

Edinburgh Research Explorer

Robust Simulations and Significant Separations

Citation for published version:
Fortnow, L & Santhanam, R 2011, Robust Simulations and Significant Separations. in Automata,
Languages and Programming : 38th International Colloquium, ICALP 2011, Zurich, Switzerland, July 4-8,
2011, Proceedings, Part I. vol. 6755, Springer, pp. 569-580. https://doi.org/10.1007/978-3-642-22006-7_48

Digital Object Identifier (DOI):
10.1007/978-3-642-22006-7_48

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Automata, Languages and Programming

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 27. Nov. 2024

https://doi.org/10.1007/978-3-642-22006-7_48
https://doi.org/10.1007/978-3-642-22006-7_48
https://www.research.ed.ac.uk/en/publications/fe012224-39f7-4fd1-9f91-39e2c4a05179

Robust Simulations and Significant Separations

Lance Fortnow1⋆ and Rahul Santhanam2⋆⋆

1 Northwestern University
2 University of Edinburgh

Abstract. We define and study a new notion of “robust simulations”
between complexity classes which is intermediate between the traditional
notions of infinitely-often and almost-everywhere, as well as a corre-
sponding notion of “significant separations”. A language L has a robust
simulation in a complexity class C if there is a language in C which agrees
with L on arbitrarily large polynomial stretches of input lengths. There
is a significant separation of L from C if there is no robust simulation of
L ∈ C.
The new notion of simulation is a cleaner and more natural notion of
simulation than the infinitely-often notion. We show that various im-
plications in complexity theory such as the collapse of PH if NP = P

and the Karp-Lipton theorem have analogues for robust simulations. We
then use these results to prove that most known separations in complex-
ity theory, such as hierarchy theorems, fixed polynomial circuit lower
bounds, time-space tradeoffs, and the recent theorem of Williams, can
be strengthened to significant separations, though in each case, an almost
everywhere separation is unknown.
Proving our results requires several new ideas, including a completely
different proof of the hierarchy theorem for non-deterministic polynomial
time than the ones previously known.

1 Introduction

What does the statement “P 6= NP” really tell us? All is says is that for any
polynomial-time algorithm A, A fails to solve SAT on an infinite number of
inputs. These hard-to-solve inputs could be exponentially (or much worse) far
from each other. Thus even a proof of P 6= NP could leave open the possibil-
ity that SAT or any other NP-complete problem is still solvable on all inputs
encountered in practice. This is unsatisfactory if we consider that one of the
main motivations of proving lower bounds is to understand the limitations of
algorithms.

Another important motivation for proving lower bounds is that hardness is
algorithmically useful in the context of cryptography or derandomization. Again,
if the hardness only holds for inputs or input lengths that are very far apart, this
usefulness is called into question. For this reason, theorists have studied a notion

⋆ Supported in part by NSF grants CCF-0829754 and DMS-0652521.
⋆⋆ Supported in part by EPSRC grant H05068X/1

of almost-everywhere (a.e.) separations, and a corresponding notion of infinitely-
often (i.o.) simulations. A language L is in i.o.C for a complexity class C if there
is some A ∈ C such that A and L agree on infinitely many input lengths. A class
D is almost everywhere not in C if for some language L in D, L 6∈ i.o.C, that is
any C-algorithm fails to solve L on all but a finite number of input lengths. As
an example of applying these notions, Impagliazzo and Wigderson [IW97] show
that if E 6⊆ SIZE(2o(n)) then BPP is in i.o.P, and that if E 6⊆ i.o.SIZE(2o(n)), then
BPP = P.

However, the infinitely often notion has its own issues. Ideally, we would
like a notion of simulation to capture “easiness” in some non-trivial sense. Un-
fortunately, many problems that we consider hard have trivial infinitely often
simulations. For example, consider any NP-hard problem on graphs or square
matrices. The natural representation of inputs for such problems yields non-
trivial instances only for input lengths that are perfect squares. In such a case,
the problem has a trivial infinitely often simulation on the set of all input lengths
which are not perfect squares. On the other hand, the problem could be “padded”
so that it remains non-trivial on input lengths which are not perfect squares. It’s
rather unsatisfactory to have a notion of simulation which is so sensitive to the
choice of input representation.

