
Knowledge Distillation Methods for Efficient
Unsupervised Adaptation Across Multiple Domains

Le Thanh Nguyen-Meidine1,∗, Atif Belal3, Madhu Kiran1, Jose Dolz1,
Louis-Antoine Blais-Morin2, Eric Granger1

a1100 Notre-Dame St W, Montreal, Quebec H3C 1K3, Canada

Abstract

Beyond the complexity of CNNs that require training on large annotated datasets,

the domain shift between design and operational data has limited the adoption of

CNNs in many real-world applications. For instance, in person re-identification,

videos are captured over a distributed set of cameras with non-overlapping view-

points. The shift between the source (e.g. lab setting) and target (e.g. cameras)

domains may lead to a significant decline in recognition accuracy. Additionally,

state-of-the-art CNNs may not be suitable for such real-time applications given

their computational requirements. Although several techniques have recently

been proposed to address domain shift problems through unsupervised domain

adaptation (UDA), or to accelerate/compress CNNs through knowledge distil-

lation (KD), we seek to simultaneously adapt and compress CNNs to generalize

well across multiple target domains. In this paper, we propose a progressive

KD approach for unsupervised single-target DA (STDA) and multi-target DA

(MTDA) of CNNs. Our method for KD-STDA adapts a CNN to a single tar-

get domain by distilling from a larger teacher CNN, trained on both target

and source domain data in order to maintain its consistency with a common
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representation. This method is extended to address MTDA problems, where

multiple teachers are used to distill multiple target domain knowledge to a com-

mon student CNN. A different target domain is assigned to each teacher model

for UDA, and they alternatively distill their knowledge to the student model to

preserve specificity of each target, instead of directly combining the knowledge

from each teacher using fusion methods. Our proposed approach is compared

against state-of-the-art methods for compression and STDA of CNNs on the

Office31 and ImageClef-DA image classification datasets. It is also compared

against state-of-the-art methods for MTDA on Digits, Office31, and OfficeHome.

In both settings – KD-STDA and KD-MTDA – results indicate that our ap-

proach can achieve the highest level of accuracy across target domains, while

requiring a comparable or lower CNN complexity.

Keywords: Deep Learning, Convolutional NNs, Knowledge Distillation,

Unsupervised Domain Adaptation, CNN Acceleration and Compression

1. Introduction

Convolutional neural networks (CNNs) have achieved state-of-the-art per-

formance in many visual recognition tasks, i.e., classification, object detection,

and segmentation. However, a key limitation that hampers their scalability is

their poor generalization to data from new unseen domains, where there exists

a shift between data collected for training, source domain, and one/multiple

deployment environments, target domains. Particularly, in real-world video

surveillance applications like person re-identification, deep Siamese networks

are commonly trained to process videos captured over a distributed network of

cameras. The variations in data distributions in terms of the different types

of the cameras, viewpoints, and capture conditions can cause a significant do-

main shift, and degrade accuracy [1]. Another drawback of state-of-the-art

CNNs is the computational complexity, which impedes its adoption in real-time

applications. Although it is possible to address the domain shift problem by

annotating target domain data and applying supervised transfer learning, the
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cost of collecting and annotating a large image dataset for each target domain

can be prohibitively costly. To alleviate this issue when only unlabeled target

data is available, several unsupervised domain adaptation (UDA) techniques

have been proposed. Currently, most of UDA techniques focus on learning do-

main invariant features by minimizing a distance or discrepancy between the

two data distributions [2], to encourage domain confusion by using adversarial

losses [3, 4], or both [5]. Lastly, it is also possible to learn a mapping between

source and target images [6, 7], such that images captured in different domains

have a similar appearance, which mimics standard supervised learning.

While these techniques are very useful for single-target domain adaptation

(STDA), they fail to adapt to a multi-target domain adaptation (MTDA) sce-

nario, a relatively unexplored setting of practical importance, where a single

model is trained to generalize well across multiple different target domains. A

simple solution would be to solve the problem of MTDA by having one CNN

trained on each target domain. Nevertheless, this would be very costly in terms

of computational resources. For instance, in person re-identification, MTDA

can be addressed by adapting a CNN per target domain, or blending target

data to adapt a common CNN, although in many real-world applications, these

solutions are too costly, and may lead to a reduction in accuracy. Current liter-

ature tackles the MTDA task by either taking advantage of domain labels from

each target domain [8] or ignoring these labels and mix all the target domains

together [9]. The Figure 1 illustrates the difference between STDA, MTDA and

some possible solutions for an MTDA setting.

Current techniques allow to accelerate and compress CNNs while preserving

its accuracy. These approaches include: quantization [10, 11, 12], low-rank ap-

proximation [13, 14], knowledge distillation (KD) [15, 16, 17, 18] and network

pruning [19, 20, 21, 22, 23]. However, the direction of jointly compressing and

adapting CNN to a target domain remains largely unexplored. To the best of

our knowledge, only the Transfer Channel Pruning (TCP) technique [24] has

been proposed to first solve the UDA problem, and then pruning the adapted

model. As for using UDA and KD, while recent work [25, 26] resort to KD to
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address the UDA task, they focus on reducing the domain gap, rather than the

computational cost. Furthermore, most KD techniques rely on labeled dataset

whereas in the UDA setting, we do not have access to these labels, which rep-

resents an important challenge for the co-joint optimization of KD and UDA.

While it is possible to adopt a compressed CNN to a new target domain,

we argue that this scenario will likely degrade the performance of the CNN

since over-parametrization is often important for generalization [27]. Another

alternative could be to first adapt a model to the target domain and then com-

press it. However, we experimentally demonstrate that such a scenario results

in poor performance due to the lack of label information for knowledge distil-

lation. In this paper, we resolve the aforementioned problem by progressively

distilling knowledge from a teacher model that is continuously doing domain

adaptation to the student. We argue that this can improve the performance

since the student learns how to adapt to a new domain instead of learning di-

rectly from a previously targeted domain. In addition, we overcome the problem

of unsupervised KD for the student model by jointly optimizing UDA and KD

and by keeping the student model consistent with the source domain. Our pro-

posed approach can also be generalized for a multi-target domain adaptation –

MTDA, where there exist multiple target domains– by assigning each teacher

to a different target domain.

