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Département de Mathématiques et Applications,
Ecole Normale Supérieure, 75005 Paris, France
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1 Introduction

Correlated equilibrium, introduced by Aumann [4,5] is arguably one of the
most natural notions of equilibrium. A correlated equilibrium is a joint distri-
bution π over the set of strategies of the players that has the property that if,
before taking an action, each player receives a recommendation such that the
recommendations are drawn randomly according to the joint distribution of π,
then no player has an incentive to divert from the recommendation, provided
that all other players follow theirs. The distinguishing feature of the notion is
that, unlike in the definition of Nash equilibria, the recommendations do not
need to be independent. A correlated equilibrium π is a Nash equilibrium if
and only if π is a product measure.

A remarkable property of correlated equilibrium, pointed out by Foster and
Vohra [12], is that if the game is repeated infinitely many times such that
every player plays according to a certain regret-minimization strategy, then the
empirical frequencies of play converge to the set of correlated equilibria. (See
also Fudenberg and Levine [14], Hart and Mas-Colell [16–18].) No coordination
is necessary between the players, and the players do not even need to know the
others’ payoff functions. Hart and Mas-Colell [19] show that Nash equilibrium
does not share this property unless the game has quite special properties.

The purpose of this paper is to study the correlated equilibria of a large class
of infinite games. In Section 2 we recall Hart and Schmeidler’s extended defi-
nition, and propose some equivalent formulations. One of them may be given
by discretizing the sets of strategies, considering correlated equilibria of the
discretized (finite) games, and taking appropriate limits as the discretization
becomes finer (see Theorem 5).

The main result of the paper (Theorems 6 and 7) generalizes the above-
mentioned result of Foster and Vohra to the case when the sets of strategies
are compact and convex subsets of a normed space, and the payoff function
of each player is continuous. It is shown that convergence of the empirical
frequencies of play to the set of correlated equilibria can also be achieved in
this case, by playing internal regret-minimizing strategies, where Foster and
Vohra’s notion of internal regret [12] has to be generalized to the case of games
with infinite strategy sets.

The proof of the main theorem is given in Section 4 by a sequence of results,
by broadening the class of departure functions in each step. We point out in
Section 5 that, contrary to the case of finite games, the size of the classes
of departure functions plays a role in the rate of convergence to the set of
correlated equilibria. We conclude the paper in Section 6 by establishing a
connection between the correlated equilibria of a finite game and those of its
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mixed extension. We show that, in some sense, these are equivalent.

2 Definition of correlated equilibrium

2.1 Refined definition

The notion of correlated equilibrium was introduced by Aumann [4,5] who
assumed that the sets of strategies are finite, and extended later by Hart and
Schmeidler [20] to infinite games.

Formally, consider an N -person game in strategic (normal) form

Γ =
(
{1, . . . , N}, (Sk)16k6N , (h

k)16k6N)
)
,

where {1, . . . , N} is the finite set of players, player k is given a (not necessarily
finite) set of strategies Sk and a payoff function hk : S → R. The set of N -
tuples of strategies is denoted by S = S1×S2× . . .×SN . We use the notation
s = (s−k, sk), where

s−k = (s1, . . . , sk−1, sk+1, . . . , sN)

denotes the strategies played by everyone but player k. We write s−k ∈ S−k,
where S−k =

∏
j 6=k S

j.

Some assumptions on the topology of the Sk are required. More precisely, as-
sume that the Sk are topological spaces, equipped with their Borel σ-algebra
(that is, the σ-algebra generated by the open sets). Then S is naturally
equipped with a (product) topology and a (product) σ-algebra. We can now
consider (Borel) probability measures over S.

Hart and Schmeidler’s original definition 2 [20] states that a correlated equi-
librium π of the game Γ is a (joint) probability distribution over S such that

2 Note that in what follows we only consider games with finitely many players,
as opposed to Hart and Schmeidler [20]. We do so for the sake of simplicity. Note
however, that the results of Section 3 may be extended to the case of games with
countably many players, for which the set of strategies of each player is a compact
metric space. This is so because the set of action profiles S is then a compact metric
space as well, and therefore, Theorem 11, which only relies on Prohorov’s theorem
(see Proposition 9) via the sequential compactness of the set P(S) of probability
measures on S, still holds. On the other hand, if there are more than countably many
players, the set of action profiles S, though compact by Tychonov’s theorem, is not
necessarily a metric space anymore, and P(S) may not be (sequentially) compact,
as required (see Remark 12).
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the extended game Γ′ defined below admits the Dirac probability measure
concentrated on the N -tuple of identity functions Sk → Sk as a Nash equilib-
rium. The extended game is defined as follows: the strategy set of player k in
the game Γ′ is given by the set Fk of all measurable maps Sk → Sk (the so-
called “departure functions”), and the game is played as follows. Each player
k chooses his action ψk ∈ Fk, a signal (sometimes called recommendation)
I = (I1, . . . , IN) ∈ S is drawn randomly according to π, player k is told the
k-th component of the signal, Ik, and he finally plays ψk(I

k).

The set Fk of allowed departures for player k may actually be taken as a
proper subset of the set L0(Sk) of all measurable departures Sk → Sk, with
the only restriction that it should contain the identity map. We then define a
(Fk)16k6N -correlated equilibrium similarly as above except that we consider
departure functions ψk only from the class Fk, k = 1, . . . , N . In the simplest
cases Fk may be a finite set, but we also consider larger classes Fk given by the
set of all linear functions, all continuous functions, or all measurable functions.

A more formal definition is the following.

Definition 1 Assume that the payoff functions hk are measurable and either
bounded or nonnegative. An (Fk)16k6N -correlated equilibrium is a (joint)
distribution π over S such that for all players k and all departure functions
ψk ∈ Fk, one has

Eπ

[
hk(I−k, Ik)

]
> Eπ

[
hk(I−k, ψk(I

k))
]
, (1)

where the notation Eπ indicates that the random vector I = (Ik)16k6N , taking
values in S, is distributed according to π.

π is an (Fk)16k6N -correlated ε-equilibrium if for all k and all ψk ∈ Fk,

Eπ

[
hk(I−k, Ik)

]
> Eπ

[
hk(I−k, ψk(I

k))
]
− ε .

A correlated equilibrium may be interpreted as follows. In an average sense
(with respect to the randomization associated with the signal), no player has
an incentive to divert from the recommendation, provided that all other play-
ers follow theirs. The distinguishing feature of this notion is that, unlike in
the definition of Nash equilibria, the random variables Ik do not need to be
independent. Indeed, if π is a product measure, it becomes a Nash equilib-
rium. This also means that correlated equilibria always exist as soon as Nash
equilibria do, which is ensured under minimal assumptions (see Remark 2).
Their existence may also be seen without underlying fixed point results, see
Hart and Schmeidler [20].

Remark 2 In the definition of correlated equilibria we consider an extension
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of the original game. But note that under minimal assumptions (e.g., if the
sets of strategies Sk are convex compact subsets of topological vector spaces
and the payoffs hk are continuous and concave in the k-th variable) there
exists a Nash equilibrium in pure strategies (see, e.g., [1]). Each pure Nash
equilibrium corresponds to a (L0(Sk))16k6N -correlated equilibrium π given by
a Dirac measure over S. Clearly, π is a mixed Nash equilibrium if and only
if it is an (L0(Sk))16k6N -correlated equilibrium equal to the product of its
marginals.

Example 3 Assume that each Sk is a convex and compact subset of a normed
vector space and that each payoff function hk is continuous. In Section 4.5 we
show that the set of (L0(Sk))16k6N -correlated equilibria coincides with the set
of (C(Sk))16k6N -correlated equilibria, where C(Sk) is the set of all continuous
functions mapping Sk in Sk. This set is convex, compact, and contains the
non-empty set of (pure and mixed) Nash equilibria.