Not unrelated to this point is that analogues of many classical complexity
results fail to hold in the infinitely often setting. For example, we do not know
if SAT ∈ i.o.P implies that the entire Polynomial Hierarchy has simulations
infinitely-often in polynomial time. Also it’s not true in general that if a complete
language for a class is easy infinitely-often, then the entire class is easy infinitely-
often. This is true for SAT and NP because SAT is paddable and downward
self-reducible, but it’s unclear in which situations the implication holds. Given
that even these basic analogues are not known, it’s not surprising that more
involved results such as the Karp-Lipton theorem [KL82] and the theorem of
Impagliazzo, Kabanets and Wigderson [IKW02] that NEXP ⊆ SIZE(poly) implies
NEXP = MA don’t have known infinitely often analogues either.

In an ideal world, we would like all our algorithms to work on all input
lengths, and all our separations to be almost-everywhere separations. While al-
gorithm design does typically focus on algorithms that work on all input lengths,
many of the complexity separations we know do not work in the almost every-
where setting. Separations proved using combinatorial or algebraic methods, such
as Hastad’s lower bound for Parity [H̊as86] or Razborov’s monotone circuit lower
bound for Clique [Raz85] tend to be almost everywhere (in an appropriate input
representation). However, such techniques typically have intrinsic limitations, as
they run into the natural proofs barrier [RR97]. Many of the lower bounds proved
recently have come from the use of indirect diagonalization. A contrary upper
bound is assumed and this assumption is used together with various other ideas
to derive a contradiction to a hierarchy theorem. These newer results include hi-
erarchy theorems [Bar02,FS04,vMP06], time-space tradeoffs [For00,FLvMV05],
and circuit lower bounds [BFT98,Vin05,San07,Wil10a,Wil10b]. Unfortunately,
none of these results give almost everywhere separations, and so the question

immediately arises what we can say quantitatively about these separations, in
terms of the frequency with which they hold.

To address all these issues, we describe a new notion of “robust simulation”
and a corresponding notion of “significant separation”. A language L is in r.o.C
(robustly-often in C) if there is a language A in C such that for every k there
are infinitely many m such that A and L agree on all input lengths between m
and mk. A class D has a significant separation from C if there is some L in D

such that L 6∈ r.o.C. This implies that for each L′ ∈ C, there is a constant k such
that for each m, L and L′ differ on at least one input length between m and mk.
Intuitively, this means that if the separation holds at some input length, there
is another input length at most polynomially larger at which the separation also
holds, i.e., the hardness is not too “sparsely” distributed.

Our definition of robust simulations extends the notion of uniform hardness
of Downey and Fortnow [DF03]. A set A is uniformly hard in the sense of Downey
and Fortnow if A 6∈ r.o.P.

The notion of robust simulation is just slightly stronger than the notion of
infinitely often simulation, and correspondingly the notion of significant separa-
tion is slightly weaker than that of almost everywhere separations. By making
this tradeoff, however, we show that we can often achieve the best of both worlds.

We give robustly often analogues of many classical complexity results, where
infinitely often analogues remain open, including

– NP ⊆ r.o.P implies PH ⊆ r.o.P
– NP ⊆ r.o.SIZE(poly) implies PH ⊆ r.o.SIZE(poly)
– NEXP ⊆ r.o.SIZE(poly) implies NEXP ⊆ r.o.MA

We then use these robustly often analogues together with other ideas to
give several significant separations where almost everywhere separations remain
open, including

– NTIME(nr) 6⊆ r.o.NTIME(ns), when r > s > 1
– For each constant k, Σ2P 6⊆ r.o.SIZE(nk)
– SAT 6⊆ r.o.DTISP(nα, polylog(n)) when α <

√
2

– NEXP 6⊆ r.o.ACC0

The robustly often notion gives us a cleaner and more powerful theory than
the infinitely often notion.

1.1 Intuition and Techniques

To illustrate the advantages of the robustly often notion over the infinitely often
notion, let’s look at a simple example: trying to show that if SAT is easy, then
all of NP is easy. Let L ∈ NTIME(nk) be any NP language, where k > 0 is
a constant. SAT ∈ i.o.P doesn’t immediately imply L ∈ i.o.P, as the range
of the reduction from L to SAT might only intersect input lengths where the
polynomial-time algorithm for SAT is incorrect. In this case, the problem can
be fixed by padding the reduced instance to polynomially many different input

lengths and using downward self-reducibility to check YES answers for any of
these inputs. However, this fix depends on specific properties of SAT.

