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Abstract: 

Empirical studies have investigated the effect of attitude and behavior on IT acceptance in organizations but 

yielded ambiguous results. Possibly they have not effectively accounted for the moderating effects of 

experience gained through direct interaction with the target technology. We examined the moderating effect of 

the length of direct experience on IT acceptance relationships and constructs. Using multi-group invariance 

analysis, we demonstrated that relationships between key IT acceptance constructs differed, depending on the 

user’s experience. The incorporation of direct experience can lead to convergent results and contribute to further 

understanding of the process. We discuss some implications from the knowledge that IT use is a dynamic 

process and suggest that IT management must account for direct experience in their decision making. 
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Article: 

1. Introduction 

Companies invest millions of dollars in IT to gain leadership, maintain competitiveness, or comply with 

industry standards. Firms can accelerate technology diffusion by selecting the best available technology; 

however, end-users ultimately determine the effectiveness of the investment. Organizations generally take their 

internal users for granted and pay scant attention to their behavior after implementation and initial use. 

The paucity of long-term/post-adoption research is not unique to IS. In fact, in general diffusion studies, a mere 

0.2% focused on post-adoption behaviors even though it was traditionally known that adoption and use were 

distinct behaviors. Consequently, when IT managers have developed strategies to intervene with end-users, the 

decisions were often difficult because of lack of guidelines. It is apparent that post-adoption research was of 

great importance given the criticality of IT in sustaining business and its financial implication. 

 

It is challenging to understand end-user behavior patterns and to manage continued use [3]. To explain IT 

adoption and usage, the TAM was introduced about 20 years ago. Even in the existing longitudinal studies, the 

length of use and user experience are generally limited to a few months of adoption. Szajna [24] stated that 

“experience gained over time” can be a potentially critical component that has not been addressed. 

The general applicability of TAM has not been established for long-term use. Therefore, we addressed the 

following questions: what factors affect IT users’ use decision in the long-term, e.g., after two years or beyond? 

As experience increases, how do users’ decision structures change? Our goal was to study continued long-term 

IT use with a focus on the role of direct experience. 

 

This was achieved in a two-fold process. First, we focused on the concept of direct experience, exploring 

attitude and behavioral intention towards IT use and their effect on various levels of user experience. Second, 

we extended our model and applied it to various contexts. 
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2. Conceptual background  

2.1. Direct experience in IT use 

In the context of IT use, a person is either a non-user or a potential adopter before becoming a user of 

technology. In assessing perceptions, we measure how non-users perceive adopting the use of technology while 

we measure users’ perceptions of the actual use. The determinants of adoption and use are not the same; 

obviously the non-user has no direct experience and the user does, though there is direct experience and non-

direct/ salient experience involving work or experience with a similar technology. In our study, we focused on 

direct experience gained through the use of the target technology. 

 

While the effect of experience can be studied as a direct influencing factor [15,19], some IT studies have 

examined the effect of experience through differences between experience and inexperienced users, sometimes 

called non-adopters. Taylor and Todd [25] found that several linkages were significantly different between 

users and non-users, including the effect of intention on behavior, perceived usefulness on intention, ease of use 

on attitude, perceived behavioral control on behavior, and perceived behavioral control on intention. Karahanna 

et al. [16] examined non-adopters and initial users of the Windows
TM

 operating system and found different 

strengths between behavioral beliefs, attitude, and intention. They argued that the perceptions of non-adopters 

and users are fundamentally different; non-adopters assessed their opinions and attitude towards adopting a 

technology while the users expressed opinions about using it. 

 

Gefen et al. [13] tested a modified TAM on two groups of e-commerce store customers: experienced and non-

adopters (inexperienced). They found the effect of perceived usefulness to be different. Castañeda et al. [5] 

found that experience moderated the effect of perceived ease of use and usefulness on intention to revisit a 

website. 

 

2.2. How to study direct experience 

The important research question was whether and how users differed because of their direct experience. It was 

necessary to determine how to model direct experience in the use of IT. One approach was to segment 

experience into levels rather than examining it at one aggregated level. Aggregation could cause findings to be 

unstable [8]. When experience levels are grouped, results may be mixed and few generalizations possible. 

