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Abstract

CNN-based steganalysis has recently achieved very good performance in detecting content-adaptive steganography. At the same
time, recent works have shown that, by adopting an approach similar to that used to build adversarial examples, a steganographer
can adopt an adversarial embedding strategy to effectively counter a target CNN steganalyzer. In turn, the good performance of the
steganalyzer can be restored by retraining the CNN with adversarial stego images. A problem with this model is that, arguably, at
training time the steganalizer is not aware of the exact parameters used by the steganograher for adversarial embedding and, vice
versa, the steganographer does not know how the images that will be used to train the steganalyzer are generated. In order to exit this
apparent deadlock, we introduce a game theoretic framework wherein the problem of setting the parameters of the steganalyzer and
the steganographer is solved in a strategic way. More specifically, a non-zero sum game is first formulated to model the problem,
and then instantiated by considering a specific adversarial embedding scheme setting its operating parameters in a game-theoretic
fashion. Our analysis shows that the equilibrium solution of the non zero-sum game can be conveniently found by solving an
associated zero-sum game, thus reducing greatly the complexity of the problem. Then we run several experiments to derive the
optimum strategies for the steganographer and the staganalyst in a game-theoretic sense, and to evaluate the performance of the
game at the equilibrium, characterizing the loss with respect to the conventional non-adversarial case. Eventually, by leveraging on
the analysis of the equilibrium point of the game, we introduce a new strategy to improve the reliability of the steganalysis, which
shows the benefits of addressing the security issue in a game-theoretic perspective.
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1. Introduction

As a popular technique in multimedia security, image
steganography [1, 2] tries to conceal a secret message in a cover
image by slightly modifying pixel values or DCT coefficients.
Accompanying the development of image steganography, ste-
ganalysis aims at detecting the presence of hidden information
within an image. The two techniques are applied by two com-
peting players in a hunting and escaping game.

Nowadays, mainstream steganographic schemes are de-
signed to be content-adaptive under the framework of distortion
minimization [3]. Different schemes are designed by properly
choosing the distortion function. For example, HUGO (Highly
Undetectable steGO) [4] defines the distortion function accord-
ing to the impact that data embedding has on SPAM (Sub-
tractive Pixel Adjacency Matrix) [5] features. WOW (Wavelet
Obtained Weights) [6] assigns distortion costs by using three
wavelet directional filters. S-UNIWARD (Spatial Universal
Wavelet Relative Distortion) [7] is a slightly modified version
of WOW, which can be easily extended to work with JPEG

∗Corresponding author
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images. HILL (High-pass, Low-pass, and Low-pass) [8] em-
ploys a high-pass and two low-pass filters to make sure that
pixels within textured regions have relatively low costs. Other
schemes are designed by minimizing the difference between
cover and stego images characterized by a statistical model,
such as MG (Multivariate Gaussian) [9], MVGG (Multivariate
Generalized Gaussian) [10], MiPOD (Minimizing the Power of
Optimal detector) [11], and MRG (Multivariate Gaussian for
Residuals) [12]. Some useful methods such as MDS (Modifica-
tion Direction Synchronization) [13, 14] and CPP (Controver-
sial Pixels Prior) [15] can be used to further exploit non-additive
distortion.

Steganalysis has also made substantial progress in this com-
petition. The most common approach to counter content-
adaptive steganographic schemes consists in the analysis of
high dimensional feature vectors [16, 17, 18, 19, 20]. The use of
SRM (Spatial Rich Model) features [16] exploiting high-order
pixel dependency and resulting in a feature space with tens of
thousands dimensions, is the most representative example of
this approach. Other methods exploit the so called “selection-
channel” information. For instance ASRM (Adaptive Spatial
Rich Models)[17] and maxSRM [18], put more emphasis on the
regions that are more likely modified by the steganographer.
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Motivated by the recent success of deep-learning in image
processing and computer vision applications, deep-learning-
based steganalytic methods relying on Convolution Neural Net-
works (CNNs) have been explored. Tan-net [21] was the first
deep learning method for steganalysis based on auto-encoders.
Later, Qian et al. [22] proposed a CNN equipped with Gaus-
sian activation functions and high-pass pre-processing filters.
A breakthrough in this direction has recently been achieved
by Xu et al.[23]. Their proposed CNN, called Xu-net, is a
new structure explicitly designed for image steganalysis, which
considered several advanced CNN methods for image classi-
fication tasks, such as batch normalization (BN) [24], Tanh
activation function, and 1 × 1 convolution in deeper layer to
enhance the strength of modeling. Ye-net [25] further im-
proved the performance of CNN-based steganalysis by incor-
porating selection-channel information and applying truncated
linear unit (TLU) in the first few layers to accelerate network-
training convergence. Recently, an end-to-end deep residual ar-
chitecture, called SR-net [26], has been proposed, which min-
imizes the use of heuristics and hand-crafted components and
works well for steganalysis in both spatial and JPEG domains.

1.1. Motivation

CNN-based steganalysis can provide better performance
with respect to standard machine-learning (ML) methods.
However, as shown by many recent works in the general litera-
ture of deep learning, CNNs are vulnerable to so called adver-
sarial examples [27]: slight, often imperceptible, perturbations
of the input, which are sufficient to induce a wrong decision.
The concept of adversarial examples has been already success-
fully exploited in steganography, to counter a target CNN ste-
ganalyzer [28, 29, 30]. In [30], in particular, an adversarial
steganographic scheme is developed by adjusting the embed-
ding costs based on the back-propagated gradient of the target
CNN steganalyzer.1

Compared to [28, 29], the adversarial stego images gener-
ated through the scheme in [30] are less detectable by stan-
dard feature based steganalyzers, the rate of modification be-
ing only slightly higher than with conventional stego schemes.
When the steganalyst is aware of the presence of the adversarial
steganographer, robustness against attacks can be improved by
adversary-aware training [31], that is, by re-training the stegan-
alyzer also with adversarial stego samples. On the other hand,
the steganographer may anticipate the countermeasures adopted
by the aware steganalyst and refine the steganographic scheme
to prevent steganalysis. A problem with this framework is that,
arguably, while training the adversary-aware steganalyzer, the
steganalyst does not know the exact internal parameters used by
the steganograher for adversarial embedding. In the same way,
the steganographer does not know the exact kind of images that
are used by the steganalyst to train the steganalyzer and hence
he can not tune the internal parameters of the steganographic

1Throughout the paper we refer to the person aimed at detecting stego sig-
nals as steganalyst. The term steganalyzer is used when we refer to the classi-
fier/network implementing the staganalysis.

scheme to maximize its deception capability. A pictorial repre-
sentation of such a dilemma is given in Figure 1.

In this paper, we propose to exit this apparent deadlock by
resorting to game theory (GT). In particular, we introduce a
game-theoretic framework according to which each contender
of this race of arms, sets the internal parameters of its algorithm
trying to strategically anticipate the choice of the other player.

1.2. Prior Art on Game Theory in Related Security Areas

The use of game theory to model the interplay between
steganography and stenaganalysis has been explored in several
works. In [32], for instance, game theory is used to find the best
strategy for a steganographer who can spread the secret mes-
sage over several homogeneous cover media (batch steganog-
raphy), and for a steganalyst who anticipates this and tries
to detect the existence of at least one secret message (pooled
steganalysis). Other interesting game-theoretical approaches
have been proposed recently in the field of content-adaptive
steganography. Content-adaptive steganographic schemes em-
bed the stego-message in the locations of the cover medium
where the changes are harder to detect [33]. Schöttle et al.
[34] have drawn the attention to the fact that, if the stegana-
lyzer behaves in a strategic manner (and then can recalculate
the adaptivity criterion), adaptive embedding schemes risk to
be less secure than random embedding. The authors provide
a rigorous approach to secure content-adaptive steganography
by means of a game-theoretic model: the defender and the at-
tacker must decide in which position to hide and look for ev-
idence of embedding, respectively, by taking into account the
opponent’s action. Using the notion of Nash equilibrium, an
optimal adaptive embedding strategy which maximizes the se-
curity against a strategic detector is identified in a simple case.
The model has been later extended in [35]. In [36], the same
approach is applied to the case of a Gaussian cover and em-
bedding changes based on LSB matching. Game theory has
also been used in many other contiguous security-related fields,
e.g., in watermarking [37] and multimedia forensics [38, 39].
A game-theoretic framework to account for the presence of ad-
versaries in general binary detection problems has been studied
in [40, 41]. The game-theoretic approach followed in this paper
is similar to the one adopted in [42], where the problem of data
fusion in the presence of malicious nodes is studied.