Showing that SAT ∈ r.o.P implies L ∈ r.o.P is an easier, more generic ar-
gument. Define a robust set of natural numbers to be any set S such that for
each k > 0 there is an m for which S contains all numbers between m and
mk for some m. SAT ∈ r.o.P means that there is a robust set S on which the
simulation works. Now the reduction from L to SAT creates instances of length
nkpolylog(n), and it’s not hard to see that this automatically implies that com-
posing the reduction with the algorithm for SAT gives an algorithm for L which
works on some robust subset S′ of S. This implies L ∈ r.o.P. We call a robust
subset of a set a robust refinement. Many of our arguments will involve defining
a series of robust refinements of a robust set such that the desired simulation
holds on the final refinement in the series, thus implying that the simulation
goes through in the robustly often setting.

Thus far, using robustly often seems easier but hasn’t given us any additional
power. The situation changes if we consider implications where the assumption
is used two or more times. An example is the proof that NP ⊆ P implies PH ⊆ P

- this is an inductive proof where the assumption is used several times. Trying
to carry an infinitely often simulation through fails miserably in this setting
because two infinitely often simulations do not compose - they might work on
two completely different infinite sets of input lengths.

Now two robustly often simulations do not in general compose either. It is not
in general true that for complexity classes B, C and D, if B ⊆ r.o.C and C ⊆ r.o.D,
then B ⊆ r.o.D. However, we can get these two robustly often simulations to
compose when they are both consequences of a single robustly often assumption.
The robustly often assumption gives us some robust set to work with. If we’re
careful we can define a single robust refinement of this set on which B ⊆ C holds
and so too does C ⊆ D, which implies B ⊆ D holds on this refinement as well.

This is an idea that we will use again and again in our proofs. However, in
order to use this idea, we need to be careful with the steps in our proof, as there
are only some kinds of implications for which the idea is useful. For example,
it works well with fixed polynomial-time reductions or translations with fixed
polynomial advice, but not with exponential padding. More importantly, the
idea only works when all the steps in the proof follow from a single assumption,
so we need to re-formulate proofs so that they conform to this pattern. In some
cases, eg. the proofs of Theorem 4 and Theorem 6, the re-formulation is non-
trivial and leads to proofs that are quite a bit more involved than the originals
[IKW02,Kan82].

In the case of hierarchies for non-deterministic time where the lower bound
is against robust simulations, the known techniques break down entirely. The
traditional argument is a “chaining argument” [Coo72,SFM78,Ž8́3] which uses a
chain of exponentially many input lengths and cannot possibly give a hierarchy
against robustly often simulations. Here, we come up with a novel idea of chaining
using witnesses to get such a hierarchy for polynomial time.

Our most technically involved result is that the recent breakthrough lower
bound of Williams [Wil10a,Wil10b] can be strengthened to a significant sepa-
ration. The proof of this result uses almost all of the techniques we develop,
including the sophisticated use of robust refinements involved in proving Theo-
rem 4, and a variant of the significant hierarchy for non-deterministic polynomial
time.

Implicit in our paper is a certain proof system for proving complexity class
separations, such that any separation proved in this system automatically yields
a significant separation. It’s an interesting open problem to make this system
explicit, and to study its power and its limitations more formally.

2 Preliminaries

2.1 Complexity Classes, Promise Problems and Advice

We assume a basic familiarity with complexity classes such as P, RP, BPP, NP,
MA, AM, Σp

2 ,PP and their exponential-time versions.The Complexity Zoo3 is an
excellent resource for basic definitions and statements of results.

Given a complexity class C, coC is the class of languages L such that L̄ ∈ C.
Given a function s : N → N, SIZE(s) is the class of Boolean functions f = {fn}
such that for each n, fn has Boolean circuits of size O(s(n)). Given a language L
and an integer n, Ln = L∩{0, 1}n. Given a class C, i.o.C is the class of languages
L for which there is a language L′ ∈ C such that Ln = L′

n for infinitely many
length n.

