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Abstract

This paper is on user relevance feedback in image retrieval. We take this problem as a standard two-class pattern classifica-

tion problem aiming at refining the retrieval precision by learning through the user relevance feedback data. However, we

have investigated the problem by noting two important unique characteristics of the problem: small sample collection and

asymmetric sample distributions between positive and negative samples. We have developed a novel approach to empirical

Bayesian learning to solve for this problem by explicitly exploiting the two unique characteristics, which is the methodology

of BAyesianLearning inAsymmetric andSmall sample collections, thus calledBALAS . In BALAS different learning strate-

gies are used for positive and negative sample collections, respectively, based on the two unique characteristics. By defining

the relevancy confidence as the relevant posterior probability, we have developed an integrated ranking scheme inBALAS

which complementarily combines the subjective relevancy confidence and the objective similarity measure to capture the

overall retrieval semantics. The experimental evaluations have confirmed the rationale of the proposed ranking scheme, and

have also demonstrated thatBALAS is superior to an existing relevance feedback method in the current literature in capturing

the overall retrieval semantics.
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1. Introduction

Very large collections of images have become ever more common than before. From stock photo collections and proprietary

databases to the World Wide Web, these collections are diverse and often poorly indexed; unfortunately, image retrieval

systems have not kept pace with the collections they are searching. How to effectively index and retrieve semantically relevant

images according to users’ queries is a challenging task. Most existing image retrieval systems, such as image search engine

in Google [1], are textual based. The images are searched by using the surrounding text, captions, keywords, etc. Although

the search and retrieval techniques based on textual features can be easily automated, they have several inherent drawbacks.

First, textual description is not capable to capture the visual contents of an image accurately and in many circumstances the

textual annotations are not available. Second, different people may describe the content of an image in different ways, which

limits the recall performance of textual-based image retrieval systems. Third, for some images there is something that no

words can convey. Try to imagine an editor taking in pictures without seeing them or a radiologist deciding on a verbal

description. The content of images are beyond words. They have to be seen and searched as pictures: by objects, by style, by

purpose.

To resolve these problems, Content-Based Image Retrieval (CBIR) has attracted significant research attention [18, 23,

30, 16]. In CBIR, a query image (an image to which a user tries to find similar ones) is imposed to the image retrieval

system to obtain the semantics-relevant images. The similarity between the query image and the indexed images in the

image database are determined by their visual contents, instead of the textual information. Early research of CBIR focused

on finding the “best” representation for image features, e. g., color, texture, shape, and spatial relationships. The similarity

between two images is typically determined by the distances of individual low-level features and the retrieval process is

performed by ak-nn search in the feature space [2]. In this context, high level concepts and user’s perception subjectivity

cannot be well modeled. Recent approaches introduce more advanced human-computer interaction (HCI) into CBIR. The

retrieval procedure incorporates user’s interaction into the loop, which consists of several iterations. In each iteration, the

user castpositive samples(relevant images) as well asnegative samples(irrelevant images) for the returned results from the

previous iteration. Based on user’s feedback, the retrieval system is able to adaptively customize the search results to the

user’s query preference. This interaction mechanism is called relevance feedback, which allows a user continuously refine

his(her) querying information after submitting a coarse initial query to the image retrieval system. This approach greatly

reduces the labor required to precisely compose a query and easily captures the user’s subjective retrieval preference.

However, most approaches to relevance feedback, e. g., [27, 21, 22, 46], are based on heuristic formulation of empirical

parameter adjustment, which is typically ad hoc and not systematic, and thus cannot be substantiated well. Some of the

recent work [43, 17, 37, 38, 34] formulates the relevance feedback problem as a classification or learning problem. Without

further exploiting the unique characteristics of the training samples in the relevance feedback of image retrieval, it is difficult

to map the image retrieval problem to a general two-class (i.e., relevance vs. irrelevance) classification problem in realistic

applications.
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Before we design a specific relevance feedback methodology, two unique characteristics of the relevance feedback problem

in image retrieval must be observed and addressed when compared with the general pattern classification problems. The first

is the small sample collection issue. In relevance feedback of image retrieval, the number of the training samples is usually

small (typically< 20 in each iteration of interaction) relative to the dimensionality of the feature space (from dozens to

hundreds, or even more), whereas the number of image classes or categories is usually large for typical image databases.

The second characteristic is the asymmetric training sample issue. Most classification or learning techniques proposed in the

literature of pattern recognition and machine learning, such as discriminant analysis [10] and Support Vector Machine(SVM)

[39] regard the positive and negative examples interchangeably, and assume that both sets are distributed approximately

equally. However, in relevance feedback of image retrieval, while it is reasonable to assume that all the positive samples

conform to a single class distribution, it is typically not valid to make the same assumption for the negative samples, as there

may be an arbitrary number of semantic classes for the negative samples to a given query; thus, the small, limited number

of negative examples is unlikely to be representative for all the irrelevant classes, and this asymmetry characteristic must be

taken into account in the relevance feedback learning.

In this paper, we investigate the relevance feedback problem in image retrieval using empirical Bayesian learning. Specif-

ically, we apply Bayesian learning by explicitly exploiting the two unique characteristics through developing a novel user

relevance feedback methodology in image retrieval —BAyesianLearning inAsymmetric andSmall sample collections,

calledBALAS . In BALAS , we introduce specific strategies to estimate the probability density functions for the positive and

negative sample collections, respectively. It is shown that an optimal classification can be achieved when a scheme for mea-

suring the relevancy confidence is developed to reflect thesubjectiverelevancy degree of an image w.r.t. a query image. The

relevancy confidence is integrated with the measure of feature-based distance, which reflects theobjectiveproximity degree

between image feature vectors, to order the ranking of the retrieved images from an image database.