For the sake of completeness, we give an analog of the conditional definition,
usually proposed as a definition for correlated equilibria in the case of finite
games (see, e.g., Aumann [5], Hart and Mas-Colell [16]). Provided that the Sk

are finite sets, a correlated equilibrium is a (joint) distribution π over S such
that for all players k and all functions ψk : Sk → Sk, one has∑

s∈S
π(s−k | sk)

(
hk(s−k, sk)− hk(s−k, ψk(s

k))
)

> 0 ,

where π( · | sk) is the conditional distribution of S−k given that player k is
advised to play sk. Recalling that we denote by L0(Sk) the set of all measurable
functions over Sk, we have the following conditional definition in the general
case where the game may be finite or infinite. The proof is immediate.

Proposition 4 Under the same measurability and boundedness assumptions
as in Definition 1, a distribution π over S is an (L0(Sk))16k6N -correlated
equilibrium if and only if for all players k and all measurable departure maps
ψk : Sk → Sk,

Eπ

[
hk(I−k, Ik) | Ik

]
> Eπ

[
hk(I−k, ψk(I

k)) | Ik
]
,

where Eπ indicates that the random vector I = (Ik)16k6N is distributed ac-
cording to π.

2.2 Discretized games

An alternative natural definition of correlated equilibrium in games with infi-
nite strategy spaces is obtained by discretization. The idea is to “discretize”
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the sets of strategies and consider the set of correlated equilibria of the ob-
tained finite game. Appropriate “limits” may be taken as the discretization
gets finer. In this section we make this definition precise and show that the ob-
tained definition coincides, under general conditions, with the definition given
above when one allows all measurable departure functions.

A (P ,D) discretization of the game Γ = ({1, . . . , N}, (Si)16i6N , (h
i)16i6N)) is

given by a product partition P , a grid D and induced payoffs hkd, 1 6 k 6 N .
More precisely, a product partition is an N -tuple (P1, . . . ,PN), where each Pk

is a finite measurable partition of the corresponding strategy set Sk, which we
denote by Pk = {V k

1 , . . . , V
k
Nk
}. In every set V k

i , 1 6 k 6 N , 1 6 i 6 Nk, we
pick an arbitrary element tki ∈ V k

i . These points form a gridDk = {tk1, . . . , tkNk
}.

We writeD = D1×. . .×DN . The induced payoffs hkd are obtained by restricting
the original payoff functions to the grid D.

For a given discretization (P ,D), a distribution π over S induces a discrete
distribution πd over the grid D by

πd
(
t1i1 × . . .× tNiN

)
= π

(
V 1
i1
× . . .× V N

iN

)
.

The size r of a discretization (P ,D) is the maximal diameter of the sets V k
i ,

1 6 k 6 N , 1 6 i 6 Nk. If each Sk is compact, then every discretization has a
finite size. Then we have the following characterization of correlated equilibria
with respect to all measurable departures. (The fairly straightforward proof
is given in the Appendix.)

Theorem 5 Assume that all strategy spaces Sk are convex and compact sub-
sets of a normed space and that the hk are continuous functions over S. Then
a probability distribution over S is an (L0(Sk))16k6N -correlated equilibrium
of the game Γ if and only if there exists a function ε with limr→0 ε(r) = 0
such that for all discretizations (P ,D) of size r, π induces an ε(r)-correlated
equilibrium.

Note that, in the case of a finite number of players, the above result is more
precise than the general results contained in the proofs of Theorems 2 and 3
of Hart and Schmeidler [20], where correlated equilibria of a given game with
infinite strategy sets (and with an infinite number of players) were shown to
be cluster points of the set of correlated equilibria of the discretized games.

3 Regret minimization and convergence in repeated games

One of the remarkable properties of correlated equilibrium in finite games
is that if the game is played repeatedly many times such that every player
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plays according to a certain regret-minimization strategy then the empirical
frequencies of play converge to the set of correlated equilibria. No coordination
is necessary between the players, the players do not even need to know the
others’ payoff functions. This property was first proved by Foster and Vohra
[12], see also Fudenberg and Levine [14], Hart and Mas-Colell [16–18], Lehrer
[24,25].

The purpose of this section is to investigate to what extent the above-mentioned
convergence result can be extended to games with possibly infinite strategy
spaces. We consider a situation in which the game Γ is played repeatedly at
time instances t = 1, 2, . . .. The players are assumed to know their own payoff
function and the sequence of strategies played by all players up to time t− 1.

3.1 Internal regret

The notion of correlated equilibrium is intimately tied to that of internal (or
conditional) regret. Intuitively, internal regret is concerned with the increase
of a player’s payoff gained by simple modifications of the played strategy. If a
simple modification results in a substantial improvement then a large internal
regret is suffered.

The formal definition of internal regret (see, e.g., [13]) may be extended to
general games in a straightforward manner as follows. Let Fk be a class of
functions ψk : Sk → Sk. As the game Γ is repeated, at each round t, player
k could play consistently ψk(s

k
t ) whenever his strategy 3 prescribes to play

skt ∈ Sk. This results in a different strategy, called the ψk-modified strategy.
The maximal cumulative difference in the obtained payoffs for player k, for n
rounds of play, equals

Rk
ψk,n

= max
s−k
1 ,...,s−k

n

(
n∑
t=1

hk(s−kt , ψk(s
k
t ))−

n∑
t=1

hk(s−kt , skt )

)
,

where the maximum is taken over all possible sequences of opponent players’
actions. We call Rk

ψk,n
the internal regret of player k with respect to the de-

parture ψk at round n. The intuition is that if Rk
ψk,n

is not too large, then the
original strategy cannot be improved significantly in a simple way.

We say that a strategy for player k suffers no internal regret (or minimizes
his internal regret) with respect to a class Fk of departures whenever

lim sup
n→∞

1

n
Rk
ψk,n

6 0 ,

3 Even though it is suppressed in the notation, it is important to keep it in mind
that the choice of skt depends on the past action profiles s1, . . . , st−1.
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for all ψk ∈ Fk. The departure functions play a similar role as in the general
definition of correlated equilibria.

3.2 Main convergence result

The main result of the paper, summarized in the following theorem, shows
that under general conditions, if all players follow a certain regret-minimizing
strategy, the empirical frequencies of play converge to the set of correlated
equilibria. Thus, on the average, a correlated equilibrium is achieved without
requiring any cooperation among the players.

Theorem 6 (Main result) Assume that all the strategy spaces Sk are con-
vex and compact subsets of a normed space and all payoff functions hk are
continuous over S and concave in the k-th strategy. Then there exists an
internal-regret minimizing strategy such that, if every player follows such a
strategy, then joint convergence of the sequence of empirical plays to the set
of (L0(Sk))16k6N -correlated equilibria is achieved.

Thus, the convergence result extends, under quite general assumptions, even
if all possible measurable departure functions are allowed in the definition
of correlated equilibrium. The only restrictive assumption is the concavity
of the payoffs. This condition may be removed by allowing the players to use
randomized strategies. The next theorem asserts that almost sure convergence
of the empirical frequencies of play to the set of correlated equilibria is achieved
under the only assumption that the payoff functions are continuous.

Theorem 7 (Main result, randomized version) Assume that all strategy
spaces Sk are convex and compact subsets of a normed space and all payoff
functions hk are continuous over S. If the players are allowed to random-
ize, then there exists an internal-regret minimizing strategy such that, if every
player follows such a strategy, then joint convergence of the sequence of empir-
ical plays to the set of (L0(Sk))16k6N -correlated equilibria is achieved almost
surely.

