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Abstract

We study an on-line selection game between two committee mem-
bers (the players). The committee interviews candidates sequentially
and has to decide, after each interview, whether to hire or to inter-
view the next candidate.. Each player can either accept or reject the
candidate, and if he rejects the candidate while the other accepts her,
he can cast a veto. The candidate is hired if accepted by at least one
player and not vetoed. The total number of vetoes available for each
player is �xed in advance.

We prove the existence of a subgame perfect equilibrium for this
game if there are a �nite number of candidates types. For a general
candidate distribution we prove the existence of an "� subgame per-
fect equilibrium. We also demonstrate several unusual phenomena,
including situations in which a player prefers the other player would
have an extra veto, and even prefers to give his own veto right to the
other player.

1 Introduction

Candidates for various positions, both in the private and public sectors, are
often chosen by committees. When the decision regarding which candidate
to accept is made after all the candidates have been interviewed, an issue
regarding the design of the selection rule arises: the impossibility theorem
of Gibbard (1973) and Satherwaite (1975) states that there is no rule that
the committee can use to select the best candidate and that satis�es several
desirable properties.
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Sometimes the committee interviews the candidates sequentially (�on-
line�) and has to decide, after each interview, whether the current candidate
is acceptable or not; in the latter case, the candidate �disappears�, and
cannot be selected in the future if it turns out that she has been the best
candidate. Such a case occurs, e.g., in the selection of juries in the American
legal system, in which both sides have the right to veto candidates, or when
a couple looks for an apartment to rent when demand far exceeds supply,
and apartments are rented within hours.
In the present paper we study an on-line selection game between two com-

mittee members, who interview candidates sequentially and have to decide,
after each interview, whether to accept the current candidate or to reject her.
We model the process by which the committee decides on each candidate as
follows. First one of the committee members, the leader, decides whether to
accept or reject the candidate, and then the second member, the follower,
observing the decision of the leader, decides whether to accept or reject the
candidate. If both members rejected the candidate then she is rejected; if
both members accepted the candidate then she is accepted; if one of the
candidates accepted the candidate while the other rejected her, the member
who rejected the candidate has the right to cast a veto, in which case the
candidate is rejected. If no veto was cast, the candidate is hired. We assume
that the number of vetoes of each member is given in advance, as occurs,
e.g., in jury selection (see Brams and Davis (1976), (1978) and DeGroot and
Kadane (1980)). In many cases the number of vetoes that a member has
is not �xed explicitly, yet, since successive vetoes often raise pressure from
other committee members against more vetoes. Thus, the number of vetoes
of a member measures his relative strength, both his mental strength and his
position within the organization.
Each candidate is characterized by two numbers, her utility to each com-

mittee member, which is termed the type of the candidate. The full type
is known to both players. The goal of each player is to maximize his own
expected utility from the selected candidate.
Our model is a game theoretic extension of the well known �secretary

problem�(see, e.g., Ferguson (1989, 2001), Eriksson et al (2007)), in which
quality, rather than rank of quality, is optimized, and each player�s utility
is his evaluation of the hired candidate. A di¤erent game variant of the
�secretary problem�, in which various employers compete on employees who
are observed sequentially, was studied by, e.g., Enns and Ferenstein (1987),
Ramsey and Szajowski (2005) and Sakaguchi (2005).
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Our model is also related to the selection problem studied in DeGroot
and Kadane (1980). The main di¤erence is that whereas they study jury
selection problems, and therefore allow only two actions (veto or no veto),
we study an employee selection problem, and therefore allow three actions
(accept, reject with veto, and reject without veto). As we show below, the
two models exhibit quite a di¤erent behavior.
Our model was introduced in Alpern and Gal (2008), who proved that

if a player�s veto rights increase (while the other�s remains �xed), then his
equilibrium payo¤ cannot decrease. Thus, the number of vetoes each player
has at the beginning of the game measures, in a sense, his relative strength.
Alpern and Gal (2008) also presented a detailed analysis of this game for
uniformly distributed candidate types, and established the existence of equi-
libria in threshold strategies for the game with no vetoes. Additionally, they
study a discounted version of the game, and in this case they determined
the optimal number of vetoes that a social planner should give the players, if
the social planner�s goal is to maximize the expected sum of utilities of both
players.
In the present paper we show that when there are �nitely many types

of candidates an equilibrium in Markovian strategies always exists, while
when there are in�nitely many types of candidates, an equilibrium may fail
to exist, yet an "-equilibrium in Markovian strategies exists for every " > 0.
We then study the structure of Markovian equilibria, distinguishing between
two types of equilibria: progressive equilibria and helpful equilibria. In a
progressive equilibrium each player prefers that the other player would have
fewer vetos, and even accepts bad (to him) candidates in order to force the
other player to �waste�a veto. In a helpful equilibrium players prefer the
other to have more vetos and hence reject candidates that the other player
would otherwise have to veto.
We also present surprising phenomena that may occur in our games. De-

Groot and Kadane (1980) present an example of selecting a jury of two
participants, in which one of the committee members prefers to give his veto
right to the other member. This phenomenon is called the �paradox of redis-
tribution�by Fischer and Schotter (1978) or the � donation paradox�(see
Felsenthal and Machover (1995), Kadane et al. (1999), and Holler and Napel
(2004)). DeGroot and Kadane (1980, Theorem 3) prove that if the committee
has to choose a single candidate, then the donation paradox cannot occur.
Surprisingly, as we show by an example, a donation paradox may occur in
our game. We also provide an example that shows that a worse population
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(good candidates are rarer) may yield a better outcome.
The paper is organized as follows. Section 2 describes the model. Section

3 proves the existence of a subgame perfect equilibrium (SPE) ; in mixed
Markovian strategies. Section 4 describes some counter-intuitive behavior of
the game with no vetoes, including the donation paradox. Section 5 describes
the structure of the equilibria in the game. We use a simple three atom
distribution to demonstrate the possible types of equilibria, and to show
that a player may prefer that the other player is given an extra veto, even
in the worth of a candidate to one player is independent of her worth to the
other player.

