
SAGE-based Tiled Display Wall Enhanced with

Dynamic Routing Functionality Triggered by User

Interaction

Yoshiyuki Kidoa, Kohei Ichikawab, Susumu Datea, Yasuhiro Watashibaa,
Hirotake Abec, Hiroaki Yamanakad, Eiji Kawaid, Haruo Takemuraa, Shinji

Shimojoa,d

aOsaka University, Japan
bNara Institute of Science and Technology, Japan

cUniversity of Tsukuba, Japan
dNational Institute of Information and Communications Technology, Japan

Abstract

To empower scientists who are engaged in nation-wide or global-scale col-
laborative projects for scientific discovery, a large amount of scientific data
needs to be visualized and then shared among the scientists. Tiled Display
Wall (TDW) systems has been widely accepted and used for visualization of
large-scale scientific data. Scalable Adaptive Graphics Environment (SAGE)
has received attention from scientists as a middleware that organizes multiple
display monitors into a network-aware large display monitor. Using a SAGE
TDW, scientists can display multiple visualized contents on a single display
monitor, each of which can be located at geographically distant site man-
aged by other organizations. However, SAGE does not have a mechanism
for managing multiple visualized data streams heading for a single TDW.
In a conventional network, data flows for a same destination tend to share
a same link, resulting in drop of packets and therefore poor visual quality.
Moreover, because of the flexible nature of SAGE, rate of each visual data

Email addresses: kido@cmc.osaka-u.ac.jp (Yoshiyuki Kido),
ichikawa@is.naist.ac.jp (Kohei Ichikawa), date@cmc.osaka-u.ac.jp (Susumu
Date), watashiba-y@cmc.osaka-u.ac.jp (Yasuhiro Watashiba),
habe@cs.tsukuba.ac.jp (Hirotake Abe), hyamanaka@nict.go.jp (Hiroaki Yamanaka),
eiji-ka@nict.go.jp (Eiji Kawai), takemura@cmc.osaka-u.ac.jp (Haruo Takemura),
shimojo@cmc.osaka-u.ac.jp (Shinji Shimojo)

Preprint submitted to Future Generation Computer Systems February 20, 2015



flows may change dynamically as a result of user interaction on a TDW,
such as moving and resizing a visual window. For the reason above, we pro-
pose and develop a dynamic route allocation method that switches packet
flows onto network links where better performance is expected, in response
to user-interaction such as window movement and resizing. Technically, we
have leveraged OpenFlow, an implementation of Software Defined Network-
ing (SDN), to integrate network programmability into SAGE. In this paper,
we show how SAGE enhanced with the proposed method succeeded in avoid-
ing network congestion and improving the quality of visualization on the tiled
display wall over the wide area OpenFlow network on the Internet.

Keywords:

1. Introduction

To understand the meaning of a large amount of analysis results gener-
ated through modern scientific techniques such as big data and data-intensive
analysis, the results need to be visualized in an intuitive manner. The vi-
sualized results also need to be shared among multiple researchers. Modern
science deals with complex and challenging problems, and collaborative re-
searchers often from di↵erent universities and institutes globally are essential.
For example, to observe a supernova explosion in astronomy, astronomers
have organized an international virtual observatory alliance to develop a fixed
point observation and visualization system using many di↵erent observatories
in the world [1].

To provide an intuitive understanding for large-scale scientific data, high-
resolution visualization is indispensable. Tiled Display Wall (TDW) systems
have been widely accepted for this purpose because of their scalability in
resolution. TDW provides a single virtual large monitor composed of multiple
sets of computers and displays. The resolution can easily be increased by
adding other sets of computers and displays. High-resolution visualization
in the TDW also allows multiple researchers to see a large display monitor
simultaneously and collaborate with each other.

There have been several TDW middleware such as SAGE [2], COVICE [3]
and CGLX [4]. SAGE, in particular, has gathered attention and concern
from scientists. The reason is that SAGE-based tiled display wall allows
scientists to receive multiple sets of visualized data streams, each of which
is generated on geographically-di↵erent administrative domain, and display

2



them on a single virtual monitor, while the other middleware are designed
to mainly work in a single local environment. This feature of SAGE allows
scientists to easily share large visualized data over network and promote
global collaborations.

SAGE uses IP network to transfer visual data streams from a sender
to a receiver in a straightforward way. This design choice contributes to
achieve simplicity and ease of use of SAGE. However, this architectural design
may give rise to some problems when we use SAGE over wide-area network.
Each network streaming may generate a large volume of network tra�c.
To transfer a single full HD video with 30 fps, for example, approximately
1.4 Gbps tra�c will be generated. In addition, the streaming tra�c will
be changed dynamically in volume depending on user-interaction such as
window movement and resizing. Therefore, user-interaction to visualization
on SAGE-based TDW sometimes results in network congestion, which further
leads to a decrease in visualization quality caused from the frame rate drop.