Theorems 6 and 7 are proved below by a series of results, some of which may
be of independent interest. In particular, we give upper bounds for the internal
regret in some cases, see Theorems 15 and 17, as well as Section 5.

Remark 8 The regret minimizing strategies considered in Theorem 6 are
deterministic in the sense that players do not need to randomize. This is made
possible because of the concavity assumption on the payoffs. An example is the
mixed extension of a finite game, which may be seen to satisfy the assumptions
of Theorem 6. This means that if the game is played in the mixed extension
(i.e., in each round the players output a probability distribution over the set of
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actions), then joint convergence to the set of correlated equilibria (with respect
to all measurable departures or just linear departures) may be achieved in the
mixed extension, in a deterministic way. It is easy to see that any of these sets
of correlated equilibria of the mixed extension induces, in a natural way, the
set of correlated equilibria of the underlying finite game. Thus, our algorithm
generalizes the (randomized) algorithms designed for the case of finite games.
See Section 6 for more details.

3.3 Some topological properties

Theorems 6 and 7 involve convergence properties in the set of probability
measures over S. We assume that each Sk is a compact metric space. Then
the product S is also a compact metric space, for instance, under the supre-
mum metric. Denote by C(S,R) the set of (bounded) continuous real-valued
functions over S. The set of Borel probability measures over S, denoted by
P(S), is equipped with the weak-∗ topology. This is the weakest topology such
that, for each f ∈ C(S,R), the linear map µ → µ[f ] defined for µ ∈ P(S) is
continuous, where µ [f ] =

∫
S f dµ. That is, the open sets of this topology are

generated by the sets
{µ ∈ P(S) : µ [f ] < α} ,

where f is any element of C(S,R) and α is any real number.

For the analysis we need to establish a topological property of P(S), namely
its (sequential) compactness. It is ensured by the following simple statement
of Prohorov’s theorem, see, for example, [11].

Proposition 9 (Prohorov’s theorem) If S is a compact metric space, then
the space P(S) is compact. Its topology is equivalent to the topology of the so-
called Prohorov metric. In particular, P(S) is sequentially compact, that is,
every sequence of elements from P(S) contains a convergent subsequence.

Topological properties of the set of correlated equilibria

This paragraph is given for the sake of completeness and the results presented
below are not needed in the rest of the paper.

Fix the set of allowed departures Fk, 1 6 k 6 N , and denote by Π the set of
all (Fk)16k6N -correlated equilibria. It is immediate from the definition that Π
is a convex set, and that it contains the set of Nash equilibria (which is known
to be non-empty under minimal assumptions, see Remark 2 above).

The next result summarizes some of the basic properties of the set Π. Recall
that by Example 3, under some mild conditions, the set of correlated equilibria

9



with respect to all measurable departures equals the set of correlated equilib-
ria with respect to all continuous departures. Thus, the assumption in the
following theorem that departure functions are continuous may be weakened
in some important cases.

Theorem 10 Assume that the strategy spaces Sk are compact metric spaces.
The set Π of (Fk)16k6N -correlated equilibria is non-empty whenever the payoff
functions hk are continuous over S. Moreover, Π is a convex set, which con-
tains the convex hull of Nash equilibria. If, in addition, for all k, Fk ⊂ C(Sk),
where C(Sk) is the set of all continuous functions mapping Sk into Sk, then
Π is compact.

Proof The non-emptiness of Π under the assumption of continuity of the
payoff functions follows either from Theorem 3 of Hart and Schmeidler [20]
or, alternatively, from the existence of a mixed Nash equilibrium. (The latter
may be shown by checking the hypotheses of a version of Nash’s theorem
stated in Remark 2, which follows easily by Prohorov’s and Stone-Weierstrass
theorems.)

It remains to prove the compactness of Π under the given assumptions. By
Prohorov’s theorem (see Proposition 9), Π is included in a compact set, there-
fore it is enough to prove that Π is a closed set. To this end, consider the
continuous real-valued function over S defined by

fk,ψk
(s) = hk(s−k, sk)− hk(s−k, ψk(s

k)) ,

where 1 6 k 6 N and ψk ∈ Fk ⊂ C(Sk). Each fk,ψk
is a continuous real-valued

function over S and Π is the intersection of the closed half-spaces

{µ ∈ P(S) : µ [fk,ψk
] > 0} . 2

3.4 Joint minimization of internal regret

We are now ready to prove that, similarly to the case of finite games, if all
players minimize their internal regrets, then joint convergence of the sequence
of empirical distributions of plays to the set of correlated equilibria is guaran-
teed.

Denote by s1, . . . , sn the played strategies up to time n. We denote the empir-
ical distribution of plays up to time n by

πn =
1

n

n∑
t=1

δst ,
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where δs is the Dirac mass on s ∈ S. We have the following convergence result
generalizing the corresponding statement of Foster and Vohra [12] for finite
games.

Theorem 11 If each player k minimizes his internal regret with respect to
a departure class Fk, then, provided that the Sk are compact metric spaces,
the hk are continuous, and Fk ⊂ C(Sk) for all k, the sequence of empiri-
cal distributions of plays (πn)n∈N converges to the set of (Fk)16k6N -correlated
equilibria.

Recall that under the assumptions of the theorem, S is a compact metric space,
and so is P(S) by Prohorov’s theorem (see Proposition 9). We denote by d
a metric of P(S). The convergence of the sequence of empirical distributions
of plays to a subset C of the set P(S) of all probability distributions over S
means that

lim
n→∞

inf
µ∈C

d (πn, µ) = 0 .

Proof The assumption on the internal regrets may be rewritten as

lim sup
n→∞

Eπn

[
hk(I−k, ψk(I

k))
]
− Eπn

[
hk(I−k, Ik)

]
6 0 (2)

for all k and all ψk ∈ Fk, where I = (Ik)16k6N is the identity map over
S, defined on the probability space (S, πn). (Eπn denotes expectation with
respect to this probability measure πn over S.) By Prohorov’s theorem (see
Proposition 9), the sequence (πn)n∈N lies in the compact metric space P(S).
Thus, if the whole sequence did not converge to the set of (Fk)16k6N -correlated
equilibria, we could extract from it a subsequence (πϕ(n))n∈N, where ϕ is an
increasing function N → N, such that (πϕ(n))n∈N converges to a probability
measure π which is not a (Fk)16k6N -correlated equilibrium. That is, there
exists a player k, 1 6 k 6 N , and a departure ψk ∈ Fk such that

Eπ

[
hk(I−k, Ik)

]
< Eπ

[
hk(I−k, ψk(I

k))
]
. (3)

But (2) ensures that

lim sup
n→∞

Eπϕ(n)

[
hk(I−k, ψk(I

k))
]
− Eπϕ(n)

[
hk(I−k, Ik)

]
6 0 .

By continuity of the function fk,ψk
defined by

fk,ψk
(s) = hk(s−k, sk)− hk(s−k, ψk(s

k)) , s ∈ S

and by the definition of weak-∗ topology over P(S), we have
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lim
n→∞

Eπϕ(n)

[
hk(I−k, ψk(I

k))
]
− Eπϕ(n)

[
hk(I−k, Ik)

]
= Eπ

[
hk(I−k, ψk(I

k))
]
− Eπ

[
hk(I−k, Ik)

]
6 0 ,

which contradicts (3), thus proving the desired convergence. 2

Remark 12 The assumption of compactness in Theorem 11 is crucial. Con-
sider, for instance, the one-player game with strategy set N and payoff function
h defined by h(0) = 0 and h(n) = −1/n for all n > 1. The strategy that con-
sists in playing the index n at the n-th round of the repeated game has an
average payoff converging to zero, and hence, asymptotically minimizes its
internal regret. However, the empirical frequencies of play do not converge
to the unique correlated equilibrium of the game, which is the probability
distribution that puts probability mass 1 on 0.