The rest of the paper is organized as follows. Beginning with the discussion of the related work in Section 2, we describe

BALAS methodology in Section 3, in which the probability density estimations for the positive and negative sample distri-

butions are introduced, and the measurement of the relevancy confidence is presented. In Section 4 the ranking scheme of

BALAS , session semantic distance, is defined and developed.BALAS is evaluated as a prototype system, and the evaluations

are reported in Section 5. Finally, the paper is concluded in Section 6.

2. Related work

The problem of relevance feedback of image retrieval was identified and then received focused attention even in the early

days of the CBIR research. Some of the early efforts attempted to learn a new query and the relative importance of different

features or feature components [27, 19, 20], while others attempted to learn a linear transformation in the feature space taking

into account correlations among feature components [13, 26], or to map the learning problem to a two-class discriminant

classification problem [40]. In particular, inspired by term weighting and relevance feedback techniques in textual document
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retrieval, some of those efforts focused on heuristics-based techniques to adjust parameters empirically, such as [27, 21]. The

intuition was to emphasize more on the features that best cluster the positive samples and maximize the separation between

the positive and negative samples. To achieve this goal, Kohonen’s Learning Vector Quantization (LVQ) algorithm [42] and

the tree-structured self-organizing map (TS-SOM) [15] were used for dynamic data clustering during the relevance feedback.

For example, Laaksonen et al. [15] applied TS-SOMs to index images along different feature dimensions such as color and

texture. Positive and negative examples were mapped to positive and negative impulses and a low-pass filtering was applied to

generate a map to implicitly reveal relative importance of different features, as a “good” map always keeps positive examples

well clustered while negative examples are scattered away. Similarly, Peng et al. [20] used the same intuition to capture

the feature relevance but took the probabilistic approach instead. Santini and Jain [28] proposed a method to optimize a

parametric similarity metric according to the feedback from users.

Recently, the problem of the relevance feedback of image retrieval was investigated in the literature from a more systematic

point of view by formulating it into an optimization problem. In the work of Ishikawa et al. [13] and Rui and Huang [26],

based on the minimization of the total distance of positive examples from the new query, an optimal solution was shown to be

the weighted average as the new query and a whitening transform in the feature space. Moreover, Rui and Huang [26] adopted

a two-level weighting scheme to cope with the singularity issue due to the small number of training samples. MacArthur

et al. [17] cast the relevance feedback problem into a two class learning problem, and used a decision tree algorithm to

sequentially “cut” the feature space until all the points in the feature space within a partition are of the same class. The

image data set was classified by the resulting decision tree: images that fell into a relevant leaf were collected and the nearest

neighbors of the query were returned. Classification techniques from Machine Learning community were extensively used

in the recent literature to solve for the relevance feedback problem of image retrieval, such as the BiasMap [47] and the SVM

active learning method [38], both using a kernel form to deal with the nonlinear classification boundaries, with the former

emphasizing the small sample collection issue while the latter exploring the active learning issue. Active learning in image

retrieval has been attracting attentions lately, several methods have been proposed [11, 41]. Different metrics were proposed

to select the most informative images for the user’s labeling and the objective is to minimize the feedback rounds for a desire

retrieval results by quickly learning a boundary that separates the images that satisfy the user’s query concept form the rest

of the database. Although interesting and reported promising, the evaluation and performances analysis of active leaning

methods and traditional learning methods need more investigation.

Alternatively one-class classifiers were proposed, which formalized the relevance feedback in image retrieval as a one-

class (relevant images) classification problem [35, 6]. In this formalization, only positive examples are used while the

presentation of users’ query interests in aspect of irrelevancy is not exploited. Compared to the methodologies using both

positive and negative examples, the performance of one-class classifiers in the context of image retrieval is limited [14, 44].

In two-class classification category, Wu et al. [43] developed the D-EM algorithm within the transductive learning framework

based on the examples both from the user feedback data (called labeled data) and from other data points (called unlabeled

data); the method performs discriminant analysis through the EM (i.e., expectation and maximization) iterations to select a
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subspace of features, such that the two-class (i.e., the positive and negative sample classes) assumption on the data distribution

has a better support. One notable work employing Bayesian relevance feedback is PicHunter [8]. Also using Bayesian

reasoning, there are three major differences between PicHunter and BALAS. First, the motivation is different. PicHunter

addresses the “target search” problem, in which users seek to find a specific target image, i. e., exactly the same image as the

query image. While BALAS attempts to find more semantics-relevant images for a query image, which is harder compared

with “target search”. Second, PicHunter assumes that the probability of any given image being the target is independent of

who the user is, in other words, all users are identical. This assumption does not hold true in the semantics-relevant image

retrieval. Third, the BALAS methodology is different from PicHunter’s methodology. In PicHunter, a user model is derived

from the offline learning and tuning to obtain the correlation between users’ action and the displayed image set, whereas in

BALAS we determine the relevancy/irrelevancy degree of each image by the online density estimation.

In these learning methods in relevance feedback of image retrieval, they are all based on the assumption that both positive

and negative samples conform either implicitly or explicitly to a well formed distribution. Considering the two unique

characteristics of the relevance feedback problem of image retrieval that in a typical user relevance feedback scenario, the

sample collection is small and the two class sample collections exhibit asymmetric property, this assumption is often hardly

valid, especially for negative samples, consequently limiting the performance of these methods. In this paper, we propose

BALAS methodology that not only generates an optimal classifier but also exploits the two unique characteristics of the

problem to arrive at a novelrelevancy confidencemeasure solving for the relevance feedback problem in image retrieval.