1.3. Method and Contribution

In this paper, we assume that the steganographer adopts the
adversarial embedding strategy (ADV-EMB) adopted in [30],
targeting the Xu-net spatial steganalyzer [23], while the stegan-
alyst trains an adversary aware version of Xu-net. In doing so,
the steganographer must set the parameter β of the ADV-EMB
algorithm. Such a parameter states the fraction of so called
adjustable elements, that is, those elements (be them pixels or
DCT coefficients) that are modified by the algorithm in such a
way that the targeted steganalyzer makes a wrong decision. In
[30], this parameter is minimized in order to reduce the embed-
ding distortion. However, for a given prescribed payload, the
steganographer may want to optimize β in such a way to reduce
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Figure 1: Scheme of the adversary-aware stego embedding/detection problem considered in this paper. The steganographer sets the internal parameters of its
steganographic scheme by assuming that the steganalst will adopt an adversary aware training strategy, but without knowing the setting that he will use to do that.
On the other side the steganalyst implements an adversary aware detector by trying to guess the internal parameters used by the steganographer.

the probability that the stego-image is detected by a CNN-based
detector. In turn, the steganalyst knows the ADV-EMB scheme
adopted by the steganographer and then he trains the detection
network in an adversary-aware fashion. However, the stegana-
lyst does not know the exact value of the parameter β adopted
by the ADV-EMB algorithm and then he has to make an edu-
cated guess. On his side, the steganographer must determine
the best β without knowing the value used by the CNN to train
the adversary-aware steganalyzer. The core of our work is the
proposal of a game-theoretic approach to strategically choose
the values of β used by the steganographer (for embedding) and
the steganalyst (for adversary-aware training) [43]. By adopt-
ing a game-theoretic terminology, the optimum choice for the
two players, represents the equilibrium point of the game (usu-
ally, the Nash equilibrium solution is considered [44]), and the
evaluation of the performance at the equilibrium permits to as-
sess which contender will gain an advantage over the other in
the steganographer vs steganalyst struggle. To the best of our
knowledge, this work is the first one that investigates the inter-
play between CNN-based steganalysis and adversarial attacks
from a GT perspective.

Throughout the paper, we will refer to the steganalyst as the
defender (D) and to the steganographer as the attacker (A). The
main contributions of our work are reported in the following.

• We formulate a non zero-sum game [45] that models the
interplay between D, whose goal is to minimize the over-
all error probability of detecting correctly cover and stego
images, and A, who wants to maximize the probability that
the stego images are not detected as such, i.e maximize the
missed detection error probability.2.

2Arguably, the steganographer does not care about the correct or incorrect
classification of cover images

• We prove that, in order to study the equilibria of the game,
we can conveniently solve an associated zero-sum game,
where the payoff of the game is defined as the overall error
probability, thus greatly simplifying the resolution of the
game 3.

• We apply the proposed game-theoretic framework to a spe-
cific instantiation of the game, when the plain embedding
scheme ADV-EMB steganography relies on corresponds
to S-UNIWARD [7]. We derive the optimum strategies for
the steganographer and the steganalyst and evaluate the
corresponding payoff. Eventually, we show experimen-
tally that an improved solution for the staganalyst can be
obtained by considering the distribution of β at the equi-
librium of the game, and use it to perform aware training.

The behavior of the optimum strategy for the steganographer
confirms the necessity to find a good trade-off between hiding
the adversarial embedding on one hand (by using a low β), and
trying to force the classifier towards a wrong decision on the
other (by using a large β).

1.4. Organization
The rest of this paper is organized as follows. In Sec-

tion 2, we introduce the notations and basic concepts used
in this paper, and present our re-adaptation of the adversarial
steganographic scheme where the embedding is controlled by
a strength parameter β. In Section 3, we formulate the game
between the CNN steganalyzer and the steganographer. The
analysis of the equilibrium solution of the game is carried out
in Section 4. The methodology of practical equilibrium assess-
ment is detailed in Section 5. In Section 6, we experimentally

3Zero-sum games are generally easier to solve, thanks to the minimax theo-
rem and its relationship with the linear programming duality [46, 47]
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derive and discuss the optimum strategies for the steganalyser
and the steganographer and the payoffs at the equilibrium under
different settings. Finally, in Section 7, we draw some conclu-
sions.

2. Technical Preliminaries

In this section, we introduce the main notations and the met-
rics used. We also provide a brief introduction to the ADV-
EMB algorithm [30] and a description of the more general
and re-adapted version considered in this paper, where the
steganographer can adjust the strength of the attack by choosing
the number of modifiable elements.

2.1. Notation and basic concepts
In the rest of the paper, we use bold capital letters for ma-

trices and images, bold lowercase letters for vectors, and flour-
ish letters for sets. We let C = (ci, j)H×W , S = (si, j)H×W , and
Z = (zi, j)

H×W be the cover, conventional stego, and adversarial
stego images, respectively, where H and W are the height and
width of the image. The sets containing cover, stego, and ad-
versarial stego images are denoted as C, S, andZ, respectively.

Steganalysis can be regarded as a two-class classification
problem, where we usually consider stego images as the posi-
tive class and cover images as the negative one. To build a CNN
classifier, a number of data samples associated with their labels
is fed for training in a supervised-learning fashion. In order to
train a CNN classifier, typically, a loss function is defined and
back-propagation is performed according to the gradients of the
loss with respective to the learnable parameters/weights.

For the adversary-unaware scenario, we denote a CNN clas-
sifier trained on C and S as φC,S. Let X be an input image and y
be its groundtruth label, where y = 0 stands for cover and y = 1
for stego. The performance of the CNN are determined by the
probability of two kinds of error, namely the false alarm proba-
bility (P f a) and the missed detection probability (Pmd), defined
as:

P f a = Pr{φC,S(X) = 1|y = 0}
= Pr{φC,S(C) = 1}, (1)

and

Pmd = Pr{φC,S(X) = 0|y = 1}
= Pr{φC,S(S) = 0}. (2)

The overall performance can be evaluated by the total error
probability (Pe), corresponding to (we assume that the a-priori
probabilities of cover and stego images are equal):

Pe =
P f a + Pmd

2
. (3)

Let L(X, y; φW
C,S

) be the loss function of φC,S, where W =

[wa,b](a,b) indicates all the learnable parameters of the CNN. A
typical cross-entropy loss function is defined as

L(X, y; φW
C,S) = −y log(φW

C,S(X))− (1− y) log(1− φW
C,S(X)). (4)

The parameter wa,b in the t-th iteration is updated according
to the gradient of the loss function with respect to it, i.e.,
5wa,b L(X, y; φW

C,S
), as follows:

wa,b(t) = wa,b(t − 1) − α 5wa,b L(X, y; φW
C,S), (5)

where α is the learning rate.
In a white-box scenario [27], where the target classifier is as-

sumed to be known to the attacker, an adversarial attack can be
launched by modifying the input according to the output loss
function in (4) so that the target classifier makes a wrong deci-
sion.

One of the core ideas of the adversarial embedding scheme
proposed in [30] is to modify C according to both message bits
and the signs of the gradients of the loss function with respec-
tive to the input image elements, i.e., sign(5xi, j L(X, ŷ; φC,S)),
where ŷ is the false target label. As the signs of modification
and the signs of the gradients are identical, the output stego
image is capable of misleading the target classifier. However,
modifying all elements according to predetermined directions
would reduce the actual payload, leading to a larger distortion
compared to conventional embedding. In addition, in order
to mislead the classifier, it may not be necessary to utilize all
image elements for adversarial embedding. Therefore, the im-
age elements are randomly divided into two groups, where one
group is used for adversarial embedding (group of adjustable
elements) and the other for conventional embedding. The frac-
tion β, indicating the ratio of the adjustable elements over all
image elements, is minimized so to reduce the artifacts intro-
duced in the stego image (under the constraint that the target
steganalyzer makes a decision error). Note that the ADV-EMB
scheme can successfully fool the steganalyzer trained by stego
images with conventional embedding. However, in an adver-
sarial aware steganalysis scenario, the steganographer does not
know the exact kind of images (whether conventional or adver-
sarial stego images) that are used by the steganalyst to train the
steganalyzer, therefore, he may not use ADV-EMB to maximize
its deception capability.

2.2. Parametric ADV-EMB

We first describe in more detail the ADV-EMB scheme pro-
posed in [30]. ADV-EMB works under the conventional frame-
work of distortion minimization, in which embedding costs are
firstly defined according to the impact they have on each indi-
vidual image element, and then practical steganographic codes
[48] are employed to minimize the total distortion associated
with the embedding.

Assume k message bits must be embedded in C. For a given
value β ∈ [0, 1], embedding consists of the following steps.

1. Use a conventional cost function to compute the initial em-
bedding costs of a cover image. The resultant costs of pos-
itive and negative modifications are respectively denoted
as ρ+

i, j and ρ−i, j. The cost of no modification ρ0
i, j is assumed

to be zero.
2. Randomly select a number of l1 = [H × W × (1 − β)] el-

ements in C to form a common group, where [·] is the
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rounding operation. The remaining l2 = H × W − l1 el-
ements are called adjustable elements and form the ad-
justable group.