Theorem 11 shows that in order to guarantee convergence of the empirical
frequencies of play to the set of correlated equilibria, it suffices that all players
use a strategy that minimizes their internal regret.

4 Internal-regret minimizing algorithms

The main issues in designing internal-regret minimizing strategies concern
the size of the set of allowed departures Fk. For finites games, the measurable
departures Sk → Sk are given by all functions Sk → Sk, whose number ismmk

k ,
where mk is the cardinality of Sk. If Sk is infinite (countably or continuously
infinite), there is a priori an infinite number of departures. In particular,
a simple procedure allocating a weight per each departure function, as was
proposed in the finite case in Foster and Vohra [13] and Hart and Mas-Colell
[17], would be impossible if the set of allowed departures was too large. Thus,
learning algorithms designed for finite games cannot be generalized as easily
as the definition could be carried over to the infinite case. Constructing new
learning algorithms for some general classes of infinite games is the point of
the present section.

4.1 Blackwell’s condition

Regret-minimization strategies have been often derived from Blackwell’s ap-
proachability theorem [7]. Here however, we do not need the full power of
Blackwell’s theory, only a few simple inequalities derived in Cesa-Bianchi and
Lugosi [10] which we briefly recall. Consider a sequential decision problem
parameterized by a decision space X , by an outcome space Y . At each step
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t = 1, 2, . . ., the decision maker selects an element x̂t from the decision space
X . In return, an outcome yt ∈ Y is received, and the decision maker suf-
fers a vector rt = rt(x̂t, yt) ∈ RN of regret. The cumulative regret after t
rounds of play is Rt =

∑t
s=1 rs. The goal of the decision maker is to minimize

maxi=1,...,N Ri,n, that is, the largest component of the cumulative regret vector
after n rounds of play.

Similarly to Hart and Mas-Colell [17], we consider potential-based decision-
making strategies, based on a convex and twice differentiable potential function
Φ : RN → R+. Even though the results below hold for a general class of
potential functions, for concreteness and to get the best bounds, we restrict
our attention to the special case of the exponential potential given by

Φ(u) =
N∑
i=1

exp (ηui) ,

where the parameter η > 0 will be tuned by the analysis below.

We recall the following bound, proved in [10].

Proposition 13 Assume that the decision-maker plays such that in each round
t of play, the regret vector rt satisfies the so-called “Blackwell condition”

∇Φ(Rt−1) · rt 6 0 . (4)

If ‖rt‖∞ 6 M for all t then in the case of an exponential potential and for the

choice η = 1/M
√

2 lnN/n,

max
16i6N

Ri,n 6 M
√

2n lnN .

Observe that the value of the parameter η requires the knowledge of the num-
ber of rounds n. We remark here that similar bounds hold if, instead of the
exponential potential function, the polynomial potential

Φ(u) =
N∑
i=1

(ui)
p
+

is used with p = 2 lnN , see [10]. (Here previous knowledge of the horizon n is
unnecessary.)
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4.2 Finite classes of departure functions

As a first step assume that the set Fk of allowed departures for player k is
finite, with cardinality mk. For any s ∈ S and departure ψk ∈ Fk, denote by

rkψk
(s) = hk(s−k, ψk(s

k))− hk(s−k, sk)

the associated instantaneous internal regret, and by

rk(s) =
(
rkψk

(s)
)
ψk∈Fk

the regret vector formed by considering all departures. For a given sequence
s1, . . . , sn ∈ S of plays, the cumulative internal regrets are given by the vector

Rk(sn1 ) =
n∑
t=1

rk(st) ,

where sn1 denotes the sequence (s1, . . . , sn). Rk(sn1 ) will be referred to as
(Rk

ψk
(sn1 ))ψk∈Fk

.

Consider the following algorithm for player k. For t = 1, 2, . . ., at round t,
player k chooses any skt ∈ Sk such that

skt =
∑

ψk∈Fk

∆k
ψk,t−1ψk(s

k
t ) , (5)

with

∆k
ψk,t−1 =

ϕ
(
Rk
ψk

(st−1
1 )

)
∑
g∈Fk

ϕ
(
Rk
g(s

t−1
1 )

) , t > 2

where ϕ(x) = exp(ηx). For t = 1 we set ∆k
ψk,0

= 1/mk. (The parameter η will
be tuned by the analysis below.)

Thus, each player is assumed to choose his action by solving 4 the fixed-point
equation (5). The existence of such a fixed point (under the assumptions of
Theorem 15) follows easily by the Schauder-Cauty fixed-point theorem [8],
which we recall below. The Schauder-Cauty theorem is applicable since the
right-hand side of (5) is a fixed convex combination of continuous mappings
Sk → Sk.

4 Note that an approximate solution of (5) is sufficient for our purposes. Provided
that Sk is included in a normed vector space and hk is a Lipschitz function, a sim-
ple modification of the proof of Cesa-Bianchi and Lugosi [10, Theorem 1] shows
that the internal regret would still be o(n) had we used a strategy skt such that
‖skt −

∑
ψk∈Fk

∆k
ψk,t−1ψk(s

k
t )‖ 6 εn, where εn decreases quickly enough to 0. In par-

ticular, when the Sk are included in finite-dimensional vector spaces, an algorithm
partitioning Sk into a thin grid is able to find a suitable approximate fixed-point.

14



Theorem 14 (Schauder-Cauty fixed-point theorem) Let C be a non-
empty convex and compact subset of a topological Hausdorff vector space. Then
each continuous map T : C → C has a fixed point.

Note that if several fixed points of (5) exist, then the player is free to choose
any of them.

Theorem 15 Assume that Sk is a convex and compact subset of a topological
Hausdorff vector space and that the payoff function hk is bounded over S by
Mk ∈ R and is concave in the k-th strategy. Then, whenever Fk is a finite
subset of C(Sk) with cardinality mk, the above algorithm guarantees that the
cumulative internal regret satisfies

max
ψk∈Fk

Rk
ψk,n

6 Mk

√
2n lnmk ,

if the exponential potential is used with η = 1/Mk

√
2 lnmk/n.

Remark 16 (Rates of convergence) The theorem implies that, for a given
horizon n, if all Fk are finite, and all players play according to the above pro-
cedure, then, at round n, the empirical distribution is an (Fk)16k6N -correlated
εn-equilibrium, with εn of the order 1/

√
n.

Proof The statement follows easily by Theorem 13. It suffices to prove that
our choice of skt satisfies the Blackwell condition

∇Φ(Rk(st−1
1 )) · rk(st) 6 0

or equivalently ∑
ψk∈Fk

∆k
ψk,t−1h

k(s−kt , ψk(s
k
t )) 6 hk(s−kt , skt ) ,

which is implied by the equality

hk

s−kt ,
∑

ψk∈Fk

∆k
ψk,t−1ψk(s

k
t )

 = hk(s−kt , skt )

and by the concavity of hk in its k-th argument. This equality ensured by the
choice (5). 2

4.3 Countably infinite classes of departure functions

The next step is to extend the result of the previous section to countably
infinite classes of departure functions. In this section we design an internal-
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regret minimizing procedure in the case when the set of allowed departures
for player k is countably infinite. Denote by

Fk = {ψk,q, q ∈ N}

the set of departure functions of player k.