In order to address the problem of CNN complexity and domain shift over

one or multiple domains, this paper introduces the following contributions. 1)

we propose a new approach for joint KD and UDA that allows training CNNs

such that they generalize well on one or multiple target domains; 2) we intro-

duce a consistency loss that ensures that the student models also learn source

domain knowledge from the teacher model in order to overcome the challenges

of unsupervised KD on target data; 3) this paper extends our previous work

[28] in a substantial way by providing new algorithms and extensive experimen-

tal results to validate our approach on different UDA and feature distillation

techniques; 4) finally, we extend to the MTDA setting, where our KD-MTDA

approach relies on multiple teachers to provide a higher capacity to generalize
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for multiple target domains, as well to distill their compressed knowledge to

a smaller common student CNN that can perform well across multiple target

domains.

The rest of this paper is organised as follows. Section 2 provides an overview

of state-of-the-art methods for compression and UDA with CNNs. Then, Section

3 introduces our proposed KD approaches for STDA and MTDA of CNNs.

The experimental methodology employed for validation, and the results and

discussions are described in Sections 4 and 5, respectively.

2. Related Work

2.1. CNN acceleration and compression techniques:

Time complexity generally depends mostly on the CNN convolutional layers,

while memory complexity (number of parameters) depends mostly on the fully

connected layers. Currently, one of the most popular ways to reduce CNN

complexity is to apply pruning techniques [19, 20, 21, 22, 23, 29, 30], using

either weight or filter-level pruning. Another popular strategy to lower the

complexity is quantization [10, 11, 12], which reduces the complexity by reducing

the representation of weights into a lower precision, i.e., converting 64-bit float

precision to an 8-bit integer. Low rank decomposition techniques [13, 14] have

also been employed to accelerate CNNs by decomposing weight tensor into lower

rank approximation. Lastly, KD [15, 16, 17, 18] aims to transfer knowledge from

a larger teacher model to a smaller student model, therefore, preserving teacher

accuracy on the student, while reducing complexity.

In this paper, we focus on KD based techniques on the intuition that a CNN

can efficiently learn how to adapt to a target domain, improving its accuracy on

target domain data. Also, we argue that by leveraging over-parametrization [27],

our approach can provide a better generalization capacity than when applying

UDA on a pruned CNN which has fewer parameters to optimize. Addition-

ally, KD also provides a natural generalization for an MTDA setting where each

teacher is responsible for a target domain. Two main approaches have been pro-
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posed for distilling a teacher’s knowledge to a student – either based on network

outputs [15] or on intermediate features [17]. For example, a temperature-based

softmax was used in [15] to generate softer versions of the teacher network

outputs, facilitating the learning of a student model. In contrast, Heo et al.

[17] enforce similarities between the teacher and student models at intermediate

features layers, by minimizing a partial L2 distance. In particular, if the value

measures on the student model is smaller than the value of the teacher, and both

are negative, then the result is set to 0. A margin ReLU is also employed since

the authors argue that negative value from the network is also useful. Another

work [18] proposes to solve the problem of the gap between teacher and student

by integrating a teaching assistant that serves as an intermediate student that

first learns from the teacher then it will distill the information to the student

using the output of its network.

2.2. Single-target domain adaptation:

Unsupervised domain adaptation (UDA) techniques alleviate the problem of

domain shift of a deep learning model that is trained on a labeled source do-

main data, using unlabeled data from a target domain. Currently, UDA can be

achieved by encouraging domain confusion [3, 4], learning domain-invariant fea-

tures [2, 31], mapping between source and target domains [32, 33, 34], ensemble

learning [35], statistic normalization [36] and target discriminate methods[37].

Domain confusion between source and target domain has been done by em-

ploying an adversarial loss[4, 31] or by using a gradient reversal layer like [3]

in combination with a domain classifier. Differently, a model can also learn

domain-invariant features, for example, by minimizing the Maximum Mean Dis-

crepancy (MMD) between source and target [2]. Other works such as [32, 33]

propose to find a mapping from the source to the target domain or vice-versa,

typically based on Generative Adversarial Networks (GAN) [32]. This setting is

commonly regarded as a zero-sum game between two networks, a discriminator

and a generator. While the generator tries to fool the discriminator by generat-

ing images with target style, the discriminator tries to distinguish the domain
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...
Mixed	Target	Dataset

a)	Single-Target	DA.

c)	Single-Target	DA	for	multiple	targets. d)	Multi-Target	DA	with	mixed	targets. e)	Our	proposed	KD-MTDA	approach.

Common	Multi-Target	Model

S

S

Single	Target	Model

Multiple	Target	Models

S

...

...

Multiple	Teacher	Target	Models

S

...

...

...

b)	Our	proposed	KD-STDA	approach.

Teacher	Target	Model

KD

Student	Target	Model

S KD

Student	Multi-Target	Model
...

Figure 1: Illustration of the different strategies for STDA and MTDA of CNNs. a) Basic

STDA technique given data from a source S and target T domain. b) Our proposed KD-

STDA approach, where a teacher CNN is adapted to one target domain, and its knowledge

is transferred to a smaller student CNN. c) MTDA by applying STDA independently on n

CNNs, one per target domain dataset. d) Applying STDA using a mixture of datasets from

n target domain to adapt a common CNN. e) Our proposed KD-MTDA approach, where

multiple teacher CNNs are adapted, one per target, and their knowledge is combined and

distilled to a smaller common student CNN.

the images belong to. In [38], the authors further improve mapping by perform-

ing the adaptation at the feature level. Another strategy is to employ multiple

models as an ensemble or as self-ensembling (multiple models at different times)

such that they can produce reliable pseudo-labels on target domains[35]. Last,

some other researchers have proposed to adapt the batch norm statistics [36]

instead of adapting the network’s layers.