3. Embed k1 = [k× (1−β)] bits into the common group using
the initial embedding costs {ρ+

i, j, ρ
0
i, j, ρ

−
i, j} with a distortion

minimization coding scheme, such as [48]. The resulting
intermediate image is denoted as Zc.

4. Compute the gradients 5zi, j L(Zc, ŷ; φC,S) of the CNN ste-
ganalyzer with respective to image elements using the tar-
get label ŷ = 0. Update the embedding costs for the ad-
justable elements as follows:

%+
i, j =


ρ+

i, j/λ, if − 5zi, j L(Zc, 0; φC,S) > 0,
ρ+

i, j, if − 5zi, j L(Zc, 0; φC,S) = 0,
ρ+

i, j.λ, if − 5zi, j L(Zc, 0; φC,S) < 0,
(6)

%0
i, j = ρ0

i, j, (7)

%−i, j =


ρ−i, j/λ, if − 5zi, j L(Zc, 0; φC,S) < 0,
ρ−i, j, if − 5zi, j L(Zc, 0; φC,S) = 0,
ρ−i, j.λ, if − 5zi, j L(Zc, 0; φC,S) > 0,

(8)

where λ = 2 is a scaling factor used to bias the costs to-
wards the desired directions. Embed k2 = k − k1 bits into
the adjustable elements by using the updated embedding
costs {%+

i, j, %
0
i, j, %

−
i, j} and the same distortion minimization

coding scheme used for the common group.

The above process is applied iteratively, starting from β = 0
and increasing β of a small amount ∆β at each iteration. When
φC,S (Z) = 0, i.e., the adversarial stego image Z can fool the ste-
ganalyzer, Z is taken as the output and the embedding process
ends, the resulting value of β corresponding to the minimum
amount of adjustable elements.

As we said, ADV-EMB is effective in fooling the target ste-
ganalyzer, but its effectiveness is reduced when an adversary-
aware version of the steganalyzer, trained with adversarial stego
images, is considered [30]. In fact, if the steganalyst is aware of
the adversarial embedding strategy adopted by the steganogra-
pher, he also knows the parameter β to generate the adversarial
stego images (β is deterministically derived by solving a mini-
mization problem), and then he can mitigate the effectiveness of
adversarial embedding by training an adversary-aware version
of the CNN steganalyzer.

In this work, we consider a parametric version of the origi-
nal ADV-EMB scheme, referred to as P-ADV-EMD, where em-
bedding is implemented without minimizing the amount of ad-
justable elements, but performing Steps 1 to 4, for a given β.
Let us denote with Zβ the resultant image. The set containing
the adversarial stego images attacked with embedding param-
eter β is referred to as Zβ. Arguably, the steganalyst does not
know the value of β adopted by the attacker and has to make
an educated guess; then, he/she trains the steganalyzer by con-
sidering the adversarial embedding performed with the guessed
β. As confirmed in our experiments (see Section 6), when the
steganalyzer trained with a given value of β is used to detect
adversarial stego images with a mismatched β, the detection

performance are impaired. The best choice of the parameter β
to be used by the steganalyst and the steganographer can then
be determined in a game-theoretic framework, as stated in the
next section.

3. CNN-based Adversary-aware Stego Embed-
ding/Detection game.

Before defining the Adversary-aware Stego Embed-
ding/Detection game, namely the AS ED game, in Section
3.2, we recall some basic concepts of game theory which
are necessary to understand the rest the paper. Then, we
will investigate the behavior of the AS ED game at the Nash
equilibrium.

3.1. Game theory in a nutshell

A two-player game is defined by a 4-tuple (S1,S2, u1, u2),
where S1 = {z1,1 . . . z1,n1 } and S2 = {z2,1 . . . z2,n2 } are the set
of actions, or strategies, the first and the second player can
choose from, and ul(z1,i, z2, j), l ∈ {1, 2}, is the payoff of the
game for player l, when the first player chooses the strategy z1,i
(i ∈ {1, · · · , n1}) and the second chooses z2, j ( j ∈ {1, · · · , n2}).
A pair of strategies (z1,i, z2, j) is called a profile. In a strate-
gic game, S1, S2 and the payoff functions are assumed to be
known to the two players, who choose their strategies before
starting the game, without knowing the strategy chosen by the
other player.

When u1(z1,i, z2, j) + u2(z1,i, z2, j) = 0, i.e., the players have
opposite payoffs, the game is said to be competitive or zero-
sum. In that case, the payoff of the game can be defined by
adopting the perspective of one of the two players.

The goal of game analysis is to determine the existence of
equilibrium points, i.e. profiles, that in some way represent
a satisfactory choice for both players [44]. The most famous
notion of equilibrium is due to John Nash. A profile is a Nash
equilibrium if no one of the players has any interest in changing
his strategy assuming the other does not change his own. For
the particular case of a two-player game, a profile (z1,i∗ , z2, j∗ ) is
a Nash equilibrium if:

u1(z1,i∗ , z2, j∗ ) ≥ u1(z1,i, z2, j∗ ) ∀z1,i ∈ S1,
u2(z1,i∗ , z2, j∗ ) ≥ u2(z1,i∗ , z2, j) ∀z2, j ∈ S2.

(9)

For a zero-sum game, u2 = −u1.
The above definition assumes that the players deterministi-

cally choose one of the strategies in Si (pure strategy). A more
flexible approach consists in letting each player choose a strat-
egy with a certain probability. In this way, we introduce a new
game in which the strategies available to the players are prob-
ability distributions over S1 and S2. The payoffs are redefined
in terms of expected payoffs under the probability distributions
chosen by the players. A probability distribution pl over Sl, that
is,

pl =
{
pl(zl,i), zl,i ∈ Sl

∣∣∣∑
i

pl(zl,i) = 1, pl(zl,i) ≥ 0,∀i
}
, (10)

5



is said a mixed strategy for player l. The definition of Nash
equilibrium in mixed strategies extends the one given in (9).
Accordingly, a mixed strategy profile (p∗1, p∗2) is a mixed strat-
egy Nash equilibrium if it satisfies ū1(p∗1, p∗2) ≥ ū1(p1, p∗2) and
ū2(p∗1, p∗2) ≥ ū2(p∗1, p2), for any mixed strategy profile p1 and
p2, where ūl denotes the expected payoff for player l under the
distribution corresponding to the mixed strategy profile. A cen-
tral result of game theory [49] states that if we allow mixed
strategies, then every game with a finite number of players and
with a finite number of pure strategies for every player has at
least one Nash equilibrium.

3.2. The AS ED game

As we said, we assume that the P-ADV-EMB is implemented
by the steganographer A, by choosing the parameter β in a
strategic way4. In turn, the steganalyst D has to guess the
value of β used by the steganographer to build the adversary-
aware version of the CNN detector. As anticipated, we model
the interplay between the value of β adopted by A and the one
adopted by D as a game. For sake of clarity, in the following,
we indicate with βA the fraction of adjustable elements adopted
by A and with βD the value considered by D in the implemen-
tation of the adversary-aware CNN steganalyzer.

More formally, A selects φC,S, i.e., the unaware version of
the steganalyzer, as the target steganalyzer, and the adversarial
stego images are generated by considering βA. On the other
hand, D selects βD and considers φC,ZβD for detection. With
these ideas in mind, we are now ready to define the CNN-based
AS ED game.

Definition 1. The AS ED(SA,SD, uA, uD) game is a two-player,
non-zero-sum, strategic game played by the steganalyst (D) and
the steganographer (A), defined by the following strategies and
payoffs.

• The sets of strategies the steganographer (A) and the ste-
ganalyst (D) can choose from are, respectively, the set of
possible values of βA and βD:

SA = {βA ∈ [0, 1]},
SD = {βD ∈ [0, 1]}.

(11)

• The payoff of the steganalyst (D) is defined as the negative
error probability of the CNN classifier; that is

uD(βA, βD) = −Pe(βA, βD) = −
1
2

(P f a(βD) + Pmd(βA, βD))

(12)

where
P f a(βA, βD) = Pr{φC,ZβD (C) = 1}, (13)

and
Pmd(βA, βD) = Pr{φC,ZβD (ZβA ) = 0}. (14)

4We assume that the steganographer has a perfect knowledge of the target
unaware steganalyzer, i.e., the specific CNN architecture adopted and the train-
ing set.

• The payoff of the steganographer (A) is defined as
the missed detection probability, i.e., uA(βA, βD) =

Pmd(βA, βD).

We stress that the above non zero-sum game formulation is
a novelty with respect to prior art in the field, where zero sum
game formulations have been considered; moreover, it better
models the general adversarial stego detection scenario, where
the goal of the adversary is to conceal the presence of the mes-
sage in the stego images, that is, to pass off a stego as a cover,
and not to induce general misclassification error.