Theorem 17 Assume that Sk is a convex and compact subset of a topological
Hausdorff vector space and that the payoff function hk is bounded by Mk and is
concave in the k-th strategy. If Fk is a countable subset of C(Sk), there exists
a procedure such that for all q ∈ N and n,

Rk
ψk,q ,n

6 Mk

(
2(ln q)2 + 4.2n3/4

)
.

Consequently, this procedure suffers no internal regret.

Proof We use a standard tool, often called the “doubling trick” (see, e.g.,
[9]) to extend the procedure of Theorem 15. Time is divided into blocks of
increasing lengths such that the t-th block is J2t−1, 2t − 1K. At the beginning
of the t-th block, the algorithm for player k takes a fresh start and uses the
method presented in Section 4.2, with the departures indexed by the integers
between 1 and mt and with η = ηt tuned as

ηt =
1

Mk

√
2
lnmt

2t−1
.

We take, for instance, mt = bexp
√

2tc, where bxc denotes the greatest integer
smaller than x.

Denote n̄ = 2blog2 nc+1. Define

Hk(snj ) =
n∑
t=j

hk(s−kt , skt ) , and Hk
ψk,q

(snj ) =
n∑
t=j

hk(s−kt , ψk,q(s
k
t )) .

Theorem 15 ensures that

Hk(sn1 ) =
blog2 nc∑
t=1

Hk(s2t−1
2t−1 ) +Hk(snn̄/2)

>
blog2 nc∑
t=1

(
max

16q6mt

Hk
ψk,q

(s2t−1
2t−1 )−Mk

√
2t lnmt

)

+

(
max

16q6mblog2 nc+1

Hk
ψk,q

(snn̄/2)−Mk

√
n̄ lnmblog2 nc+1

)
.

The departure function ψk,q is considered from the time segment indexed by tq,
where tq is the smallest integer such that q 6 mtq , that is, 2tq−1 < (ln q)2 6 2tq .
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Observe that the total length of the previous time segments is 2tq−1 6 2(ln q)2.
Thus, we obtain, for any q ∈ N,

Hk(sn1 ) >Hk
ψk,q

(sn1 )−Mk

2(ln q)2 +
blog2 nc+1∑

t=1

√
2t ln(exp

√
2t)


>Hk

ψk,q
(sn1 )−Mk

2(ln q)2 +
blog2 nc+1∑

t=1

(
23/4

)t
>Hk

ψk,q
(sn1 )−Mk

(
2(ln q)2 +

23/2

23/4 − 1
n3/4

)
,

which concludes the proof. 2

Remark 18 Theorem 17 does not provide any uniform bound for the internal
regrets (where uniformity is understood with respect to the elements of the
class of allowed departures Fk), contrary to the case of finitely many departure
functions of Theorem 15 (see Remark 16). In fact, in general, no non-trivial
rate can be given for the convergence of the empirical distribution of plays
to the set of (Fk)16k6n-correlated equilibria. However, in the special case of
totally bounded classes of departures, rates of convergence may be established,
and the rates depend on the size of the classes, see Section 5. This means that
the choice of the departure classes may be an important issue in practice.

4.4 Separable sets of departure functions

The extension to separable sets of departure functions is now quite straight-
forward. Recall that compact or totally bounded spaces are special cases of
separable spaces so the next result covers quite general situations.

Theorem 19 Assume that all strategy spaces Sk are convex and compact sub-
sets of normed vector spaces. Let the payoff functions hk be continuous over
S and concave in the k-th strategy and assume that the Fk are separable sub-
sets of C(Sk) (equipped with the supremum norm). Then there exist regret
minimizing strategies such that, if every player follows such a strategy, then
joint convergence of the sequence of empirical plays to the set of (Fk)16k6N -
correlated equilibria is achieved.

The proof is based on the following lemma that can be shown by a simple
dominated-convergence argument.

Lemma 20 Assume that the hk are continuous, and let (Gk), 1 6 k 6 N , be
classes of departure functions. Let π be a (Gk)16k6N -correlated equilibrium. If
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for every k, Fk denotes the set of functions that may be obtained as π-almost
sure limits of elements from Gk, then π is an (Fk)16k6N -correlated equilibrium.

Proof of Theorem 19 For each player k, consider a countable dense sub-
set Gk of Fk and apply the algorithm given in the proof of Theorem 17. Then
Theorems 17 and 11 show that the empirical distribution of plays converges to
the set of (Gk)16k6N -correlated equilibria. By Lemma 20 the set of (Gk)16k6N -
correlated equilibria coincides with the set of (Fk)16k6N -correlated equilib-
ria. 2

4.5 Proof of Theorem 6

To prove Theorem 6, we need two intermediate results. The first establishes
separability needed to apply Theorem 19.

Lemma 21 If X is a convex and compact subset of a normed vector space,
then the set C(X) of continuous functions X → X is separable (in the sense
of the supremum norm).

The proof is an extension of Hirsch and Lacombe [21, Proposition 1.1]. Second
we need a characterization of correlated equilibria with respect to all measur-
able departures. The proofs of both results are given in the Appendix.

Lemma 22 Assume that the strategy spaces Sk are convex and compact sub-
sets of a normed vector space and that the hk are continuous functions over
S. Then the set of correlated equilibria with respect to all continuous depar-
tures (C(Sk))16k6N equals the set of correlated equilibria with respect to all
measurable departures (L0(Sk))16k6N .

Proof of the Main theorem By the separability property stated in Lemma
21, Theorem 19 applies and gives an algorithm leading to convergence to
the set of (C(Sk))16k6N -correlated equilibria. In view of Lemma 22, this is
equivalent to convergence to the set of (L0(Sk))16k6N -correlated equilibria,
thus concluding the proof. 2

4.6 Proof of Theorem 7

Sections 4.3, 4.4, and 4.5 only rely on the results of Section 4.2, and therefore it
suffices to extend the results of Section 4.2 to the case of non-concave payoffs.
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We assume that the strategy sets Sk are convex and compact subsets of normed
vector spaces, and the payoff functions hk are continuous over Sk. The players
are allowed to randomize (which they do independently of each other). More,
precisely, player k chooses his action skt at round t according to the probability
distribution µkt ∈ P(Sk), where P(Sk) denotes the set of probability distribu-
tions over Sk. We also assume that the departure class Fk is a finite subset of
C(Sk), with cardinality mk.

For any µk ∈ P(Sk), s−k ∈ S−k and any departure ψk ∈ Fk, we denote

hk(s−k, µk) =
∫
Sk
hk(s−k, sk) dµk(sk) ,

and by (µk)ψk the image measure of µk by ψk, which means, in particular, that

hk
(
s−k, (µk)ψk

)
=
∫
Sk
hk
(
s−k, ψk(s

k)
)

dµk(sk) .

Below we design a procedure for player k such that for all possible sequences
of opponents’ plays, s−k1 , s−k2 , . . .,

n∑
t=1

(
hk
(
s−kt , (µkt )

ψk

)
− hk

(
s−kt , µkt

))
= o(n) . (6)

Then, thanks to the boundedness of the payoff function hk, we may use a
simple martingale convergence result such as the Hoeffding-Azuma inequality
[6,22], as well as the Borel-Cantelli lemma, to show that (6) implies

n∑
t=1

(
hk
(
s−kt , ψk(s

k
t )
)
− hk

(
s−kt , skt

))
= o(n) a.s. .

The latter is enough to apply Theorem 11, and prove the desired almost sure
convergence.