In addition,BALAS offers an effective ranking scheme to integrate therelevancy confidencemeasure with a conventional

feature-based distance to model the semantic similarity more precisely than the existing methods.

3. BALAS Methodology

Given a query image, it is natural that an indexed image data set can be classified into two classes of images, one is relevant

in semantic content to the query and the other is irrelevant. A “good” relevance feedback method would, after learning, allow

as many as relevant images to be retrieved and reject as many as irrelevant images from being retrieved. Consequently, this

learning problem is reduced to a two-class classification problem in essence.

Given a feature space in which each image is represented as a feature vector, we apply Bayesian theory to determine the

degree in which an image in the image data set is classified as a relevant or an irrelevant one to the query image. It is proven

that Bayesian rule is optimal in the expectation of misclassification aspect [10]. In other words, no other rule has a lower

expected error rate.

We define the notations as follows. We always use boldface symbols to represent vectors or matrices, and non-boldface

symbols to represent scalar variables. Given a query image, LetR andI be the events of the relevancy and irrelevancy for

all the images in the image data set to a query image, respectively, and let Imgi be theith image in the image data set. We

useP () to denote a probability, and usep() to denote a probability density function (pdf). Thus,P (R) andP (I) are the
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prior probabilities of relevancy and irrelevancy for all the images in the indexed data set to the query image, respectively;

p(Imgi) is the pdf of theith image in the image data set;P (R|Imgi) andP (I|Imgi) are the conditional probabilities of the

ith image’s relevancy and irrelevancy to the query image, respectively; andp(Imgi|R) andp(Imgi|I) are the pdfs of theith

image given the relevant and irrelevant classes, respectively, in the image data set to the query image. Based on the Bayes’

rule the following equations hold:

P (R|Imgi) =
p(Imgi|R)P (R)

p(Imgi)
(1)

P (I|Imgi) =
p(Imgi|I)P (I)

p(Imgi)
(2)

wherei = 1, . . . ,M andM is the number of images in the indexed data set.

Definition 1 Given a specific image Imgi in an image data set, for any query image, the relevancy confidence of this image to

the query image is defined as the posterior probabilityP (R|Imgi). Similarly, the irrelevancy confidence of this image to the

query image is defined as the posterior probabilityP (I|Imgi). Obviously, the two confidences are related asP (R|Imgi) +

P (I|Imgi) = 1.

The relevancy confidence and irrelevancy confidence of an image are used to quantitatively describe thesubjectiverele-

vance and irrelevance degrees to the query image, respectively.

From Eqs. 1 and 2, the problem of determining whether an image Imgi is (ir)relevant to the query image and the corre-

sponding (ir)relevancy confidence is reduced to estimating the conditional pdfsp(Imgi|R) andp(Imgi|I), respectively, the

prior probabilitiesP (R) andP (I), respectively, and the pdfp(Imgi) in the continuous feature space. These probabilities

and pdfs may be estimated from the positive and negative samples provided by the user relevance feedback, as we shall show

below.

Since in CBIR, each image is always represented as a feature vector or a group of feature vectors (e.g., when each feature

vector is used to represent a region or an object in the image [4]) in a feature space, to facilitate the discussion we use a

feature vector to represent an image in this paper. Consequently, in the rest of this paper, we use the terminologies vector

and image interchangeably. Due to the typical high dimensionality of feature vectors, we perform vector quantization before

the pdf estimations to ease the computation intensity. Typically, as a preprocessing, uniform quantization is applied to every

dimension of feature vectors and each interval is represented by its corresponding representative value. In the rest of this

paper, all the feature vectors in the image data set are meant to be the quantized feature vectors.

It is straightforward to estimate the pdfp(Imgi) by statistically counting the percentage of the quantized feature vectors

in the feature space of the whole image data set. Note that this estimation is performed offline and for each image it is only

required to be computed once, resulting in no complexity for online retrieval. For image databases updated with batch manner

(most practical databases are updated in this way), the content of databases does not change during the working periods and

periodically updatingp(Imgi) with data set updating is feasible.
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While the relevance feedback problem in image retrieval is a typical two class classification problem, due to the asymmetry

nature between the positive and negative samples collected in the relevance feedback, the often-used assumption in the

literature that the positive and the negative samples both conform to their corresponding well-formed distribution functions

is not typically valid. In fact, positive samples typically have a compact, low-dimensional support while negative samples

can have arbitrary configurations [47]. Moreover, in relevance feedback, the sample collection, either positive or negative,

is typically small. To address these characteristics explicitly and precisely, theBALAS methodology employs different

strategies to estimate the conditional pdfsp(Imgi|R) andp(Imgi|I), respectively.

3.1. Estimating the Conditional pdf of the Positive Samples

It is well observed that all the positive (i.e., the relevant) samples “are alike in a way” [47]. In other words, some features

of the class-of-interest usually have compact support in reality. We assume that the pdf of each feature dimension of all the

relevant images to a given query image satisfies the Gaussian distribution.

p(xk|R) =
1√

2πσk

exp[− (xk −mk)2

2σ2
k

] (3)

wherexk is thekth dimension of the feature vector of an image,mk is the mean value of thexk of all relevant images to the

query image, andσk is the variance of thekth dimension of the relevant images.

