise and change based on to the organizational climate or perceived

33

work settings. Thus, community smells are dynamic because of people’s
behavior and their perceptions of work settings.

4. Harmful: The effects of community smells are harmful when they are
prevalent in teams and organizations. Over time teams experience tense
social interactions, lower productivity, and poor software quality [5, 42,
20, 10, 11, 32].

5. Latent: The effects of community smells can take some time to man-
ifest [5, 42, 20, 10, 11]. In other words, latency is a stage in which
community smells incubate with no visible effects.

6. Suggest the need for change: Community smells warn leaders and
teammates about adverse socio-technical situations. However, the pres-
ence of community smells also suggests the need to reorganize teams,
modify work setting conditions, or adjust the software development pro-
cess [10, 11, 32]. When leaders apply strategies to address community
smells, they also address problems related to team composition, work
settings, or software development processes [15]. Examples of strategies
are restructuring team composition, creating appropriate communica-
tion plans, and improving team cohesion.

7. They are observable: Software professionals can recognize the ef-
fects of community smells as they persist over time, including conflicts,
professional misconduct, and software failures [5, 42, 20, 10].

8. They sabotage software quality: Community smells undermine
the software architecture process through decision unawareness [42, 20]
and intensifying architecture smells [20, 32]. Additionally, community
smells affect the development process and implementation of software
architecture decisions by intensifying code smells and making coordi-
nation more difficult [5, 10]. Consequently, by impacting the software
development process’s core phases, community smells lead to faulty
software components and software failures.

9. Innocuousness: In this case the presence of a community smell trig-
gers effects. However, those effects are temporarily harmless until they
become more frequent or prevalent [5, 42, 20].

10. They exhibit unique effects: Although multiple community smells
may result from the same causes, their effects differentiate them [5, 42,
20, 10, 11]. Therefore, the combination of causes and effects creates
a unique profile for each community smell. For example, experience
diversity is a cause for both the Time warp and Cognitive distance
smells, however the effects of these smells are remarkably different.

34

11. They are unpredictable: Because each organization is different, the
impact of the community smells differs. The manifestation of commu-
nity smell effects depends upon how people adapt to each context and
changes in behavior. Therefore, the specific effects of the community
smells are unpredictable in a given context [4, 5, 20, 11, 56].

4.5. RQ5: How do community smells originate and evolve in software devel-
opment settings?

To answer RQ5, we developed an interpretative framework to explain the
birth and evolution of community smells. Figure 1 shows our Community
Smell Stages Framework This framework depicts community smells as
a chronic disease that begins in individuals then spreads across teams and
organizations. The arrow suggests that as community smells originate and
evolve, the chances of prevalent effects and tangible damage increase.

Stage 1: Induction

Stage 2: Community-
smell effects in situ

Stage 3: Team-
level spreading

Stage 4: Organi-
zational spreading

Stage 5: Progressive
community smells

Figure (1) Community Smell Stages Framework

4.5.1. Stage 1: Induction

In this stage, project managers or team leaders set up favorable condi-
tions for the emergence of community smells. Making and implementing

35

socio-technical decisions in ongoing projects, e.g., changing the composition
of a team, can produce a tense atmosphere. Also, using outdated or out-of-
context practices can influence software development progress. Individuals
may also begin to experience the effects of community smells in the form of
irritation or stress. Software development tasks may be at risk because team-
mates develop traits of professionals misbehavior, e.g., ignoring decisions.
Therefore, the causes and early effects may be undetectable at this stage.
In other words, when people begin to develop strong feelings or professional
misbehavior, these effects are still invisible to managers and teammates.

4.5.2. Stage 2: Community-smell effects in situ

In this stage teams more frequently experience episodes of negative emo-
tions, such as irritation, fear, or unhappiness. This stage also includes de-
velopers overlooking procedures (e.g. neglecting to document architecture
decisions) or the process of disseminating decisions [20], which lowers the
quality of their work. The fact that organizations have not modified poor
socio-technical decisions boosts the effects of the community smells. However,
most of these effects may still go unnoticed (i.e., team leaders are unaware of
their team members’ emotions or of the software development process flow)
because those effects have not reached the threshold at which they become
prevalent and perceptible [11]. In addition, the occurrence of these effects
is unpredictable because the number of community smells fluctuates signifi-
cantly compared with other periods [11].

4.5.3. Stage 3: Team-level spreading

In this stage, team members who experience repeated episodes of harm-
ful emotions begin to exhibit their internal psychological states, which then
affects the rest of the team. At this point, the socio-technical decisions that
triggered the community smell effects remain unchanged, resulting in the
prevalence of effects throughout the team and an increase in social debt ac-
cumulation. Consequently, these effects become negative characteristics of a
team, suggesting that the team is prone to perform tasks sub-optimally and
produce low-quality software artifacts. At this stage, project managers may
notice the presence of those effects. However, developing a precise way to
diagnose and repair the problems depends on the experience of the manager
and the management approaches available.

At this stage, the effects of the community smells remain localized to
the team. Project managers have the opportunity to prevent potential or-

36

ganizational damage by regularly monitoring and mitigating the effects of
community smells. For instance, if a project manager can observe effects like
conflicts and low performance, they can make changes to the situation that
enables the effect thereby mitigating its potential impact.

4.5.4. Stage 4: Organizational spreading

In this phase, the prevalence of community smell effects leads teams to
produce low-quality outcomes and to impact other teams in the organization,
which may result in low-quality software. Consequently, the quality of the
processes and software products across the organization suffer. It is more
feasible for leaders to detect the effects of the community smells at this
stage because their impact is evident on technical outcomes, e.g., duplicated
work, faulty software components, and prototype failures. At this point,
organizations must make it a priority to allocate resources, like time and
personnel, to solve the problems before the effects have external impacts,
e.g. deploying a faulty software product.

4.5.5. Stage 5: Progressive community smells

In this stage, the effects of the community smells have an impact external
to the organization [55]. At this point, users experience software failures and
unexpected results. These experiences can result in lost customers and dam-
age to the organization’s reputation. This damage can reduce the potential
that new customers purchase the organization’s software or services out of
fear for low software quality, resulting financial losses to the organization.

4.6. RQ6: What types of events characterize the causes and effects of com-
munity smells?

The conceptual model for describing community smells primarily consists
of causes and effects. We identified two types of events that can characterize
the causes of community smells, i.e., independent and dependent.

First, independent causes are those cause that occur naturally over time
given the work setting [5, 42, 11]. Based on our results, we identified 20 com-
munity smells for which there are independent events. For example, Black
cloud, Institutional isomorphism, and Organizational silo were community
smells whose causes occurred as independent events.

To illustrate our analysis, the causes for the Black cloud smell are prob-
lems in the communication structure of the team. The lack of communica-
tion protocols, skilled people, and daily information sharing meetings result

37

from poor socio-technical decisions. However, it is unlikely that these poor
decisions led directly to the communication problems. Rather, the poor
socio-technical decisions first shaped the work environment from which the
community smells emerged over time. Therefore, we consider these causes to
be independent.

Conversely, dependent causes are those events that result from a series
of events, each one making the next one more likely. In other words, these
smells result from a series of low-quality processes involving problems with
sharing or communicating software architecture decisions across the teams.
We identified four community smells that fall into this category [20], i.e.
Architecting by osmosis, Invisible architecting, Lonesome architecting, and
Obfuscated architecting.

The causes of these four community smells contain a series of sequential
events associated with making and sharing architectural decisions. In this
case, when someone performs an architecture activity incorrectly, it triggers
other events, which also serve as causes for community smells. For exam-
ple, Architecting by osmosis describes a scenario where previous software
architecture decisions result in software failures or inconsistencies. Based
on these failures, the customers reported problems. This pressure from cus-
tomers pushed help-desk staff and developers to make quick decisions about
necessary technical changes and communicate those decisions to the archi-
tects. Then, the architects react by modifying the architecture. However,
the architects make these decisions with incomplete information, resulting in
sub-optimal decisions.