Thompson et al. [26] extended a model developed in earlier work based on Triandis’ theory of behavior [27]. 

They examined the moderating effect of experience on the relationship between six antecedent variables (social 

factors, affect, complexity, job fit, long-term consequences, and facilitating conditions) and PC application use. 

The inexperienced group consisted of actual users and not non-adopters. The study indicated strong moderating 

effects of experience on the relationship between the five factors and use. 

 

To segment experience, we employed length of use as a proxy, allowing multiple levels of experience to be 

investigated. We examine three levels, long-, mid-, and short-term. 

 

2.3. Long-term context of IT use 

It is important to study IT use in the long-term as both ROI and diffusion take time and also that users gain 

direct experience only over time. But, how long is long-term? Customarily, the useful life of an IT innovation is 

projected at between 5 and 10 years. But IT innovation operates for much longer. For our study, we wanted to 

go beyond five years, to match the life of IT innovation. 

 

3. Research model and hypotheses 

In developing our hypotheses and model, we evaluated TAM and other models to examine key relationships 

that may vary across levels of experience. As we hoped to explain inconsistencies in TAM, it was necessary that 

our model did not deviate significantly from it, incorporating only material from TRA (normative beliefs and 

subjective norms) [5]. The research model is shown in Fig. 1. 

 



In the form of subjective norms, social influence was assumed to be a determinant of behavioral intention in 

TRA. TRA proposed that intention was the psychological process that mediated the influence of attitude on 

behavior [12]; thus, intention served as a good proxy for behavior. 

 

3.1. Research hypotheses 

We examined the moderating effects of direct experience on several relationships, between: perceived 

usefulness and attitude (PU-A), perceived ease of use and attitude (EOU-A), attitude and behavioral intention 

(A-BI), and subjective norms and behavioral intention (SN-BI). Direct experience has been found to 

significantly moderate attitude relationships and belief/attitude strengths in social psychology [11]. However, 

attitudes are not always predictive of behavior and could change with experience [17]. 

 
An attitude is the result of cognitive learning. Consequently, beliefs precede attitude. A key aspect is the 

information source from which beliefs are formed (direct or indirect experience). Indirect experience is gained 

when people receive information from other people, magazines, or observing others [22]. Beliefs induced by 

direct experience are, however, stronger and clearly defined and consistent with attitude. 

 

In the context of IT acceptance, through continued use, more and better information is gained about the 

technology. Direct experience enhances accessibility of the attitude. Some studies have reported that perceived 

usefulness is a stronger determining factor of attitude for users [6]. This lead to our first hypothesis: 

 

H1 The effect of perceived usefulness (PU) on attitude (A) will be stronger for IT users with higher level of 

experience than those with less experience. 

 

While some IT studies found that ease of use was an insignificant determinant of attitude in the short-term [7], 

its effect on attitude had not been validated in the long-term. In fact, many speculated that the effect of ease of 

use was only temporary. However, according to social psychology, beliefs (including ease of use) become more 

consistent with attitude as users gain more experience. Therefore, we made our second hypothesis: 

 

H2 The effect of perceived ease of use (EOU) on attitude (A) will be stronger for IT users with higher level of 

experience than those with less experience. 

 

Social psychologists believe that attitude is central to behavior and recognize that good quality attitudes (strong 

attitudes) predict behavior well while less strong do not [9]. Strength of an attitude [20], affects the way that 

individuals behave consistently. As users gain experience, the direct interaction with an attitude strengthens it, 

and thus it becomes more predictive of their behavioral intention and behavior. Attitudinal qualities, such as 

clarity, confidence, and certainty gained through experience strengthen the attitude–behavior relationship [2]. In 

fact, Fazio and Zanna [ 10,11] found the attitude–behavioral relationship to be strongest in the high experience 

group, weak in the moderate group, and insignificant in the lowest group. Overall, there is consensus that direct 

experience moderates the attitude–behavior relationship [21]. Thus: 

 



H3 The effect of attitude (A) on behavioral intention (BI) will be stronger for IT users with higher level of 

experience than those with less experience. 