To verify this model for positive samples, we have tested it on images of several predefined semantic categories. The

experiment confirms that the model is practically acceptable. Fig. 1 shows a quantile-quantile test [24] of the standardized

hue feature of 100 images in one predefined semantic category. It is shown that the quantile of the standardized feature

dimension and the quantile of the standard Gaussian distribution are similar, which means that the feature dimension of the

100 images in this semantic category can be approximated as a Gaussian.

Assume thatL = {l1, l2, . . . , lN} is the relevant sample set provided by a user. Applying the maximum-likelihood method

[3], we obtain the following unbiased estimations of the meanmk and the standard deviationσk for thekth dimension of the

features.

m̂k =
1
N

N∑

i=1

lki (4)

and

σ̂k =
1

N − 1

N∑

i=1

(lki − m̂k)2 (5)

wherelki denotes thekth dimension of the feature vectorli.

In order to ensure that these estimates are close to the true values of the parameters, we must have sufficient relevant

samples. However, the number of relevant samples in each relevance feedback iteration is typically limited. Hence, we

develop a cumulative strategy to increase the number of available relevant samples. Specifically, the relevant samples in each

iterations in a query session are recorded over the iterations; when we estimate the parameters using Eqs. 4 and 5, we not
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Figure 1: Quantile-quantile test of a standardized feature dimension for images in one semantic category

only use the relevant samples labeled by the user in the current iteration, but also include all the relevant samples recorded in

the previous iterations to improve the estimation accuracy.

It is notable that not every feature dimension of the relevant images conforms to a Gaussian distribution equally well. It is

possible that, for one semantic category, some feature dimensions are more semantically related than other dimensions such

that these dimensions appear to conform to a Gaussian model better, while other dimensions’ distributions in the feature space

are jumbled, and thus do not conform to a Gaussian model well. To describe the different conformity degrees to Gaussian

distributions among different dimensions in the feature space we introduce a measure, calledtrustworthy degree, to each

feature dimension. The trustworthy degree depicts the goodness of model fitting on each feature dimension. It is defined as

follows:

wk =
σ−1

k

maxT
j=1 σ−1

j

(6)

for each dimensionk, k = 1, . . . , T , whereT is the number of dimensions in one image feature. This is a heuristic measure.

The justification follows. If the variance of the relevant samples is large along the dimensionk, then we can deduce that

the values on this dimension are not very relevant to the query image and thus the Gaussian distribution might not be a

good model for this dimension because the features are not centered well around a prominent mean. Consequently, a low

trustworthy degreewk is assigned. Otherwise, a high trustworthy degreewk is assigned. Note that the concept of the

trustworthy degree is always relative to different image databases with different feature distributions. That is why we use the

max function in the denominator, which mapswk ∈ [0, 1] for k = 1, . . . , T .

To simplify the estimation of the class probability, we assume that all dimensions of one feature are independent (the

raw featuresper seare independent, e. g., color and texture features, or we can always apply K-L transform [9] to generate

uncorrelated features from the raw features, resulting in the strengthened support to the assumption); this is just a justifiable
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design decision. Thus, the pdf of positive samples is determined as a trustworthy degree pruned joint pdf:

p(x|R) =
T∏

k=1
wk≥δ

p(xk|R) (7)

whereδ is a threshold for incorporating only high trustworthy dimensions (conforming to the Gaussian model well) to

determinep(x|R); it is determined empirically as 0.70 in the experiment by using cross-validation. Those dimensions that

do not conform to the Gaussian distribution well would result in inaccurate pdf estimations, and consequently are filtered out.

3.2. Estimating the Conditional pdf of the Negative Samples

Unlike the positive samples which may be assumed to conform to a single, well-formed distribution function, negative (i.e.,

the irrelevant) samples may not be assumed to follow a single distribution function, as there may be many different irrelevant

semantics to a query image. While the relevance feedback problem may be tackled as a general two-class classification

problem (the relevance class and the irrelevance class), due to the fact that each negative sample is “negative in its own way”

[47], samples from the irrelevance class may come from different semantic classes. Consequently, it is neither reasonable

nor practical to assume that all negative samples conform to one single distribution function as is assumed for the positive

samples.

In order to correctly and accurately estimate the conditional pdf distribution for the negative samples, we assume that each

negative sample represents a unique potential semantic class, and we apply the kernel density estimator [29] to determine

the statistical distribution function of all negative samples. In case two negative samples happen to come from the same

semantic class, it is supposed that they would exhibit the same distribution function, and thus this assumption is still valid.

Consequently, the overall pdf for the negative samples is the agglomeration of all the kernel functions.

We choose the kernel function in the estimator as an isotropic Gaussian function (assuming all the feature vectors have

been normalized). The window of the estimation is a hyper-sphere centered at each negative samplexj , j = 1, 2, . . . , N ,

assuming that there areN negative samples in total. Let the radius of thejth hyper-sphere berj , which is called thebandwidth

of the kernel density estimation in the literature [7]. Typically it is practical to assume thatrj = r for all the differentj,

wherer is a constant bandwidth. Hence, the conditional pdf to be estimated for the samplexi in the feature space is given

by

p(xi|I) =
N∑

j=1

kernel(xi, xj) =
N∑

j=1

exp {−‖xi − xj‖22
2r2

j

} (8)

where‖xi − xj‖2 is the Euclidian distance between the neighboring samplexj and the center feature vectorxi.