In the above definition, the sets of strategies available to A
and D are continuous sets. However, to derive the equilibrium
point for the AS ED game, we will consider discrete sets of
strategies by properly quantizing the values of βA and βD. The
quantized sets of strategies are indicated by Sq

A and Sq
D. Then,

we consider the pair of strategies (βA, βD) ∈ Sq
A×S

q
D. We denote

with (−Pe), res. Pmd, the payoff matrices of D, res. A, where
Pe =

[
Pe(βA, βD)

]
βA∈S

q
A,βD∈S

q
D
, Pmd =

[
Pmd(βA, βD)

]
βA∈S

q
A,βD∈S

q
D
.

In the sequel, we will always consider the AS ED game with
quantized sets of strategies, namely AS ED(Sq

A,S
q
D, uA, uD), un-

less stated differently.

4. Equilibrium Point Analysis (of the ASED Game)

The ultimate goal of our analysis is to determine the equi-
librium point(s) of the quantized version of the AS ED game,
which, as we will see, can be found in mixed strategies.

Let pD, res. pA, indicate the mixed strategies vectors, that is,
the (column) vectors with the probability distribution over the
possible values of βD, res. βA, in Sq

D and Sq
A. For a given mixed

strategy profile (pA, pD), the expected payoffs of A and D can
be computed as:

ūA(pA, pD) =
∑
βA∈S

q
A

pA(βA)
∑
βD∈S

q
D

Pmd(βA, βD)pD(βD), (15)

ūD(pA, pD) = −
∑
βA∈S

q
A

pA(βA)
∑
βD∈S

q
D

Pe(βA, βD)pD(βD). (16)

A mixed strategies Nash equilibrium profile (p∗A, p∗D) is a pair
of mixed strategies for which we have:

(p∗A)T
· Pmd · p∗D = maxpA

{
(pA)T · Pmd · p∗D

∣∣∣∣∣ ∑
βA∈S

q
A

pA(βA) = 1, pA(βA) ≥ 0
}
,

(p∗A)T
· Pe · p∗D = minpD

{
(p∗A)T

· Pe · pD

∣∣∣∣∣ ∑
βD∈S

q
D

pD(βD) = 1, pD(βD) ≥ 0
}
.

(17)

In general, solving a non-zero-sum game, i.e. finding the
Nash equilibrium (equilibria) of the game, is not easy [50]. In
hindsight, in our case, the problem can be simplified by ob-
serving that the P f a corresponding to the steganalyzer φC,ZβD

does not depend on βA. Specifically, we can write the following
equivalence:

(pA)T · Pe · pD =
1
2

(pA)T · Pmd · pD +
∑
βD∈S

q
D

P f a(βD)pD(βD)

 .
(18)
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The above relation follows immediately by observing that

(pA)T · Pe · pD =
1
2

{
(pA)T · Pmd · pD + (pA)T P f a · pD

}
where P f a =

[
P f a(βA, βD)

]
βA∈S

q
A,βD∈S

q
D
, which is constant over

the rows. Then:

(pA)T P f a · pD =
∑
βD∈S

q
D

 ∑
βA∈S

q
A

P f a(βA, βD) · pA(βA)

 · pD(βD)

=
∑
βD∈S

q
D

P f a(βD) ·

 ∑
βA∈S

q
A

pA(βA)

 · pD(βD)

=
∑
βD∈S

q
D

P f a(βD) · pD(βD).

(19)
Accordingly, the mixed strategy p∗A at the Nash equilibrium can
be equivalently obtained by solving the maximization below:

p∗A = arg maxpA

{
(pA)T · Pe · p∗D

∣∣∣∣∣ ∑
βA∈S

q
A

pA(βA) = 1, pA > 0
}
, (20)

where Pe is considered as payoff matrix for A.
Given the above derivation, the following property holds im-

mediately.5

Property 1. A profile (p∗A, p∗D) is a Nash equilibrium of the non-
zero-sum strategic game AES D(Sq

A,S
q
D, uA, uD), if and only

if it is a Nash equilibrium of the zero-sum strategic game
AS ED′(Sq

A,S
q
D, u) where u = Pe is the payoff of the game, de-

fined by adopting the steganalyst’s perspective (i.e., A aims at
maximizing u, while D aims at minimizing it).

Thanks to Property 1, in order to find the equilibrium point
of the AS ED game, we can conveniently solve the zero-sum
game AS ED′. This represents a great advantage, since finding
the Nash equilibrium of a zero-sum game is significantly eas-
ier. In particular, since the set of strategies is discrete and finite,
the equilibrium point can be derived by relying on the minimax
theorem [44]. According to such a theorem, the mixed strate-
gies Nash equilibrium (p∗A, p∗D) can be obtained by solving sep-
arately the following max-min and min-max problems:

p∗A = arg max
pA(Sq

A)
min

pD(Sq
D)

pT
A · Pe · pD

p∗D = arg min
pD(Sq

D)
max
pA(Sq

A)
pT

A · Pe · pD,
(21)

where the max and min are restricted to the set of probability
vectors, that is, the vectors for which {pA :

∑
βA∈S

q
A

pA(βA) =

1, pA(βA) ≥ 0,∀βA} and {pD :
∑
βD∈S

q
D

pD(βD) = 1, pD(βD) >
0,∀βD}. The above system can be reduced to the solution of
a linear programming (LP) problem, see [51]. The expected
payoffs of D and A at the equilibrium of the non-zero-sum game
are ūD(p∗A, p∗D) and ūA(p∗A, p∗D), computed as in Equation (15)
and (16).

5The property can also be proved with reference to the continuous game
AS ED(SA,SD, uA, uD) (the derivation is obtained by replaing the sums with
integrals in equations (17) through (20)).

5. Equilibrium Assessment in Practice

Having established that solving the AS ED′ game is equiva-
lent to finding the equilibrium points of the AS ED game, our
next step is to investigate the behavior of the AS ED game in
a practical scenario and analyze the achievable performance of
the steganalyst and the steganographer, when they adopt CNN
aware training and the P-ADV-EMB scheme respectively, and
tune the values of βD and βA strategically. Specifically, the goal
of our research is to study the equilibrium point of the game
in pure or mixed strategies, and analyze the behavior and the
payoff of the steganographer and the steganalyst at the equilib-
rium. The performance at the equilibrium are then compared
to those obtained by adopting a worst case approach and those
achieved by training the steganalyzer with a proper mixture of
adversarial stego samples obtained by adopting different values
of βD.

5.1. Experimental setting

The setup we have used to conduct our experiments is de-
scribed in the following. We applied the P-ADV-EMB algo-
rithm in the spatial domain by selecting S-UNIWARD [7] as the
baseline scheme for conventional embedding. Xu-net [23] was
used as the CNN classifier for its fast convergence under a mod-
erate size of the training set. The Xu-net steganalyzer trained
with conventional S-UNIWARD stego images, i.e., φCtrn,Strn (or,
equivalently, φCtrn,Z

0
trn

), was used as the target steganalyzer used
to generate the adversarial stego images ZβA .

For the evaluation, we used the BOSSBase v1.01 [52]
dataset, which contains 10,000 cover images of size 512 × 512.
The payload was set to 0.4 bpp (bit per pixel). In the experi-
ments, firstly, we quantized β based on the considerations we
made in Section 5.3. Then, for a given β, we randomly split
10,000 pairs of cover images and their corresponding stego im-
ages into three disjoint subsets, i.e., training set {Ctrn,Z

β
trn}, val-

idation set {Cval,Z
β
val}, and test set {Ctst,Z

β
tst}, with 4000, 1000,

and 5000 pairs of images, respectively. The training set was
employed to train the learnable parameters/weights in the CNN
steganalyzer, while the validation set was used for the selection
of the best-performing model, i.e., the best-performing param-
eters/weights in the CNN, to prevent over-fitting to the training
set. The reported performance of the CNN steganalyzer was
evaluated on the test sets. Finally, to build the payoff matrices
Pe and Pmd, each CNN steganalyzer φ

Ctrn,Z
βD
trn

, βD ∈ S
q
D, was run

on the set {Ctst,Z
βA
tst} for all βA ∈ S

q
A.

CNN training and testing was performed on TensorFlow with
Python interface and a NVIDIA Tesla P100 GPU card. The
weights of CNN convolutional filters and fully connected layers
were initialized by using a normal distribution with zero mean
and standard deviation equal to 0.01. With regard to learning,
we used stochastic gradient descent, with momentum equal to
0.9 and initial learning rate 0.001. The learning rate decay was
set to 90% every 5,000 training steps. The batch size in each
iteration was set to 50 (25 cover/stego pairs). The training stage
lasted 110,000 iterations, and validation was performed every
5,000 iterations.
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5.2. Investigated solutions

5.2.1. Nash equilibrium
To stat with, we measured the performance at the equilib-

rium of the stego detection game by following the approach
presented in Section 4. Specifically, by Property 1, we obtained
the Nash equilibrium profile (p∗A, p∗D) by solving the LP prob-
lem associated to the zero-sum game formulation AS ED′, with
payoff matrix Pe having entries |Sq

A| × |S
q
D|. Then, we com-

puted the payoffs of D and A according to Equations 15 and 16.
We used the linear programming tools of Matlab Optimization
Toolbox [53] to solve the LP problem by means of the simplex
algorithm.