It thus only remains to see how to design a procedure for player k guaranteeing
(6). The techniques of Section 4.2 extend easily to this case. For any µk ∈
P(Sk), s−k ∈ S−k and any departure ψk ∈ Fk, denote by

rkψk
(s−k, µk) = hk

(
s−k, (µk)ψk

)
− hk(s−k, µk)

the associated instantaneous internal regret, and by

rk(s−k, µk) =
(
rkψk

(s−k, µk)
)
ψk∈Fk

the regret vector formed by considering all departures. For a given sequence
s−k1 , . . . , s−kn of opponents’ plays, and the sequence of probability distributions
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µk1, . . . , µ
k
n, the cumulative internal regrets are given by the vector

Rk
(
(s−k)n1 , (µ

k)n1
)

=
n∑
t=1

rk(s−kt , µkt ) ,

where (s−k)n1 denotes the sequence (s−k1 , . . . , s−kn ), and (µk)n1 is (µk1, . . . , µ
k
n).

Now, assume that player k can select his distribution µkt at time t as a solution
µ ∈ P(Sk) of the equation

µ =
∑

ψk∈Fk

∆k
ψk,t−1 µ

ψk , (7)

where

∆k
ψk,t−1 =

ϕ
(
Rk
ψk

((s−k)t−1
1 , (µk)t−1

1 )
)

∑
g∈Fk

ϕ
(
Rk
g((s

−k)t−1
1 , (µk)t−1

1 ))
) , t > 2 ,

with ϕ(x) = exp(ηx), ∆k
ψk,0

= 1/mk, and the parameter η is tuned as in
Section 4.2. If µkt is proved to exist for all t, then we may obtain an upper
bound of the order of

√
n on the right-hand side of (6), by mimicking the

argument of the proof of Theorem 15.

But the existence of such a distribution µkt follows by the Schauder-Cauty
fixed-point theorem. Recall that the weak-∗ topology induced on P(Sk) is such
that, for all ψ ∈ C(Sk), the map that assigns the element µψ to µ ∈ P(sk) is
continuous. Thus, on the right-hand side of (7), we have a continuous function
of µ. The existence of µkt follows by the application of the claimed fixed-
point theorem to the convex and compact subset P(Sk) of the vector space of
all Borel, finite, real-valued and regular measures over Sk, equipped with its
weak-∗ topology. 2

5 A note on rates of convergence

Up to this point we have only focused on asymptotic statements and have
not payed attention to rates of convergence. In particular, in Sections 4.3 and
4.4, we did not consider the way the elements of the countable classes were
ordered, and we set up some parameters quite arbitrarily. However, under some
assumptions, precise non-asymptotic bounds may be derived for the internal
regret.

Recall that in the case of finite classes of departure functions, the internal
regret can be made of the order of n1/2. For richer classes of departure functions
this may become larger, depending on the richness of the class. In this short
remark we point out this phenomenon by considering totally bounded classes
of departures.
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Here we assume that the strategy set Sk of player k is a convex and compact
subset of a normed vector space, that his payoff functions hk is a Lipschitz
function concave in the k-th strategy, and that his class of departures Fk is a
totally bounded set under the corresponding supremum norm.

Recall that a metric space X is said to be totally bounded if for all ε > 0,
there exists a finite cover of X by balls of radius ε. For a given ε, the minimal
number of such balls is called the ε-covering number of X, and is denoted by
N(ε). Any cover of X of size N(ε) will be referred to as an ε-cover of X.

Denote by Nk(ε) the ε-covering number of Fk, let δk be a Lipschitz constant
of hk, and let Mk be an upper bound for |hk|. For any α > 0, introduce

εk(α) = inf
{
ε : αδ2

kε
2 ≥ 4M2

k lnNk(ε)
}
. (8)

Clearly, εk(α) is decreasing. Moreover, εk(α) tends to 0 as α→∞.

To obtain a bound on the cumulative regret with respect to a totally bounded
class of departure functions, we use the doubling trick similarly to Section 4.3.
Time is divided again in segments such that the r-th segment (r > 1) corre-
sponds to the time instances t between 2r−1 and 2r − 1. In the r-th segment,
the procedure for player k is the one of Section 4.2, with a departure class
given by the centers of the balls which form an (εk(2

r)+2−r)-cover of Fk. De-
noting ε′k(2

r) = εk(2
r) + 2−r, this implies, using the uniform continuity of hk,

that for all sequences of opponents’ plays, s−k1 , s−k2 , . . ., and for all departure
functions ψk ∈ Fk,

Hk(sn1 ) > Hk
ψk

(sn1 )−
blog2 nc+1∑

r=1

(
Mk

√
2r lnNk (ε′k(2

r)) + 2r−1δk ε
′
k(2

r)
)
.

Noting that εk(2
r) is defined as the infimum of an interval, so that ε = ε′k(2

r)
satisfies 2rδ2

kε
2 ≥ 4M2

k lnNk(ε), leads to the following proposition.

Proposition 23 Assume that the strategy set Sk of player k is a convex and
compact subset of a normed vector space, that his payoff functions hk is a Lip-
schitz function concave in the k-th strategy, bounded by Mk and with Lipschitz
constant δk, and that his class of departures Fk is a totally bounded set un-
der the corresponding supremum norm. Then the internal regret of the above
procedure is bounded as

max
ψk∈Fk

Rk
ψk,n

6 δk

blog2 nc+1∑
r=1

2rε′k(2
r) = δk

1 + log2 n+
blog2 nc+1∑

r=1

2rεk(2
r)

 , (9)

where the εk(2
r) are defined by (8).

Observe that the quantity on the right-hand side of (9) is always o(n) by an
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application of Cesaro’s lemma and the fact that εk(2
r) → 0 as r →∞.

Example 24 As a concrete example, consider the case when the strategy set
of player k is the d-dimensional cube Sk = [0, 1]d and the class Fk of departures
is the class of all Lipschitz functions [0, 1]d → [0, 1]d with Lipschitz norm
bounded by Lk. It is equipped with the metric associated to the supremum
norm. Kolmogorov and Tihomirov [23, Theorem xiv] show that the metric
entropy logNk(ε) of this class of functions is of the order of ε−d, that is 5 ,
logNk(ε) = Θ(ε−d). It follows that εk(α) = Θ(α−1/(d+2)), and (9) implies that

max
ψk∈Fk

Rk
ψk,n

≤ c n
d+1
d+2

for a constant c (depending only on δk, Mk, and Lk).

Many other examples of metric entropies logNk(ε), of totally bounded classes
may be found in Kolmogorov and Tihomirov [23, Sections 5–9].

6 A link with correlated equilibrium of finite games

In this final section we assume that Γ is a finite game, with strategy sets given
by finite sets Sk. Assume that the players play in the mixed extension, that is,
at round t, each player k chooses privately a probability distribution pkt over
Sk, all probability distributions pt = (p1

t , . . . , p
N
t ) are made public, and player

k gets the payoff hk(pt), where we linearly extend the definition of hk by

hk(pt) =
∑
s∈S

 N∏
j=1

pjt(s
j)

hk(s) .

The results of the previous sections show that the players can ensure that the
empirical frequencies of play in the mixed extension,

µn =
1

n

n∑
t=1

δ(p1t ,...,pN
t ) ,

converge to some set of correlated equilibria of the mixed extension of Γ, for
instance, the set EL0 of correlated equilibria with respect to all measurable
departures, or the set EL of correlated equilibria with respect to all linear
departures. The convergence to EL0 may be seen by Theorem 6, whereas the
convergence to EL is given by Theorem 15, since the set of all linear mappings
P(Sk) → P(Sk) is the convex hull of a finite number of mappings.