The choice of the bandwidthr has an important effect in the estimated pdfs. If the bandwidth is too large, the estimation

would suffer from low resolution. On the other hand, if the bandwidth is too small, the estimation might be locally overfitted,

hurting the generalization of the estimation. In this consideration, the optimal Parzen window size has been studied exten-

sively in the literature [7, 36]. In practice, the optimal bandwidth may be determined by minimizing theintegrated squared

error (ISE), or themean integrated squared error(MISE) [7]. Adaptive bandwidth is also proposed in the literature [36]. For
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simplicity, we choose a constant bandwidthr based on the maximum distance from all the negative samples to their closest

neighborD defined as follows:

r = λD = λ max
xk

[min
xl

(‖xk − xl‖2)] (9)

whereλ is a scalar. We find in our experiments that with well-normalized feature vectors, aλ between 1 and 10 often gives

good results.

The computational overhead in estimating conditional pdf with Eq. 8 is tractable due to the limited number of negative

samples and the use of dimensionality reduction techniques as discussed in Section 5, while the estimation accuracy is

satisfactory.

Since negative samples may potentially belong to different semantic classes, and since each such semantic class only has

a very limited number of samples thus far in one typical relevance feedback iteration, we must “generate” a sufficient number

of samples to ensure that the estimated pdf for the negative samples is accurate. This problem has been studied in a semi-

supervised learning framework in the community, e.g., Szummer and Jaakkola formulated a regularization approach [33] to

linking the marginal and the conditional in a general way to handle the partially labeled Data. Although reported effective,

the approach is very computation intensive for large scale database. Similarly performed in the semi-supervised learning

framework, we address this “scarce sample collection” problem from another perspective. We actually generate additional

negative samples based on the kernel distributions for each semantic classes defined in Eq. 8. These generated additional

samples are the hypothetical images. For the sake of discussion, we call the original negative samples provided by the user

in the relevance feedback iterations as thelabeledsamples, and the generated samples as theunlabeledsamples. To ensure

that the number of the generated samples is sufficiently large, for each labeled negative sample in one relevance feedback

iteration, we generateq additional unlabeled negative samples, whereq is a parameter. To ensure a “fair sampling” to the

kernel function in Eq. 8, the generation of the unlabeled samples follows a probability function defined by the following

Gaussian pdf function:

p(y) =
1√
2πσ

exp {−‖y − xi‖22
2σ2

} (10)

where‖y−xi‖2 is the Euclidian distance between the unlabeled sampley and the corresponding labeled samplexi. σ is the

standard deviation, which is set to be the average distance between two feature vectors in the labeled negative feature space

defined as follows:

σ =
1

N(N − 1)

N∑

i=1

N∑
j=1
j 6=i

‖xi − xj‖2 (11)

Eq. 10 may be represented in another form as a function of the Euclidian distance,z, between the unlabeled sampley and

the labeled samplexi:

p(z) =
1√
2πσ

exp(− z2

2σ2
) (12)

Based on Eq. 12, a vector is more likely to be selected as unlabeled negative sample if it is closer to a labeled negative sample
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than if it is farther away from a labeled negative sample. The probability density defined in Eq. 12 decays when the Euclidian

distance to the labeled sample increases.

The following algorithm, called SAMPLING, is designed to perform the unlabeled sample selection based on Eq. 12. In

the algorithm,NUM is the number of the unlabeled negative samples we intend to generate for each labeled sample.τ

is a parameter to adjust the range centered at the positions with a distanced to the labeled sample, in which we select the

unlabeled samples. In our experiments,τ is set tod/NUM .

input : S, Labeled negative example set
output : R, Extended negative sample set
begin

R = {};

for each labeled negative examples ∈ S do

i = 0;

Create an arrayA with NUM + 1 elements, each elementvk = k
NUM ∗ 1√

2πσ
, wherek ∈ [0, NUM ];

while i < NUM do

d = 0;

Generate a random numbert = rand() in [0, 1√
2πσ

];

Search arrayA to find thek with vk−1 < t ≤ vk;

Determine the distanced based on the functionvk = p(d) defined in Eq. 12;

Randomly sample the feature space until a featureV is found with a distances in [d− τ, d + τ ];

R = R ∪ {V };

i = i + 1;
end

end

returnR;
end

Algorithm 1: Algorithm SAMPLING

In essence, SAMPLING implements a roulette wheel sampling strategy [3] to select unlabeled samples. The vectors

with smaller distances to a labeled sample have larger probabilities to be selected as unlabeled samples. However, those

potential unlabeled samples farther away from a labeled sample are not completely eliminated from being selected, though

their chances of being selected are small. This random selection principle is reasonable. Since in general the feature space

is huge and has loose cluster presentation for the distribution of features, the feature vectors selected in this algorithm are
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statistically possible to be the true negative samples. With the extended number of the negative samples, the accuracy of the

pdf estimation defined in Eq. 8 is significantly improved as shown in the experiments. In addition, the cumulative learning

principle adopted in the estimation of the conditional pdf for the positive samples described in Section 3.1 is also applied in

the estimation of the conditional pdf for the negative samples to further improve the estimation accuracy. While the estimation

obtained from this method is still biased towards the given negative samples, it is noticeable that under the circumstances

where there is no other information given, this is the best we can do. Compared to the existing approaches to handling

unlabeled examples [32], the SAMPLING algorithm is simple and does not use the unlabeled examples explicitly, yet more

efficient and scalable.

3.3. Determining the Prior Probabilities

In order to determine the relevancy and irrelevancy confidences defined as the posterior probabilities in Eqs. 1 and 2, we

must solve for the prior probabilitiesP (R) andP (I) first. Unlike the typical approach in the classical pattern classification

problems in which a prior probability is usually estimated from the supervised training samples, in the problem of the

relevance feedback in image retrieval the relevancy or irrelevancy of an image is subject to different query images and

different user subjective preferences. Thus, the relevancy and irrelevancy of an image vary to different queries and in different

query sessions. Consequently, it is impossible to estimate the prior probabilities in advance. In other words, these prior

probabilities must also be estimated online in solving for the relevance feedback problem. InBALAS , we propose the

following method to solve for the prior probabilities.