5.2.2. Worst case solution
As a second possibility, we considered the case in which A

and B adopts a conservative worst case approach. In this case,
A and D choose the strategy which maximizes their own payoff

in the worst case with respect to the move of the opponent 6.
In our setup, the worst case strategy for A corresponds to

the value of βA that maximizes the missed detection probability
when D plays the strategy that minimizes it, that is, given the
payoff matrix Pmd,

β̂A = arg max
βA∈S

q
A

{
min
βD∈S

q
D

Pmd(βA, βD)
}
. (22)

The corresponding worst case solution is minβD Pmd(β̂A, βD).
Likewise, given D’s payoff matrix −Pe, the worst case strat-

egy for D is

β̂D = arg min
βD∈S

q
D

max
βA∈S

q
A

Pe(βA, βD)
 . (23)

Usually, β̂D (res. β̂A) is different from the value obtained from
the inner minimization in (22) (res. in (23)). When the solu-
tion of Equations (22) and (23) is the same, the profile (β̂A, β̂D)
corresponds to a pure strategy Nash equilibrium.

In the next section, we compare the worst case solution to the
Nash equilibrium of the game, to show the advantage provided
by the game-theoretic analysis.

5.2.3. Training over a mixture of strategies
Eventually, we considered the solution obtained by training

the CNN on a mixture of β values. In particular, we consid-
ered the mixture corresponding to the equilibrium mixed strat-
egy for D, namely p∗D = [p∗D(βD)]βD∈S

q
D
, to build the adversarial

stego image set Zp∗D , where adversarial embedding was per-
formed with various βD ∈ S

q
D according to the probability vec-

tor p∗D. The trained model is denoted with φ
Ctrn,Z

p∗D
trn

in this case.

In practice, we exploited the equilibrium solution of the game
from the perspective of the steganalyst, thus going beyond a
strictly game-theoretic analysis. More specifically, by training

6Note that, in a zero-sum game, this strategy may not correspond to the
strategy that maximizes the opponent’s payoff.

the CNN with a mixture of β, we gave an advantage to the ste-
ganalyst, since the steganographer is assumed to keep playing
at the equilibrium of the game, which was found without con-
sidering the possibility that the steganalyzer was trained on a
mixture of β’s.7 We also considered the case in which adversar-
ial embedding was performed by considering an uniform distri-
bution of βD across the training set Sq

D. In this case, the trained
steganalyzer is denoted by φCtrn,Z

uni
trn

.

5.3. Quantization of β values

In order to approximate the behavior of the continuous game
(see Definition 1), we should consider a fine enough quantiza-
tion of βA and βD. However, considering a very fine quanti-
zation increases dramatically the computational burden of the
tests, since a CNN model has to be trained for every value of
βD ∈ S

q
D. In our experiments, we first quantized βA and βD with

a uniform quantization step size of 0.05, then we considered
non-uniform quantization steps with a smaller step size in the
region of (βA, βD) values where the payoff varies more rapidly.
We considered only the case of equal quantization strategies for
D and A, that is Sq

A ≡ S
q
D ≡ S

q.

6. Experimental Results

In this section, we report the results of our experiments and
discuss their meaning.

6.1. Payoff matrices

In Table 1, we report the payoff matrix Pe obtained from
our experiments when βA and βD are quantized with a uniform
quantization step size equal to 0.05. We also report the pay-
off matrix Pmd in Table 2. From the analysis carried out in
Section 3 (and the result stated by Property 1), we know that
only the matrix Pe is necessary to solve the game and derive
the optimum strategies for D and A. Then, the values of Pmd

corresponding to the optimum parameters are used to compute
the payoff of A at the equilibrium. In the tables, we highlight
the results for the case βA = βD (diagonal) with grey shades.
The performance at (βA, βD) = (0, 0) corresponds to the per-
formance when conventional S-UNIWARD steganography and
steganalysis are considered (this case provides the baseline per-
formance and is highlighted with a wave line), in which case
Pe = 20.9% and Pmd = 24.0%.

For a fixed βA, one would expect that the best possible per-
formance for D is achieved when βD = βA. Actually, this is not
always the case. However, in all the cases where, for a given
βA, the steganalyzer φ

Ctrn,Z
βA
trn

is outperformed by φ
Ctrn,Z

βD
trn

with
a βD , βA (highlighted with dash underlines in the table), the
difference in the corresponding value of the Pe is not much. It
can also be observed that the region where 0.1 ≤ βD < βA ≤ 0.3
is where the difference between the performance of the stegan-
alyzer with matched and mismatched β is more relevant. By

7Training on mixtures of β’s was not included in the set of strategies of the
game.
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Table 1: Pe (in%) with a uniform quantization step size of 0.05 on β. (Wave: the case of conventional embedding and detection. Bold: the case when the steganalyst
has a worse performance compared to the case of conventional embedding and detection. Shade: the case when the steganalyst uses a matched parameter for
detection, i.e., βD = βA. Dash underline: the case when the steganalyst has a better performance with a mismatched parameter than with a matched parameter.
Underline: worst case solution for steganalyst.)

βA\βD 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

0.00
::::
20.9 26.4 50.5 50.3 50.1 50.1 50.1 50.1 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0

0.05 39.0 26.7 42.7 48.5 49.5 49.8 49.7 49.7 49.8 50.0 49.9 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0
0.10 54.7 27.1 20.1 30.9 45.0 47.2 47.1 48.1 48.7 49.5 49.6 49.8 49.9 49.8 49.9 49.8 49.9 49.9 49.9 49.8 49.9
0.15 57.0 28.2 8.0 10.1 24.6 29.1 34.2 42.8 43.6 47.5 47.8 48.3 49.1 48.9 49.3 49.0 49.4 48.3 48.8 48.8 49.2
0.20 57.7 28.8 4.8 4.3 6.9 8.6 12.7 26.1 22.3 36.4 37.1 38.8 42.1 44.9 43.9 42.5 45.3 42.7 44.2 45.8 46.7
0.25 57.9 30.1 3.7 2.6 2.9 3.1 4.6 7.4 6.9 14.4 16.3 19.1 24.1 29.3 31.3 29.1 35.8 36.0 38.0 41.1 43.0
0.30 58.1 31.4 3.0 1.9 1.6 1.8 2.0 2.5 2.0 5.2 5.5 7.5 10.7 14.3 18.9 17.8 24.4 28.0 30.3 34.8 38.0
0.35 58.2 32.5 2.7 1.4 1.1 1.1 1.2 1.1 0.6 2.6 2.0 2.9 4.7 6.6 10.0 10.0 13.5 19.1 21.7 26.7 31.2
0.40 58.3 33.9 2.5 1.1 0.9 0.8 0.9 0.9 0.3 1.0 0.6 1.2 1.8 2.8 4.8 4.6 6.5 10.7 13.4 18.0 23.4
0.45 58.4 34.8 2.4 1.0 0.8 0.6 0.7 0.7 0.2 0.6 0.3 0.5 0.8 1.3 2.1 2.1 3.0 5.3 7.1 9.7 15.4
0.50 58.5 35.5 2.3 1.0 0.7 0.4 0.5 0.7 0.2 0.4 0.2 0.3 0.4 0.8 1.0 1.0 1.4 2.5 3.5 4.6 9.0
0.55 58.6 36.2 2.2 0.9 0.7 0.5 0.5 0.6 0.2 0.3 0.2 0.2 0.2 0.6 0.5 0.5 0.8 1.1 1.8 2.0 5.1
0.60 58.6 36.7 2.2 0.9 0.7 0.4 0.4 0.6 0.2 0.2 0.1 0.1 0.2 0.5 0.3 0.3 0.4 0.6 0.8 0.9 2.9
0.65 58.6 37.4 2.2 0.8 0.6 0.3 0.3 0.6 0.2 0.2 0.1 0.1 0.1 0.3 0.2 0.3 0.3 0.3 0.5 0.5 1.6
0.70 58.6 37.6 2.1 0.8 0.6 0.3 0.3 0.6 0.2 0.2 0.1 0.1 0.1 0.3 0.2 0.2 0.2 0.2 0.4 0.3 1.1
0.75 58.7 37.8 2.1 0.8 0.6 0.3 0.3 0.6 0.2 0.2 0.1 0.1 0.1 0.3 0.1 0.2 0.2 0.2 0.2 0.2 0.8
0.80 58.7 37.7 2.1 0.8 0.6 0.3 0.3 0.6 0.2 0.2 0.2 0.2 0.1 0.3 0.1 0.2 0.1 0.1 0.1 0.2 0.6
0.85 58.7 37.7 2.1 0.8 0.6 0.4 0.4 0.6 0.2 0.3 0.2 0.2 0.2 0.3 0.2 0.2 0.1 0.1 0.1 0.2 0.4
0.90 58.7 37.4 2.1 0.8 0.6 0.4 0.4 0.7 0.2 0.4 0.3 0.3 0.3 0.5 0.2 0.2 0.1 0.1 0.1 0.1 0.3
0.95 58.7 37.5 2.1 0.8 0.7 0.4 0.5 0.8 0.3 0.5 0.5 0.5 0.4 0.6 0.4 0.3 0.2 0.2 0.1 0.2 0.3
1.00 58.7 37.2 2.1 0.8 0.7 0.5 0.7 0.9 0.5 0.6 0.6 0.6 0.6 0.8 0.6 0.5 0.2 0.2 0.2 0.2 0.2

Table 2: Pmd (in%) with a uniform quantization step size of 0.05 on β. (Wave: the case of conventional embedding and detection. Shade: the case when the
steganalyst uses a matched parameter for detection, i.e., βD = βA. Bold: the case when the steganographer has a better performance compared to the case of
conventional embedding and detection. Double underline: worst case solution for steganographer.)