2 The Model

We consider a sequential two-player selection game G(i; j), that is given by
two non-negative integers i and j (the number of vetoes of the two players)
and a distribution F2 on the unit square (the distribution of candidate).
At each stage t, if the game has not terminated before, the players play
the extensive form game that appears in Figure 1: �rst Nature chooses a
candidate (x; y) 2 [0; 1]2 according to the distribution F2, and then player
I decides whether to Accept or to Reject the candidate. If player I decides
to accept the candidate, and if j > 0, player II decides whether to Veto the
candidate, and then from the next stage on the game G(i; j � 1) is played,
or whether Not to Veto the candidate, in which case the game terminates
with a terminal payo¤ x to player I and y to player II. If player I decides
to Reject the candidate, player II decides whether to Accept or to Reject
the candidate. If player II decides to reject the candidate, the stage ends,
and the game continues to the next stage. If player II decides to accept the
candidate, player I decides whether to Veto the candidate, and then from
the next stage on the game G(i� 1; j) is played, or whether Not to Veto the
candidate, in which case the game terminates with a terminal payo¤ (x; y).
If no candidate is ever accepted the payo¤ to both players is 0. In Figure 1,
the actions Accept, Reject, Veto and No Veto are abbreviated to a, r, v and
n respectively.
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Figure 1. Reduced tree for G (i; j)

A strategy for a player is a rule that indicates how to play at each stage
given any past history. A strategy is Markovian if the mixed action to be
played after every given history depends only on the type of the current
candidate and on the number of vetoes left for both players.
Since we studyMarkovian strategies, the continuation payo¤s inG(i; j�1)

and G(i � 1; j) are independent of past play. We denote the continuation
payo¤ in G(i; j � 1) by (u+; v�) and the continuation payo¤ in G(i � 1; j)
by (u�; v+) :
Every pair of strategies (�; �) induces an expected payo¤ for each player

k 2 fI; IIg, which we denote by 
k(�; �). For every " � 0; an "-equilibrium
(�; �) is a pair of strategies such that no player can pro�t more than " by
deviating. A pair of strategies is a subgame-perfect "-equilibrium if for every
�nite history, the pair of strategies, restricted to the continuation game after
this history occurs, is an "-equilibrium.
Since the game is a game of perfect information (that is, there are no

simultaneous moves, and all past moves are observed), it follows fromMertens
(1987) that for every " > 0 an "-equilibrium exists. The construction of
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Mertens (1987) uses threats of punishment, and therefore it does not yield a
subgame-perfect "-equilibrium.

3 Existence of a Subgame Perfect Equilib-
rium

Let W � [0; 1]2 be the support of F2, that is, the set of all possible types
(x; y) of the candidates. When (x; y) is the type of a candidate, x (resp. y)
is the worth of the candidate for player I (resp. II). We make the following
assumption throughout.

A The types of the candidates in di¤erent stages are i.i.d.

The following example shows that in general a subgame perfect 0-equilibrium
may not exist.

Example 1 Suppose F2 is the uniform distribution in the polytope whose
extreme points are (0; 0); (0; c); (c; 0); (1; 1), where 0 < c < 1

2
. In G(0; 0),

the strategy pair in which each player accepts a candidate once her worth
for him is at least 1 � " is a subgame perfect "-equilibrium. We claim that
the game G(0; 0) has no 0-equilibrium. Indeed, a 0-equilibrium must be in
threshold strategies: accept a candidate if her worth for you is above a given
threshold �, reject it if her worth for you is below the threshold �, and possibly
mix if her worth for you is equal to the threshold �. However, if one player
uses such a threshold strategy with threshold � (and � < 1), then a simple
calculation shows that the other player�s best reply is a threshold strategy with
threshold strictly larger than �. This implies that the only candidate for a
0-equilibrium is when the threshold is 1, but then with probability 1 no player
ever accepts a candidate (and the payo¤ is 0 to both players).

Our main result in this section is the following.

Theorem 2 The game G(i; j) admits a subgame-perfect "-equilibrium in
Markovian strategies for every " > 0. If F2 has �nite support, there is a
subgame-perfect 0-equilibrium in Markovian strategies.

The proof of this theorem is done in several lemmas. We �rst prove that
to prove the �rst claim of Theorem 2 it is su¢ cient to prove its second part.
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Lemma 3 Suppose that whenever F2 has �nite support the game G(i; j) ad-
mits a subgame perfect 0-equilibrium in Markovian strategies. Then for every
F2 (with general support) the game admits a subgame perfect "-equilibrium
in Markovian strategies, for every " > 0.

Proof. We prove the Lemma by induction on i+j. We assume thatG(i�1; j)
andG(i; j�1) admit a subgame perfect "

4
-equilibrium in Markovian strategies

for every " > 0, and we denote by (u�; v+) and (u+; v�) corresponding "
4
-

equilibrium payo¤s in Markovian strategies in these games. To accommodate
the case in which a player has no vetoes, if i = 0 we set u� = �1, and if
j = 0 we set v� = �1.
Consider now the game G(i; j). Let a(x; y) be the absorbing payo¤ if

player I accepts (x; y); it is either (x; y) or (u+; v�), depending on which one
player II prefers

a(x; y) =

�
(x; y) y � v�

(u+; v�) y < v� : (1)

Let b(x; y) be the absorbing payo¤ if player I rejects (x; y) and player II
accepts it; it is either (x; y) or (u�; v+), depending on which one player I
prefers:

b(x; y) =

�
(x; y) x � u�

(u�; v+) x < u� : (2)

Note that the only discontinuities of a (x; y) and b (x; y) are near the
horizontal intervals Ix = f(x; v�) ; 0 � x � 1g and Iy = f(u�; y) ; 0 � y � 1g
Suppose F2 has a general support (not necessarily �nite). Let bF2 be an

"
4
-discretization of F2. We wish to maintain continuity within each of our
�elements�, so we �rst split [0; 1]2 into the following nine parts.
f(x; y) ; u� < x � 1; v� < y � 1g ; f(x; y) ; u� < x � 1; 0 � y < v�g ;
f(x; y) ; 0 � x < u�; v� < y � 1g ; f(x; y) ; 0 � x < u�; 0 � y < v�g
f(x; v�) ; 0 � x < u�g ; f(x; v�) ; u� < x � 1g ; f(u�; y) ; 0 � y < v�g ;
f(u�; y) ; v� < y � 1g and (u�; v�) : Then, we partition each part (except
the last part which is a single point) into �nitely many sets such that each
of the overall L resulting sets A1; A2; : : : ; AL; has diameter at most "

4
:

sup
(x;y);(x0;y0)2Al

d((x; y); (x0; y0)) � "

4
; 8l;
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and for each l; 1 � l � L; there is (xl; yl) 2 Al such that bF2(xl; yl) = F2(Al).
We are going to consider three games, G1, G2, andG3. These are recursive

absorbing games, in which at every stage a candidate is chosen according
to some distribution, then player I, upon observing the candidate�s type,
decides whether to accept the candidate or reject it, and then player II, after
observing the candidate�s type and player I�s decision, decides whether to
accept it or reject it. The game terminates once at least one player accepts a
candidate (there is no opportunity to cast vetoes), and the games only di¤er
in the underlying distribution according to which candidates are chosen and
by their absorbing payo¤s.

� In the game G1 the candidates�distribution is F2 and the absorbing
payo¤s a(x; y) (resp. b(x; y)) if (x; y) is accepted by player I (resp.
player II).