 

Subjective norms have been found a significant factor in determining attitude in some studies [23] while not in 

others [18]. Many studies have simply excluded the subjective norms construct. We believed it was important to 

recognize the conditions under which subjective norms were predictive of behavior. Users without experience 

are more susceptible to their influence but as users gain experience their behavior will be more internally 

determined by their attitude and beliefs. Some findings support the notion that as direct experience increases, 

the link between subjective norms and behavior weaken. Recognizing this, we postulated: 

 

H4 The effect of subjective norms (SN) on behavioral intention (BI) will be weaker for IT users with higher 

level of experience than those with less experience. 

 

Direct experience should strengthen beliefs. This leads to hypotheses that considered the moderating effects of 

direct experience on IT users’ beliefs and attitude: 

 

H5 The strength of perceived usefulness (PU) will be higher for IT users with higher level of experience than 

those with less experience. 

 

H6 The strength of perceived ease of use (EOU) will be higher for IT users with higher level of experience 

than those with less experience. 

 

H7 The strength of attitude (A) will be higher for IT users with higher level of experience than those with less 

experience. 

 

4. Research methodology  

4.1. Research setting 

We segmented users into experience levels based on their length of use of a specific technology. In order to 

study users with long-term experience, the selected technology must have been available for a long time but it 

could not be so old that almost everyone had adopted it long ago. Furthermore, the measure of experience relies 

on the recall of the user. Therefore, we needed to select a technology that had been made widely available in the 

last 10 years. In advanced countries diffusion of IT in organizations started in 1960s. By contrast, IT diffusion is 

more recent in developing countries. China is one such country where major IT development started only in the 

late 1980s. It was relatively easy to find users with different levels of experience – so we chose China as our 

research target and Email was the target technology. 

 

From the time email was introduced in China (late 1980s), sufficient time has elapsed to allow its widespread 

diffusion, allowing us to study users with various levels of experience. In a preliminary survey of Chinese 

companies, we found that email was one of the most accessible computer applications and its use was 

predominantly voluntary. 

 

4.2. Operationalization of scales 

We adopted existing scales as our measures: fully anchored 7- point Likert scales were used with end points 

“strongly disagree” (1) to “strongly agree” (7) for most items. The instrument was translated into Chinese and 

back-translated into English to ensure consistency. The wording was refined in a pretest by four native  

Chinese speakers including experienced and new users, thereby reinforcing face validity. The instrument was 

further validated through a pilot test. The resulting instrument (Appendix A), containing 22 items, was 

consistent with recommended short scales. 

 

4.3. Data collection procedures 

A field survey was employed. A total of 100 well- established companies in metropolitan areas of China were 

contacted by phone. Thirty agreed to participate. To ensure prompt collection and high response rate, we 



physically visited most companies. In total, 900 employees were asked to participate. The questionnaires were 

administered with both oral and written instructions. Because some employees had not adopted email, two 

survey forms were used, one for non-users and one for users, because we wished to word the questionnaire for 

each type of respondent. In addition, we needed to track the number of non-users to use in segmenting 

experience levels. Because our focus was on IT use, the non-users were not included in our study. Users were 

asked to recall the month and year when they first adopted email. This method has been used in many IS studies 

[14]. We also collected demographic data about the participant (age, gender, education, and position). 

 

5. Data analysis 

Of the 900 questionnaires distributed, 757 were returned and found useful, representing an 84% response rate. 

Therefore, non-response bias was not an issue [1]. There were 533 users and 224 non-users. Demographics of 

respondents are shown in Table 1. 