In order to deal with promise classes in a general way, we take as fundamental
the notion of a complexity measure. A complexity measure CTIME is a mapping
which assigns to each pair (M, x), where M is a time-bounded machine (here
a time function tM (x) is implicit) and x an input, one of three values “0” (ac-
cept), “1” (reject) and “?” (failure of CTIME promise). We distinguish between
syntactic and semantic complexity measures. Syntactic measures have as their
range {0, 1} while semantic measures may map some machine-input pairs to “?”.
The complexity measures DTIME and NTIME are syntactic (each halting deter-
ministic or non-deterministic machine either accepts or rejects on each input),
while complexity measures such as BPTIME and MATIME are semantic (a prob-
abilistic machine may accept on an input with probability 1/2, thus failing the
bounded-error promise). For syntactic measures, any halting machine defines a
language, while for semantic measures, only a subset of halting machines define
languages.

A promise problem is a pair (Y, N), where Y, N ⊆ {0, 1}∗ and Y ∩ N = ∅.
We say that a promise problem (Y, N) belongs to a class CTIME(t) if there is a
machine M halting in time t on all inputs of length n such that M fulfils the
CTIME promise on inputs in Y ∪ N , accepting on inputs in Y and rejecting on
inputs in N .

3 http://qwiki.caltech.edu/wiki/ComplexityZoo

A language L is in CTIME(t)/a if there is a machine M halting in time t(·)
taking an auxiliary advice string of length a(·) such that for each n, there is
some advice string bn, |bn| = a(n) such that M fulfils the CTIME promise for
each input x with advice string bn and accepts x iff x ∈ L. Note that this is a
weaker requirement than in the original Karp-Lipton notion where the promise
must be satisfied on all advice strings.

For syntactic classes, a lower bound for the class with small advice or for the
promise version of the class translates to a lower bound for the class itself. For eg.,
if there is a promise problem in P which doesn’t have polynomial-size circuits,
then P 6⊆ SIZE(poly) and similarly, if P/O(n) 6⊆ SIZE(poly), then P 6⊆ SIZE(poly).

Definition 1. Let S be a subset of positive integers. S is robust if for each
positive integer k, there is a positive integer m > 2 such that n ∈ S for all
m 6 n 6 mk.

Note that any robust set is infinite. We now define what it means to simulate
a language in a complexity class on a subset of the positive integers.

Definition 2. Let L be a language, C a complexity class, and S a subset of the
positive integers. We say L ∈ C on S if there is a language L′ ∈ C such that
Ln = L′

n for any n ∈ S.

Using the terminology of Definition 2, L ∈ i.o.C for a language L and com-
plexity class C if there is some infinite set S ⊆ N such that L ∈ C on S. We now
define our main notion of robustly-often simulations.

Definition 3. Given a language L and complexity class C, L ∈ r.o.C if there is
a robust S such that L ∈ C on S. In such a case, we say that there is a robustly-
often (r.o.) simulation of L in C. We extend this notion to complexity classes
in the obvious way - given complexity classes B and C, B ⊆ r.o.C if there for
each language L ∈ B, L ∈ r.o.C. If B 6⊆ r.o.C, we say that there is a significant
separation of B from C.

Clearly B ⊆ r.o.C implies B ⊆ i.o.C. Conversely, B 6⊆ i.o.C gives a very strong
separation of B and C, i.e., an almost-everywhere separation, while a significant
separation is somewhat weaker but still much more significant than simply a
separation of B and C. Intuitively, a significant separation means that input
lengths witnessing the separation are at most polynomially far apart.

We now define a sequence of canonical refinements for any given set S, which
will play an important part in many of our proofs.

Definition 4. Let S be a robust set. The canonical refinement Sd of S at level
d is defined as follows for any integer d > 0: m ∈ Sd iff m ∈ S and n ∈ S for
all m 6 n 6 md.

It is easy to see Sd is robust if S is robust and that Sd ⊆ Sd′ for d > d′.
Due to space constraints, we omit most proofs in this version of the paper.

3 Robust Simulations

For any NP-complete language L the language

L′ = {x10i | x ∈ L, |x| + 1 + i is even}

remains NP-complete but sits in i.o.P. In contrast if any NP-complete set under
honest m-reductions sits in r.o.P then NP ⊆ r.o.P.