We have developed a dynamic route allocation method that controls
packet flows to prevent links in a network from being heavily congested.
Technically, we have leveraged OpenFlow, an implementation of Software
Defined Networking, to integrate network programmability into SAGE. Our
proposed method optimizes network routing in response to external events
that may a↵ect the balance of network flows, i.e. user-interactions. In the
development environment of this research, we use JGN-X/RISE [5][6][7], a
network testbed provided by NICT, Japan.

The remainder of this paper is organized as follows. Section 2 provides
the technological background of this research. Section 3 will briefly describe
our previous work, fault avoidance network functionality with SAGE and
OpenFlow, and technical issues to be addressed in this research. Section
4 illustrates our proposed method, the dynamic route allocation method,
in detail. In Section 5, we present some experimental results in our local
environment, we conclude our research and suggest future work in Section 6.

2. Technological Background

In order for better understandings on the remaining part of this paper,
we briefly introduce the technologies leveraged in this paper.

3



2.1. SAGE

SAGE (Scalable Adaptive Graphic Environment) is a TDW middleware
originally developed by the electronic visualization laboratory, University of
Illinois at Chicago, to realize a scalable visualization [2]. SAGE allows users
to stream the pixels of each application over the network. It is designed so
that users can freely move and resize each application’s window over a TDW
at run time. SAGE consists of Free Space Manager, SAGE Application
Interface Library (SAIL), SAGE Receiver, and SAGE UI (User Interface),
as illustrated in Fig. 1. The Free Space Manager (fsManager) controls pixel
streams between SAIL and the SAGE Receivers. SAIL captures output pixels
from applications, and streams them to appropriate SAGE Receivers. A
SAGE Receiver can receive multiple pixel streams from di↵erent applications,
and can display streamed pixels on the displays connected to the SAGE
Receiver.

The Free Space Manager works similarly to a window manager in X11
window system. It handles the layout and placement of application windows
on a TDW. Based on the information on the window layout, the Free Space
Manager informs the SAIL linked with each application of how it should split
the application images and where it should send the divided images. SAIL re-
members how incoming images should be divided so that it can continuously
send divided images to SAGE Receivers without communicating anything to
the Free Space Manager. This direct access architecture from SAIL to SAGE
Receivers is the core design concept in SAGE, which produces the scalability
on SAGE.

SAGE UI is a graphical user interface that allows users to move and
resize each application window on a TDW. SAGE UI connects to a Free
Space Manager and delivers user commands (e.g. move, resize, etc.) to
the Free Space Manager. Window layout modification through SAGE UI
is immediately informed to the SAIL of the corresponding application and
then SAIL may change the destination of each data stream to another SAGE
receiver, if necessary. This may also cause drastic changes in network tra�c
when applications are deployed globally. User-interactions through SAGE
UI therefore sometimes results in network congestion and as a result leads to
decrease of visualization quality caused by the frame rate drop.

2.2. Software Defined Networking

Software Defined Networking (SDN) is an emerging concept that intro-
duces programmability into the network and makes the network more flexible,

4



Figure 1: Architecture of SAGE

Figure 2: Overview of OpenFlow Architecture

easier to operate and manage, and be able to respond to changing application
and network conditions. SDN decouples the network control plane from the
data/forwarding planes, enabling a centralized control of the network layer.
OpenFlow is a network protocol designed to actualize the concept of SDN
and used in communication between the network control plane (OpenFlow
controller) and data planes (OpenFlow switches) [8][9].

Figure 2 gives an overview of OpenFlow architecture. A typical Open-
Flow network consists of a centralized OpenFlow controller and OpenFlow
switches. Each OpenFlow switch has a flow table, which is similar to the
routing table in a network router. The flow table contains flow entries, each
of which is defined by several packet matching rules (e.g. packets with a spe-
cific MAC address, IP address and protocol type) and a set of actions (e.g.
forward, modify and queue). Incoming packets to an OpenFlow switch are

5



Figure 3: Network Failure Avoidance Mechanism built into SAGE using OpenFlow

compared to the flow entries, and if the packet matches a packet matching
rule in a flow entry, the set of actions associated with the flow entry are per-
formed. Packets that do not match any flow entry are sent to the OpenFlow
controller, and then the OpenFlow controller decides how the packets should
be handled and the OpenFlow controller can modify the flow tables. This
centralization of the network intelligence is the key concept of SDN. In this
research, we let the OpenFlow controller respond to the requests from SAGE
and optimize network routing dynamically based on requests by employing
the programmability of OpenFlow.

3. Previous Work and Remaining Challenge

We have been working on improvements of the networking feature of
SAGE. Our previous work focused on the avoidance of network failure using
OpenFlow technology [10]. In the paper, we presented how our proposed
system can detect network failure and discover an alternative route to avoid
the failure. The architecture of the network failure avoidance system built
into SAGE is shown in Fig. 3. The key concept of the previous work is
to detect network failure in the application layer and directly inform the
OpenFlow controller of the failure. More specifically, in our previous system,

6



the SAGE Receivers keep monitoring the frame rate of pixel streaming from
the applications, if they encounter sudden frame drops, the SAGE Receivers
asked the OpenFlow controller to search for an alternative route for the pixel
streaming. This kind of quick recovery is hard to be achieved with traditional
failure detection methods in the network layer.