� In the game G2 the candidates�distribution is F2. If (x; y) 2 Al is
accepted by player I (resp. player II), the absorbing payo¤s is a(xl; yl)
(resp. b(xl; yl)).

� In the game G3 the candidates�distribution is bF2 and the absorbing
payo¤s is a(xl; yl) (resp. b(xl; yl)) if (x; y) 2 Al is accepted by player I
(resp. player II).

Note that a 3"
4
-equilibrium in the game G1 can be turned into an "-

equilibrium in G(i; j), by supporting it with "
4
-equilibria in G(i � 1; j) and

G(i; j� 1) that yield payo¤ (u�; v+) and (u+; v�) respectively if one of the
players casts a veto. Denote by 
1(�; �), 
2(�; �) and 
3(�; �) the payo¤
functions in these three games. Since the absorbing payo¤s in G1(i; j) and
in G2(i; j) di¤er by at most "

4
, we have

k
1(�; �)� 
2(�; �)k �
"

4
; 8�; 8� : (3)

Fix a strategy pair (�; �). Let �3 by the strategy that is de�ned as follows:

�3(x; y) =

R
Al
�(x0; y0)dF2(x

0; y0)

F2(Al)
if (x; y) 2 Al: (4)

This is the average probability to accept (x; y) under �, provided it is in Al.
We de�ne this strategy only for (x; y) 2 Al such that F2(Al) > 0. Let � 3 be

8



the analogous strategy for player II:

� 3(x; y) =

R
Al
�(x0; y0)dF2(x

0; y0)

F2(Al)
if (x; y) 2 Al: (5)

This is the probability that player II accepts (x; y) if player I rejected it,
and it is de�ned only for (x; y) 2 Al such that F2(Al) > 0. Suppose also
that under �3 player I vetoes a candidate accepted by player II with the
probability which is the conditional probability he would have vetoed it under
� (conditional on Al), and similarly for player II. By de�nition,


2(�; �) = 
3(�3; � 3) 8�; 8� : (6)

Let now (�3; � 3) be a subgame-perfect 0-equilibrium in G3, which exists by
assumption, since bF2 has a �nite support. Let �� and � � be the strategies
that are de�ned as follows: as long as no player casts a veto, �� follow �3 and
� � follows � 3. Once player I (resp. player II) casts a veto, (��; � �) coincides
with a subgame-perfect "

4
-equilibrium in Markovian strategies in G(i� 1; j)

(resp. in G(i; j � 1)) with corresponding payo¤ (u�; v+) (resp. (u+; v�)).
The strategies �� and � � are Markovian. We now argue that (��; � �)

is a subgame-perfect "-equilibrium in G(i; j). We only prove that player I
cannot gain more than " by deviating. Fixing � �, player I�s maximization
problem reduces to a Markov decision problem, and therefore he has an
optimal strategy � which is Markovian. Let �1 be the strategy that � induces
on G1, and let �3 be the corresponding discretized strategy de�ned above.
Let ��1 and �

�
1 be the strategies that �

� and � � induce in G1, and let � �3 be
the strategy de�ned in (5) w.r.t. � �. Since �� plays an "

4
-equilibrium once

one of the players casts a veto, by (3), (6), and since (�3; � 3) is a subgame
perfect 0-equilibrium in G3:


I(�; � �) � 
I1(�1; �
�
1) +

"

4
� 
I2(�1; � �1) +

"

2
(7)

= 
I3(�1; �
�
1) +

"

2
� 
I3(��1; � �1) +

"

2
(8)

= 
I2(�
�
1; �

�
1) +

"

2
� 
I1(��1; � �1) +

3"

4
(9)

� 
I(��; � �) + "; (10)

so that indeed player I cannot gain more than " by deviating.
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The rest of this section is devoted to the proof that when F2 has �nite
support a subgame-perfect 0-equilibrium exists. We recall that Flesch, Thui-
jsman and Vrieze (1997) proved that every two-player recursive absorbing
game admits a stationary "-equilibrium, yet, since our game has sequential
moves, this result does not imply the existence of a SPE. The proof uses
ideas from Vrieze and Thuijsman (1989) and Solan and Vieille (2002).
The proof is by induction on i + j. Assume that both G(i; j � 1) and

G(i�1; j) admit subgame-perfect 0-equilibrium in Markovian strategies, with
corresponding payo¤s (u+; v�) and (u�; v+) respectively. As before, u� =
�1 if i = 0, and v� = �1 if j = 0.
Let a(x; y) and b(x; y) be de�ned as in (1) and (2). Recall that the support

W of F2 is �nite. De�ne an auxiliary recursive absorbing game as follows.

� The set of actions (one-stage strategies) of player I is the �nite set S
of all functions s : W ! fa; rg. That is, before player I observes the
realized type of that stage, he has to determine for each possible type
in W whether he will accept it or reject it.

� The set of actions (one-stage strategies) of player II is the �nite set
T of all functions t : W ! fa; rg. That is, before player II observes
the realized type of that stage (and before he observes the decision of
player I for that type), he has to determine for each possible type in
W whether he will accept it or reject it, assuming player I reject it.

� The payo¤: denote the realized type by (x; y). If player I accepts the
type, the game is absorbed and the payo¤ is a(x; y). If player I rejects
the type and player II accepts it, the game is absorbed and the payo¤
is b(x; y). If both players reject the type, the game continues to the
next stage.

A mixed action for player I is a probability distribution over pure actions.
By Kuhn�s theorem it is equivalent to a function � : W ! [0; 1] that assigns
to each type (x; y) the probability that it will be accepted, which is denoted
by �(x; y) 2 [0; 1]. Mixed actions � for player II are de�ned analogously.
Every mixed action is identi�ed with the stationary strategy that plays it at
every stage.
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For every pair (�; �) of stationary strategies, the probability of per-stage
absorption is

p(�; �) :=
X

(x;y)2W

F2(x; y) (�(x; y) + (1� �(x; y))�(x; y)) :

The pair (�; �) is called absorbing if p(�; �) > 0, and non-absorbing oth-
erwise. Denote by 
(�; �) the expected payo¤ under the pair of strategies
(�; �). Then


(�; �) =

(
(0; 0) (�; �) is non-absorbingP

(x;y)2W F2(x;y)(�(x;y)a(x;y)+(1��(x;y))�(x;y)b(x;y))P
(x;y)2W F2(x;y)(�(x;y)+(1��(x;y))�(x;y)) otherwise.

(11)
The following lemma is known in the theory of stochastic games (see, e.g.,

Vrieze and Thuijsman (1989) for a variant):

Lemma 4 Let (�n; �n)n2N be a sequence of strategy pairs that converges
point-wise to a limit (�; �). If (�; �) is absorbing then

lim
n!1


(�n; �n) = 
(�; �):

Let S and T be the sets of all mixed actions for the two players respec-
tively. Let S" be the set of all mixed actions � of player II that satisfy the
following condition:

� �(x; y) 2 ["; 1� "] for each (x; y) 2 W : player I must accept every type
with probability at least ", and must reject every type with probability
at least ".