2.3. Multi-target domain adaptation

While single target domain adaptation (STDA) has gained significant at-

tention, multi-target domain adaptation (MTDA) remains largely unexplored,

since it poses a challenge for many applications. Recent work to tackle the

MTDA task [8] proposes to maximize the mutual information between domain

labels and domain-specific features while minimizing the mutual information

between shared features. Other papers have explored the open multi-domain
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adaptation [39] or blended MTDA[9, 40]. The first focuses on doing UDA on

multiple target domains on a model so that it can also perform well on another

unseen target domain not available during training. The second technique as-

sumes that there’s no information on where the target image comes from and

uses a clustering technique to separate them into different pseudo target do-

mains. The Figure 1 shows the difference between our proposed technique and

current existing techniques.

2.4. Joint unsupervised domain adaptation and knowledge distillation:

Even though joint UDA and KD has already been investigated in the past

[41, 42], the aim of these works is on improving the UDA accuracy, neglecting

the complexity reduction problem. For example, [41] uses multiple teachers to

learn multiple source domains, increasing the accuracy of the student model

for sentiment analysis. In [42], KD and DA are combined in a semi-supervised

fashion in the context of medical image segmentation. To the best of our knowl-

edge, only the method in [24] currently tackles the problem of compression and

domain shift using pruning and UDA. However, unlike the proposed model, the

approach in [24], i.e., TCP, operates in several steps. TCP must first be adapted

to a target domain, and then the learned model is iteratively pruned while con-

tinuously refined using UDA. This contrasts to our model, which progressively

compresses and adapts to multiple target domains simultaneously from a single

source CNN model. Furthermore, TCP presents some important limitations.

First, by performing the UDA and compression as two independent steps, there

is a risk of a degrade in performance and a limited compression rate. Sec-

ond, longer deployment times are needed for obtaining an efficient CNN that is

adapted to a target domain, which can hamper the application to many specific

problems, for example application that have a lot of changes in environment

such as mobile car detection. Lastly, TCP[24] cannot be easily generalized to

an MTDA setting, and applying TCP directly on a mixture of multiple target

domains can result in poor performance since it has been shown in literature

[9] that directly apply an STDA technique on a mixture of multiple targets will
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only have limited performance.

3. Progressive Domain Adaptation Through Knowledge Distillation

In this paper, we simultaneously address the domain shift and compres-

sion problems to obtain an efficient CNN model that is adapted to a target

domain. Instead of obtaining a compressed CNN directly from a previously-

adapted CNN, we argue that it may be beneficial to lean an efficient CNN by

teaching it how to progressively adapt to target domains. This would mean that

our efficient model is less constrained to optimize since it does not start from

a local minimum. Based on this idea, we propose an approach that relies on a

larger teacher model to performs UDA for a target domain, while progressively

transferring the knowledge of how to perform UDA to a smaller student. Both

student and teacher models begin from a pre-trained CNN, instead of a model

previously adapted to a target domain.

The main pipeline of our method is illustrated in Figure 2. The rest of this

section provides additional details on UDA techniques used in this paper, KD

for both supervised and unsupervised settings, our joint CNN optimization for

UDA and KD, and generalization to multiple domains.

3.1. Unsupervised domain adaptation:

Our distillation of domain adaptation is UDA-agnostic, and can be inte-

grated using any UDA approach. We apply our technique on popular discrepancy-

and adversarial-based UDA approaches from the literature. First, a Maximum

Mean Discrepancy (MMD)-based UDA approach[2], that seeks to minimize the

distance between target and source domain distributions in the features space.

The choice of this technique for domain adaptation allows for fair comparison of

compression of our technique with Transfer Channel Pruning (TCP) [24]. Sec-

ond, we use a technique called RevGrad [3], which relies on adversarial training

in order to find a common representation by encouraging domain confusion be-

tween target and source domain. The rest of this section provides additional

details on these two approaches.
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3.1.1. MMD approach:

Let us define the labeled source dataset as S = {xs, ys} and the unlabeled

target dataset as T = {xt}. The UDA loss for teacher CNN based on MMD

[2, 24] is :

LMMD(φ, T, S) = || 1

Ns

∑
xi∈S

φ(xi)−
1

Nt

∑
xj∈T

φ(xj)||2H (1)

where dataset S contains Ns samples (and labels), T contains Nt samples, φ

is the teacher function that maps an input to a feature map, and H is the

Reproducing Kernel Hilbert Space (RKHS) with Gaussian kernel. As in [2, 24],

we add a supervised loss on the source domain dataset, and the overall UDA

loss for the teacher CNN is:

LTDA(Φ, T, S) = LMMD + γLCE(Φ(xs, 1), ys) (2)

where LCE the supervised cross-entropy loss of the teacher model on the source

domain data, γ a trade-off hyper-parameter that follows the same variations as

[24], and Φ the output of the teacher network with a soft-max of temperature

value set to 1 (i.e. the regular soft-max).

3.1.2. RevGrad approach:

For this approach, UDA of the teacher relies on a domain classifier, a gradient

reversal layer (GRL), and the domain confusion loss defined as:

LDC(φ, T, S) =
1

Ns +Nt

∑
x∈S∪T

LCE(C(φ(x)), dl) (3)

where φ(x) is the output from the feature extractor of teacher network Φ (before

the fully connected layers), C is the domain classifier for the corresponding

teacher network, dl the domain label (source or target), Ns is the number of

samples in the source domain S, and Nti is the number of samples in the target

domain Ti. The overall UDA loss is then defined as:

LTDA(Φ, T, S) =
1

Ns

∑
xs,ys∈S

LCE(Φ(xs), ys) + α · LDC(φ, T, S) (4)

The cross-entropy loss term in Equ.4 allows the supervised training of the

teacher model on the source domain data to ensure the consistency of domain
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confusion. The second term is controlled by a hyper-parameter α that regu-

lates the importance of the domain confusion loss which is maximized using a

gradient reversal layer.