βA\βD 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

0.00
::::
24.0 29.8 96.8 99.2 99.1 99.6 99.5 99.1 99.8 99.7 100.0 99.9 99.9 99.6 99.9 99.8 99.9 100.0 99.9 100.0 99.9

0.05 60.3 30.6 81.3 95.6 97.8 98.9 98.8 98.2 99.3 99.6 99.8 99.8 99.8 99.5 99.9 99.7 99.9 99.9 99.8 99.8 99.9
0.10 91.7 31.2 36.1 60.4 88.8 93.7 93.6 95.0 97.1 98.7 99.2 99.4 99.6 99.1 99.7 99.4 99.7 99.7 99.6 99.6 99.7
0.15 96.3 33.5 11.8 18.7 48.0 57.5 67.8 84.4 86.8 94.7 95.5 96.5 98.1 97.4 98.4 97.8 98.6 96.5 97.4 97.5 98.3
0.20 97.7 34.8 5.5 7.2 12.6 16.5 24.8 51.1 44.4 75.5 74.1 77.4 84.1 89.4 87.6 84.8 90.6 85.4 88.2 91.6 93.3
0.25 98.2 37.4 3.3 3.8 4.6 5.6 8.7 13.7 13.6 28.4 32.5 38.0 48.2 58.2 62.5 58.0 71.4 72.0 75.8 82.1 85.9
0.30 98.5 39.9 1.9 2.3 2.0 3.0 3.5 3.9 3.7 10.1 11.0 14.9 21.4 28.2 37.7 35.5 48.6 55.9 60.4 69.5 75.9
0.35 98.7 42.2 1.2 1.3 1.1 1.5 1.8 1.1 0.9 3.8 4.0 5.7 9.3 12.9 19.8 19.7 26.8 38.1 43.6 53.4 62.3
0.40 98.9 44.9 0.8 0.8 0.7 0.9 1.2 0.7 0.4 1.6 1.2 2.2 3.6 5.2 9.4 9.1 12.8 21.4 26.7 35.9 46.8
0.45 99.2 46.6 0.7 0.7 0.5 0.5 0.7 0.4 0.2 0.8 0.6 0.8 1.6 2.2 4.0 4.0 6.0 10.5 14.2 19.4 30.7
0.50 99.3 48.1 0.4 0.6 0.3 0.2 0.5 0.2 0.1 0.5 0.3 0.4 0.7 1.2 1.8 1.8 2.7 4.9 6.9 9.1 17.9
0.55 99.4 49.6 0.3 0.3 0.2 0.3 0.4 0.2 0.1 0.3 0.2 0.2 0.4 0.7 0.9 0.9 1.5 2.1 3.4 4.0 10.0
0.60 99.5 50.5 0.2 0.3 0.2 0.1 0.3 0.1 0.1 0.2 0.2 0.1 0.3 0.5 0.5 0.5 0.7 1.0 1.6 1.8 5.7
0.65 99.6 51.9 0.2 0.2 0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.3 0.3 0.3 0.5 0.5 1.0 0.9 3.1
0.70 99.6 52.4 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.3 0.2 0.4 0.3 0.6 0.4 2.1
0.75 99.6 52.8 0.1 0.1 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.2 0.3 0.3 0.3 1.4
0.80 99.7 52.5 0.1 0.1 0.0 0.0 0.1 0.1 0.1 0.2 0.2 0.2 0.1 0.2 0.2 0.2 0.1 0.2 0.2 0.3 1.4
0.85 99.7 52.5 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.2 0.1 0.1 0.2 0.2 0.7
0.90 99.7 51.9 0.1 0.1 0.1 0.1 0.2 0.2 0.2 0.4 0.5 0.5 0.5 0.5 0.3 0.3 0.2 0.1 0.2 0.2 0.3
0.95 99.7 52.1 0.1 0.2 0.2 0.2 0.4 0.5 0.4 0.6 0.5 0.8 0.8 0.8 0.6 0.4 0.3 0.3 0.2 0.2 0.3
1.00 99.7 51.5 0.1 0.2 0.3 0.4 0.7 0.7 0.7 0.9 1.2 1.1 1.1 1.2 1.0 0.7 0.3 0.3 0.3 0.2 0.2

9



Table 3: Pe (in%) with a non-uniform quantization on β. (Wave: the case of conventional embedding and detection. Bold: the case when the steganalyst has a worse
performance compared to the case of conventional embedding and detection. Shade: the case when the steganalyst uses a matched parameter for detection, i.e.,
βD = βA. Dash underline: the case when the steganalyst has a better performance with a mismatched parameter than with a matched parameter. Underline: worst
case solution for steganalyst.)

βA\βD 0.00 0.02 0.04 0.05 0.06 0.07 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

0.00
::::
20.9 21.5 23.0 26.4 32.1 37.5 43.2 50.5 50.9 50.6 50.9 50.3 50.1 50.1 50.0 50.0 50.0 50.0 50.0 50.0 50.0

0.02 27.1 23.6 24.3 26.6 30.2 33.9 39.1 49.2 49.7 50.0 50.4 50.0 49.9 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0
0.04 34.9 27.1 25.7 26.7 28.3 30.0 33.1 45.7 46.6 48.8 49.1 49.4 49.7 49.8 49.9 50.0 50.0 50.0 50.0 50.0 50.0
0.05 40.0 28.4 26.3 26.7 27.1 28.2 29.7 42.7 43.7 47.4 47.5 48.8 49.5 49.7 49.8 49.9 50.0 50.0 50.0 50.0 50.0
0.06 42.7 30.3 27.0 26.7 26.1 26.6 26.2 38.9 40.4 45.5 45.7 48.3 49.1 49.6 49.7 49.9 50.0 50.0 50.0 50.0 50.0
0.07 46.5 32.3 28.0 26.8 25.0 24.9 23.1 34.6 35.4 43.1 42.6 47.3 48.6 49.2 49.6 49.8 49.9 50.0 50.0 50.0 50.0
0.08 50.1 34.4 28.8 27.2 24.8 23.9 20.3 30.3 31.0 39.4 38.5 45.8 48.1 48.8 49.4 49.8 49.9 50.0 50.0 49.9 50.0
0.10 54.7 38.9 30.4 27.1 23.0 21.7 14.9 20.1 21.3 29.0 26.8 39.7 45.0 47.1 48.7 49.6 49.9 49.9 49.9 49.9 49.9
0.12 56.3 42.4 32.3 27.3 22.1 19.9 12.0 13.2 15.0 18.4 17.5 29.5 40.0 43.8 47.6 49.2 49.7 49.7 49.8 49.6 49.8
0.14 56.8 46.6 34.2 27.8 21.2 18.9 9.5 9.2 10.9 11.6 12.7 18.4 30.5 38.2 45.4 48.4 49.4 49.6 49.6 49.1 49.4
0.16 57.2 49.7 36.1 28.4 20.5 17.9 8.2 7.0 8.6 7.6 9.5 11.3 19.3 30.0 40.4 46.6 48.6 48.9 49.1 48.0 48.8
0.18 57.4 52.5 38.0 28.7 19.7 17.1 7.0 5.6 7.0 5.7 7.7 7.2 11.3 20.3 32.6 43.4 46.9 47.6 47.8 46.5 47.9
0.20 57.7 54.5 40.0 28.8 19.2 16.5 6.6 4.8 6.2 4.6 6.6 4.7 6.9 12.7 22.3 37.1 42.1 43.9 45.3 44.2 46.7
0.30 58.1 56.9 47.1 31.4 17.8 14.4 4.9 3.0 4.3 2.9 3.8 2.0 1.6 2.0 2.0 5.5 10.7 18.9 24.4 30.3 38.0
0.40 58.3 57.7 51.5 33.9 16.7 13.2 4.3 2.5 3.7 2.5 2.8 1.8 0.9 0.9 0.3 0.7 1.8 4.8 6.5 13.4 23.5
0.50 58.5 58.2 53.8 35.5 16.4 12.6 4.0 2.3 3.2 2.2 2.4 1.7 0.7 0.5 0.2 0.2 0.4 1.0 1.4 3.5 9.0
0.60 58.6 58.5 54.9 36.7 17.2 12.2 3.8 2.2 3.1 2.2 2.1 1.7 0.7 0.4 0.2 0.1 0.2 0.3 0.4 0.8 2.9
0.70 58.6 58.9 55.2 37.6 17.5 12.0 3.8 2.1 3.0 2.1 1.9 1.6 0.6 0.3 0.2 0.1 0.1 0.2 0.2 0.4 1.1
0.80 58.7 59.0 55.1 37.7 18.2 11.8 3.8 2.1 3.0 2.1 1.8 1.6 0.6 0.3 0.2 0.2 0.1 0.1 0.1 0.1 0.6
0.90 58.7 59.1 54.2 37.4 18.6 11.9 3.8 2.1 3.0 2.1 1.7 1.7 0.6 0.4 0.2 0.3 0.3 0.2 0.1 0.1 0.3
1.00 58.7 58.9 53.0 37.2 18.3 11.9 3.9 2.1 3.0 2.2 1.7 1.7 0.7 0.7 0.5 0.6 0.6 0.6 0.2 0.2 0.2