Table 8 summarizes the results and shows whether the causes of each
smell were dependent or independent.

4.7. RQ7: What are the types of causes and effects of community smells
found in the literature?

To answer this question, we extracted a total of 44 causes and 103 effects
from 30 community smells. We conducted a coding process to analyze every
cause and effect. We used codes based on concepts from theory about the
nine critical considerations for teamwork, social debt, and community smells.
To calculate code frequencies, we counted the number of times we assigned
each code to each cause and effect. The detailed results from our coding

38

Table (8) Characterizing the occurrence of causes based on the type of events

Community-smell name
Causes

Dependent Independent
Architecture by osmosis X
Architecture hood X
Black cloud X
Class cognition*

Code red*

Cognitive distance X
Cookbook development X
DevOps clash X
Disengagement X
Dispersion*

Dissensus X
Hyper community*

Informality excess X
Institutional isomorphism X
Invisible architecting X
Leftover techie X
Lone wolf X
Lonesome architecting X
Newbie free-riding*

Obfuscated architecting X
Organizational silo X
Organizational skirmish X
Power distance X
Priggish members*

Prima donnas X
Radio silence or Bottleneck X
Sharing villainy X
Solution defiance X
Time warp X
Unlearning X
* Undefined causes due to the lack of information

process are available online2. As a result of the coding process, we identified

2http://carver.cs.ua.edu/Data/Journals/SLR-CommunitySmells/
39

http://carver.cs.ua.edu/Data/Journals/SLR-CommunitySmells/

8 types of causes and 11 types of effects, see Figure 2. We identified eight
out of the nine teamwork factors, only coaching was missing.

(a) Types of causes

(b) Types of effects

Figure (2) Types of causes and effects of community smells

4.7.1. Types of causes

This section explains each of the types of causes.
Context was the most frequently occurring type of cause [5, 42]. Some

of the causes existed in organizations that used very formal processes and
implemented rigid procedures or standards. Under these conditions, team-
mates followed the policies to achieve team goals. This rigid formality also

40

shaped inflexible thinking and working methods, discouraged innovation, and
increased task review time. Other contextual causes were the geographic
distribution of team members and the absence of conditions to foster knowl-
edge sharing. On the other hand, informal organizations exhibited different
contextual features. For example, practitioners faced a lack of protocols,
misaligned organizational structures, and incompatible procedures.

Communication was the second most frequent type of cause [5, 11, 42].
These causes related to poor communication or even the complete lack of
communication. We also found weaknesses and gaps in communication struc-
tures that affected information flow. Some examples of these weaknesses in-
clude untraceable information sources and not sharing architecture decisions.
In terms of gaps, organizations neither provided protocols nor established
space and time to share knowledge or experiences nor did they have people
to distribute information to other teams.

Composition was the third most frequently occurring type of cause [5,
42]. We identified causes related to team composition problems. The causes
indicated that different levels of expertise triggered conflicts in the processes
for decision-making and for effectively sharing knowledge. Also, the pro-
fessional background was a problem when people who used used outdated
methods could not provide innovative solutions. In addition, changes in
team composition caused older members to change their behavior and offer
no help to newcomers.

Coordination was the next most common type of causes [5, 42]. These
causes focus on socio-technical congruence in the software development pro-
cesses. For example, software development teams struggled with high task
fragmentation, unwillingness to check tasks, and wasting of time implement-
ing modifications. Other coordination problems include increased isolation
of teammates and disengaged developers.

There were a number of less common types of causes. Cooperation de-
scribed situations where people avoided support or advice from their team-
mates [5, 42]. It also included a lack of interest in identifying likely miss-
ing requirements that may affect the outcomes of other dependent tasks.
Dual nature causes included situations where the work environment or
team composition included people exhibiting or practicing diverse organiza-
tional cultures [5, 42]. For example, the DevOps clash smell occurs when
geographically distributed teams disagree due to heterogeneity in values and
standards.

41

4.7.2. Types of effects

Cooperation was the most frequent type of effect [5, 42, 20, 11]. Oppos-
ing teammates’ attitudes led to unsuccessful cooperation across the teams.
Based on critical team-level indicators of cooperation for teamwork, this
group of effects pointed out inattention to the importance of partnership,
trust, and collective efficacy [17]. Other cooperation problems like team
stagnation and sharing inconsistent information across teams blurred the
commitment of teams to their goals and their understanding the importance
of reliable information.

Technical debt effect was the second most frequent type of effect [5,
42, 20, 10, 11]. We identified 13 out of 30 community smells whose effects im-
pacted software quality, e.g., faulty software artifacts, software failures, and
duplicated code. These results illustrate the intrinsic relationship between
social debt and technical debt [4, 5].

Communication was the third most frequent type of effect [5, 42, 20].
These effects were noticeable in the structures and processes for informa-
tion sharing. For example, when the communication structures for sharing
software architecture decisions excluded developers, those developers faced
problems communicating with software architects. Also, the lack of defined
communication channels made sources of knowledge, like documentation,
untraceable. Regarding processes, poor decisions intensified miscommunica-
tion, delays in replying to critical requests, information overflow, and sharing
confusing information.

Context was the the fourth most frequent type of effect [5, 42, 20]. These
effects included introducing changes to the task requirements, which required
architects and developers to waste time performing these tasks. Such changes
also increased stress and work pressure and lowered the sense of account-
ability. Developers experienced frustration due to limited communication
structures. Other effects included the lack of interest in contributing innova-
tive solutions and people who were not in the role of architect making fast
architecture decisions. In addition, teams in reorganized software develop-
ment settings made wrong assumptions about timelines to coordinate and
complete activities.

Coordination, is the next most frequent type of effect [5, 42, 10, 11].
These problems occur when leaders faced challenges in establishing and guar-
anteeing socio-technical congruence in software development projects [57].
Overall, these effects cause development slowdowns and project delays. For

42

example, smells like Organizational skirmish and DevOps clash caused se-
vere managerial problems and thwarted collaboration in regular operations.
These effects also included unsolved issues, wasted time, and random tasks.

Cognition is the next most frequent type of effects [42, 20]. When teams
ignored the product’s needs, descriptions of architectural decisions, and other
software contextual information, they became lost in performing their tasks.
Also, inadequate team composition led to misinterpretation of expectations
from customers and other stakeholders. Thus, the loss of crucial knowledge
across teams indicates inefficient knowledge management.

Economic effects is the next most frequent type of effects [42]. As we
discussed in RQ2, software development organizations can experience eco-
nomic effects in stage five. The community smell effects are progressive and
can affect customers’ business operations through software failures. Thus,
the financial health of the organization is at risk due to these unsatisfied
customers.

Conflicts, the next most frequent type of effects, occur when people with
diverse professional backgrounds intensify episodes of interpersonal differ-
ences and ignoring decisions [5, 33, 42]. This category of effects also includes
lack of motivation and frustration because of disagreements with methods
chosen for various tasks.

Dual nature effects are technical problems that share traits of poor task
coordination and conflicts [42, 10]. We identified situations where code smells
remained unaddressed due to a lack of consensus on finding solutions and few
people responsible for the maintenance of complex source code. These effects
also described a progressive loss of updated knowledge when teams lacked
suitable communication structures for knowledge sharing.

4.8. RQ8: How do the community smells affect teamwork in software devel-
opment teams?

The goal of RQ5 was to offer more insight into the poor performance
of software development teams. As teamwork is a requirement for effective
team performance, we answered RQ5 in terms of the community smells that
have a direct impact on teamwork factors. Therefore, we used a portion of
the results from the coding process, including the causes and effects of the
30 community smells based on eight critical factors for teamwork.