 

5.1. Data subsets 

The sample was segmented into three levels of experience. We adopted the innovation diffusion classification 

framework to develop this. It divided users into groups based on length of use and provided a more natural 

division than equal or randomly selected intervals. The framework separated users into innovator, early adopter, 

early majority, and late majority. Table 2 shows the percentage of each adopter category in this framework. Our 

sample has 70.4% users and 29.6% delayed adopters. According to innovation diffusion theory, laggards 

accounted for 16%. If our sample was representative, the potential adopter portion (29.6%) would consist of 

laggards (16%) and a part of the late majority (13.6%). In general, the late majority accounted for 34%, 

therefore, 13.6% of them were potential adopters and the remaining 20.4% were those who had adopted email. 

This distribution was then used to divide the 533 users into appropriate groups. 

      
 

 

Table 3 shows the approximate sizes of the user groups based on the framework. We named the groups: extra 

long-term, long-term, mid-term, short-term, and zero experience. 



 
As the sample size of the extra long-term group was quite small (N=19) and not suitable for most statistical 

tests, this group was excluded from further analysis. In addition, because our focus was on post-adoption, we 

did not include the zero experience users (non-adopters) further. The three remaining groups were then called: 

long-term, mid-term, and short-term. 

 
5.2. Instrument quality and model fit 

Table 4 shows the reliability measures. Confirmatory factor analysis was conducted for each group to establish 

convergent and discriminant validity. All factor loadings were significant. Additionally, the risk of 

multicollinearity was assessed. Each indicator was regressed against all other indicators within the same 

construct. All variance inflation factors were less than 10 indicating that multicollinearity was not significant. 

With validity and reliability established, the models were assessed with structural equation modeling techniques 

using LISREL 8.30. Missing data were treated with the listwise procedure. Multiple measures of fit were used. 

As shown in Table 5, the measurement model statistics showed good fit. The structural model fit indices (Table 

6) indicated good model fit of all three datasets. Fig. 2 shows the estimated standardized path coefficients and 

their significance level for the three groups and the variance explained for attitude and behavioral intention. 

 

5.3. Hypothesis testing 

For testing H1, H2, H3, and H4, we employed multi-group invariance analysis to assess the equality of 

regression coefficients. Thus, for each hypothesis the statistical difference in the parameter across experience 

levels was assessed using three pairwise comparisons (e.g., for Hypothesis 1: in H1a, long-term and mid-term 

groups were compared, etc.). The hypotheses and the series of multi-group analyses are shown in the first two 

columns of Table 7. The multi-group invariance analysis investigated parameter difference by comparing a 

baseline model to a subsequent model in which all parameters were reestimated except for the regression 

coefficients of interest. A baseline model was compared with a subsequent model for χ
2
 difference. Based on 

Bollen’s [4] recommendation, the baseline model (Run 1) is the least restrictive. In the subsequent model (Run 



2), the regression coefficients of interest were restricted to be the same across groups while allowing the 

remaining coefficients to be reestimated. 

     
  

 

    
 



Therefore, the χ
2
 difference between the two runs became the coefficient of interest. A significant χ

2
 difference 

indicated that the specific path coefficient was different between the groups being compared. The multi-group 

analysis, shown in Table 8, reported the χ
2
, degrees of freedom, and the change in χ

2
 along with its significance 

level. Table 9 summarizes the differences across experience levels. Overall, we found partial support for H1, 

H2, and H3 and no support for H4. H5, H6, and H7 discuss the strengths of constructs across experience levels. 

The ANOVA results, shown in Table 10, corroborated that beliefs, attitude, and intentions strengthened with 

experience. Thus H5, H6, and H7 were supported. Beliefs (perceived usefulness and 

ease of use) and attitude all strengthened as user experience level increased. 

 

6. Discussion 

We enriched our understanding of IT user behavior beyond adoption and short-term use by studying users as 

multiple groups based on their experience in an organizational setting. 

 

 
6. 1. Experience and determinants of attitude 

Perceived usefulness was significant for users at all experience levels. In fact, it was the only factor that was 

significant in most prior studies. Thus, perceived usefulness is a good predictor of attitude for all users. When 

the strength of the effect of perceived usefulness on attitude was compared across time, it was found to differ 

significantly between long-term and mid-term users and marginally between long-term and short-term users. 