Table 4: Pmd with a non-uniform quantization on β. (Wave: the case of conventional embedding and detection. Shade: the case when the steganalyst uses a matched
parameter for detection, i.e., βD = βA. Bold: the case when the steganographer has a better performance compared to the case of conventional embedding and
detection. Double underline: worst case solution for steganographer.)

βA\βD 0.00 0.02 0.04 0.05 0.06 0.07 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

0.00
::::
24.0 21.3 26.3 29.8 44.3 55.8 79.1 96.8 96.2 97.1 98.8 97.4 99.1 99.5 99.8 100.0 99.9 99.9 99.9 99.9 99.9

0.02 36.4 25.5 28.9 30.3 40.4 48.5 70.8 94.3 93.9 95.8 97.7 96.7 98.7 99.4 99.7 99.8 99.9 99.9 99.9 99.9 99.9
0.04 52.2 32.5 31.7 30.6 36.7 40.7 58.8 87.2 87.6 93.4 95.2 95.6 98.2 99.0 99.5 99.8 99.9 99.9 99.9 99.9 99.9
0.05 60.3 35.1 32.8 30.6 34.2 37.1 52.0 81.3 81.7 90.7 92.1 94.3 97.8 98.8 99.3 99.8 99.8 99.9 99.9 99.8 99.9
0.06 67.7 38.9 34.3 30.5 32.1 34.0 45.2 73.7 75.2 86.8 88.5 93.3 97.0 98.6 99.2 99.7 99.9 99.8 99.9 99.8 99.8
0.07 75.4 42.9 36.3 30.6 30.0 30.6 38.8 65.1 65.1 82.0 82.2 91.4 96.0 97.9 98.9 99.5 99.8 99.8 99.9 99.8 99.8
0.08 82.4 47.1 37.9 31.6 29.5 28.6 33.2 56.5 56.4 74.7 74.0 88.4 95.0 97.0 98.5 99.5 99.8 99.8 99.8 99.7 99.8
0.10 91.7 56.0 41.0 31.2 26.0 24.2 22.6 36.1 36.9 53.9 50.7 76.1 88.8 93.6 97.1 99.2 99.6 99.7 99.7 99.6 99.7
0.12 94.9 63.1 45.0 31.6 24.1 20.6 16.8 22.4 24.4 32.7 32.0 55.7 78.9 86.9 94.9 98.2 99.4 99.3 99.5 99.1 99.5
0.14 96.0 71.4 48.7 32.7 22.5 18.6 11.8 14.3 16.2 19.1 22.5 33.6 60.0 75.8 90.5 96.7 98.6 99.0 99.1 98.1 98.7
0.16 96.7 77.7 52.4 33.9 20.9 16.6 9.1 9.8 11.6 11.1 15.9 19.4 37.4 59.4 80.4 93.2 97.2 97.8 98.1 95.8 97.4
0.18 97.1 83.2 56.2 34.5 19.5 14.9 6.8 7.2 8.4 7.2 12.3 11.1 21.4 40.0 64.9 86.8 93.6 95.0 95.5 92.8 95.8
0.20 97.7 87.2 60.3 34.8 18.4 13.7 5.8 5.5 6.9 5.1 10.2 6.2 12.6 24.8 44.4 74.1 84.1 87.6 90.6 88.2 93.3
0.30 98.5 92.1 74.5 39.9 15.7 9.5 2.5 1.9 2.9 1.7 4.5 0.8 2.0 3.5 3.7 11.0 21.4 37.7 48.6 60.4 75.9
0.40 98.9 93.7 83.2 44.9 13.3 7.2 1.3 0.8 1.7 0.8 2.7 0.3 0.7 1.2 0.4 1.2 3.6 9.4 12.8 26.7 46.8
0.50 99.3 94.6 87.8 48.1 12.8 5.9 0.7 0.4 0.9 0.4 1.8 0.2 0.3 0.5 0.1 0.3 0.7 1.8 2.7 6.9 17.9
0.60 99.5 95.3 90.0 50.5 14.4 5.2 0.4 0.2 0.6 0.3 1.1 0.1 0.2 0.3 0.1 0.2 0.3 0.5 0.7 1.6 5.7
0.70 99.6 96.0 90.7 52.4 15.0 4.7 0.3 0.2 0.4 0.1 0.8 0.1 0.1 0.1 0.1 0.1 0.1 0.3 0.4 0.6 2.1
0.80 99.7 96.2 90.4 52.5 16.4 4.4 0.4 0.1 0.3 0.1 0.6 0.1 0.0 0.1 0.1 0.2 0.1 0.2 0.1 0.2 1.1
0.90 99.7 96.5 88.7 51.9 17.2 4.6 0.4 0.1 0.3 0.1 0.4 0.1 0.1 0.2 0.2 0.5 0.5 0.3 0.2 0.2 0.5
1.00 99.7 96.1 86.3 51.5 16.6 4.6 0.5 0.1 0.3 0.2 0.3 0.2 0.3 0.7 0.7 1.2 1.1 1.0 0.3 0.3 0.3
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closer inspection of Table 1, we also observe that, in this re-
gion, the performance of the steganalyzer varies greatly, thus
calling for a further investigation on a finer quantization of β.
For this reason, we also considered a different quantization for
the β values, which is finer for small β, and coarser for large
β; in particular, we considered the following non-uniform set
of values: Sq

nu = {0, 0.02, 0.04, 0.05, 0.06, 0.07, 0.08, 0.10,
0.12, 0.14, 0.16, 0.18, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80,
0.90, 1.00}. The corresponding matrices Pe and Pmd are shown
in Table 3 and 4, respectively.

From both Table 1 and 3, we can observe the following gen-
eral behavior:

• when D uses a steganalyzer with a very small βD (βD ≤

0.05), the attacker would better choose a large βA;

• when D uses a steganalyzer with a large βD, for the at-
tacker it is better to choose a small βA;

• for matched values of βA and βD (corresponding to the
diagonal of the matrix), the attacker can outperform the
baseline only when such values are relatively small.

A similar behavior also holds for the Pmd matrix in Table 2 and
4.

6.2. Equilibrium of the game

In Table 5 we report the mixed strategy Nash equilibrium
(p∗A, p∗D) for the AS ED game when β is uniformly quantized
(there are no equilibria in pure strategies). At the equilibrium,
the optimal payoff for the defender is P∗e = 30.8%, while for
the attacker the optimal payoff is P∗md = 42.9%. Compared
to conventional embedding where Pe(0, 0) = 20.9%, the error
probability is increased by almost 10%. This percentage char-
acterizes the loss in the error probability with respect to the
case of conventional non-adversarial steganography, due to ad-
versarial embedding. With regard to the equilibrium strategies,
interestingly, it can be observed that the optimum behavior of
the steganalyst, and especially the steganographer, corresponds
to alternate playing a small and a medium/large β. In particular,
among the possible values of β, the best for the attacker is to
perform conventional steganography (βA = 0) and adversarial
steganography with βA = 0.05, with a probability of 0.476 and
0.140 respectively, and to consider a stronger adversarial em-
bedding with βA = 0.75 with a probability of 0.384. On the
other hand, for the defender, the best is to consider the aware
steganalyzers φCtrn,Z

0.05
trn

, φCtrn,Z
0.1
trn

, and φCtrn,Z
0.5
trn

with a probability
of 0.812, 0.040, and 0.148, respectively.