The community smells revealed leadership gaps with managing organiza-
tional resources, e.g., time and personnel. Teammates skipped procedures or
neglected generally accepted software engineering practices while conducting

43

their tasks, which led to low-quality outcomes. Thus, the community smell
effects are characteristics of software development teams that perform poorly
over time. To contribute to the understanding of aspects determining teams’
performance, we identified the need to explain more in-depth the process
where community smells affect software development teams’ performance.

There are nine critical factors to ensure teamwork success [17]. By coding
the causes and effects using the teamwork factors, we could determine that
the causes and effects of community smells had connections to bad team-
work practices. Based on this analysis, when community smells compromise
the critical factors for effective teamwork, there is a direct impact on team
performance.

Figures 3, 4, and 5 provide Sankey diagrams that show the causes and
effects of the community smells on the three most common teamwork fac-
tors, cooperation, communication, and coordination. The connections at the
left hand show the influence of every type of cause on the occurrence of
those community smells that impact a teamwork factor. The connections
between the community smells and the teamwork factor show the effects of
the community smell. The community smell effects also lead to bad teamwork
practices. Eventually, bad teamwork practices also have an impact on team
performance. The diagrams also offer insights into the potential threat the
community smells pose to each teamwork factor. Due to space, we provide
the remainder of the diagrams online3.

Table 9 summarizes the connection between the 30 community smells and
the 8 teamwork factors. The shaded checkmarks represent which teamwork
factors are affected by which smells. Based on this mapping, we also identified
the multidimensional impact community smells have on teamwork factors A
smell can affect multiple teamwork factors. The results indicate that 19 out
of 30 community smells can affect multiple teamwork factors. For example,
Cognitive distance and DevOps clash can affect five of the eight teamwork
factors. Also, different community smells can affect the same factor. Insti-
tutional isomorphism, Organizational silo, and Prima donnas can affect the
same teamwork factors: cooperation, communication, and coordination.

3http://carver.cs.ua.edu/Data/Journals/SLR-CommunitySmells/

44

http://carver.cs.ua.edu/Data/Journals/SLR-CommunitySmells/

Figure (3) Influence of community smells on Cooperation

Figure (4) Influence of community smells on Communication

45

Figure (5) Influence of community smells on Coordination

46

Table (9) Mapping overview: Influence of community smells on factors for effective teamwork

Community-smell name
Critical Teamwork Factors

Core processes and emergent states Influencing conditions
Cognition Communication Conflict Cooperation Coordination Composition Context Culture

Architecture by osmosis X X X
Architecture hood X
Black cloud X X
Class cognition X
Code red X
Cognitive distance X X X X X
Cookbook development X
DevOps clash X X X X X
Disengagement X
Dispersion X X
Dissensus X
Hyper community X
Informality excess X X
Institutional isomorphism X X X X
Invisible architecting X X
Leftover techie X X
Lone wolf X X
Lonesome architecting X X
Newbie free-riding X X
Obfuscated architecting X X
Organizational silo X X X X
Organizational skirmish X

Continued on next page

47

Table 9 – continued from previous page

Community-smell name
Critical Teamwork Factors

Core processes and emergent states Influencing conditions
Cognition Communication Conflict Cooperation Coordination Composition Context Culture

Power distance

Priggish members X
Prima donnas X X X
Radio silence or Bottleneck X
Sharing villainy X X
Solution defiance X X
Time warp X X
Unlearning X X X

48

5. Discussion

This section discusses the results of the SLR and implications for research
and industry settings. We organize this section around the key outcomes and
research directions identified.

5.1. The studies included

We included 25 relevant studies in this SLR. Although community smell
was not the focus of some studies, researchers discussed the relationship
between the main topic and community smells [33, 34, 44, 45, 46]. Thus,
we included the studies. We identified other studies that examined so-
cial and technical situations similar to the causes and effects of community
smells [58, 59, 60, 61, 62]. However, we excluded those studies because the
authors did not establish connections between the socio-technical situations
and community smells.

5.2. Social debt, community smells, and overall research contributions

Social debt describes dynamic and complex scenarios where daily socio-
technical decisions, community smells, and software development teams play
crucial roles. The definition of social debt emphasizes the accumulation of
costs generated by software development teams as a result of community
smells. However, researchers still struggle to express the effects of commu-
nity smells in monetary terms. Therefore, studies on community smells use
the term effects instead of costs as the definition of social debt suggests. Al-
though the DAHLIA framework theoretically measures forms of social debt
and estimates monetary costs, it is only helpful regarding architecture in-
communicability [20]. Thus, further research should address strategies to
measure social debt items connected to the rest of the community smells.

This SLR reported five types of research contributions to manage commu-
nity smells and mitigate social debt. However, these management approaches
still need more work. For instance, the performance of prediction models and
frameworks requires more empirical evaluation in different settings to gen-
eralize the results. Additionally, researchers have built tools to examine the
impact of four community smells in practice. While these results are inspir-
ing, there is a need to perform similar work for the remaining 26 community
smells.

Regarding the tools, although CodeFace4Smells [11] and YOSHI [54] have
performed well in empirical evaluations, they are still seen as prototypes.

49

Reports indicated that CodeFace4Smells and YOSHI were limited to the re-
search context in terms of the four community smells they supported and the
organizational settings. Nevertheless, we consider these tools as advanced de-
velopments that can automatically examine repositories of software projects
and identify community smells. The authors of both tools plan to add sen-
timent analysis to increase performance. This plan is consistent with the
increasing emphasis on the detection of emotions connected with software
artifacts [63, 64]. Thus, future developments based on emotion detection can
reveal community smell effects from software artifacts in the form of negative
emotions.

5.3. The 11 properties of community smells

We identified 11 properties of community smells. However, the distinct
features of the software development settings where researchers identified
the community smells can threaten the definition of these 11 properties as
common denominators for all community smells. The first feature is the orga-
nizational context, i.e., whether the software is open-source or closed-source.
The second feature is the lifecycle phase. Other features that influence the
occurrence and intensity of community smells are the team size [11], team
structure or team composition [14, 54, 46, 43], and gender diversity [12].

The community smells may have several differences based on aspects of
the software development settings. Nevertheless, the smells have a simi-
lar origin, the context of action, target, and impact. Poor socio-technical
decisions are the origin of the smells. The context of action is software
development teams and organizations. The target is people. The impact
includes low team performance, flawed processes, low software quality, and
social conflicts. Therefore, these high-level concepts build a layer where all
the community smells can have the 11 properties in common.

5.4. The Community Smell Stages Framework

Our framework describes the origin and evolution of the community smells.
At each stage developers, teams, and organizations experience different man-
ifestations of the community smells and their effects. The framework con-
nects the impact of the community smells with society through unsatisfied
customers who are affected by software failures. The fifth stage of the frame-
work provides a direct link between the evolution of community smells and
the transition to a social sustainability debt [55]. Our framework also can
serve as educational material about community smells. For example, project

50

managers or team leaders can use the framework as a risk-management as-
sessment tool to help them understand the current extent of community
smells in their organizations.

5.5. The connection between the community smells and teamwork factors

Next, the patterns of how the causes and effects of community smells
occur and the mapping between the community smells and the critical fac-
tors for effective teamwork can motivate further research. For example, re-
searchers can apply software risk assessment [65, 66] to extend our work.
In this case, quantitative risk assessment could examine the impact of such
events by estimating probabilities. This type of research would contribute
to the development of more robust mitigation approaches to optimize team
performance.