Lemma 1. Let L and L′ be languages such that L′ reduces to L via an honest
polynomial-time m-reduction. Let C be a complexity class closed under poly-time
m-reductions. If there is a robust S such that L ∈ C on S, then there is a robust
refinement S′ of S such that L′ ∈ C on S′.

The proof ideas of Lemma 1 can be used to show that robustly often analogues
of various useful implications hold. The first analogue essentially says that we
can take a complete language to be representative of a complexity class, even
in the context of robustly often simulations. It is an immediate consequence of
Lemma 1.

Proposition 1. If SAT ∈ r.o.P, then NP ⊆ r.o.P.

The next proposition says that translation arguments using a fixed polyno-
mial amount of padding carry through in the robustly often setting, for any
“reasonable” complexity measure.

Proposition 2. Let BTIME and CTIME be any complexity measures closed un-
der efficient deterministic transductions. Let g and h be time-constructable func-
tions, and p a polynomial. If BTIME(g(n)) ⊆ r.o.CTIME(h(n)), then BTIME(g(p(n))) ⊆
r.o.CTIME(h(p(n))).

As a consequence of Proposition 2, we get for example that if NTIME(n) ⊆
r.o.P, then NP ⊆ r.o.P.

The proposition below says that simulations of a syntactic class in another
class can be translated to a simulation with fixed polynomial advice, even in the
robustly often setting.

Proposition 3. Let BTIME be a syntactic complexity measure and CTIME a
complexity measure, such that both BTIME and CTIME are closed under efficient
deterministic transductions. Let f and g be time-constructable measures and p
a polynomial. If BTIME(f(n)) ⊆ r.o.CTIME(g(n)), then BTIME(f(n))/p(n) ⊆
r.o.CTIME(g(n + p(n)))/p(n).

Theorem 1. If NP ⊆ r.o.P, then PH ⊆ r.o.P

The proof is by induction, where the inductive hypothesis states that the
k’th level of PH is contained in a suitably chosen refinement of the robust set on
which the original polynomial-time simulation of SAT works.

Theorem 2. If NP ⊆ r.o.SIZE(poly), then PH ⊆ r.o.SIZE(poly)

Theorem 3. If NP ⊆ r.o.BPP, then PH ⊆ r.o.BPP.

We omit the proofs of Theorems 2 and 3, which closely resemble the proof
of Theorem 1.

Next we state a robust analogue of the Karp-Lipton theorem [KL82]. We
formulate a stronger statement which will be useful when we show significant
fixed-polynomial circuit size lower bounds for Σp

2 .

Lemma 2. If there is a constant k and a robust set S such that SAT ∈ SIZE(nk)
on S, then there is a robust refinement S′ of S such that Π2SAT ∈ Σ2 −
TIME(nk+1+o(1)) on S′.

The following is an immediate corollary.

Corollary 1. If NP ⊆ r.o.SIZE(poly), then Σp
2 ⊆ r.o.Πp

2 .

The following can be shown using the easy witness method of Kabanets
[Kab01,IKW02] and known results on pseudo-random generators [NW94,KvM99].

Lemma 3. Let R be any robust set and let k > 1 be any constant. Then there

is a robust refinement R′ of R such that either NE ⊆ DTIME(2n16k
4

) on R or

MATIME(n4k2

) ⊆ NE/O(n) on R′.

Lemma 3 can be used to prove the following robustly-often analogue of the
main theorem of Impagliazzo, Kabanets and Wigderson [IKW02].

Theorem 4. NEXP ⊆ r.o.SIZE(poly) iff NEXP ⊆ r.o.MA.

4 Significant Separations

4.1 Hierarchies

The proofs of the hierarchies for deterministic time and space actually give
almost-everywhere separations and therefore significant separations.

For nondeterministic time the situation is quite different. Cook [Coo72] showed
that NTIME(nr) (NTIME(ns) for any reals r < s. Seiferas, Fischer and Meyer [SFM78]
generalize this result to show that NTIME(t1(n)) (NTIME(t2(n)) for t1(n+1) =
o(t2(n)). Zak [Ž8́3] gives a simpler proof of the same result. All these proofs re-
quire building an exponential (or worse) chain of equalities to get a contradiction.
Their proofs do not give almost everywhere separations or significant separa-
tions. No relativizable proof can give an i.o. hierarchy as Buhrman, Fortnow and
Santhanam give a relativized world that NEXP ⊆ i.o.NP.