The condition that �(x; y) � " ensures that whatever player II plays, the
game is bound to be absorbed, and therefore the payo¤ is continuous over
S" � T ; the condition that �(x; y) � 1 � " ensures that each candidate is
rejected with positive probability, and so every decision point of player II is
reached with positive probability: a best response of player II to a strategy
in S" cannot use punishments that hurt player II.
Observe that S" is convex, compact, and non-empty (assuming " is small

enough). Let G" be the recursive absorbing game in which the mixed-action
space of player I is S", and the mixed-action space of player II is T (only
player I is restricted).
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For every (�; �) 2 S" � T , the game is bound to be absorbed. Since S"
and T are convex and compact, the standard argument of Shapley (1953)
implies that the game G" has a 0-equilibrium in stationary strategies.

Lemma 5 Let (�"; � ") be a stationary 0-equilibrium in G". For every type
(x; y),

1. � "(x; y) is a best reply given the two possible continuation payo¤s
(b(x; y) and 
(�"; � ")): it chooses an action that attains the maximum
maxfbII(x; y); 
II(�"; � ")g.

2. �"(x; y) is the best reply (in the range ["; 1 � "], for player I) be-
tween the two continuation payo¤s a(x; y) and � "(x; y)b(x; y) + (1 �
� "(x; y))
(�"; � ").

Proof. We only prove the �rst statement. An analogous argument proves
the second statement. Since �"(x; y) � 1 � ", the type (x; y) has a positive
probability to be realized. If � " does not choose the higher continuation
payo¤, player II could gain by deviating.

Lemma 6 At least one of the following two statements hold:

1. There is a subgame-perfect 0-equilibrium in Markovian strategies in
G(i; j) that is supported by (u+; v�) and (u�; v+) if one of the players
casts a veto;

2. There is a stationary 0-equilibrium (�"; � ") in G" such that at least one
player accepts at least one candidate with probability 1� ":

Proof. Let (�"; � ") be a stationary equilibrium in G", and assume that
statement (2) does not hold: under (�"; � ") no player accepts any candidate
with probability 1� ". Then in particular

aI(x; y) � 
I(�"; � "); 8(x; y) 2 W: (12)

Indeed, if aI(x; y) > 
I(�"; � "), player I would have gained by accepting (x; y)
with the maximal probability he can, 1� ". Similarly,

bII(x; y) � 
II(�"; � "); 8(x; y) 2 W: (13)
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If there was a candidate (x�; y�) 2 W such that ak(x�; y�) � 
k(�"; � ") for
k = 1; 2, then the strategy pair in which both players accept a candidate if
and only if it is (x�; y�) is a 0-equilibrium in G(i; j) in stationary strategies,
and statement (1) holds. Indeed, by (12) aI(x; y) � 
I(�"; � ") � aI(x�; y�)
for every (x; y) 2 W , so that player I cannot gain by deviating, and by (13)
bII(x; y) � 
II(�"; � ") � bII(x�; y�) for every (x; y) 2 W , so that player II
cannot gain by deviating.
Thus, if statement (1) does not hold, then for every (x; y) 2 W one has:

aI(x; y) = 
I(�"; � ") =) aII(x; y) < 
II(�"; � "); (14)

bII(x; y) = 
II(�"; � ") =) bI(x; y) < 
I(�"; � "): (15)

These two equations, together with (12) and (13), imply that any convex
combination of the vectors fa(x; y); b(x; y)g(x;y)2W gives at least one player k
strictly less than 
k(�"; � "), which contradicts (11). Therefore if statement
(2) does not hold then statement (1) holds.
Suppose that statement (2) in Lemma 6 holds. For every " > 0 let

(�"; � ") be a stationary 0-equilibrium in G" in which at least one player
accepts at least one candidate with probability 1� ". By compactness, there
is a sequence ("k)k2N that converges to 0 such that the sequence (�"k ; � "k)k2N
converges to a limit (��; � �). Since in either �"k or in � "k one of the players
accepts at least one candidate with probability 1�", this carries to the limit:
in (��; � �) at least one of the players accepts at least one candidate with
probability 1. In particular, the strategy pair (��; � �) is absorbing.

Lemma 7 The strategy pair (��; � �), supported by subgame-perfect equilibria
in Markovian strategies in the continuation games G(i; j� 1) and G(i� 1; j)
with corresponding payo¤s (u+; v�) and (u�; v+), is a subgame-perfect 0-
equilibrium in stationary strategies in G(i; j).

Proof. Denote 
� := limk!1 
(�"k ; � "k) (if the limit does not exist, consider
a subsequence of ("k)k2N for which this limit does exist). Since (��; � �) is
absorbing, by Lemma 4:


� = lim
k!1


(�"k ; � "k) = 
(��; � �): (16)

We �rst show that (��; � �) is a 0-equilibrium in G(i; j). De�ne for every
strategy � and k 2 N a strategy b�k as follows:

13



b�k(x; y) =
8<:
"k �(x; y) < "k;
�(x; y) �(x; y) 2 ["k; 1� "k];
1� "k �(x; y) � 1� "k:

Note that b�k 2 S"k and �� = limk!1 b�k.
Let � be an arbitrary strategy of player I. If (�; � �) is absorbing than by

Lemma 4 and since (�"k ; � "k) is an equilibrium in G"k ,


I(�; � �) = lim
"!0


I(b�k; � �) � lim
"!0


I(�"k ; � �) = 

I
� = 


I(��; � �): (17)

If (�; � �) is non-absorbing then


I(�; � �) = 0 � 
I(��; � �):

In both cases player I cannot pro�t by deviating from ��.
Similarly,


II(��; �) � 
II(��; � �); 8� : (18)

To show that (��; � �) is a subgame-perfect equilibrium it is left to show that
no player can gain by deviating after a particular candidate (x; y) is realized.
Suppose then that the candidate (x; y) is chosen. �"k(x; y) is the best

reply of player I (in the range ["; 1� "]) given the two possible continuation
payo¤s a(x; y) and � "k(x; y)b(x; y) + (1 � � "k(x; y))
(�"k ; � "k). By continu-
ity, and since " ! 0 and 1 � " ! 1, ��(x; y) is the best reply of player I
(in the range [0; 1]) given the two possible continuation payo¤s a(x; y) and
� �(x; y)b(x; y) + (1 � � �(x; y))
(��; � �). By the de�nition of � �, player II
indeed chooses, under � �, the best outcome for player II among b(x; y) or

(��; � �). By (17)