We identified a that the community smells have a multidimensional im-
pact on teamwork factors. In this scenario, when an organization attempts to
mitigate one community smell, other community smells can simultaneously
impact the same or different teamwork factors. Team leaders must be aware
of this multidimensional impact and address it. Therefore, a new perspective
for solutions should emphasize not only tackling specific community smells
but also managing the impact of the community smells on teamwork factors
and team performance. Also, team leaders can use our mapping of commu-
nity smells to teamwork factors to learn about the extent of the effects of
community smells and develop organizational resources to track and enhance
the performance of their software development teams.

Our mapping extended the existing interpretative framework for social
debt [5]. We add details about where team structures become sub-optimal
due to the community smells. The mapping visualized and allowed us to
explain how the community smells impact each of the critical teamwork fac-
tors. These impacts are detrimental to team performance. Strategies focused
on managing the specific community smells that reduce the synergy between
development and operation teams, e.g., Organizational skirmish and DevOps
clash [44, 34] can make use of our results to strengthen their monitoring
capabilities.

5.6. Lessons learned

Based on these results and our own experience with this research topic, we
believe these conepts about social debt have implications for other domains
beyond software engineering. In fact, social debt can be found in any field

51

where people work in groups or teams to develop products or services. Thus,
researchers can apply the body of knowledge on social debt and community
smells from this SLR to other domains and understand how poor managerial
decisions affect the welfare and performance of teams. In that way, it is
possible to explain how such decisions also impact the quality of development
processes, products, services, and customers.

6. Threats to validity

This section describes the threats to validity of the study and how we
addressed them, where possible.

6.1. Study selection

To collect evidence on community smells, we searched for relevant papers
in multiple digital libraries that cover different software engineering journals,
conferences, and workshops. Two out of the three authors independently
applied the inclusion and exclusion criteria in two phases to reduce bias.
Given that there is not one standard venue for publishing this type of work,
it is possible that we missed a study. However, we did employ snowballing
to mitigate this threat as much as possible.

6.2. Processing collected data on community smells

We faced some challenges in specifying the causes and effects of commu-
nity smells. First some causes and effects seemed to combine together mul-
tiple situations. In those cases, we split them for to ease the coding process.
Second, some community smells had only scarce information available. The
literature provided incomplete causality models for four community smells,
Hyper community, Informality excess, Newbie free-riding, andPriggish mem-
bers. Four other community smells had only a brief description, Class cogni-
tion, Code red, and Dispersion, and Dissensus. Nevertheless, the descriptions
of these eight community smells had hints of their causes and effects, which
allowed us to reason about possible causes and effects for some of these com-
munity smells. Despite our effort, it we could not suggest causes for six
community smells, i.e., Class cognition, Code red, Dispersion, Hyper commu-
nity, Newbie free-riding, and Priggish members. It is possible that, due to
the limited information available, we have either incompletely or incorrectly
characterized one or more of the community smells.

52

6.3. Generating the codes and coding process

Since the first author generated the initial list of codes, the second and
third authors took part in the following activities to mitigate any potential
bias. As a researcher with expertise in organizational behavior and teamwork,
the second author reviewed the list of codes and descriptions and reviewed
the assigned codes to ensure they were appropriate. The third author, who
is an expert in software engineering and human factors, also participated in
this revision.

During the coding process, we faced two challenges. First, we had only
limited information for some of the causes and effects (Section 6.2). In cases
where the studies did not provide either causes or effects (e.g., Newbie free-
riding and Informality excess), we inferred the codes from studies texts. We
agreed to keep the high-level codes for those causes and effects when we lacked
detailed descriptions for the fine-grained coding. Then the three authors
discussed the results and suggested final adjustments to solve disagreements
and avoid bias. Again, due to the limited information, it is possible that we
inferred the causes or effects incorrectly.

In cases where we were not able to infer the causes for the community
smells, we still coded any effects that were present to make the most of such
a collected data. Class cognition and Code red are examples of these cases.
Given the limitations in our coding process, finding other approaches to code
dependent events can be a target for future work.

7. Conclusion

This paper reports on the first SLR focused on analyzing and charac-
terizing community smells in software engineering. We reviewed 25 studies
about community smells. We divided the goal of this SLR into eight research
questions. First, we found that social debt is a concept borrowed from social
research. The definition highlights the accumulation of socio-technical costs
or recurring socio-technical effects that affect the performance of software
development teams. The potential source of social debt is community smells
that affect software development teams and organizations. The community
smells can also impact customers. We identified 30 community smells that
result from 44 causes and produce 103 effects. Different community smells
show how social and technical circumstances cause TD, demonstrating the
connection between social debt and TD. Therefore, social debt can be a
source for TD [67].

53

Among the research contributions, we identified management approaches
that offer applicability for addressing the effects of community smells and
repaying social debt. We arranged the management approaches into five
groups: organizational strategies, frameworks, models, tools, and guidelines.
These management approaches still need more empirical research to improve
accuracy and generalize results. However, they provide evidence of relevant
progress toward addressing research challenges on social debt.

Furthermore, we built a list of 11 properties of those community smells.
The analysis of these properties is based on high-level concepts including
the origin of the smell and the context in which it occurs. We produced a
novel Community Smell Stages Framework that provides a comprehensive
representation of the birth and evolution of community smells. We also
characterized the occurrence of the causes and effects of community smells
based on types of events. These results are based on information reported in
the literature and still need validation through new empirical studies.

In addition, this study mapped the relationship between the community
smells and critical factors for teamwork. For the community smells, we iden-
tified 8 groups of causes and 11 groups of effects. We also were able to
generate comprehensive Sankey diagrams representing the impact of com-
munity smells on each of the teamwork factors. These results provide insight
into how the various community smells could manifest within teams. Project
leadership can use this information to help identify and remove potential
socio-technical problems before they occur.

In addition, the contributions from this mapping help to extend the ap-
proaches that cluster community smells [5]. Our mapping results also impact
the framework for social debt [5] since we visualized and explained how the
community smells may lead to poor team performance through bad team-
work practices. In the future, we plan to empirically validate the relationships
between the community smells and teamwork reported in this study.

Because the primary goal of this SLR was to build the most comprehensive
picture of the essence of community smells, our contributions have implica-
tions for software engineering researchers and professionals. For instance,
this material can provide educational material for academia or training ma-
terial for industry. Researchers can also use it as a standard reference as they
conduct studies on community smells and related topics.

54

References

[1] V. Garousi, J. M. Fernandes, Highly-cited papers in software engineer-
ing: The top-100, Information and Software Technology 71 (2016) 108
– 128.

[2] Y. Dittrich, C. Floyd, R. Klischewski, Social Thinking-Software Prac-
tice, Mit Press, 2002.

[3] M. E. Conway, How do committees invent, Datamation 14 (1968) 28–31.

[4] D. A. Tamburri, P. Kruchten, P. Lago, H. van Vliet, What is social
debt in software engineering?, in: 2013 6th International Workshop on
Cooperative and Human Aspects of Software Engineering (CHASE), pp.
93–96.

[5] D. A. Tamburri, P. Kruchten, P. Lago, H. v. Vliet, Social debt in
software engineering: insights from industry, Journal of Internet Services
and Applications 6 (2015) 10.

[6] M. Fowler, K. Beck, J. Brant, W. Opdyke, D. Roberts, Refactoring:
Improving the design of existing code, Berkeley, CA, USA (1999).

[7] W. H. Brown, R. C. Malveau, H. W. S. McCormick, T. J. Mowbray,
AntiPatterns: refactoring software, architectures, and projects in crisis,
John Wiley & Sons, Inc., 1998.

[8] J. Garcia, D. Popescu, G. Edwards, N. Medvidovic, Identifying archi-
tectural bad smells, in: 2009 13th European Conference on Software
Maintenance and Reengineering, pp. 255–258.

[9] T. Sharma, D. Spinellis, A survey on software smells, Journal of Systems
and Software 138 (2018) 158–173.