5 The notation xε = Θ(yε) means that the ratio xε/yε is bounded above and below
by positive numbers as ε tends to 0.
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Recall that this is done by minimizing the internal regrets, that is, by ensuring
that for all players k and all ϕk ∈ Fk,

n∑
t=1

hk(p−kt , ϕk(p
k
t ))−

n∑
t=1

hk(p−kt , pkt ) = o(n) , (10)

where Fk is either a countable dense subset of the set of all continuous func-
tions P(Sk) → P(Sk), or the finite set of the mappings generating all linear
functions P(Sk) → P(Sk).

We are actually interested in playing in the original finite game, and to do
so 6 , we assume that at each round t = 1, 2, . . ., each player k draws an action
skt ∈ Sk according to pkt . We denote by (π̂n)n∈N∗ the sequence of joint empirical
frequencies of play,

π̂n =
1

n

n∑
t=1

δ(s1t ,...,sN
t ) ,

and study its convergence properties. One may wonder whether it converges
almost surely to a set strictly smaller than the set EΓ of correlated equilibria
of the finite game Γ for some game Γ.

Here we point out that the results of this paper do not imply convergence of
the empirical frequencies to a set smaller than the set of correlated equilibria
of the finite game. More precisely, we show that the set of correlated equilibria
of the mixed extension and that of the original finite game are the same in a
natural sense.

For any distribution µ over P(S1)× · · · × P(SN), denote by ψ(µ) the distrib-
ution ψ(µ) = π over S1 × · · · × SN defined, for all ik ∈ Sk, by

π(i1, . . . , iN) =
∫
P(S1)×···×P(SN )

p1(i1) . . . pN(iN) dµ(p1, . . . , pN) . (11)

By this definition and by considering the linear extension of hk, we have that
Eψ(µ)h

k = Eµh
k for all k and µ.

Denote πn = ψ(µn) and note that ‖πn − π̂n‖ → 0 by martingale conver-
gence. (π̂n)n∈N∗ and (πn)n∈N∗ have therefore the same convergence properties.
But since ψ is continuous, the πn = ψ(µn) converge to the set ψ(EM), and
therefore, so do the π̂n.

By Remark 8, ψ(EL0) ⊆ EΓ. Below we show that, in fact, ψ(EL0) = ψ(EL) =

6 Note that by martingale convergence, (10) is ensured almost surely whenever for
all players k and all ϕk ∈ Fk,

∑n
t=1 h

k(s−kt , ϕk(pkt ))−
∑n

t=1 h
k(s−kt , pkt ) = o(n). This

can be done in the finite game by using the fixed-point techniques of Section 4.3, in
the sense that it can be achieved in the game where only the chosen action profiles
(s1t , . . . , s

N
t ) (and not the probability distributions (p1

t , . . . , p
N
t )) are made public.

23



EΓ. In this sense, the sets of correlated equilibria of the mixed extension
and of the original finite game are the same. Thus, one cannot hope tighter
convergence results by minimizing the internal regret in the mixed extension
of the game.

Lemma 25 ψ(EL0) = ψ(EL) = EΓ.

Proof The equality between EΓ and ψ(EL) is immediate, by linearity and in
view of (11).

We now prove that each correlated equilibrium π of Γ may be written as ψ(µ),
where µ ∈ EL0 , that is, µ is a probability distribution over P(S1)×· · ·×P(SN)
that is a correlated equilibrium with respect to all measurable departures.

For a given correlated equilibrium π ∈ EΓ, we choose

µ =
∑

i1,...,iN

π(i1, . . . , iN) δ(δi1 ,...,δiN ) ,

where δij is the probability distribution over Sj that puts probability mass 1
on ij. We have to prove that for all players k, for all measurable departures ϕk,∫

P(S1)×···×P(SN )
hk(p−k, pk) dµ(p1, . . . , pN)

>
∫
P(S1)×···×P(SN )

hk(p−k, ϕk(p
k)) dµ(p1, . . . , pN) .

In view of the form of µ, only the values pk of the form δik where ik ∈ Sk matter
in the above integrals. Define a linear mapping Lk from P(Sk) to P(Sk) by
Lk(δik) = ϕk(δik), for all ik ∈ Sk. Then,∫

P(S1)×···×P(SN )
hk(p−k, ϕk(p

k)) dµ(p1, . . . , pN)

=
∫
P(S1)×···×P(SN )

hk(p−k, Lk(p
k)) dµ(p1, . . . , pN) .

This concludes the proof in view of the first equality noted above.

We conclude this section by pointing out that the minimization proposed by
(10) is, using the terminology of Greenwald and Jafari [15], a matter of Φ-
no regret, with Φ including all (extremal) linear functions as well as many
other continuous maps. This solves the first half of the question posed in
the conclusion of [15]. The second part of the question is to determine if, by
performing the regret minimization (10), one could achieve convergence to
tighter solution concepts than simply the set of all correlated equilibria. We
showed strong evidence that this is not so.
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Appendix

Proof of Theorem 5

For s = (s1, . . . , sN) ∈ S, we write ‖s‖∞ = maxi=1,...,N ‖si‖ where ‖si‖ is the
norm of si in Si.

First, we prove the direct implication. Fix π, a (L0(Sk))16k6N -correlated equi-
librium of the continuous game Γ. Choose any number ε > 0. It suffices to
show that there exists a r0 such that for every discretization of size r < r0, π
induces a 2ε-correlated equilibrium.

Each hk is uniformly continuous, so we may choose r0 such that for all k ≤ N ,
s, t ∈ S, ‖s− t‖∞ 6 r0 implies

hk(s)− hk(t)
 6 ε. Fix a discretization

(P ,D) of size r less than r0.

Fix a player k and a departure gk : Dk → Dk. We need to prove that∑
t∈D

πd(t)h
k(t) + 2ε >

∑
t∈D

πd(t)h
k(t−k, gk(t

k)) . (12)

Define ψk : S → S by ψk(s
k) = gk(t

k
j ) for all sk ∈ V k

j . ψk is a measurable
function. Now, for all s ∈ V 1

i1
× . . .× V N

iN
,www(s−k, ψk(s

k))− (t1i1 , . . . , gk(t
k
ik

), . . . , tNiN )
www
∞

6 r .

Therefore, due to the uniform continuity of the hk, we have for all k,
∫
S
hk(s−k, ψk(s

k)) dπ(s)−
∑
t∈D

πd(t)h
k(t−k, gk(t

k))

 6 ε .

It is even easier to see that
∫
S
hk(s−k, sk) dπ(s)−

∑
t∈D

πd(t)h
k(t−k, tk)

 6 ε .

Now, as π is a correlated equilibrium of the original game,∫
S
hk(s−k, sk) dπ(s) >

∫
S
hk(s−k, ψk(s

k)) dπ(s) .

Combining the last three inequalities leads to (12), thus concluding the direct
part.

The converse implication is proved in a similar way. First, note that thanks
to Lemma 22, we can restrict our attention to continuous departures. Assume
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that there exists a function ε with limr→0 ε(r) = 0 such that for all discretiza-
tions (P ,D) of size r, π induces an ε(r)-correlated equilibrium.

Fix an arbitrary η > 0. We show that for all k and all continuous functions
ψk : Sk → Sk,∫

S
hk(s−k, sk) dπ(s) + η >

∫
S
hk(s−k, ψk(s

k)) dπ(s) . (13)

(The conclusion will follow by letting η decrease to 0.)

Fix a player k and a continuous departure ψk. As hk is uniformly continu-
ous, we can choose δ > 0 such that for all s, t ∈ S, ‖s− t‖∞ 6 δ implieshk(s)− hk(t)

 6 η/3. Now, ψk is also uniformly continuous, so that there

exists δ′ > 0 such that for all s, t ∈ S, ‖s− t‖∞ 6 δ′ implies |ψk(s)− ψk(t)| 6
δ/2. Finally, take r0 > 0 sufficiently small so that for all r 6 r0, ε(r) 6 η/3.
We consider r = min(r0, δ, δ

′).