I(�; � � j x; y) = maxfaI(x; y); � �(x; y)bI(x; y) + (1� � �(x; y))
I(�; � �)g
� maxfaI(x; y); � �(x; y)bI(x; y) + (1� � �(x; y))
I(��; � �)g
= 
I(��; � � j x; y);

so that player I cannot pro�t by deviating after (x; y) is realized.
We verify that an analog inequality holds for player II. � "k(x; y) is a best

reply given the two possible continuation payo¤s (b(x; y) and 
(�"k ; � "k)): it
chooses the action that attains the maximum maxfbII(x; y); 
II(�"k ; � "k)g.
By continuity, � �(x; y) is a best reply given the two continuation payo¤s
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(b(x; y) and 
(��; � �)): it chooses the action that attains the maximum
maxfbII(x; y); 
II(��; � �)g. Finally, for every strategy � , by (18),


II(��; � j x; y) = maxfbII(x; y); 
II(��; �)g (19)

� maxfbII(x; y); 
II(��; � �)g (20)

= 
II(��; � � j x; y): (21)

4 Unexpected behavior of equilibria

The number of vetoes each player has at the beginning of the game measures,
in a sense, its relative strength. Indeed, Alpern and Gal (2008) proved that
in a Markovian equilibrium, player I�s (resp. player II�s) expected payo¤ in
G(i; j) is always at least as much as his expected payo¤ after he casts a veto.
In this section we provide several examples that challenge other common
views of the role of vetoes in games.

If F2 is symmetric, e.g., if x and y are independent with the same distrib-
ution F , then the game G (0; 0) always has a symmetric SPE in threshold
strategies (u0; u0) ; where 0 < u0 < 1 is the threshold of acceptance: a candi-
date is accepted by a player if and only if her worth for that player is at least
u0 (see Alpern and Gal, 2008). Simple as it looks, the game G(0; 0) displays
some unexpected behavior. We �rst show that the number of equilibria is
not bounded.

Example 8 Let n be a natural number. We construct a game G(0; 0) with
n threshold equilibria. Set

z0 = 0; zi = 1=(2 + ")
n�i; i = 1; 2:::; n: (22)

Let x and y be i.i.d. random variables. with a discrete distribution: their
support is fz0; z1; : : : ; zng. The probabilities p(zi) = P (x = zi) = P (y = zi)
satisfy

p(zi)� p(zi�1); i = 1; 2:::; n: (23)

That is, the �rst positive score is almost certainly z1; if not, then almost
certainly z2, etc. We show that all positive zi; i = 1; 2; :::; n can be threshold
of symmetric equilibria.
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Let 1 � i � n. If one player, say player I, uses a threshold strategy with
threshold zi (so that he accepts a candidate only if his worth is at least zi),
then the payo¤ of each player is close to zi=2, and player II�s best response
is to use a threshold strategy with threshold zi as well. Indeed, if he uses
a higher threshold then player I will almost surely stop before him, and his
payo¤ will be close to 0. If he uses a lower threshold than he would stop be-
fore player I, and his payo¤ would be close to zi�1; which is smaller than zi=2.

It seems natural that the outcome is monotonic in the distribution of
the population: if, say, one population is better than a second population,
that is, if the distribution of the �rst population stochastically dominates
the distribution of the second population, then the equilibrium payo¤will be
higher in the �rst population. The next example shows that this is not the
case. This phenomenon is the well-known non-monotonicity of the equilib-
rium correspondence in one-shot games.

Example 9 Let x; y be i.i.d. r.v.s. with the following three atom distribu-
tion:
z = 1 with probability ",
z = d with probability ", where d 2 (0; 1) and
z = 0 with probability 1� 2":
We consider only SPE in threshold strategies, which always exists for G (0; 0)
with a symmetric F2; as mentioned above.
If 1

3
< d < 1, the only such equilibrium is to accept a candidate whose worth

for you is d or 1, and the corresponding equilibrium payo¤ to each player is
(approximately) (1 + d)=4: If 0 < d < 1

3
then, since d < (1 + d)=4); the only

SPE is to accept a candidate whose worth for you is 1, and the equilibrium
payo¤ to each player is (approximately) 1=2. Since 1+d

4
< 1

2
the SPE payo¤

for 0 < d < 1
3
is higher than the unique SPE payo¤ for 1

3
< d < 1 for both

players.

4.1 A Donation paradox

The donation paradox was introduced by Fisher and Schotter (1978), who
called it the �paradox of redistribution�, in the context of power indices
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of simple voting games. This paradox occurs when a player gives an ap-
parently valuable prerogative to another player, but �does better,� accord-
ing to some criterion. Speci�cally, when voting weights are reallocated, it
may be observed that the voting power of some members, as measured by
the Shapley-Shubik and Banzhaf power indices, increases while their voting
weight decreases. (See also Felsenthal and Machover (1995), Kadane, Stone
and Wallstrom (1999), and Holler and Napel (2004).) DeGroot and Kadane
(1980) present an example of selecting a jury of two participants, in which
one of the players prefers to give his veto right to the other player, because
such a move yields a better outcome for himself. However, Theorem 3 in
DeGroot and Kadane (1980) implies that if the (two) players have to choose
only one candidate, a donation paradox cannot occur: giving away one of
your vetoes to the other player lowers the payo¤ of a player. It should be
noted, though, that the game presented by DeGroot and Kadane (1980) has
a �nite length, due to the rule of always accepting a candidate that was not
vetoed. This property simpli�es the situation in their model. On the other
hand, in our model, it is possible that both players reject a candidate and
the next candidate is called for. This introduces the inherent complexity of
repeated games into our model.
As we show now, a donation paradox may occur in our model. Speci�cally,

we present an example in which Player I prefers G (0; 1) to G (1; 0).

Example 10 F2 has 3 types of candidates, as follows:

Type Probability
(b; b) 1� 2"
(1; 0) "

(1� "; 1� ") "

where 1=2 < b < 1 and "� 1.
Consider an equilibrium in G(0; 0). Player I accepts the type (1; 0), since

this type has highest worth for him,1 and for an analog reason player II
accepts the type (1 � "; 1 � "). Since the average of these two vectors gives
player II a payo¤ 1�"

2
< b, player II accepts the type (b; b). Therefore the

1We shorten �player I accepts candidates having type (x; y)�to �player I accepts type
(x; y)�.
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unique equilibrium payo¤, 
0;0, is:


I0;0 = (1� 2")b+ "(1� ") + " = b+ "(2� 2b� ") > b; (24)


II0;0 = (1� 2")b+ "(1� ") = b+ "(1� 2b� ") < b: (25)

Consider an equilibrium in G(1; 0). As in G(0; 0), player I accepts the
type (1; 0). Since 
I0;0 > b player I will veto (b; b), and since 