[10] F. Palomba, D. A. A. Tamburri, F. Arcelli Fontana, R. Oliveto, A. Zaid-
man, A. Serebrenik, Beyond technical aspects: How do community
smells influence the intensity of code smells?, IEEE Transactions on
Software Engineering (2018) 1–22.

[11] D. A. A. Tamburri, F. Palomba, R. Kazman, Exploring community
smells in open-source: An automated approach, IEEE Transactions on
Software Engineering (2019) 1–1.

55

[12] G. Catolino, F. Palomba, D. A. Tamburri, A. Serebrenik, F. Ferrucci,
Gender diversity and women in software teams: How do they affect
community smells?, in: Proceedings of the 41st International Conference
on Software Engineering: Software Engineering in Society, ICSE-SEIS
’10, IEEE Press, Piscataway, NJ, USA, 2019, pp. 11–20.

[13] G. Catolino, F. Palomba, D. A. Tamburri, A. Serebrenik, Understand-
ing community smells variability: A statistical approach, in: 2021
IEEE/ACM 43rd International Conference on Software Engineering:
Software Engineering in Society (ICSE-SEIS), pp. 77–86.

[14] M. De Stefano, F. Pecorelli, D. A. Tamburri, F. Palomba, A. De Lu-
cia, Splicing community patterns and smells: A preliminary study, in:
SoHeal 2020: International Workshop on Software Health, pp. 703–710.

[15] G. Catolino, F. Palomba, D. Tamburri, A. Serebrenik, F. Ferrucci,
Refactoring community smells in the wild: The practitioner’s field man-
ual, in: ICSE 2020: IEEE/ACM International Conference on Software
Engineering, pp. 25–34.

[16] G. Catolino, F. Palomba, D. A. Tamburri, A. Serebrenik, F. Ferrucci,
Gender diversity and community smells: Insights from the trenches,
IEEE Software 37 (2020) 10–16.

[17] E. Salas, M. L. Shuffler, A. L. Thayer, W. L. Bedwell, E. H. Lazzara,
Understanding and improving teamwork in organizations: A scientifi-
cally based practical guide, Human Resource Management 54 (2015)
599–622.

[18] S. T. Bell, S. G. Brown, A. Colaneri, N. Outland, Team composition
and the abcs of teamwork., American Psychologist 73 (2018) 349.

[19] D. E. Muir, E. A. Weinstein, The social debt: An investigation of lower-
class and middle-class norms of social obligation, American Sociological
Review 27 (1962) 532–539.

[20] D. A. Tamburri, Software architecture social debt: Managing the in-
communicability factor, IEEE Transactions on Computational Social
Systems 6 (2019) 20–37.

56

[21] B. Kitchenham, Procedures for performing systematic reviews, Keele,
UK, Keele University 33 (2004) 1–26.

[22] W. Cunningham, The wycash portfolio management system, in: Ad-
dendum to the Proceedings on Object-oriented Programming Systems,
Languages, and Applications (Addendum), OOPSLA ’92, ACM, New
York, NY, USA, 1992, pp. 29–30.

[23] S. McConnell, Managing technical debt, 2021.

[24] P. Kruchten, R. L. Nord, I. Ozkaya, Technical debt: From metaphor to
theory and practice, IEEE Software 29 (2012) 18–21.

[25] F. Shull, D. Falessi, C. Seaman, M. Diep, L. Layman, Technical Debt:
Showing the Way for Better Transfer of Empirical Results, Springer
Berlin Heidelberg, Berlin, Heidelberg, pp. 179–190.

[26] N. S. R. Alves, L. F. Ribeiro, V. Caires, T. S. Mendes, R. O. Sṕınola,
Towards an ontology of terms on technical debt, in: 2014 Sixth Inter-
national Workshop on Managing Technical Debt, pp. 1–7.

[27] C. Izurieta, A. Vetrò, N. Zazworka, Y. Cai, C. Seaman, F. Shull, Or-
ganizing the technical debt landscape, in: 2012 Third International
Workshop on Managing Technical Debt (MTD), pp. 23–26.

[28] N. A. Ernst, S. Bellomo, I. Ozkaya, R. L. Nord, I. Gorton, Measure
it? manage it? ignore it? software practitioners and technical debt, in:
Proceedings of the 2015 10th Joint Meeting on Foundations of Software
Engineering, ESEC/FSE 2015, ACM, New York, NY, USA, 2015, pp.
50–60.

[29] Y. Guo, R. O. Sṕınola, C. Seaman, Exploring the costs of technical debt
management – a case study, Empirical Software Engineering 21 (2016)
159–182.

[30] W. N. Behutiye, P. Rodŕıguez, M. Oivo, A. Tosun, Analyzing the con-
cept of technical debt in the context of agile software development: A
systematic literature review, Information and Software Technology 82
(2017) 139 – 158.

57

[31] C. Giardino, N. Paternoster, M. Unterkalmsteiner, T. Gorschek,
P. Abrahamsson, Software development in startup companies: The
greenfield startup model, IEEE Transactions on Software Engineering
42 (2016) 585–604.

[32] D. Tamburri, R. Kazman, W.-J. Van Den Heuvel, Splicing community
and software architecture smells in agile teams: An industrial study,
in: Proceedings of the 52nd Hawaii International Conference on System
Sciences, pp. 7037–7047.

[33] P. Wurzel Gonçalves, G. Çalikli, A. Bacchelli, Interpersonal conflicts
during code review: Developers’ experience and practices, Proc. ACM
Hum.-Comput. Interact. 6 (2022).

[34] A. Caprarelli, E. Di Nitto, D. A. Tamburri, Fallacies and pitfalls on
the road to devops: A longitudinal industrial study, in: J.-M. Bruel,
M. Mazzara, B. Meyer (Eds.), Software Engineering Aspects of Con-
tinuous Development and New Paradigms of Software Production and
Deployment, Springer International Publishing, Cham, 2020, pp. 200–
210.

[35] K. Petersen, S. Vakkalanka, L. Kuzniarz, Guidelines for conducting
systematic mapping studies in software engineering: An update, Infor-
mation and Software Technology 64 (2015) 1 – 18.

[36] S. Bernell, S. W. Howard, Use your words carefully: what is a chronic
disease?, Frontiers in public health 4 (2016) 159.

[37] M. Schmidt, The sankey diagram in energy and material flow manage-
ment, Journal of Industrial Ecology 12 (2008) 82–94.

[38] A. Bakenne, W. Nuttall, N. Kazantzis, Sankey-diagram-based insights
into the hydrogen economy of today, International Journal of Hydrogen
Energy 41 (2016) 7744 – 7753. Special Issue on Progress in Hydrogen
Production and Applications (ICH2P-2015), 3-6 May 2015, Oshawa,
Ontario, Canada.

[39] K. Icay, C. Liu, S. Hautaniemi, Dynamic visualization of multi-level
molecular data: The director package in r, Computer Methods and
Programs in Biomedicine 153 (2018) 129 – 136.

58

[40] K. Soundararajan, H. K. Ho, B. Su, Sankey diagram framework for
energy and exergy flows, Applied Energy 136 (2014) 1035 – 1042.

[41] V. Subramanyam, D. Paramshivan, A. Kumar, M. A. H. Mondal, Us-
ing sankey diagrams to map energy flow from primary fuel to end use,
Energy Conversion and Management 91 (2015) 342 – 352.

[42] D. A. Tamburri, R. Kazman, H. Fahimi, The architect’s role in commu-
nity shepherding, IEEE Software 33 (2016) 70–79.

[43] M. De Stefano, E. Iannone, F. Pecorelli, D. A. Tamburri, Impacts of
software community patterns on process and product: An empirical
study, Science of Computer Programming 214 (2022) 102731.