3.2. Knowledge distillation for domain knowledge transfer:

The next step consists in transferring target domain knowledge from the

teacher to student models. Our proposed method is general, and can be adapted

to any KD method based on logits and features. We apply our proposed ap-

proach on a KD technique based on (1) the work of [15] that distill knowledge

from a teacher to student using the output of each network, and (2) the feature

distillation method [17] that minimizes the difference between feature maps of

intermediate layers. These KD techniques are detailed below.

3.2.1. Logits-based distillation:

Let us defined the temperature based softmax that inputs the logits, and

produce a softened output that can represent more information to be distilled:

softmaxi(τ) =
exp (zi · τ)∑
j exp (zj · τ)

(5)

where zi the logits of class i produced by the classification layer of the CNN,

the Hinton distillation [15], is then defined as:

LLDistill(Φ,Θ, D) = LKL(Θ(D, τ),Φ(D, τ)) (6)

where Θ(D, τ) and Φ(D, τ) represent the outputs of the student and teacher

networks, respectively, with a softmax based on a temperature τ in order to

soften the output. For simplicity, D represents a generic dataset that we will

replace with the source or target dataset.

3.2.2. Feature-based distillation:

Instead of distilling only on the output of teacher and student, feature KD

[17] relies on several intermediate layers inside the network. For simplicity,

we present the KD loss for only one layer since the algorithm similar across
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all layers. For this technique, the features for distillation is extracted at the

end of each residual block and before a ReLu unit since the information before

ReLU still carries negative values which are important for KD. Additionally, the

authors argue that not all negative values are important, therefore they propose

applying a margin ReLU when distilling information from teacher to student.

The margin ReLU is defined as:

σm(x) = max(x,m) (7)

where m is a margin value less than zero. The margin m can be computed

as the expectation value of the negative response, for each input channel. The

margin value for channel c can be computed as:

mc = E[F i
Φ|F i

Φ < 0, i ∈ C] (8)

with F i
Φ the teacher’s feature of the i − th channel of C channel. The margin

value mc is computed over all training samples. As for the distillation loss, the

authors use a partial L2 distance function, defined as:

LPL2(FΦ, FΘ) =

WHC∑
j

0, if FΘj ≤ FΦj ≤ 0

(FΦj − FΘj )2, otherwise

(9)

In this Equ. 9, FΘ, FΦ ∈ RW×H×C represents respectively the feature map

of the student and teacher networks. Here, the j − th component represents an

element in the feature map where FΘj
, FΦj

∈ R. After the domain adaptation in

3.1, the target domain knowledge is transferred from the teacher to the student,

we use a loss function:

LFDistill(Φ,Θ, D) = LPL2(σmc(FΦ(D)), r(FΘ(D) (10)

Here, σmc
represents margin ReLU and r(·) represents 1×1 convolution layer.

FT and FS represent respectively the features of student network and teacher

network. In the next section, we will further explain our contribution that allows

employing unsupervised KD for UDA.
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3.3. Progressive Joint KD and UDA: KD-STDA

The main pipeline of the proposed method is depicted in Figure 2. Our

method performs UDA of a teacher model by learning a common domain-

invariant feature embedding between the source and target domains, while pro-

gressively distilling its knowledge to a student model. Contrary to other works,

e.g., [24], the teachers in our setting are not adapted to the target domain, and

start from pre-trained weights on ImageNet. Thus, our teachers would train

the student CNN to adapt to the target domain, while they also continuously

adapt to each target domain. From Equation 6, target distillation is a simple

application of the equation on the target dataset:

LTKD(Φ,Θ, T ) = LDistill(Φ,Θ, T ) (11)

Equ.11 should allow to transfer information to the student network, since

we are only interested in performing correctly on the target domain data. In-

spired by current UDA techniques, we propose to add a consistency distillation

loss in order to ensure that our student learns a common representation. This

consistency is achieved by distilling source domain information into the student

CNN:

LSKD(Φ,Θ, S) = Ldistill(Φ,Θ, S) + αLCE(S) (12)

Eq. 12 is the student KD loss, with hyper-parameter α to balance between

the KD and the cross entropy loss of the output of the student model and

the ground truth on the source domain. We also propose to add the β hyper-

parameter in order to balance out the importance between UDA and KD. Since

we are performing jointly KD and DA, in the beginning, the teacher would still

be learning from the DA. This means that there is not much to be learned for

the student model, besides the source representation which can be learned from

the KD loss. In light of this, we propose to start by giving more importance to

UDA in the beginning and gradually transfer the importance to KD basing β

on an exponential growth function between [b, f ], with b the starting value of

β and f the end value. In order to define as exponential growth, we need to
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calculate a growth rate based on b and f :

g =
log(f/b)

Ne

(13)

where Ne is the number of epochs and g the growth rate. Given the growth

rate, β at epoch t can be found as:

βt = b · exp{g · t} (14)

Teacher	FE

Student	FE

Source	FeaturesTarget	Features

Figure 2: Our proposed progressive KD-STDA, where DA is performed on a teacher CNN,

and then a smaller student CNN learns how to adapt on both target and source features

through knowledge distillation.

Figure 2 illustrates all these losses and also the proposed techniques. The

final loss of our models, is then:

L(Φ,Θ, S) = (1− β)LTDA(Φ, T, S) + β(LTKD(Φ,Θ, T ) + LSKD(Φ,Θ, S))

(15)

Algorithm 1 described the steps of our approach for the MTDA setting.

3.4. Progressive Multi-target KD and UDA: KD-MTDA

A multi-target approach can also be naturally derived from our approach by

assigning each teacher a different target domain, and applying the same UDA
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Algorithm 1: KD-STDA: Our method in STDA Setting.

input : A teacher model MT , a student model MS , a source

dataset DSup
s , a target dataset DU

t

output : A target adapted student model

1 for epoch← 1 to Ne do

2 for xs in S and xt in T do

3 Optimize the (1− β)LDA for the teacher model

4 Optimize the β(LTKD + LSKD) for the student model

5 Update β following Eq.14

6 end

7 Evaluate the model

8 end

Source	FeaturesTarget	Features

Teacher	FE

Student	FE

...