In this section we give a relativizing proof that NTIME(nr) 6⊆ r.o.NTIME(ns)
for r > s > 1. This also gives a new proof of the traditional nondeterministic
time hierarchy.

Theorem 5. If t1 and t2 are time-constructable functions such that

– t1(n) = o(t2(n)), and
– n 6 t1(n) 6 nc for some constant c

then NTIME(t2(n)) 6⊆ r.o.NTIME(t1(n)).

Corollary 2. For any reals 1 6 r < s, NTIME(ns) 6⊆ r.o.NTIME(nr).

Proof (Proof of Theorem 5). Let M1, M2, . . . be an enumeration of multitape
nondeterministic machines that run in time t1(n).

Define a nondeterministic Turing machine M that on input 1i01m0w does as
follows:

– If |w| < t1(i + m + 2) accept if both Mi(1
i01m0w0) and Mi(1

i01m0w1)
accept.

– If |w| > t1(i + m + 2) accept if Mi(1
i01m0) rejects on the path specified by

the bits of w.

Since we can universally simulate t(n)-time nondeterministic multitape Turing
machines on an O(t(n))-time 2-tape nondeterministic Turing machine, L(M) ∈
NTIME(O(t1(n + 1))) ⊆ NTIME(t2(n)). Note (n + 1)c = O(nc) for any c.

Suppose NTIME(t2(n)) ⊆ r.o.NTIME(t1(n)). Pick a c such that t1(n) ≪ nc.
By the definition of r.o. there is some n0 and a language L ∈ NTIME(t1(n))
such that L(M) = L on all inputs of length between n0 and nc

0. Fix i such
that L = L(Mi). Then z ∈ L(Mi) ⇔ z ∈ L(M) for all z = 1i01n00w for
w 6 t1(i + n0 + 2).

By induction we have Mi(1
i01n00) accepts if Mi(1

i01n00w) accepts for all
w 6 t1(i + n0 + 2). So Mi(1

i01n00) accepts if and only Mi(1
i01n00) rejects on

every computation path, contradicting the definition of nondeterministic time.

4.2 Circuit Lower Bounds

We first state a stronger version of Kannan’s [Kan82] lower bound for Σp
2 against

fixed polynomial size, where the separation is significant.

Theorem 6. For each integer k > 1, Σp
2 6⊆ r.o.SIZE(nk).

Using similar ideas we can get robustly often analogues of the lower bound
of Cai and Sengupta [Cai01] for S2P and Vinodchandran [Vin05] for PP:

Theorem 7. For any k > 0, S2P 6⊆ r.o.SIZE(nk).

Theorem 8. For any k > 0, PP 6⊆ r.o.SIZE(nk).

Our most technically involved result is that the recent lower bound of Williams [Wil10b]
that NEXP 6⊆ ACC0 extends to the robustly often setting. His proof uses the
nondeterministic time hierarchy and the proof of Impagliazzo, Kabanets and
Wigderson [IKW02], neither of which may hold in the infinitely-often setting.
So to get a robustly-often result we require variants of our Theorems 5 and 4.
To save space, we will focus on the new ingredients, and abstract out what we
need from Williams’ paper.

We first need the following simultaneous resource-bounded complexity class.

Definition 5. NTIMEGUESS(T (n), g(n)) is the class of languages accepted by
NTMs running in time O(T (n)) and using at most O(g(n)) non-deterministic
bits.

We have the following variant of Theorem 5, which has a similar proof.

Lemma 4. For any constant k, NTIME(2n) 6⊆ r.o.NTIMEGUESS(2n/n, nk).

We also need the following robustly often analogue of a theorem of Williams
[Wil10a], which uses the proof idea of Theorem 4. The problem SUCCINCT3SAT

is complete for NEXP under polynomial-time m-reductions.