[44] D. A. Tamburri, D. Di Nucci, L. Di Giacomo, F. Palomba, Omni-
scient devops analytics, in: J.-M. Bruel, M. Mazzara, B. Meyer (Eds.),
Software Engineering Aspects of Continuous Development and New
Paradigms of Software Production and Deployment, Springer Interna-
tional Publishing, Cham, 2019, pp. 48–59.

[45] R. Brenner, Balancing resources and load: Eleven nontechnical phe-
nomena that contribute to formation or persistence of technical debt,
in: 2019 IEEE/ACM International Conference on Technical Debt
(TechDebt), pp. 38–47.

[46] M. Lavallée, P. N. Robillard, Are we working well with others? how
the multi team systems impact software quality, e-Informatica Software
Engineering Journal 12 (2018).

[47] B. Eken, F. Palma, B. Ayşe, T. Ayşe, An empirical study on the effect
of community smells on bug prediction, Software Quality Journal 29
(2021) 159–194.

[48] N. Almarimi, A. Ouni, M. W. Mkaouer, Learning to detect community
smells in open source software projects, Knowledge-Based Systems 204
(2020) 106201.

[49] N. Almarimi, A. Ouni, M. Chouchen, I. Saidani, M. W. Mkaouer, On the
detection of community smells using genetic programming-based ensem-
ble classifier chain, in: Proceedings of the 15th International Conference

59

on Global Software Engineering, ICGSE ’20, Association for Computing
Machinery, New York, NY, USA, 2020, p. 43–54.

[50] N. Almarimi, A. Ouni, M. Chouchen, M. W. Mkaouer, Csdetector: An
open source tool for community smells detection, in: Proceedings of the
29th ACM Joint Meeting on European Software Engineering Confer-
ence and Symposium on the Foundations of Software Engineering, ES-
EC/FSE 2021, Association for Computing Machinery, New York, NY,
USA, 2021, p. 1560–1564.

[51] Z. Huang, Z. Shao, G. Fan, J. Gao, Z. Zhou, K. Yang, X. Yang, Pre-
dicting community smells’ occurrence on individual developers by senti-
ments, in: 2021 IEEE/ACM 29th International Conference on Program
Comprehension (ICPC), pp. 230–241.

[52] Z.-J. Huang, Z.-Q. Shao, G.-S. Fan, H.-Q. Yu, X.-G. Yang, K. Yang,
Community smell occurrence prediction on multi-granularity by
developer-oriented features and process metrics, Journal of Computer
Science and Technology 37 (2022) 182–206.

[53] F. Palomba, D. A. Tamburri, Predicting the emergence of commu-
nity smells using socio-technical metrics: A machine-learning approach,
Journal of Systems and Software 171 (2021) 110847.

[54] D. A. Tamburri, F. Palomba, A. Serebrenik, A. Zaidman, Discover-
ing community patterns in open-source: a systematic approach and its
evaluation, Empirical Software Engineering 24 (2019) 1369–1417.

[55] S. Betz, C. Becker, R. Chitchyan, L. Duboc, S. Easterbrook, B. Pen-
zenstadler, N. Seyff, C. Venters, Sustainability debt: A metaphor to
support sustainability design decisions, in: Fourth International Work-
shop on Requirements Engineering for Sustainable Systems (RE4SuSy),
pp. 1–10.

[56] E. Di Nitto, R. Mirandola, S. Raffa, D. A. Tamburri, Towards geezmo:
High-frequency zest and mood-polling for proactive software develop-
ment problem-solving, in: Proceedings of the 7th International Work-
shop on Social Software Engineering, SSE 2015, ACM, New York, NY,
USA, 2015, pp. 9–16.

60

[57] M. Cataldo, J. D. Herbsleb, K. M. Carley, Socio-technical congruence: A
framework for assessing the impact of technical and work dependencies
on software development productivity, in: Proceedings of the Second
ACM-IEEE International Symposium on Empirical Software Engineer-
ing and Measurement, ESEM ’08, ACM, New York, NY, USA, 2008, pp.
2–11.

[58] R. L. Nord, I. Ozkaya, P. Kruchten, Agile in distress: Architecture
to the rescue, in: T. Dingsøyr, N. B. Moe, R. Tonelli, S. Counsell,
C. Gencel, K. Petersen (Eds.), Agile Methods. Large-Scale Development,
Refactoring, Testing, and Estimation, Springer International Publishing,
Cham, 2014, pp. 43–57.

[59] P. Clarke, R. V. O’Connor, The situational factors that affect the soft-
ware development process: Towards a comprehensive reference frame-
work, Information and Software Technology 54 (2012) 433–447.

[60] X. Li, Research on software project developer behaviors with k-means
clustering analysis, SSSME 2019: Joint Proceedings of the Summer
School on Software Maintenance and Evolution (2019).

[61] E. D. Canedo, F. Mendes, A. Cerqueira, M. Okimoto, G. Pinto, R. Boni-
facio, Breaking One Barrier at a Time: How Women Developers Cope
in a Men-Dominated Industry, Association for Computing Machinery,
New York, NY, USA, p. 378–387.

[62] V. Etemadi, O. Bushehrian, G. Robles, Task assignment to counter the
effect of developer turnover in software maintenance: A knowledge dif-
fusion model, Information and Software Technology 143 (2022) 106786.

[63] M. Ortu, G. Destefanis, B. Adams, A. Murgia, M. Marchesi, R. Tonelli,
The jira repository dataset: Understanding social aspects of software de-
velopment, in: Proceedings of the 11th International Conference on Pre-
dictive Models and Data Analytics in Software Engineering, PROMISE
’15, ACM, New York, NY, USA, 2015, pp. 1:1–1:4.

[64] M. Ortu, A. Murgia, G. Destefanis, P. Tourani, R. Tonelli, M. March-
esi, B. Adams, The emotional side of software developers in jira, in:
Proceedings of the 13th International Conference on Mining Software
Repositories, MSR ’16, ACM, New York, NY, USA, 2016, pp. 480–483.

61

[65] B. Kitchenham, S. Linkman, Estimates, uncertainty, and risk, IEEE
Software 14 (1997) 69–74.

[66] P. K. Dey, J. Kinch, S. O. Ogunlana, Managing risk in software develop-
ment projects: a case study, Industrial Management and Data Systems
107 (2007) 284–303.

[67] J. Yli-Huumo, A. Maglyas, K. Smolander, How do software development
teams manage technical debt? – an empirical study, Journal of Systems
and Software 120 (2016) 195 – 218.

62

Appendix A. Categories to classify the studies and research contributions

Aspect Category Description
Paper Empirical When direct empirical evidence supports the research results.

Theoretical When researchers’ understanding of a topic or field supports the
research results. It excludes empirical evidence.

Contribution Advice/Implication Recommendations driven from the authors’ personal opinions
Definition A statement on the meaning of community smells and social

debt in the software engineering context
Framework A conceptual map or method helping in analyzing and managing

community smells
Guidelines List of advises or a derived outcome from the synthesis of re-

search results
Lessons learned Set of outcomes directly obtained from research or industrial

experience
Model Representation of an observed reality after conceptualizing its

process
Organizational strategy A socio-technical decision focus on managing community smells

in industry or open source settings
Research direction Authors’ recommendations about studying community smells in

unexploited software engineering fields. It excludes implications
for research or future work to extend earlier research.

Theory The construct of cause-effect relationships between determined
results, which describe a repeatable phenomenon

Tool Technology, program, or application developed, deployed and
applied to manage community smells

63

Appendix B. List of codes for the coding process

Core category Subcategory Description/examples
Coaching Coaching behavior Coaching behaviors, like role modeling and sense-

making, are positively associated with perceived
team effectiveness, team productivity, and team
learning.

Cognition Shared understanding The result of team member interactions, e.g.,
shared mental models, transactive memory sys-
tems.