There exists a finite cover of each Sj by open balls of radius r, denoted by
B(xji , r), 1 6 j 6 N , 1 6 i 6 Nj. Each open cover is converted into a
measurable partition in the following way. For 1 6 j 6 N , 1 6 i 6 Nj,

V j
i = B(xji , r)\

(
∪i−1
m=1B(xjm, r)

)
.

We take the grid given by the centers, that is, with the above notation, tji = xji ,
1 6 j 6 N , 1 6 i 6 Nj. We thus have obtained a discretization of size less
than r, and denote by πd the probability measure induced by π.

We define gk : Dk → Dk as follows. For 1 6 j 6 Nk, gk(x
k
j ) = xkm where

1 6 m 6 Nk is the index such that ψk(x
k
j ) ∈ V k

m. Note that in particular,wwwgk(xkj )− ψk(x
k
j )
www 6 r 6 δ/2.

But if sk ∈ V k
ik

,
wwwsk − xkik

www 6 r 6 δ′, so
wwwψk(sk)− ψk(x

k
ik

)
www 6 δ/2. Finally,wwwψk(sk)− gk(x

k
ik

)
www 6 δ. Thus, if s ∈ V 1

i1
× . . .× V N

iN
,www(s−k, ψk(s

k))− (x1
i1
, . . . , gk(x

k
ik

), . . . , xNiN )
www
∞

6 δ .

Therefore, by uniform continuity of hk,
∫
S
hk(s−k, ψk(s

k)) dπ(s)−
∑
x∈D

πd(x)h
k(x−k, gk(x

k))

 6
η

3
.

Again, it is even easier to see that
∫
S
hk(s−k, sk) dπ(s)−

∑
x∈D

πd(x)h
k(x−k, xk)

 6
η

3
.
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Since π is an ε(r)-correlated equilibrium (and since ε(r) 6 η/3), it is true that

∑
x∈D

πd(x)h
k(x) +

η

3
>
∑
x∈D

πd(x)h
k(x−k, gk(x

k)) .

Combining these last three inequalities, we get (13), concluding the proof. 2

Proof of Lemma 21

Hirsch and Lacombe [21] consider the set of continuous functions defined on a
compact metric set X into R and show that this set is separable (Proposition
1.1). But it turns out that this proof easily extends to the case of Lemma
21, giving, in addition, an example of a dense countable subset of C(X). We
simply need the following well-known lemma, see for instance Rudin [26].

Lemma 26 (Partition of unity) If X is a locally compact Hausdorff space,
then, given a finite number of open sets V1, . . . , VN and a compact K ⊂
∪i=1,...,NVi, there exist N non-negative continuous functions h1, . . . , hN sum-
ming to 1 over K, such that hi vanishes outside Vi.

Proof of Lemma 21 As X is a compact set, for a given n ∈ N∗, there
exist finitely many xjn, j = 1, . . . , Nn, such that the collection of open balls of
common radius 1/n and centered in these xjn forms a finite cover of X,

X = ∪Nn
j=1B(xjn, 1/n) .

We denote the set formed by these xjn by Xn. By Lemma 26 (with K = X),
denote by ϕnj , j = 1, . . . , Nn, a partition of unity constructed over this open
cover of X. We denote by An the set formed by

An =


Nn∑
j=1

yjnϕ
n
j , (yjn)j=1,...,Nn ∈ (Xn)

Nn

 .

An is a finite set. By convexity of X, each element of An maps X into X. By
continuity of the ϕnj , An is finally seen as a subset of C(X).

We consider the countable subset A formed by the union of the An, A =
∪n∈N∗An, and claim that A is dense in C(X). To see this, fix a continuous
function f ∈ C(X). As f maps the compact metric space X into itself, f is
uniformly continuous over X. Fix ε > 0 and choose δ > 0 small enough to
ensure that ‖x− y‖ < δ implies ‖f(x)− f(y)‖ < ε, where ‖·‖ denotes the
norm of the underlying normed space that contains X. Now, fix a sufficiently
large integer n such that 1/n < min(δ, ε). For every j = 1, . . . , Nn, choose yjn
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such that ‖yjn − f(xjn)‖ 6 ε. Introduce the functions

g =
Nn∑
j=1

f(xjn)ϕ
n
j , h =

Nn∑
j=1

yjnϕ
n
j .

It is clear that h ∈ A, and we prove that ‖f − h‖∞ 6 2ε.

For a given x ∈ X,

‖f(x)− g(x)‖ =

wwwwww
Nn∑
j=1

(
f(x)− f(xjn)

)
ϕjn(x)

wwwwww 6
Nn∑
j=1

wwwf(x)− f(xjn)
wwwϕjn(x) .

Now, ‖f(x)− f(xjn)‖ϕjn(x) 6 εϕjn(x), simply because ϕjn vanishes outside
B(xjn, 1/n) (which is included in B(xjn, δ)), whereas, thanks to uniform con-
tinuity, the norm of the difference f(x) − f(xjn) is less than ε over this ball.
Finally, recalling that the ϕnj sum to 1, we get ‖f − g‖∞ 6 ε.

A similar argument, using the fact that for every j, ‖yjn − f(xjn)‖ 6 ε, shows
that ‖g − h‖∞ 6 ε, thus concluding the proof. 2

Proof of Lemma 22

The proof is a combination of Lemma 20 and Corollary 28, which is derived
from the following version of Lusin’s theorem tailored for our needs.

Proposition 27 If X is a convex and compact subset of a normed space,
equipped with a probability measure µ (defined over the Borel σ-algebra), then
for every measurable function f : X → X and for every δ, ε > 0, there exists
a continuous function g : X → X such that

µ {‖f − g‖ > δ} 6 ε .

Proof We use the notation (and the techniques) of the proof of Lemma 21.
First note that µ is regular, since it is a finite measure over the Borel σ-algebra
of a Polish space (compact metric spaces are Polish).

Fix n large enough such that 1/n < δ. Consider the Nn measurable sets

Mn
j = f−1

(
B(xnj , 1/n)

)
.

By regularity of µ, one can find compact sets Kn
j and open sets V n

j such that,
for all j,

Kj
n ⊂Mn

j ⊂ V n
j , µ(V n

j \Kn
j ) 6

ε

Nn

.
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By construction, the Mn
j form a cover of X. Therefore, the V n

j form an open
cover of X. By Lemma 26 (with K = X), fix a partition of unity based on this
open over, which we denote by ξn1 , . . . , ξ

n
Nn

. Consider the continuous function
g given by

g =
Nn∑
j=1

xnj ξ
n
j .

By convexity of X, g maps X into X. Now, as above, for all x ∈ X,

‖f(x)− g(x)‖ 6
Nn∑
j=1

wwwf(x)− xjn
www ξjn(x) .

By construction, ‖f(x)− xjn‖ ξjn(x) 6 ξjn(x)/n provided that x ∈Mn
j ∪ (V n

j )c.
So, ‖f(x)− g(x)‖ 6 1/n < δ, except, possibly, on the measurable subset ∆
defined by

∆ = ∪Nn
j=1V

n
j \Mn

j ,

whose µ-measure is seen to be less than ε by subadditivity of the measure. 2

Now, setting δn = εn = 1/2n, and using Borel-Cantelli lemma, one easily gets
the following corollary.

Corollary 28 If X is a convex and compact subset of a normed space, equipped
with a probability measure µ (over the Borel σ-algebra), then every measurable
function f : X → X may be obtained as a µ-almost sure limit of continuous
functions (gn)n∈N∗ mapping X into X.
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