Given a query image, for each image Imgi in the image data set, we have

p(Imgi) = p(Imgi|R)P (R) + p(Imgi|I)P (I) (13)

and for the query image we also have

P (R) + P (I) = 1 (14)

Combining Eqs. 13 and 14, we immediately have:

P (R) =
p(Imgi)− p(Imgi|I)

p(Imgi|R)− p(Imgi|I)
(15)

From Eq. 15, it is clear that since we have already developed methods to determinep(Imgi|R), p(Imgi|I), andp(Imgi),

the prior probabilityP (R) can be uniquely determined immediately. Thus,P (I) can also be immediately determined from

Eq. 14. This reveals that for each given query image, theoverall relevancy and irrelevancy ofall the images in the image data

set may be uniquely determined byany individualimage Imgi in the image data set. In other words, any individual image

Imgi in the image data set may be used to determine the prior probabilities, and given a query image, the prior probabilities

are independent of the selection of any of the images in the data set. The experimental results have verified this conclusion.

Nevertheless, due to the noise in the data, in practice, the estimated prior probabilities based on different individual images in
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the data set may exhibit slight variations. In order to give an accurate estimation of the prior probabilities that are not subject

to the bias towards a specific image in the data set, we denotePi(R) as the prior probability determined in Eq. 15 using the

individual image Imgi, i.e.,

Pi(R) =
p(Imgi)− p(Imgi|I)

p(Imgi|R)− p(Imgi|I)
(16)

Thus, the final prior probabilityP (R) is determined by an average of all the images in the data set, i.e.,

P (R) =
1
M

M∑

i=1

Pi(R) (17)

whereM is the number of images in the database, as defined in Eqs. 1 and 2.

The prior probabilityP (I) is determined accordingly from Eq. 14.

4 Ranking scheme

Given a query image, for each image Imgi in the data set, there is a corresponding relevancy confidenceP (R|Imgi), which

represents the relevancy degree of this image to the query image learned from the user’s subjective preference through the

relevance feedback. Hence, this relevancy confidence captures thesubjectiverelevancy degree of each image in the data set

to a query. On the other hand, for any CBIR system, there is always a feature-based distance measure used for similarity

comparisons. The feature-based distance measure typically does not incorporate the user relevance preferences, and thus,

only captures theobjectiveproximity degree in the feature space of each image in the data set to a query. Consequently, in

order to design a ranking scheme in image retrieval that “makes best sense”, it is ideal to consider to integrate the subjective

relevancy confidence and the objective distance measure together through taking advantage of the labeled sample image set

to define an comprehensive ranking scheme.

Noting that the relevancy confidence and the feature-based distance measure are complementary to each other, we define a

unified ranking scheme, calledSession Semantic Distance(SD), to measure the relevance of any image Imgi within the image

data set in terms of both the relevancy confidenceP (R|Imgi), the irrelevancy confidenceP (I|Imgj), and the feature-based

distance measureFD(Imgi) (e.g., Euclidean distance in the feature space between the query image and Imgi, FD(Imgi) =

‖Qu− Imgi‖2, where Qu is the query image).

The SD for any imageSD(Imgi) is defined using a modified form of the Rocchio’s formula [25]. The Rocchio’s formula

for relevance feedback and feature expansion has proven to be one of the best iterative optimization technique in the field of

information retrieval. It is frequently used to estimate “optimal query”Q′ with an initial queryQ in relevance feedback for

sets of relevant documentsDR and irrelevant documentsDI given by the user. The formula is

Q′ = αQ + β(
1

NR

∑

dj∈DR

dj)− γ(
1

NI

∑

dj∈DI

dj) (18)
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whereα, β, andγ are suitable constants;NR andNI are the numbers of documents inDR andDI , respectively. Based on

the Rocchio’s formula,SD(Imgi) is defined as follows:

SD(Imgi) = log(1 + P (R|Imgi))FD(Imgi)

+ β{ 1
NR

∑

k∈DR

[(1 + P (R|Imgk))Uik]}

− γ{ 1
NI

∑

k∈DI

[(1 + P (I|Imgk))Uik]} (19)

whereNR andNI are the sizes of the positive and negative labeled sample setDR andDI , respectively, in the relevance

feedback, andUik is the feature-based distance between the images Imgi and Imgk (e.g.,Uik = ‖Imgi − Imgk‖2). We have

replaced the first parameterα in the original Rocchio’s formula with the logarithm of the relevancy confidence of the image

Imgi. The other two parametersβ andγ are assigned a value of 1.0 in our current implementation of the system for the sake

of simplicity. However, other values may be given to emphasize the different weights between the last two terms.

With this definition of theSD(Imgi), the relevancy confidence of Imgi, the relevancy confidence of images in the labeled

relevant set, the irrelevancy confidence of images in the labeled irrelevant set, and the objective feature distance measure

are integrated in a unified approach. The (ir)relevancy confidences of images in the labeled sample set act adaptively as

weights to correct the feature-based distance measure. In the ranking scheme, an image is ranked high in the returned list

if it is similar, in relevancy confidence measure and/or feature-based distance measure, to the query image and images in

the labeled relevant image set, and it is dissimilar to images in the labeled irrelevant image set in both relevancy confidence

and feature-based distance measure; otherwise, its rank is low. Thus, the robustness and precision of the semantic distance

measure is improved, resulting in lower false-positives, by using both subjective and objective similarity measures to form a

more accurate and unified measure for semantic similarity.