Communication Effective team communication It is vital in the reduction of errors, the ability
to self-adjust plans in light of teamwork break-
downs, and the acknowledgment of proper infor-
mation.

Team communication structure It influences critical team processes since how
information flows among team members can in-
fluence the team’s ability to work together and
achieve goals.

Composition “Big 5” personality traits They relate to performance in field settings
i.e., extraversion, agreeableness, conscientious-
ness, openness to experience, emotional stability.

Compositional It is an operationalization of team composition
based on the assumption of isomorphism.

Continued on next page

64

Table B.10 – continued from previous page
Core category Subcategory Description/examples

Compilational It is an operationalization of team composition
in which team members’ attributes interact with
those from other team members to create a qual-
itatively different team-level.

Hybrid Combination of compositional and compilational
methods.

Surface-level attributes A category of team member attributes. They
are readily detectable categories (e.g., age, sex,
race) and easily accessible information (e.g., rep-
utation, role).

Deep-level attributes A category of team member attributes. They
are underlying psychological characteristics (e.g.,
personality traits, abilities, values, attitudes).

Community smell NA A community smell identified as an effect of other
community smells.

Conflict Process-based conflict Conflict regarding how to divide and delegate
tasks and responsibilities among team members.

Relationship-based conflict Interpersonal differences that spark annoyance or
tension among team members.

Task-based conflict Differences in viewpoints or opinions regarding
how members should best execute tasks.

Context External context to the team Influences, stimuli, or actors outside the control
of the team.

Continued on next page

65

Table B.10 – continued from previous page
Core category Subcategory Description/examples

Internal context to the team Situational influences within the bounds of a
team, such as the typical model of communica-
tion, nature of the team’s tasks, and the struc-
tural dependence between team members.

Organizational climate Collective agreement regarding the perception of
formal and informal organizational policies, prac-
tices, and procedures.

Physical context Visible features of the working environment such
as temperature, lighting, or décor.

Physically distributed teams Teams operating as virtual, distributed teams
and multiteam systems, and often across national
or organizational boundaries.

Task context Factors such as team or individual autonomy, un-
certainty, accountability, and the resources avail-
able.

Threat and stress Teams functioning in “extreme environments,”
like isolation and confinement, are susceptible to
commit errors.

Cooperation Collective efficacy The collective sense of competence or perceived
empowerment to control the team’s function or
environment.

Goal commitment The determination to achieve team goals.
Psychological safety The shared feeling of safety within a team allow-

ing for interpersonal risk-taking.
Continued on next page

66

Table B.10 – continued from previous page
Core category Subcategory Description/examples

Team/collective orientation General preference for and belief in the impor-
tance of teamwork.

Team learning orientation Shared belief regarding the degree to which team
goals are geared toward learning.

Trust The shared belief that all team members con-
tribute as required by the role and protect the
team.

Coordination Explicit coordination Team members intentionally utilize mechanisms
such as planning and communication to manage
interdependencies.

Implicit coordination Team members anticipate team needs and dy-
namically adjust their behaviors accordingly
without having to be instructed.

Culture Organizational heterogeneity It is based on cultural values and norms. This
is source of conflict and process loss in terms of
lacking social integration (i.e., cohesion and iden-
tity), communication, and shared meaning.

Economic effect NA Effects on employment or incomes due to a deci-
sion, event, or policy.

Technical debt effect NA Negative impact on a software artifacts, software
products, and projects.

67

Appendix C. Included studies in the SLR

Title Year Paper type

1 Community Smell Occurrence Prediction on Multi-
Granularity by Developer-Oriented Features and
Process Metrics [52]

2022 Empirical

2 Impacts of software community patterns on process
and product: An empirical study [43]

2022 Empirical

3 Interpersonal Conflicts During Code Review: De-
velopers’ Experience and Practices [33]

2022 Empirical

4 Understanding community smells variability: a sta-
tistical approach [13]

2021 Empirical

5 csDetector: an open source tool for community
smells detection [50]

2021 Empirical

6 Predicting Community Smells’ Occurrence on Indi-
vidual Developers by Sentiments [51]

2021 Empirical

7 Predicting the emergence of community smells us-
ing socio-technical metrics: A machine-learning ap-
proach [53]

2021 Empirical

8 An empirical study on the effect of community
smells on bug prediction [47]

2021 Empirical

9 On the detection of community smells using genetic
programming-based ensemble classifier chain [49]

2020 Empirical

10 Learning to detect community smells in open
source software projects [48]

2020 Empirical

11 Refactoring Community Smells in the Wild: The
Practitioner’s Field Manual [15]

2020 Empirical

12 Splicing Community Patterns and Smells: A Pre-
liminary Study [14]

2020 Empirical

13 Fallacies and Pitfalls on the Road to DevOps: A
Longitudinal Industrial Study [34]

2020 Empirical

14 Exploring Community Smells in Open-Source: An
Automated Approach [11]

2019 Empirical

15 Gender Diversity and Community Smells: Insights
From the Trenches [16]

2019 Empirical

16 Gender Diversity and Women in Software Teams:
How Do They Affect Community [12] Smells?

2019 Empirical

17 Splicing Community and Software Architecture
Smells in Agile Teams: An industrial Study [32]

2019 Empirical

Continued on next page

68

Table C.11 – continued from previous page

Title Year Paper type

18 Software Architecture Social Debt: Managing the
Incommunicability Factor [20]

2019 Empirical

19 Omniscient DevOps Analytics [44] 2019 Theoretical
20 Balancing Resources and Load: Eleven Nontech-

nical Phenomena that Contribute to Formation or
Persistence of Technical Debt [45]

2019 Empirical

21 Beyond Technical Aspects: How Do Community
Smells Influence the Intensity of Code Smells? [10]

2018 Empirical

22 Discovering community patterns in open-source: a
systematic approach and its evaluation [54]

2018 Empirical

23 Are We Working Well with Others? How the Multi
Team Systems Impact Software Quality [46]

2018 Empirical

24 The Architect’s Role in Community Shepherd-
ing [42]

2016 Empirical

25 Social debt in software engineering: insights from
industry [5]

2015 Empirical

69

Appendix D. Community smells found in the literature

Name Causes Effects

Architecture by osmosis [20] The effects of certain decisions reach clients
and product operators but such decisions re-
sult in inoperable software.
Product is operating and clients report many
inconsistencies.
Operators, pushed by clients, share malcon-
tent with developers and suggest technical
changes.
Developers evaluate (and sometimes partially
implement) possible technical changes and
suggest change to architecture decisions.
Architects make necessary changes in deci-
sions with knowledge that was partially fil-
tered by all communication layers in the de-
velopment network.