Updated	

Teacher	FE

Student	FE

Target	Features Source	Features

Figure 3: Our proposed method for MTDA with n target domains. Each teacher CNN is

assigned a different target domain, and sequentially teaches the student CNN how to adapt

to source and target features for different target domains using knowledge distillation. After

each knowledge distillation process with each teacher, features output from the student CNN

are recalculated using update weights, for a new distillation with a different teacher.

15



loss that we previously defined. The progressive KD to the common student is

described in Algorithm 2. This approach can be formalized in the same way as

in the STDA setting. We define an ensemble of target datasets from T1 to Tn,

and redefine the loss to a specific target domain dataset for each teacher:

LMTDA(S, Ti) = (1− β)LTDA(Φi, Ti, S) + β(LTKD(Φi,Θ, Ti) + LSKD(Φi,Θ, S)

(16)

where Φ1 to Φn are the respective teachers for target domains T1 to Tn. Similar

to our STDA setting, we rely on the exponentially growing rate to gradually

transfer the importance of domain adaptation to distillation since the student

model and teachers are quite similar in the beginning (they all start from pre-

trained weights of ImageNet).

Figure 3 illustrated the block diagram of our proposed KD-MTDA method.

By assigning each complex teacher a target domain, we can adapt a CNN to

generalize well across multiple target domains, thus allowing the student to learn

progressively transferable features from all the teachers.

Algorithm 2: KD-MTDA: Our method in MTDA setting.
input : A source domain dataset S, a set of target dataset T0, T1, ...Tn

output : A student model adapted to n targets

1 Initialize a set of teachers models Φ = {Φ0,Φ1, ...Φn}

2 Initialize a student model Θ

3 for e← 1 to Ne do

4 for xs ∈ S and Xt ∈ {T0, ...Tn} do

5 Get the set of data of target domains Xt

6 for xit ∈ Xt and Φi ∈ Φ do

7 Optimize (1− β)LDA for Φi using xs, xit

8 Optimize the loss of equation βLSKD for Φi and Θ using xs

9 Optimize the loss of equation βLTKD for Φi and Θ using xit

10 end

11 Update β = s · expg·e

12 end

13 Evaluate the model

14 end
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4. Experimental Methodology

4.1. Datasets:

Digits. This dataset is made of a set of digits datasets: MNIST[43] (mt),

MNIST-M[44] (mm), SVHN[45] (sv), and USPS[46] (up). Each one has each

10 classes that represent all the digits. For the evaluation on this dataset, we

follow the same protocol as in [8] for a fair comparison: where we use 25000

samples for training on mt,mm,sv,sy and 9000 for testing. On the up dataset

we use the entire dataset as a domain. We will mainly use this dataset for

comparison of MTDA.

Office31. [47] This dataset contains three subsets of dataset which are Webcam

(W), DSLR (D) and Amazon (A). These subsets contain images from ama-

zon.com (A) or office product taken a DSLR camera (D) or a webcam (W).

We evaluate our results based on the same scenario as [24]. These datasets all

have 31 common classes and around 4000 images in total and each subset has a

different amount of data: Amazon (2800 images), DSLR (500 images), Webcam

(800 images).

ImageClef-DA. This dataset for UDA has four subsets which are taken from

Imagenet (I), Pascal-Voc (P), Caltech (C) and Bing (B). Each of these subsets

contains 600 images for 12 classes. For this dataset, similars to Office31, we use

the same scenario as [24] for fair comparison.

PACS. [48] While this dataset is often used for domain generalization, it has

been used in [8] for MTDA. This dataset contains 4 subsets – Art painting

(Ap), Photo (P), Cartoon (Cr) and Sketch (S). With around 2̃000 images in

Art Painting, 2̃300 for Cartoon, 1̃700 for Photo and 4̃000 for Sketch. We will

use this dataset for MTDA comparison.

OfficeCaltech. This dataset contains 4 subsets of four different domains: Ama-

zon (A), Caltech10 (C), DSLR(D) and Webcam (W). They each contain re-

spectively 957, 1123, 295, 157 images of 10 classes.
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Figure 4: Samples from the Office31 and ImageClef-DA datasets.

4.2. Baselines methods:

For experiments in the STDA setting, several baselines were selected in order

to evaluate our method. We start with the three scenarios presented earlier: (1)

UDA then KD, (2) KD then UDA and (3) UDA directly on compact model.

For these baselines, our teacher model will always be ResNet50 and our student

models ResNet18 or ResNet34. In the first case, UDA −→ KD, UDA is applied

to a teacher model then we start KD to a student model on target domain

without labels. For the second baseline KD −→ UDA, the teacher model is first

trained in supervised way on the source dataset then we apply KD with this

teacher and a student using labeled data of the source dataset. The student is

then applied UDA. As for the last baseline, UDA is applied directly to a student

model. We also add RevGrad[3] and CDAN[49] directly on compact model as

another baseline. In addition, we also compare to the state-of-the-art method

in compression and UDA: TCP[24].

In the MTDA setting, we compare our method with several baselines like a

lower-bound where the model is only trained on source domain and then test on

multiple target domains. We also introduce baselines from current STDA tech-

niques, RevGrad[3] and ADDA[4] to show that, in their current form, they are
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not suitable for an MTDA setting. Additionally, we also compare our method

with [8] which is the current state-of-the-art MTDA technique that uses domain

labels. As for [39], we do not include them in our comparison since it focuses on

the open MTDA with unseen target domain, however we provide a comparison

with DADA[40] which does use domain labels.