Lemma 5. If NE ⊆ r.o.ACC0 on S for some robust set S, then there is a con-
stant c and a refinement S′ of S such that SUCCINCT3SAT has succinct satis-
fying assignments that are ACC0 circuits of size nc on S′.

Proof. The proof of Theorem 4 gives that if NE ⊆ ACC0 on S, then there is
a constant d and a robust refinement R of S such that SUCCINCT3SAT has
succinct satisfying assignments that are circuits of size nd on R. Since P ⊆ ACC0

on S and using Proposition 3, we get that there is a constant c and a robust
refinement S′ of R such that SUCCINCT3SAT has succinct satisfying assignments
that are ACC0 circuits of size nc on S′.

Now we are ready to prove the robustly often analogue of Williams’ main
result [Wil10b].

Theorem 9. NEXP 6⊆ r.o.ACC0.

Proof Sketch. Assume, to the contrary, that SUCCINCT3SAT ∈ ACC0 on R for
some robust R. By completeness of SUCCINCT3SAT, it follows that there is a
robust refinement S of R and a constant k′ > 1 such that NE has ACC0 circuits
of size nk′

. Let L ∈ NTIME(2n) but not in r.o.NTIMEGUESS(2n/n, nk), where
k will be chosen large enough as a function of k′. Existence of L is guaran-
teed by Lemma 4. We will show L ∈ r.o.NTIMEGUESS(2n/n, nk) and obtain a
contradiction.

The proof of Theorem 3.2 in Williams’ paper gives an algorithm for deter-
minining if x ∈ L. The algorithm non-deterministically guesses and verifies a
”small” (size nO(c)) ACC0 circuit which is equivalent to the SUCCINCT3SAT

instance to which x reduces, within time 2n/ω(n) by using Williams’ new al-
gorithm for ACC0-SAT together with the assumption that NEXP and hence P

in ACC0 on S. This guess-and-verification procedure works correctly on some
robust refinement of S. Then, the algorithm uses the existence guarantee of
Lemma 5 to guess and verify a succinct witness, again using Williams’ algorithm
for ACC0-SAT. This further guess-and-verification procedure works correctly on
some further robust refinement S′′ of S. In total, the algorithm uses at most
ndk′

non-deterministic bits for some constant d, runs in time at most 2n/n and
decides L correctly on S′′. By choosing k > dk′, we get the desired contradiction.

�

Williams’ work still leaves open whether NEXP ⊆ SIZE(poly). Using the same
ideas as in the proof of Theorem 9, we can show that an algorithm for CircuitSAT

that improves slightly on brute force search robustly often would suffice to get
such a separation.

Theorem 10. If for each polynomial p, CircuitSAT can be solved in time 2n−ω(log(n))

robustly often on instances where the circuit size is at most p(n), then NEXP 6⊆
SIZE(poly).

4.3 Time-Space Tradeoffs

Proposition 4. Let t and T be time-constructible functions such that t = o(T).
Then NTIME(T) 6⊆ i.o.coNTIME(t).

Proposition 4 can be used to show the following r.o.analogue of a time-space
tradeoff for SAT [FLvMV05].

Theorem 11. Let α <
√

2 be any constant. SAT 6∈ r.o.DTISP(nα, polylog(n)).

References

Bar02. Boaz Barak. A probabilistic-time hierarchy theorem for “Slightly Non-uniform”
algorithms. Lecture Notes in Computer Science, 2483:194–208, 2002.

BFL91. László Babai, Lance Fortnow, and Carsten Lund. Non-deterministic exponen-
tial time has two-prover interactive protocols. Computational Complexity, 1:3–40,
1991.

BFS09. Harry Buhrman, Lance Fortnow, and Rahul Santhanam. Unconditional lower
bounds against advice. In Proceedings of 36th International Colloquium on Au-

tomata, Languages and Programming, pages 195–209, 2009.
BFT98. Harry Buhrman, Lance Fortnow, and Thomas Thierauf. Nonrelativizing sep-

arations. In Proceedings of 13th Annual IEEE Conference on Computational Com-

plexity, pages 8–12, 1998.
Cai01. Jin-Yi Cai. SP

2 ⊆ ZPPNP. In Proceedings of the 42nd Annual Symposium on

Foundations of Computer Science, pages 620–629, 2001.
Coo72. Stephen Cook. A hierarchy for nondeterministic time complexity. In Con-

ference Record, Fourth Annual ACM Symposium on Theory of Computing, pages
187–192, Denver, Colorado, 1–3 May 1972.