Lack of vision
Mistrust
Decision localization
Poor decision documentation
Architecture erosion

Architecture hood [5] Geographical and sociotechnical dispersion of
architecture decisions

Uncooperative behaviour across the commu-
nity
Solution defiance

Black cloud [5, 10] Lack of boundary spanners
Lack of sharing protocols
Lack of sharing initiatives

Mistrust
Unsanctioned initiative, e.g., people taking
matters and decisions in their own hands
Rise of egotistic behavior that leads to the
inception of Organizational Silo
Information obfuscation

Continued on next page

70

Table D.12 – continued from previous page

Name Causes Effects

Class cognition [10] No causes provided by or found in the litera-
ture

Modular structure and refactored classes are
more difficult to understand and contribute
for newcomers

Code red [10] No causes provided by or found in the litera-
ture

Extremely complex classes that can be man-
aged by 1-2 people at most

Cognitive distance [42] Experience diversity Wasted time
Wasted operations resources
Lack of an optimal understanding across dif-
ferent operations areas
Misinterpretation of expectations
Pitting newbies versus experts
Faulty or smelly code
Additional development costs
Mistrust across the development network

Cookbook development [42] Thinking in an old framework e.g, the water-
fall model

Mismatched expectations between customers
and the rest of the community

Continued on next page

71

Table D.12 – continued from previous page

Name Causes Effects

DevOps clash [42] Geographic dispersion Slower development
Ineffective operations
The inability to bridge between different
thought worlds across development and op-
erations
“Stickiness” of knowledge transfer
Clashes between the development and oper-
ations cultures
Increased project costs
Lack of trust-building

Disengagement [42] Lack of engagement in development
Lack of curiosity

Missing software development contextual in-
formation
Wild assumptions

Dispersion [10] No causes provided by or found in the litera-
ture

Fragmentation of a previously existing group
or modularized collaboration structure in the
community
Haphazard work
Normal maintenance activities in the commu-
nity are more difficult to carry out and coor-
dinate

Dissensus [10] Inability to achieve consensus on how to pro-
ceed despite repeated attempts at it

Code smell remains as-is or teams are unable
to find a common solution

Hyper community [42] No causes provided by or found in the litera-
ture

Increased turbulence
Buggy software

Continued on next page

72

Table D.12 – continued from previous page

Name Causes Effects

Informality excess [42] Relative absence of information management
and control protocols

Low accountability of both development and
operations staff
Information spillover

Institutional isomorphism [42] Excessive conformity to standards
Lack of innovation
Using a formal structure to achieve commu-
nity goals
Rigid thinking from different parts of the
community

A negative impact on team spirit
Lack of innovation
Stagnation
Lack of collaboration
Lack of communication
A less flexible or static product

Invisible architecting [20] Architecture decisions are made or changed
rapidly
Product is developed and operates as well
(e.g., refactoring)
Thereby, architecture documents are not
used properly and/or few architects are
present
Also, architecture decisions are too big to im-
plement
Thus, new team is added to the development
network to implement the changes

Decision unawareness
Product version and architecture misalign-
ment
Solutions defiance
Time waste

Leftover techie [5] Increased isolation between development and
operations people

Seemingly egotistical behaviour for knowl-
edge and status awareness sharing
General lack of trust in technicians in sharing
results and current status
Lack of communication or miscommunication

Continued on next page

73

Table D.12 – continued from previous page

Name Causes Effects

Lone wolf [11, 12] Absence of communication with one of the
developers who prefer working independently
from the others

Unsanctioned architectural decisions made
by contributors who carry out their work ir-
respective or regardless of their peers
Software developers exhibiting uncooperative
behaviour
Software developers exhibiting mistrust
Developer free-riding
Side effects generated due to Organizational
Silo (communication decay and negative in-
fluence on developer awareness)
Delays due to Organizational Silo and Lone
Wolf simultaneously
Code duplication
Code churn

Lonesome architecting [20] Architects are too few and far apart.
Non architects are forced to make decisions.
Not enough time dedicated to disseminating
decision and related changes

Decision unawareness
Lack of awareness on the product’s needs
Time waste
Overly fast decision-making to “patch-up”
Misalignment between product version and
architecture

Newbie free-riding [42] No causes provided by or found in the litera-
ture

High work pressure
Irritation
Demotivation of non-senior members

Continued on next page

74

Table D.12 – continued from previous page

Name Causes Effects

Obfuscated architecting [20] Legacy and new product are operating to-
gether or being integrated
New architecture decisions imply implemen-
tation changes that necessitate new people to
be included in the development network
New people do not have the needed ”legacy”
frame of mind

Single communication points for architecture
decisions
Sociotechnical code churn
Time waste
Developers frustration

Organizational silo [5, 11] High decoupling between tasks
Lack of communication
Lack of cooperation in checking task depen-
dencies

Tunnel vision with a consequent lack of
creativity and lack of cooperation
Tunnel vision with a consequent lack of
collaboration
Developers make architecture decisions on
their own without the necessary background
and premises
Developers make architecture decisions on
their own using different format every time
Community filled with wasted resources e.g.,
time
Decaying communication across sub-
communities and consequent negative effects
on developers’ situational awareness
Solution defiance
Duplication of code

Continued on next page

75

Table D.12 – continued from previous page

Name Causes Effects

Organizational skirmish [5] Different communication level
Different expertise level
Organizational change
Different business processes

Project delay
Project failure

Power distance [42] Lack of architecture knowledge sharing Additional project costs
Financial loss
Lost bids

Priggish members [42] No causes provided by or found in the litera-
ture

Additional project costs
Frustrated team members

Prima donnas [5] Innovation inertia
Organizational inertia
Irreceptiveness to changes/support
Silo effects

Seemingly condescending and egotistical be-
haviour
Lack of collaboration
Lack of communication

Radio silence or Bottleneck [5,
11]

Highly formal and complex organizational
structure
Proposed changes within every software de-
velopment phase require an extraordinary
quantity of time to be implemented
Time waste
Hidden or counterintuitive information (and
broker) locations
Highly regularized procedures

Communication delays, i.e., answering criti-
cal emails or posts

Continued on next page

76

Table D.12 – continued from previous page

Name Causes Effects

Sharing villainy [5] Lack of incentive to value knowledge sharing
Lack of activities promoting useful knowledge
sharing and synch

Undefined information flow
Lower engagement in the community in
knowledge sharing e.g., the shared informa-
tion is outdated, unconfirmed or wrong

Solution defiance [5] Homophile groups Uncooperative behavior
Ignoring decisions

Time warp [42] Experience diversity Low software architecture quality
Malfunctioning software or code smells
Losing face in the community
Unsolved operations issues
Unsatisfied customers

Unlearning [42] Experience diversity Lack of engagement
Gradual loss of the new knowledge or best
practices

77

	1 Introduction
	2 Background
	2.1 Social debt and community smells
	2.2 Teamwork and factors for its effectiveness

	3 Methodology
	3.1 Defining the research questions
	3.2 The source selection and search
	3.3 Selection criteria
	3.4 Review execution
	3.5 Data extraction
	3.6 Data analysis
	3.6.1 Defining the need for coding
	3.6.2 Generating the codes
	3.6.3 Reviewing the codes
	3.6.4 Conducting the coding

	3.7 Visualization

	4 Reporting the results
	4.1 RQ1: How have software engineering researchers defined social debt?
	4.2 RQ2: What community smells appear in the literature?
	4.3 RQ3: What approaches for community smells management appear in the literature?
	4.3.1 Organizational strategies
	4.3.2 Frameworks
	4.3.3 Models
	4.3.4 Tools
	4.3.5 Guidelines

	4.4 RQ4: What are the properties of the community smells?
	4.5 RQ5: How do community smells originate and evolve in software development settings?
	4.5.1 Stage 1: Induction
	4.5.2 Stage 2: Community-smell effects in situ
	4.5.3 Stage 3: Team-level spreading
	4.5.4 Stage 4: Organizational spreading
	4.5.5 Stage 5: Progressive community smells

	4.6 RQ6: What types of events characterize the causes and effects of community smells?
	4.7 RQ7: What are the types of causes and effects of community smells found in the literature?
	4.7.1 Types of causes
	4.7.2 Types of effects

	4.8 RQ8: How do the community smells affect teamwork in software development teams?

	5 Discussion
	5.1 The studies included
	5.2 Social debt, community smells, and overall research contributions
	5.3 The 11 properties of community smells
	5.4 The Community Smell Stages Framework
	5.5 The connection between the community smells and teamwork factors
	5.6 Lessons learned

	6 Threats to validity
	6.1 Study selection
	6.2 Processing collected data on community smells
	6.3 Generating the codes and coding process

	7 Conclusion
	Appendix A Categories to classify the studies and research contributions
	Appendix B List of codes for the coding process
	Appendix C Included studies in the SLR
	Appendix D Community smells found in the literature