5. Experiments and Discussions

The focus of this paper is on user relevance feedback in image retrieval rather than on a specific image indexing and retrieval

method. The relevance feedback methodology we have developed in this paper,BALAS , is independent of any specific

image indexing and retrieval methods, and in principle, may be applied to any such image indexing and retrieval methods.

The objective of this section is to demonstrate thatBALAS can effectively improve the image retrieval relevancy through the

user relevance feedback using a prototype CBIR system.

For the evaluation purpose, we have implemented an image indexing and retrieval prototype system. In such a prototype

system, many kinds of low-level features may be used to describe the content of images. In the current implementation, we

use color moment, which is shown to be robust and effective [31]. We extract the first two moments from each channel of

CIE-LUV color space, and the simple yet effective L2 distance is used to be the ranking metric. Since the objective is to test
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Figure 2: Sample images in the testing image database. The images in each column are assigned to one category. From left

to right, the categories are “Africa rural area”, “historical building”, “waterfalls”, “British royal event”, respectively.

the relevance feedback learning method rather than to evaluate the effectiveness of the features, the features we used are not

as sophisticated as those used in some existing CBIR systems [45, 8].

The following evaluations are performed on a general-purpose color image database containing 10,000 images from the

COREL collection with 96 categories. All images are indexed as described above, and 1,500 images are randomly selected

from all categories to be the query set. A retrieved image is considered semantics-relevant if it is in the same category of the

query image. We note that the category information is only used to ground-truth the evaluation, and we do not make use of

this information in the indexing and retrieval procedures. Fig. 2 shows a few samples of the indexed images.

We have implemented theBALAS methodology on the prototype CBIR system, which we also callBALAS for the

purpose of the discussion in this paper. Since user relevance feedback requires subjective feedback, we have invited a group

of 5 users to participate the evaluations. The participants consist of CS graduate students as well as lay-people outside the

CS Department. We asked different users to runBALAS initially without the relevance feedback interaction, and then to

place their relevance feedbacks after the initial retrievals. Fig. 3 is a screen shot of theBALAS system. Users check (+) or

(-) radio buttons in the interface to place their relevance/irrelevance votes for each returned image. All the reported results

are the averages of the whole group of users. The average time for each round of retrieval after the relevance input is about 2

seconds on a Pentium IV 2GHz computer with 512MB memory.

The feature-based distanceFD describes the difference between image content details while the relevancy confidence

depicts the perceptual aspects, i. e., semantic concepts, of images to users. To compare the capabilities of the two similarity

measures as well as the session semantic distance (SD) we have defined to deliver an effective image retrieval, we test the

three similarity metrics on images of 10 different semantic categories (each category has 100 images). These 10 categories
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Figure 3: A screen shot ofBALAS system. The query image is “city skyline” and the first page of the retrieved images are

shown. In this example, 12 of top 16 returned images are relevant.
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Table 1: The precision in topN returned images based onFD, P (R|Img), andSD metrics for the 10 categories. The

“Average” column for each distance metric is the average of the corresponding three left columns (Top 20, Top 30, and Top

50, respectively.)

FD P (R|Img) SD

Category Top 20 Top 30 Top 50 Average Top 20 Top 30 Top 50 Average Top 20 Top 30 Top 50 Average

Africa 0.23 0.20 0.12 0.18 0.41 0.26 0.22 0.30 0.59 0.31 0.25 0.38

beach 0.32 0.25 0.20 0.26 0.62 0.55 0.48 0.55 0.60 0.58 0.50 0.56

buildings 0.38 0.30 0.24 0.31 0.51 0.31 0.29 0.37 0.49 0.38 0.30 0.39

buses 0.62 0.58 0.52 0.57 0.51 0.49 0.50 0.50 0.62 0.60 0.55 0.59

dinosaurs 0.80 0.72 0.69 0.74 0.73 0.65 0.58 0.65 0.81 0.75 0.70 0.75

elephants 0.58 0.50 0.43 0.50 0.61 0.59 0.50 0.57 0.60 0.55 0.51 0.55

flowers 0.81 0.72 0.70 0.74 0.90 0.81 0.82 0.65 0.91 0.86 0.80 0.83

horses 0.91 0.85 0.60 0.79 0.69 0.65 0.61 0.65 0.91 0.86 0.80 0.86

mountains 0.52 0.46 0.30 0.43 0.76 0.69 0.60 0.68 0.80 0.73 0.65 0.73

food 0.41 0.32 0.20 0.31 0.81 0.73 0.69 0.74 0.79 0.75 0.68 0.74

are selected such that no semantic overlap existing among them. The categories are{Africa, beach, buildings, buses, di-

nosaurs, elephants, flowers, horses, mountains, food}. In the comparison,FD is defined as Euclidean distance metric due

to its effectiveness and simplicity. The average precision of top 20(30, 50) returned images based onFD, the relevancy

confidenceP (R|Img), and theSD for each category are recorded in Table 1. In the experiment, the number of the positive

and negative samples are both 30 for the learning relevancy confidence. It shows that for the categories which has clear fore-

ground/background and/or prominent objects, such as “dinosaur”, “flowers”, “horses”, the feature-based distance performs

well while the relevancy confidence is comparable. For the categories which do not have clear definitions of the objects

in the images, such as “Africa”, “beach”, “food”, the relevancy confidence is noticeably better for capturing the semantics.