The effect of usefulness in the long-term, although significant, seemed to diminish after mid-term experience. 

For majority of users, once the innovation was adopted, the users tended to discover more functionalities (or 

lack thereof) and their attitudes were affected accordingly. Long-term IT users had the most direct experience, 

their attitudes were formed and they were less likely to be affected by changes in usefulness. Possibly habit 

came into play at this stage. 

 

While the effect of perceived usefulness on attitude was significant for users at all levels, perceived ease of use 

was significant only for long-term users. Apparently ease of use was not a compelling factor in shaping attitude 

for mid- and short-term users but perceived usefulness was. The long-term IT users formed attitude about the 

technology not only because of usefulness but also because of ease of use. These findings have provided an 

explanation of the unstable effects seen in some studies where perceived ease of use was not significant; maybe 

merging all user groups diluted the effect of this variable. 

 

 

 



6.2. Experience and determinants of behavioral intention 

In our study, the effect of attitude on behavioral intention was significant for only long-term users. The attitude–

behavior relationship did not exist in the mid- and short-term users. While we did not find a clear moderating 

effect of direct experience on the SN–BI relationship, we found that it was significant for long-and mid-term 

users but not for short-term ones. 

 

Overall, both attitude and norms tend to be consistent with behavior as a person continues to use IT. As IT users 

become more experienced, their perceived internal influences (such as attitude) and external influences (norms) 

are more consistent with their technology use. 

 

6.3. Applicability of the research model across experience levels 

Overall, our fit indices were adequate. The predictive power of the model in terms of explained variance varies 

across experience levels:   
  = 0.32 and    

  = 0.37 for long-term users,   
  = 0.35 and    

  = 0.20 for mid-term 

users, and   
  = 0.35 and    

  = 0.17 for short-term users. Although the sources differed, the model was able to 

explain similar amount of variance in attitude across experience levels. The model predicts long-term users’ 

behavioral intention best. 

 

Prior research showed much variability in the model predictive ability. We contend that the inconsistencies 

were due to their treatment of direct experience. 

 

6.4. External validity and limitations 

The study was conducted in China. This allowed us to examine a recent innovation and categorize experience 

with relative ease. One can, however, make the argument that users in different cultures may behave and act 

differently. Nevertheless, we believe that our results would apply in similar contexts, and to a limited degree in 

other contexts and cultures. 

 

Another limitation includes that generally associated with survey methodology and the cross-sectional nature of 

data. Also, while we used an elaborate method for classifying the three groups based on experience, there may 

be other ways of making the classification. 

 

7. Implications and conclusions 

Through hypotheses testing, we were able to demonstrate that long-, mid-, and short-term users were 

significantly different along some key dimensions. We found that long-term use was well predicted, and as 

experience increased, the causal structure changed. Contrary to conventional beliefs, subjective norms played a 

significant role in determining behavioral intention in the mid-and long-term. 

 

7.1. Implications for practice 

A view into the behaviors of users with varying levels of experience can help IT managers in a number of ways. 

First, our results have a direct bearing on IT diffusion management and could assist IT managers in making 

sound decisions. Our results could help improve IT diffusion speed, thus innovation speed, which is critical to 

organizational competitiveness. Currently, the effectiveness of training programs has been minimal and the 

effectiveness of such programs seldom evaluated. As effective marketing strategies involve long-term education 

and interaction with consumers, managers need to develop long-term training and on-going support programs. 

Periodic and long-term programs would enhance positive beliefs and attitudes, increasing the likelihood that 

users would use IT on a sustained basis. 

 

Our results showed that more experienced IT users have more positive perceptions, attitudes, and behavioral 

intentions. Consequently, they will make more significant use of technology. This has significant implications: 

managers should orient their interaction/training programs to encourage early adoption and faster rate of 

adoption in order to maximize ROI. 

 



Ultimately, the diffusion process involves reducing uncertainties. Our study shows organizational managers 

how IT acceptance depends on the level of user experience. Targeted effort can effectively enhance the 

diffusion process and help achieve better acceptance of promising innovations. 
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