Coo88. Stephen Cook. Short propositional formulas represent nondeterministic com-
putations. Informations Processing Letters, 26(5):269–270, 1988.

DF03. Rod Downey and Lance Fortnow. Uniformly hard languages. Theoretical Com-

puter Science, 298(2):303 – 315, 2003.
FLvMV05. Lance Fortnow, Richard Lipton, Dieter van Melkebeek, and Anastasios

Viglas. Time-space lower bounds for satisfiability. Journal of the ACM, 52(6):833–
865, 2005.

For00. L. Fortnow. Time-space tradeoffs for satisfiability. Journal of Computer and

System Sciences, 60(2):337–353, April 2000.
FS04. Lance Fortnow and Rahul Santhanam. Hierarchy theorems for probabilistic

polynomial time. In Proceedings of the 45th IEEE Symposium on Foundations of

Computer Science, pages 316–324, 2004.

H̊as86. Johan H̊astad. Almost optimal lower bounds for small depth circuits. In
Proceedings of the 18th Annual ACM Symposium on Theory of Computing, pages
6–20, 1986.

IKW02. Russell Impagliazzo, Valentine Kabanets, and Avi Wigderson. In search of
an easy witness: Exponential time vs. probabilistic polynomial time. Journal of

Computer and System Sciences, 65(4):672–694, 2002.
IW97. Russell Impagliazzo and Avi Wigderson. P = BPP if E requires exponential

circuits: Derandomizing the XOR lemma. In Proceedings of the 29th Annual ACM

Symposium on the Theory of Computing, pages 220–229, 1997.
Kab01. Valentine Kabanets. Easiness assumptions and hardness tests: Trading time

for zero error. Journal of Computer and System Sciences, 63(2):236–252, 2001.
Kan82. Ravi Kannan. Circuit-size lower bounds and non-reducibility to sparse sets.

Information and Control, 55(1):40–56, 1982.
KL82. Richard Karp and Richard Lipton. Turing machines that take advice.

L’Enseignement Mathématique, 28(2):191–209, 1982.
KvM99. Adam Klivans and Dieter van Melkebeek. Graph nonisomorphism has subex-

ponential size proofs unless the polynomial-time hierarchy collapses. In Proceedings

of the Thirty-First Annual ACM Symposium on Theory of Computing, pages 659–
667, 1999.

NW94. Noam Nisan and Avi Wigderson. Hardness vs randomness. Journal of Com-

puter and System Sciences, 49(2):149–167, 1994.
Raz85. Alexander Razborov. Lower bounds for the monotone complexity of some

boolean functions. Soviet Mathematics Doklady, 31:354–357, 1985.
RR97. Alexander Razborov and Steven Rudich. Natural proofs. Journal of Computer

and System Sciences, 55(1):24–35, 1997.
San07. Rahul Santhanam. Circuit lower bounds for Merlin-Arthur classes. In Proceed-

ings of 39th Annual Symposium on Theory of Computing, pages 275–283, 2007.
SFM78. Joel Seiferas, Michael Fischer, and Albert Meyer. Separating nondeterministic

time complexity classes. Journal of the ACM, 25(1):146–167, January 1978.
Vin05. Variyam Vinodchandran. A note on the circuit complexity of PP. Theoretical

Computer Science, 347(1-2):415–418, 2005.
vMP06. Dieter van Melkebeek and Konstantin Pervyshev. A generic time hierarchy

for semantic models with one bit of advice. In Proceedings of 21st Annual IEEE

Conference on Computational Complexity, pages 129–144, 2006.
Wil10a. Ryan Williams. Improving exhaustive search implies superpolynomial lower

bounds. In Proceedings of the 42nd Annual ACM Symposium on Theory of Com-

puting, pages 231–240, 2010.
Wil10b. Ryan Williams. Non-uniform ACC circuit lower bounds. Manuscript, 2010.
Ž8́3. Stanislav Žák. A Turing machine time hierarchy. Theoretical Computer Science,

26(3):327–333, October 1983.

	Robust Simulations and Significant Separations