II
0;0 >

1�"
2
player

II accepts the type (b; b). It follows that if the type (1�"; 1�") is not accepted,
the expected payo¤ for both players is close to b, and therefore both players
will accepts the type (1� "; 1� "). Thus, the unique equilibrium payo¤, 
1;0,
is:


I1;0 = (1� 2")
I0;0 + "(1� ") + " = b+ "(4� 2b+ "(�6 + 2"+ 4b)) > 
I0;0;

II1;0 = (1� 2")
II0;0 + "(1� ") = b+ "(2� 4b+ "(�4 + 2"+ 4b)) < 
II0;0:

Consider now an equilibrium in G(0; 1). As in G(0; 0) player II will
accept (1 � "; 1 � "). Since 
II0;0 < b, player II will not veto (b; b); Since b is
the minimal payo¤ to player I, it follows that player I will reject (b; b). Since

II0;0 > 0 player II will veto (1; 0). Finally, player I will reject (1; 0), since by
accepting it he will get 
I0;0, whereas by rejecting it he will get 1�". Therefore
the unique equilibrium is that both players accept only (1� "; 1� "), and the
corresponding equilibrium payo¤ is 
0;1 = (1� "; 1� ").
As we see, player I�s expected payo¤ in G(0; 1) is higher than his expected

payo¤ in G(1; 0), so that a donation paradox occurs: player I prefers to give
his veto to player II.

The donation paradox presented above cannot occur when F2 is symmet-
ric, and, in particular, when x and y are i.i.d.

Theorem 11 Assume that F2 is symmetric. If the SPE of G (1; 0) is unique,
then player I never prefers G (0; 1) to G (1; 0) :

Proof. Denote the unique equilibrium payo¤ of G (1; 0) by
�

I1;0; 


II
1;0

�
: By

Alpern and Gal (2008, Theorem 9), there in a symmetric threshold equilib-
rium in G(0; 0). As we have seen in the proof of Theorem 2, every equilibrium
payo¤ in G(0; 0) can be extended into a Markovian SPE in G(1; 0). Since
there is a unique equilibrium payo¤ in G (1; 0) , it follows that we can as-
sume that in the equilibrium in G(1; 0) the continuation payo¤ is G(0; 0) is
symmetric.
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One can verify that when one of the players does not have any veto
rights, the order in which players play is irrelevant: by properly re-de�ning
the strategies, an equilibrium in G(0; 1) can be turned into an equilibrium in
G(1; 0). It follows that the unique equilibrium payo¤ in G(0; 1) is

�

II1;0; 


I
1;0

�
:

We now show that 
I1;0 � 
II1;0.
Assume to the contrary that 
I1;0 < 
II1;0. We prove that if a candidate

(x; y) with x < y is accepted with positive probability (and not vetoed by
player I), then the candidate (y; x) is accepted with probability 1. Since F2 is
symmetric, and the continuation payo¤ if player 1 casts a veto is symmetric,
this will imply that 
I1;0 � 
II1;0, a contradiction. Now, if such a candidate
(x; y) is accepted with positive probability by player I then

y > x � 
I1;0;

so that player I accepts (y; x) with probability 1. If the candidate is accepted
with positive probability by player II (and not vetoed by player I) then

y > x � 
II1;0 > 
I1;0;

so that (y; x) is accepted with probability 1 by player I.

5 Behavior in equilibrium

In general, for every continuation payo¤s (u+; v�) and (u�; v+) there may
be many equilibria in G (i; j) : In this section we single out two types of
equilibria, progressive equilibria and helpful equilibria. These equilibria rep-
resent the typical behavior of the players (see Remark 14 in this section).
They also help us explain why one of the players may prefer that the other
player would become more powerful in some situations, such as the donation
paradox which occurs in the example provided in Section 4.1.
Suppose that G (i� 1; j) has an equilibrium with values (u�; v+) and

that G (i; j � 1) has an equilibrium with values (u+; v�) :

De�nition 12 A Markovian subgame perfect equilibrium in G (i; j) is called
progressive if u � u+; v � v+; and (in case of equality) players choose to
play the game in which the other player loses a veto rather than repeat the
game G (i; j).

19



In a progressive equilibrium a player does not pro�t from the fact that
the other player has one extra veto, and therefore he tries to make the other
player use one veto.
Given the values u�; u; v�; v it is easy to derive the SPE strategies as

a function of the candidate values x and y; depending on which of the �ve
partitioning rectangles A,B,C,D,E in Figure 2 the point (x; y) belongs to.
(To simplify the discussion of ties, we assume these rectangles contain their
left and bottom sides.)

0             u- u                        10

v-

v

1

A:  G(i,j-1) I accepts, II vetos

B:  G(i-1,j)

II accepts
I vetos

C: G(i,j) again
both reject

D: hired
I rejects
II accepts
No vetos

D: hired
E: hired
I accepts
No vetos

x

y

Figure 2. Progressive equilibrium for G (i; j)

Consider Figure 2, and suppose y < v�; that is, (x; y) 2 A: Such a candidate
will never be hired, because player II will cast a veto if necessary. The best
player I can do is force player II to cast a veto. He does this by accepting the
candidate. Similarly, if (x; y) 2 B; then player I will cast a veto if necessary.
The best player II can do is to accept the candidate, thereby forcing player
I to cast a veto. If (x; y) 2 C; neither player would cast a veto, and both
prefer rejecting the candidate and replaying the game. If (x; y) 2 D [ E;
the candidate will be hired, as at least one player prefers this to replaying
G (i; j), and neither player is willing to cast a veto. Denote by (u; v) the
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equilibrium payo¤ in G(i; j). Then

(u; v) = T (u; v) ; where

T (u; v) � F2 (A) � (u+; v�) + F2 (B) � (u�; v+) + F2 (C) � (u; v)

+

Z
D[E

(x (z) ; y (z)) dF2 (z) ;

Here, for every subset H � [0; 1]2, F2 (H) is the probability that (x; y) 2 H.
If F2 is the uniform distribution, then Lemma 16 of Alpern and Gal (2008)
shows that, for any game G(i; j); T is a contraction map of the unit square,
which implies the existence of a unique progressive equilibrium.
Note that if u < u+ and v < v+; then the equilibrium actions played

in the interior of each of the sets A;B;C;D and E in Figure 2 are strictly
dominant.