4.3. Implementation details:

For the STDA setting, we implement our method with two optimizers for

domain adaptation and knowledge distillation. For our experiments on Office31

and ImageClef-DA, in order to have a fair comparison to TCP, our teacher model

was chosen such that it’s the same starting model as TCP and our student

models have similar number of FLOPS or less than TCP pruned models. These

FLOPS are measured for our models, as for the FLOPS of TCP, we report the

number used in their paper. In addition, in order to show that’s our framework

can work with most domain adaptation and distillation techniques, we provide

the result using combination of logits and feature distillation with MMD and

RevGrad domain adaptation.

For the implementations of MTDA setting, we use the same number of opti-

mizers as teacher models, with each optimizer responsible for the domain adap-

tation. Similar to our STDA setting, we have another optimizer for the knowl-

edge distillation of the student. For this approach, we mainly use RevGrad

and logits as domain adaptation and distillation technique. In order to have

a fair comparison with state-of-the-art method [8], we decided to use LeNet

as student backbone and ResNet50 as teachers. Since the authors use a non-

standard backbone, with multiple residual layers and deconv layers, we decided

to use a standard backbone (LeNet) that’s close to their backbone while having

less computational power for fair comparison. For the accuracy, we report the

average accuracy of our model across all target domains.

For both KD-STDA and KD-MTDA, the details for our hyper-parameters

can be found in the supplementary material. Both methods were implemented

in PyTorch, and experiments were run on a server equipped with a Nvidia P100
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GPU.

5. Results and Discussions

5.1. STDA with logits- and feature-based distillation:

Table 1 shows the accuracy of UDA methods on the Office31 dataset. Results

indicate that our KD-STDA method outperforms all the baselines and state-of-

the-art TCP [24]. As for the comparison with our baseline scenarios, the second

baseline KD −→ UDA has the best performance among all the scenarios and

better than the state-of-the-art. The difference between the second and third

baselines ”UDA only” is because the compact model of the second baseline has

distilled features which proves to be the better start than the third baseline.

The first baseline UDA −→ KD provides the lowest accuracy due to unsuper-

vised knowledge distillation on the target domain without a consistency loss.

In addition, our technique on both student models performs better than state-

of-the-art TCP, especially on ResNet18, where our method improved the most

upon state-of-the-art. Finally, our progressive method also seems to improve

upon UDA since we perform better than the second baseline.

Table 2 shows the accuracy of methods on ImageClef, confirming the ten-

dencies of Table 1. Our third baseline ”UDA only” performs better than TCP

in this dataset, which can explain why our methods performance better. Both

Tables 1 and 2 show that our techniques perform well with our proposed feature-

based KD method. Results follow our previous analysis concerning the different

baselines. In addition, feature-based distillation can perform better than logits-

based distillation, as was shown in [17].

Up until now, we have employed an discrepancy-based (MMD) method for

STDA. For this experiment, we replace this method with an adversarial-based

method. We choose the popular adversarial method with GRL called RevGrad

[3] as since it has been used and adapted to other tasks like object detection,

image segmentation. Table 3 shows the difference in accuracy between using

RevGrad[3] and MMD[2]. Results indicate that RevGrad provides similar accu-
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racy compared to MMD based method with both logits and feature distillation.

In Figure 5, the t-SNE visualization [50], computed from the output of the

feature extractor of each CNN, of the scenario A −→ W on ResNet34, further

confirms the similarity between both variants.

Table 1: Target domain accuracy of the proposed and baseline UDA methods on the Office31

dataset, when ResNet50 is the teacher, and Resnet34 and ResNet18 are the desired (student)

CNN backbones. Results are shown for logits- and feature-based distillation: LB | FB.

Source → Target

Training methods A −→ W W −→ A D −→ W W −→ D D −→ A A −→ D Average

Teacher: ResNet50 — Student: ResNet34

Baseline 1: UDA −→ KD 25.4 | 9.6 7.1 | 6.3 28.5 | 12.6 50.0 | 13.8 9.7 | 5.3 30.7 | 11.2 25.2 | 9.8

Baseline 2: KD −→ UDA 75.7 | 51.8 61.2 | 22.0 97.8 | 78.3 99.7 | 93.2 59.6 | 17.3 81.1 | 57.2 79.1 | 53.3

Baseline 3: UDA only on ResNet34 67.2 52.3 93.6 96.6 52.2 71.6 72.2

RevGrad 75.2 59 97.4 99.8 59.1 78.0 78.1

CDAN 76.2 59.2 98.0 99.6 59.4 78.9 78.5

TCP: prune rate = 12% 81.8 55.5 98.2 99.8 50.0 77.9 77.2

KD-STDA MMD (Ours) 85.7 | 86.0 62.3 | 67.6 97.1 | 99.0 100 | 100 61.8 | 66.4 82.1 | 84.7 81.5 | 83.9

Teacher: ResNet50 — Student: ResNet18

Baseline 1: UDA −→ KD 28.8 | 10.2 5.8 | 5.3 33.7 | 11.5 51.1 | 12.7 7.8 | 7.8 25.1 | 9.2 25.3 | 9.4

Baseline 2: KD −→ UDA 69.0 | 53.1 57.3 | 16.8 96.2 | 82.3 100 | 88.6 56.3 | 19.8 73.6 | 54.4 75.4 | 52.5

Baseline 3: UDA only on ResNet18 60.2 49.2 93.7 97.7 47.6 66.4 69.1

RevGrad 71.6 53.4 96.5 99.2 53.6 75.5 75.0

CDAN 72.3 53.9 96.9 99.3 53.9 76.1 75.4

TCP: prune rate = 45% 77.4 46.3 96.3 100 36.1 72.0 71.3

KD-STDA MMD (Ours) 78.9 | 87.3 58.1 | 64.1 94.2 | 99.0 100 | 100 57.2 | 63.3 81.7 | 85.7 77.8 | 83.2

KD-STDA	GRL KD-STDA	MMD

Figure 5: t-SNE visualisation of RevGrad and MMD with KD-STDA for scenario A −→ W

on ResNet34. Best viewed in color. We provide higher resolution figures in Supplementary

Material.
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Table 2: Same results as in Tables 1 but on the ImageClef-DA dataset.