In Table 6, we show the equilibrium when β is quantized non-
uniformly. The optimal payoff for the defender is P∗e = 29.0%,
while for the attacker is P∗md = 36.3%. Compared to the case
of uniform quantization, using finer quantization in the region
where the payoffs vary rapidly gives slightly more advantage
to the defender. However, the behavior of the optimum mixed
strategy at the equilibrium is similar to the one observed before:
in particular, for the attacker, the best is to use a conventional
steganographic scheme with an increased probability of 0.767,

and a strong adversarial embedding (with βA = 0.9) for the re-
maining instances. For the defender, the probabilities are now
concentrated on β = [0.05, 0.06]; in particular, D should use
φCtrn,Z

0.05
trn

and φCtrn,Z
0.06
trn

, with probability of 0.551 and 0.449, re-
spectively.

In both cases, and especially in the case of non-uniform
quantization, the shape of the equilibrium strategy of A con-
firms the necessity for the steganographer to find a good trade-
off between hiding the adversarial embedding on one hand
(β = 0), and trying to force the classifier towards a wrong deci-
sion (adversarial stego detected as a cover) by using a large β,
on the other.

6.3. Worst case solution

If the steganographer and the steganalyst decide to adopt a
worst case approach, as described in Section 5.2.2, we obtain
the following results:

• for the case of uniform quantization, the worst case strat-
egy for A is β̂A = 0.10 yielding a worst case payoff

P̂md = 31.2% (achieved when βD = 0.05), which is
highlighted with double-underline in Table 2, while that
for D is β̂D = 0.05, for which the worst case payoff is
P̂md = 37.8% (achieved when βA = 0.75 and highlighted
with underline in Table 1);

• for the case of non-uniform quantization, the worst case
strategy for A is the profile β̂A = 0.04, or 0.05 (the worst
case payoff is P̂e = 30.6%), (highlighted with double-
underline in Table 3), while that for D is β̂D = 0.06, with a
worst case payoff P̂e = 32.1% (highlighted with underline
in Table 3).

Therefore, in both cases, we have P̂e > P∗e and P̂md < P∗md;
hence, as expected, for both D and A the worst case solution
leads to a smaller (significantly smaller in some cases) payoff

compared to the Nash equilibrium, thus confirming the benefit
of adopting the Nash equilibrium solution.

Our results show that the quantization of β plays an important
role to determine the result of the game. Notably, the results
do not change significantly by using a finer quantization with
respect to the one considered in the set Sq

nu, thus indicating that
the sampling in Sq

nu is already dense enough.

6.4. Performance of a steganalyzer trained over a mixture of
βD

In the previous section, we have obtained experimentally the
mixed strategy Nash equilibriums for the AS ED game, where
β can take values in a finite set of values. We considered a
situation wherein the steganalyzer was trained on a mixture of
adversarial stego images, generated with different β. Two com-
positions for the training set were considered:

1. Zuni
trn : this set was consisted of adversarial images with β

distributed according to a uniform distribution. For exam-
ple, in the case of uniform quantization of β, 21 values of
β were possible, then each β contributed with about 190
images (the whole training set consisting of 4000 images);
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Table 5: The mixed strategy equilibrium for uniform quantization on β with a step of 0.05. The corresponding payoff matrices Pe and Pmd were shown in Table 1
and 2, respectively.

β 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

p∗A(βA) 0.476 0.140 0 0 0 0 0 0 0 0 0 0 0 0 0 0.384 0 0 0 0 0
p∗D(βD) 0 0.812 0.040 0 0 0 0 0 0 0 0.148 0 0 0 0 0 0 0 0 0 0

P∗md 42.9%
P∗e 30.8%

Table 6: The mixed strategy equilibrium for non-uniform quantization on β. The corresponding payoff matrices Pe and Pmd were shown in Table 3 and 4, respectively.

β 0.00 0.02 0.04 0.05 0.06 0.07 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

p∗A(βA) 0.767 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.233 0
p∗D(βD) 0 0 0 0.551 0.449 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

P∗md 36.3%
P∗e 29.0%

Table 7: Performance of the steganalyzers trained on mixtures of adversarial
stego images with different β, for the case of uniform and non-uniform quanti-
zation on β.

uniform quantization non-uniform quantization
Zuni

trn Z
p∗D
trn Zuni

trn Z
p∗D
trn

P̃e 26.0 20.7 30.2 28.8

2. Zp∗D
trn : this set was consisted of adversarial images with β

distributed according to the probability distribution p∗D at
the equilibrium of the AS ED game. For example, in the
case of uniform quantization, the training set contained
3252, 120, and 628 adversarial images with β = 0.05, 0.10,
and 0.50, respectively (see Table 5).

The adversarial stego images and their cover counterparts
formed the training set for the steganalyzer. The validation
sets were composed by images in the same proportion. The
same test set introduced in Section 5.1 was used for testing.
The results of the tests are given in Table 7 for the case of uni-
form and non-uniform quantization. For each case, the table
reports the value of the error probability weighted according to
the probability distribution p∗A at the equilibrium, indicated by
P̃e, achieved by the classifiers φCtrn,Z

uni
trn

and φ
Ctrn,Z

p∗D
trn

.

In the case of uniform quantization of β, it can be observed
that the steganalyzer trained with {Ctrn,Z

p∗D
trn } leads to the best

performance for D. Moreover, we observe that, when using
{Ctrn,Z

p∗D
trn } for training, the resulting P̃e = 20.7% is much lower

than the value at the Nash equilibrium (which is, P∗e = 30.8%),
Similarly, in the case of non-uniform quantization, it can

be observed that the classifier trained on {Ctrn,Z
p∗D
trn } achieves

the best detection performance. When the attacker plays the
equilibrium strategy, the steganalyzer trained with {Ctrn,Z

p∗D
trn }

achieves better performance with respect to the Nash equilib-

rium (P̃e = 28.8% and P∗e = 29.0%, respectively), though the
improvement in this case is not as strong as in the previous case.

Overall, the above results confirm that D can get an advan-
tage by training the steganalyzer with a mixture of images dis-
tributed as in the distribution provided by the Nash equilibrium
strategy. Following this observation, it would be very interest-
ing to see what happens when A changes his strategy, with re-
spect to the equilibrium mixture, as a reaction (knowing about
the mixed training adopted by D). This would naturally lead to
the definition of a more general game where the set of strate-
gies for A and D are the possible mixtures or distributions over
the β values (rather than the pure β values, as in the definition
of the AS ED game). Obviously, the computational burden of
these tests is enormous, due to the need of training over all the
possible mixtures, or, at least, a wide variety of them. The in-
vestigation of this case is left as a future work.

7. Conclusions

We formulated the interplay between CNN-based steganal-
ysis and adversarial embedding as a two-player non-zero-sum
strategic game. In particular, the game is played on the value of
the parameter β, ruling the amount of adjustable elements set by
the steganographer during the attack (strength of the adversarial
embedding), which the stenaganalyst tries to guess and use for
adversarial training.

We have shown that the solution of the non zero-sum game
can be traced back to the solution of an associated zero-sum
game, for which the Nash equilibrium can be derived more eas-
ily. The experiments that we run in a practical setup of CNN-
based steganalysis and adversarial embedding provide the op-
timum behavior for the steganalyst and the steganographer and
show the performance that can be achieved by playing at the
Nash equilibrium, thus characterizing the loss in the error prob-
ability with respect to the case of conventional non-adversarial
steganography. From our experiments, we can also observe that
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the quantization of the parameter β plays an important role in
the game solution, affecting the performance at the equilibrium.
As a further result, we verified that an improved solution for the
steganalyst, i.e., yielding a lower error probability, can be ob-
tained by training the classifier with the mixture of β values
provided by the steganalyst’s equilibrium strategy of the game.
This is an interesting result that goes beyond the game analysis
considered in this paper, and thus calls for more investigation
as a future work.

Other games could be defined by considering different sets
of strategies for the two players. For example, the selection-
channel information is a kind of strategy that both parties may
utilize. In this respect, it would be interesting to investigate the
interplay between selection-channel steganalysis and content-
adaptive steganography from a game-theoretic perspective.

References

[1] J. Fridrich, Steganography in digital media: principles, algorithms,
and applications, Cambridge University Press, 2009. doi:10.1017/

CBO9781139192903.
[2] B. Li, J. He, J. Huang, Y. Q. Shi, A survey on image steganography and

steganalysis, Journal of Information Hiding and Multimedia Signal Pro-
cessing 2 (2) (2011) 142–172.

[3] J. Fridrich, T. Filler, Practical methods for minimizing embedding im-
pact in steganography, in: Security, Steganography, and Watermarking of
Multimedia Contents IX, Vol. 6505, International Society for Optics and
Photonics, 2007, p. 650502. doi:10.1117/12.697471.
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