In order to illustrate the other types of equilibrium we �rst analyze the
game G (1; 0) for a symmetric F2 (this includes the case in which x and y are
i:i:d:): The game G (0; 0) has been analyzed in Alpern and Gal (2008). They
proved that if F2 is symmetric, then there exists a symmetric equilibrium.
Denote the expected payo¤ to each player in G (0; 0) by u0:We now consider
the possibility of an equilibrium for G (1; 0) with equilibrium values (u; v)
with u � u0 and v � u0: Previously we had assumed an extra veto for player
I would hurt player II, with v < u0: If v > u0; player II would rather replay
G (1; 0) and get v than go to G (0; 0) and get u0: So player I will never use his
veto, as in such a case player II would previously have rejected the candidate.
We call such an equilibrium helpful. (To simplify the discussion of ties, we
assume these rectangles contain their left and bottom sides.)
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0

v

1

B: repeat
G(i,j)

Both reject

C: repeat
G(i,j)

Both reject

D: hired
I rejects

II accepts
No vetos

E: hired
I accepts
D: hired

No vetos

0 u+u- u 1

Figure 3. A helpful equilibrium for G(1; 0)

We now consider the general situation.

De�nition 13 An equilibrium in G (i; j) is called helpful if u > u+ and
v > v + :

An equilibrium is helpful if each player loses when the other player casts
a veto. In such a case, in equilibrium a player will not accept a candidate
that the other player does not like, so that the other player will not be forced
to use his veto power.
A helpful equilibrium has the pro�le depicted in Figure 4. (To simplify the

discussion of ties, we assume these rectangles contain their left and bottom
sides. Also, player II accepts a candidate in E if y � v and rejects her if
y < v):
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0             u- u                        1
0

v-

v

1

A:repeat G(i,j) Both reject

B:  repeat
G(i,j)

Both reject

C:  repeat G(i,j)
both reject

D: hired
I rejects
II accepts
No vetos

D: hired
E: hired
I accepts
No vetos

v+

-u+

Figure 4. A helpful equilibrium for G (i; j)

Indeed, consider a candidate (x; y). If y < v� player II will cast a veto.
Since u < u+ player I prefers that player II would not cast a veto, hence
he will reject such a candidate (region A in Figure 4). For an analog reason
both players reject the candidate if (x; y) 2 B. The behavior of the players
in regions C,D and E is as in a progressive equilibrium. Thus, the payo¤
(u; v) that corresponds to an helpful equilibrium is a �xed point

(u; v) = T (u; v) ;

where

T (u; v) = F2 (A [B [ C) � (u; v) + F2 (D [ E) � (E1 (D [ E) ; E2 (D [ E)) :

Here Ei (D [ E) ; i = 1; 2, are the conditional expectations of x and y in
(D [ E) :
Note that if u > u+ and v > v+; then the actions in each region in Figure

4 are strictly dominant.

23



There can also be a mixed equilibrium, in which u < u+ but v > v+ or
u > u+ but v < v+ .

Back to the donation paradox presented in Section 4.1, we note that in
G(1; 0) the unique Markovian SPE is progressive (v < v+ so that player II
will choose (b; b) and force player I to use his veto). On the other hand, in
G(0; 1) the unique Markovian SPE is helpful (u > u+ so that player I will
not accept the candidate (1; 0) that will make player II use his veto). This
explains why player I prefers G (0; 1) over G (1; 0) :

Remark 14 Note that if a �degeneracy�, u = u+ or v = v+; does not occur,
then, for any game G (i; j) ; i; j � 0; with an absolutely continuous F2; there
exist only pure equilibria (possibly more than one) which is either progressive
or helpful or mixed. For example, assume that we found an equilibrium payo¤
(u; v) (either by a numerical scheme based on Section 3, or by some theoretical
analysis), and it turns out that u < u+ and v < v + : Then the only possible
equilibrium strategies, are given by the progressive equilibrium in Figure 2,
because the actions in this �gure are strictly dominant. Similarly, if u > u+
and v > v+; then the only possible equilibria are given by helpful equilibria
as in Figure 4, because the actions in this �gure are strictly dominant. The
mixed cases can be handled in a similar way.

5.1 A simple three atom i.i.d. distribution

In this section we illustrate the structure of the progressive and the helpful
equilibria in G (1; 0) for a simple three atom i:i:d: distribution. The existence
of a helpful equilibrium inG (1; 0) is surprising because we proved in Theorem
11 that if x and y are i:i:d: and the equilibrium inG(1; 0) is unique then player
I never prefers G(0; 1) to G(1; 0).

Notation 15 A simple three atom distribution is a distribution in which x
and y are i:i:d: with three atoms of equal probability, 1=3; at 0; 1 and b; where
0 < b < 1:

This distribution is quite natural with the score being either �good�or
�bad�or �medium�. Yet, it may lead to unexpected results for G (1; 0) :

It should be noted that since F2 has an atom at (1; 1) ; then there exists
a SPE for G (0; 0) (and for G (i; j) in general) in which only the candidate
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(1; 1) is accepted. This SPE will be denoted as f(1; 1)g : This SPE is not
�stable� in the sense that introducing a discount factor of 1 � " makes it
disappear2.
If F2 is symmetric, then in any other SPE each player always accepts

a candidate whose worth (to him) is 1 (because in such SPE his payo¤ is
strictly smaller than 1).

Theorem 16 Under the simple three atom distribution with 3=4 < b < 1 for
the game G (0; 0) : Except of the SPE f(1; 1)g ; the only SPE is the one in
which each player accepts a candidate if and only if its worth for him is b or
1.

Proof. As we have noted, in any SPE, which is di¤erent from f(1; 1)g ;
each player always accepts a candidate if its worth to him is 1; so the �ve
candidates (1; 1); (1; b) ; (1; 0) ; (b; 1) ; and (0; 1) are always accepted. Consider
any (mixed) SPE and let the probability of acceptance of (b; b) ; (b; 0) and
(0; b) be denoted by pbb; pb0 and p0b: Then, the expected payo¤ to player I
satis�es

u =
3 + b+ bpbb + bpb0
5 + pbb + pb0 + p0b

< b

(because b > 3=4): Thus, the only possibility for a SPE is for player I to
always accept candidates (b; b) and (b; 0) :
Similarly, the only possibility for a SPE is for player II to always accept
candidates (b; b) and (0; b) :

If both players use the threshold b; then all the candidate types except
(0; 0) are hired. Thus, the expected payo¤ for both players under this policy
is the average score of the other eight types, so that, since b > 3

4

u0 =
3 + 3b

8
< b: (26)

We now analyze the game G (1; 0) assuming that the above SPE is used
for G (0; 0) :We present the following SPE for G (1; 0) which yields expected
payo¤strictly more than u0 for both players. This is obtained by the following

2Because, e.g., player I would also accept (1,0) and (1,b) which give him an immediate
payo¤ equal to 1.
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�helpful�strategies. Player I accepts 1; rejects, but not vetoes, b; and vetoes
0: Player II accepts if and only if both x and y are at least b: Thus, player II
acts in such a way that player I never vetoes.
Under the helpful strategies, the following (equally likely) candidates

(b; b) ; (b; 1) ; (1; 0) ; (1; b) ; and (1; 1) are hired. All the other candidates are
rejected and the game repeats itself. Thus, the expected payo¤ to player I is

u =
3 + 2b

5
> b (27)

and since b > 3
4
, the expected payo¤ to player II is

v =
2 + 2b

5
< b (28)

Inequality (27) implies that player I cannot improve by accepting candi-
dates with y = b: On the other hand, by (28) and (26) ; v > u0; so player II
cannot improve by accepting candidates with x = 0; forcing player I to veto.
Thus,

Theorem 17 If b > 3=4; then the helpful strategies form a SPE for G (1; 0) ;
which yields payo¤s strictly larger than u0 for both players.