Source → Target

Training methods I −→ P P −→ I I −→ C C −→ I C −→ P P −→ C Average

Teacher: ResNet50 — Student: ResNet34

Baseline 1: UDA −→ KD 48.8 | 12.2 41.0 | 14.3 46.0 | 12.2 39.6 | 11.5 38.8 | 9.4 39.0 | 8.7 42.0 | 11.4

Baseline 2: KD −→ UDA 76.6 | 70.2 87.3 | 77.3 92.0 | 88.2 80.0 | 73.2 65.6 | 60.6 90.3 | 84.2 81.9 | 75.6

Baseline 3: UDA only on ResNet34 73.3 86.3 92.6 79.3 65.8 87.5 80.8

RevGrad 75.9 87.0 92.2 79.3 65.3 90.0 81.6

CDAN 76.8 87.9 93.3 80.2 65.9 90.2 82.4

TCP: prune rate = 12% 75.0 82.6 92.5 80.8 66.2 86.5 80.6

KD-STDA MMD (Ours) 75.6 | 72.2 89.0 | 87.5 92.6 | 92.2 83.8 | 82.5 66.5 | 66.8 92.8 | 89.5 83.3 | 81.8

Teacher: ResNet50 — Student: ResNet18

Baseline 1: UDA −→ KD 45.1 | 10.3 41.8 | 12.2 42.5 | 14.2 43.1 | 15.5 43.3 | 7.7 34.5 | 6.8 41.7 | 11.1

Baseline 2: KD −→ UDA 72.1 | 68.3 86.3 | 72.3 91.8 | 84.6 74.6 | 71.9 61.8 | 62.1 90.6 | 85.1 79.5 | 74.0

Baseline 3: UDA only on ResNet18 70.6 83.8 86.1 75.3 62.0 89.1 77.8

RevGrad 71.2 86.8 92.0 76.7 63.9 89.9 80.1

CDAN 72.1 87.1 92.3 77.8 63.7 89.5 80.4

TCP: prune rate = 45% 67.8 77.5 88.6 71.6 57.7 79.5 73.7

KD-STDA MMD (Ours) 73.1 | 73.8 88.0 | 88.2 92.1 | 91.5 77.3 | 78.7 65.6 | 64.4 91.0 | 89.9 81.1 | 81.1

Table 3: Same results as in Tables 1 but using MMD and GRL methods.

Source → Target

Training methods A −→ W W −→ A D −→ W W −→ D D −→ A A −→ D Average

Teacher: ResNet50 — Student: ResNet34

KD-STDA MMD 85.7 | 86.0 62.3 | 67.6 97.1 | 99.0 100 | 100 61.8 | 66.4 82.1 | 84.7 81.5 | 83.9

KD-STDA RevGrad 82.6 | 82.1 64.4 | 63.1 97.8 | 98.7 100 | 100 64.0 | 64.2 86.0 | 85.3 82.5 | 82.2

5.2. MTDA with logits-based distillation:

Tables 4 shows the accuracy of our generalized algorithm KD-MTDA for a

multi-target setting on each different target domains and their average on Digits

dataset. Results indicate that our method improves by 3% upon the current

state-of-the-art [8] on sv → mt,mm, up. As for the other scenario, we only

perform slightly better, this is because we use the same hyper-parameter on

different scenarios and on different teachers. One way of improving the current

result would be to have a different set of hyper-parameters for each teacher such

that it is best optimized for each combination of source and target. In addition,

compared to a domain adaptation on a mixed target domains, MTDA focused

algorithm perform much better overall.

From Table 5, where we show our accuracy on the PACS dataset, in contrast
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Table 4: Target accuracy of the proposed and reference MTDA methods on the Digits dataset.

Source → Targets

LeNet sv → mt, mm, up mm → sv, mt, up

sv → mt sv → mm sv → up Average mm → sv mm → mt mm → up Average

Teacher: ResNet50 — Student: LeNet

Source Only 62.1 40.4 39.9 47.5 40.0 84.5 80.4 68.3

ADDA 77.7 64.2 64.1 68.7 40.6 92.8 80.7 71.4

RevGrad 73.8 61.0 62.5 65.8 51.8 61.0 85.3 66.0

MTDA-ITA[8] 84.6 65.3 70 73.3 53.5 98.2 94.1 81.9

KD-MTDA 85.1 63.9 81.5 76.8 61.8 97.8 86.4 82.0

Table 5: Same results as in Tables 4 but on PACS dataset.
Source → Targets

LeNet P −→ Ap, Cr, S Ap −→ Cr, S, P

P −→ Ap P −→ Cr P −→ S Average Ap −→ Cr Ap −→ S Ap −→ P Average

Teacher: ResNet50 — Student: LeNet

ADDA 24.3 20.1 22.4 22.3 17.8 18.9 32.8 23.2

MTDA-ITA [8] 31.4 23.0 28.2 27.6 27.0 28.9 35.7 30.5

KD-MTDA 24.6 32.2 33.8 30.2 46.6 57.5 35.6 46.6

to the previous comparison, our method perform significantly better than the

current state-of-the-art [8]. The results from this dataset also confirm our hy-

pothesis that by applying current STDA technique on multiple target domains,

it does not yield good result and the model fail to generalize across multiple

target domains. In addition, the paper of [8] use an architecture that includes

several Residual block layers whereas, our architecture is based on LeNet5 which

only consisted of 5 convolution layers, this meant that our method not only per-

forms better than current method, it can also work with smaller models.

Table 6: Accuracy of KD-MTDA and DADA[40] by using Alexnet (student CNN) and

Resnet50 (teacher CNNs) as backbones on the Office-Caltech dataset.