The integrated distance metric,SD, performs best or is comparable to the better one ofFD andP (R|Img) in all the 10

categories.

To evaluate the systematic performance on the 10,000 image database, we have run the implemented CBIR system with

BALAS for the 1,500 query image set with varied number of truncated top retrieved images and have plotted the curves of

the average retrieval precision vs. the number of truncated top retrieved images (called scope). Fig. 4 shows the average

precision-scope plot for the system with and withoutBALAS enabled. In other words, one test is based solely on the

feature distanceFD and the other test is based on the session semantic distanceSD with different numbers of provided

sample images. The notation(m/n) in the figure denotes the number of positive sample images vs. the number of negative

sample images for the learning. In the evaluations, the sampling multiplier for the negative samples (NUM in the algorithm

SAMPLING) is set to 5. From this figure, it is clear that theBALAS relevance feedback learning capability enhances the
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Figure 4: Average precisions vs. the numbers of the returned images with and withoutBALAS enabled

retrieval effectiveness substantially.

In order to compare the performance ofBALAS with those of the state-of-the-art user relevance feedback methods in the

literature, we have used the same image data set and the query set to compareBALAS with the relevance feedback method

developed by Yong and Huang [26], which is a combination and improvement of its early version and MindReader [13] and

represents the state-of-the-art relevance feedback research in the literature. Two versions of [26] are implemented. The first

uses the color moments (called CM here) computed in the same way as described above and the other uses the correlogram

(called CG here) [12]. For the latter, we consider RGB color space with a quantization of 64 total buckets. The distance

setD = {1, 3, 5, 7} is used for computing the autocorrelograms, which results in a feature vector of 256 dimensions. The

overall comparison evaluations are documented in Fig. 5. The average precision in this evaluation is determined based on

the top 100 returned images for each query out of the 1,500 query image set. From the figure, it appears that during the

first two iterations, the CG version of [26] performs noticeably better thanBALAS while the CM version of [26] performs

comparably withBALAS . After the second iteration,BALAS exhibits a significant improvement in performance over that of

[26] in either of the two versions, and as the number of iterations increases, the improvement of the performance ofBALAS

over [26] appears to increase also. For example, after five iterations of the feedback,BALAS boosts its retrieval precision

(14%) more than those of [26] using both CG (10.5%) and CM (9.5%), which means thatBALAS has more potential. This

also confirms with the cumulative learning strategy employed inBALAS and the fact that when more iterations of relevance

feedback are conducted, more learning samples are given, and thus better performance is expected fromBALAS .

To evaluate the effectiveness of explicitly addressing the asymmetry issue of relevance feedback in CBIR, we compare

BALAS with the SVM [39] classification method. SVM classifier adopts the two-class assumption and treats positive and

negative samples equally, which is not valid in CBIR as we have discussed. In addition, for SVM there is no satisfied

method to optimally select kernel function and its parameters yet except empirically testing. In the comparison experiment,

the RBF kernelK(x, y) = exp−‖x−y‖2/2σ2
is used in the SVM classifier and the bestσ is determined by using offline
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Figure 5: Retrieval precision comparison using relevance feedback betweenBALAS and CM and CG

cross-validation [5]1 The original SVM classifier only give a decision boundary without providing confidence of each object

belonging to each class. To utilize SVM classifiers in image retrieval, a ranking scheme is needed. In the comparison,Larger

margin first retrieval scheme [39] is adopted for the SVM to determine the rank of retrieved images. A smaller query set

composed of randomly selected 100 images from the 1,500 image query set is applied toBALAS and the SVM, respectively;

the average precision in the top 100 images are recorded for different numbers of negative sample images with the number of

positive sample images fixed. Fig. 6 shows the comparison. It indicates thatBALAS outperforms the SVM consistently. The

unsatisfactory performance of the SVM is due to the false assumption that the two classes are equivalent and the negative

samples are representative of the true distributions. With this invalid assumption in the SVM learning, we have found that the

positive part “spills over” freely into the part of the unlabeled areas in the feature space in the SVM classification. The result

of this “spillover” effect is that after the user’s feedback, the machine returns a totally different set of images, with most of

them likely to be negative. InBALAS , this phenomenon did not occur due to the asymmetric density estimations.

6. Conclusions

This paper is about the work on user relevance feedback in image retrieval. We take this problem as a standard two-class

pattern classification problem with investigating two important unique characteristics of the problem: small sample collection

and asymmetric sample distributions between positive and negative samples. We have developed a novel approach, called

BALAS , to empirical Bayesian learning to solve for this problem by explicitly exploiting the two unique characteristics.

Different learning strategies are used for positive and negative sample collections, respectively. By defining the relevancy

confidence as the relevant posterior probability, we have developed an integrated and unified ranking scheme inBALAS

1Because the trained SVM classifiers are dynamic (i.e., for each query image, a different SVM classifier is trained), so no validation data are available

for online cross-validation. We used offline validation data for emulation purpose and hopefully to obtain a goodσ for the online SVM classifiers.
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Figure 6: Comparison of BALAS and SVM on the average precision in the top 100 images returned. Number of positive

sample images =20.

which complementarily combines the subjective relevancy confidence and the objective feature-based distance measure to

capture the overall retrieval semantics. The experimental evaluations have confirmed the rationale of the proposed ranking

scheme, and have also demonstrated thatBALAS is superior to an existing relevance feedback method in the literature

in capturing the overall retrieval semantics. We also show that the standard SVM classifier does not perform well in the

relevance feedback of CBIR andBALAS outperforms the SVM in this problem.
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