This equilibrium will be denoted by �helpful SPE�.

Example 18 If b = :9; then u0 = :71: In the game G (1; 0) the helpful
strategies lead to payo¤s u = :96; and v = :76:
In addition to this SPE there exists a progressive SPE for G (1; 0) in which
player II accepts x = 0 (and y � b) and player I accepts x � b = :9; with
payo¤s u = :87 and v = :65:

We now show that in some cases only helpful strategies exist.

Theorem 19 Progressive equilibrium for G (1; 0) need not exist.

Proof. Take the three atoms model in which b satis�es

3

4
< b <

11

13
: (29)

We now show that (except of the SPE f(1; 1)g) the helpful SPE described
above is the only equilibrium for G (1; 0) :
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In any equilibrium (di¤erent from f(1; 1)g) player I always accepts x = 1
and vetoes x = 0: It follows from (26) that if x = b; then �veto�cannot be an
optimal action for player I. We now show, by contradiction, that under (29)
the only possibility for an equilibrium is that player I rejects x = b: Suppose
that player I accepts x = b; then player II�s best response is to accept x = 0
forcing a veto by player I (because rejecting x = 0 leads to an expected
payo¤ (2 + 2b) =6 < u0 by (26)): So, the expected payo¤ to player I would
be (u0 + b+ 1) =3 which is greater than b by (26) and (29) : Thus, player I
can improve by rejecting x = b; which leads to a contradiction. Thus, in
the interval (29) player I�s best decision for x = b is to reject it, so the only
equilibrium, which is also subgame perfect, is the the helpful equilibrium.

For example, if b = :8; then u0 = :675; and the only equilibrium in G (1; 0)
leads to payo¤s u = :92; and v = :72:

Lemma 20 For any 0 < b < 1; the expected payo¤, u; to player I in any
helpful SPE of G (1; 0) exceeds b:

Proof. If player II rejects candidates with x = 0; then, only candidates with
x = b; or 1 can be accepted so, obviously, u > b:

If b is close to 1; then, as in Example 18 the progressive SPE leads to
u < b:

Remark 21 In the game G (2; 0) it is also it is possible to have both progres-
sive and helpful SPE. In the simple three atom distribution for any equilib-
rium, player I accepts x = 1 and vetoes x = 0: On the other hand, contrary
to G (1; 0) ; it seems that all the three actions are possible for x = b in SPE.
For example, playing G (2; 0) with b = :9; if player I uses the progressive SPE
for G (1; 0), then he would not veto x = b; but if he uses the helpful SPE,
then it follows from Lemma 20 that he would veto her.

Remark 22 Assume that x; y are i:i:d with any distribution. Then u0 >
E (x) and for G (1; 0) the payo¤ to player I is 1 and to II E (x) : It is
easily seen that the payo¤ to player I in G (n; 0) is monotonic increasing as
a function of n: On the other hand, if helpful equilibrium exists for some n;
then the payo¤ to player II is not monotonic in n:

27



6 Bibliography

Alpern, S., and Gal., S. (2008). Analysis and design of selection committees:
A game Theoretic secretary problem. LSE-CDAM-2008-03
Brams, S. J. and Davis, M. D. (1976). A game-theory approach to jury

selection. Trial 12, 47-49.
Brams, S. J. and Davis, M. D. (1978). Optimal jury selection: A Game

theoretic model for the exercise of peremptory challenges. Operations Re-
search 26, 966-991.
Bruss, F. T., Drmota, M.. and Louchard, G. (1998) The complete solution

of the competitive rank selection problem, Algorithmica 22, 413-447.
DeGroot, M. H., and Kadane, J. B. (1980). Optimal challenges for selec-

tion. Operations Research, 28, 952-968
Enns, E. G., and Ferenstein, E. Z. (1978) On a multi-person time-sequential

game with priorities. In Sequential analysis, design methods and applications,
Taylor and Francis.
Eriksson, K., Sjöstrand, J. and Strimling, P. (2007). Optimal expected

rank in a two-sided secretary problem, Operations Research, in press.
Felsenthal, D., and Machover, M. (1995). Postulates and paradoxes of

relative voting power � A critical re-appraisal, Theory and Decision, 38,
195-229.
Ferguson, T. (1989). Who solved the secretary problem? Statist. Sci. 4,

282-296.
Ferguson, T. (2001). Selection by Committee. eScholarship Repository,

University of California. http:repositories.edlib.org/uclastat/papers/2001010108.
Flesch, J., Thuijsman, F., and Vrieze, K. (1996) Recursive repeated games

with absorbing states, Mathematics of Operations Research, 21, 1016-1022,
Fisher, D. and Schotter, A. (1978), The inevitability of the �paradox of

redistribution�in the allocation of voting weights, Public Choice, 33, 49-67.
Holler, M.J., and Napel, S. (2004). Monotonicity of power and power

measures. Theory and Decision, 56, 93-111.
Kadane, J. B., Stone, C. A. and Wallstrom, G. (1999). The donation

paradox for peremptory challenges, Theory and decision, 47, 139-151.
Mertens, J.F. (1987) Repeated games, Proceedings of the International

Congress of Mathematicians, Berkeley, California, 1528-1577.
Ramsey, D., and Szajowski, K. (2005). Bilateral approach to the secretary

problem. Advances in dynamic games: Applications to economics, edited by
A. S. Nowak and K. Szajowski, 271-284.

28



Roth, A., Kadane, J. B., and DeGroot, M. H. (1977). Optimal peremp-
tory challenges in trials by juries: A bilateral sequential process. Operations
Research 25, 901-919.
Sakaguchi, M., (2005). Optimal stopping games where players have weighted

privilege, Advances in dynamic games: Applications to economics, edited by
A. S. Nowak and K. Szajowski, 285-294.
Shapley L.S. (1953). Stochastic Games, Proc. Nat. Acad. Sci. U.S.A.

1095-1100.
Solan, E., and Vieille, N. (2002), Correlated Equilibrium in Stochastic

Games, Games and Economics Behavior, 38, 362-399.
Vrieze, O. J., and Thuijsman, F. (1989).On equilibria in repeated games

with absorbing states. International Journal of Game Theory, 18, 293-310.

29