Models A −→ C,D,W C −→ A,D,W D −→ A,C,W W −→ A,C,D Average

Teacher: ResNet50 — Student: AlexNet

Source only 83.1 88.9 86.7 82.2 85.2

RevGrad[3] 85.9 90.5 88.6 90.4 88.9

DADA[40] 86.3 91.7 89.9 91.3 89.8

KD-MTDA 93.3 93.9 90.1 91.2 92.1

Results in Table6 show the accuracy CNNs trained with KD-MTDA on
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Table 7: Accuracy of STDA baselines versus both versions of approach – KD-STDA (single

teacher on mixed targets) and KD-MTDA (multiple teachers with multiple targets) on the

Office31 dataset
Source → Targets

Models A −→ D,W D −→ A,W W −→ A,D Average

CAT STDA[51] (1 model/target) 78.5 62.9 98.8 80.1

GCAN STDA[52] (1 model/target) 79.5 63.7 98.4 80.5

KD-STDA RevGrad 75.3 64.0 67.0 68.8

KD-MTDA 82.5 74.9 77.6 78.3

KD-STDA	GRL KD-MTDA

Figure 6: t-SNE of KD-STDA with mixed targets and KD-MTDA. Best viewed in color. We

provide higher resolution figures in Supplementary Material.

OfficeCaltech dataset compared with a MTDA technique that does not rely on

domain labels. The results in this Table further validate the importance of our

method.

Our method is also compared for a single vs. multiple teachers using same

hyper-parameters as with the STDA with AlexNet as student CNN backbone.

From Table 7, multiple teachers always outperform the single teacher whether

using the domain labels or not. In addition, Figure 6, shows that our generalized

approach for MTDA separates the features better than our single teacher. Re-

garding comparisons with the state-of-the-art STDA model with 1 model/target,

our MTDA model is capable of reaching almost the same average performance

while encoding multiple targets domains inside the same model.
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5.3. Complexity analysis:

While CNNs pruned using the TCP [24] method require fewer parameters

than our student models, Table 8 indicates that our method achieve the same

number of FLOPS on ResNet34, and with even fewer FLOPs on ResNet18. This

means that while TCP prunes more parameters, it may not have much impact

on the number of FLOPS since the pruned filters are ranked and pruned globally

across the network, instead of being pruned at each layer. TCP prunes away

filters that do not impact the FLOPS but can impact performance. Another

important point of having more parameters is that, over-parametrization can

help provide better generalization – our student CNNs have a greater chance to

provide better generalization than a pruned model with fewer parameters.

Table 8: Computational complexity of proposed methods and TCP
Models no. operations no. parameters (M)

(GFLOPS) Office31 ImageClef

ResNet50 4.1 25.5 25.5

TCP(12% Pruned) 3.6 15.8 15.9

ResNet34 3.6 21.7 21.7

TCP(46% Pruned) 2.2 10.6 10.9

ResNet18 1.8 11.1 11.1

As for the complexity comparison of an STDA based approach adatped to

MTDA setting, i.e. having one model for each target domain instead of having

one model for all the target domains. If we assume that there are N target

domains and M the memory space occupied by a backbone, this would meant

that in the scenario of having one model per target domains, we would need

N ×M and in the worst case N GPUs if it’s a complex backbone. This clearly

shows that having one model per target domain is not scalable and it is much

preferable having one model to handle multiple target domains.

6. Conclusion

In this paper, we proposed a joint optimization of KD and UDA that tackles

both the problem of domain shift and model compression in both the STDA and

MTDA setting. In addition, our method also works with different UDA and KD
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techniques, whether it is logits or feature-based. Our results on STDA suggest

that our method is capable of adapting and accelerating a model by alleviating

the domain shift problem and reduce complexity. The proposed technique is

also capable of adapting a model to multiple target domains while keeping high

accuracy. In both settings, STDA and MTDA, our method outperforms the

current state-of-the-art, especially on compact models. Since UDA is an active

area of research, our future research can include a more efficient target domain

knowledge transfer method for better compression or better fusion method for

combining different target domains.
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Supplementary Material

Appendix A. Hyper-parameters

Table A.9: Hyper-parameters for our algorithms for each backbone and dataset
Hyper parameters Office31 Resnet34-18 ImageClef-DA ResNet34-18 Digits LeNet Pacs LeNet

Ne 400 400 100 100

τ 20 20 20 20

α 0.8 0.8 0.5 0.5

s 0.1 0.1 0.1 0.1

f 0.8 0.8 0.5 0.5

γ - - 0.5 0.5

UDA Learning Rate 0.001 0.0001 0.01 0.01

KD Learning Rate 0.001 0.001 0.01 0.01

weight decay 0.0005 0.0005 0.0005 0.0005

From Table A.9, we can find the details of our hyper-parameters for both

STDA and MTDA setting on different dataset. These hyper-parameters were

selected using a standard cross-validation process.

Appendix B. Additional results

Appendix B.1. Logits distillation vs. feature distillation for MTDA

In this study, we compare the difference between logits distillation and fea-

ture distillation in MTDA setting on Office31 dataset. The Table B.10 shows

the accuracy of our MTDA method with either logits or feature distillation on

student model.

Table B.10: Accuracy of proposed method using either logits or feature distillation

Source → Targets

Types of distillation A → D,W D → A, W W → A, D Average

Teacher: ResNet50 — Student: ResNet18

KD-MTDA logits distillation 80.8 79.7 78.6 79.7

KD-MTDA feature distillation 81.2 80.5 79.5 80.4

From Table B.10, where we compare the performance of logits-based and

feature-based distillation on the setting of MTDA, in contrast to with feature
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distillation for STDA, feature distillation in MTDA does not provide a signifi-

cant improvement in performance. Results indicate that feature distillation in

MTDA only perform slightly better than logits distillation.

Appendix C. t-SNE

Figure C.7: t-SNE of KD-MTDA. Best viewed in color.
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Figure C.8: t-SNE of KD-STDA with mixed targets. Best viewed in color.
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Figure C.9: t-SNE of KD-STDA MMD. Best viewed in color.
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Figure C.10: t-SNE of KD-STDA GRL. Best viewed in color.
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