In the previous work, we did not focus on dynamic changes of network
tra�c caused by user-interaction in SAGE. As mentioned in Section 1 such
dynamic changes of network tra�c may result in network congestion and
then lead to a decrease in visualization quality. This problem can be also
addressed by leveraging the direct interaction between the application layer
and the network layer as proposed in the previous work. In SAGE, dynamic
changes of network tra�c are caused by 1) starting a new application, 2)
moving an application window, and 3) resizing an application window. These
events can be detected by the Free Space Manager of SAGE. Focusing on
the network problem triggered by user-interaction, we propose an interface
on the OpenFlow controller so that it can accept requests from the Free Space
Manager and dynamically reroute the network path.

4. Proposed Method

In this paper, we present our extended version of SAGE middleware with
a dynamic route allocation method in response to user-interactions such as
opening, closing, moving and resizing windows. Figure 4 shows an overview
of our proposed system and how the system works.

To respond to the transition of network condition triggered by user in-
teraction, routing measurement of the amount of packets in each flow is
essential. Furthermore, this measurement must be performed immediately
after any user interaction occurs. The measurement of the amount of pack-
ets in flow is recorded for each physical port on OpenFlow switches. These
records are aggregated to a database built on an OpenFlow controller.

Our proposed method is assumed to run in the same environment as
our previous work does. The control logic in our proposed method can be
summarized as the following two workflows: the background workflow and
the user-interaction workflow. The background workflow contains the T1
and T2 brown arrows as shown in Fig. 4.

T1 The controller obtains the information (e.g. number of packets, amount
of data, etc. for both incoming and outgoing directions) on links that
composes of an entire network from OpenFlow switches.

7



T2 T1 information is periodically recorded and updated on the database on
the controller.

The user-interaction workflow responds to user operations and network rout-
ing. The main tasks of this workflow is represented by the blue arrows labeled
S1–S6, as shown in Fig. 4. The following is the step-by-step description how
this workflow functions when a user operations (such as moving and resizing)
are delivered into an application window:

S1 When a user operates a SAGE application window on an application
node, the application node notifies the fsManager of the operational
information and application information via the SAIL interface. The
fsManager of operation information includes window size, vertical and
horizontal coordinate.

S2 If the fsManager is informed of any user’s operational event occurred on
the application node, the fsManager sends a message to the OpenFlow
controller to request the OpenFlow controller to discover and assign
a route for pixel streams of the corresponding application so that it
avoids the network collisions.

S3 For route selection, the routing module in the OpenFlow controller needs
to retrieve network topology information from the database.

S4 The routing module determines a route for network optimization so that
a network collision on the network between the display node and ap-
plication node does not occur.

S5 The fsManager sends a message of the route assignment to the OpenFlow
controller.

S6 The application node connects to the display node via the optimized
path.

To find an alternative path for a better throughput, we have adopted Dijk-
stra’s algorithm where the cost parameter on each link is given from its packet
count. Dijkstra’s algorithm with a length which is assumed from existing flow
packet count is selected here as an optimization algorithm because it is faster
than another algorithms in finding the smallest packet count (shortest path)
in all routes between the application node and the display node.

8



Figure 4: Overview of System Architecture

5. Evaluation and Discussion

In this section, we report the evaluation results of our proposed method.
We have conducted experiments in two scenarios in order to confirm the
e↵ectiveness of the dynamic route allocation method. In the first scenario,
we observed the fluctuation of throughput when multiple applications were
deployed simultaneously. In the second scenario, we observed the fluctuation
of throughput when we moved the location of an application displayed on a
TDW in the case that another application also exists.

5.1. Multiple Application Streams

The first scenario was conducted to confirm the e↵ectiveness of our pro-
posed method when a new application is appeared on a TDW that where
another application was displayed. The setup of the application used in
this scenario is described in Table. 1. Without our dynamic route allocation

9



Table 1: Application Specification for the First Scenario

Application #1 & #2

Name Atlantis (shipped with SAGE)

Resolution 1600 ⇥ 900

Frame rate 30 frame/s

Bandwidth requirement 1Gbps

Figure 5: Network Topology Model for the First Scenario

method, the two streams from di↵erent applications tend to share the same
link, which as a result will cause network congestion and lead to frame rate
drop. On the other hand, with our proposed method, the use of each link is
monitored and the OpenFlow controller allocates appropriate route for each
application stream.

Figure 5 shows a logical network topology for the first scenario. NEC
UNIVERGE PF5240 as an OpenFlow switch was used with an OpenFlow
controller framework, Trema [11], in this evaluation. We divided the Open-
Flow switch into five virtual switches numbered from 0xd1 to 0xd5. The
topology shown in Fig. 5 is analogous to a wide-area network. Two appli-
cation nodes and display nodes were connected to di↵erent switches, switch
0xd1, 0xd2, and 0xd5, respectively. These switches can be considered as
edge switches for each di↵erent administrative domain site. These switches
are then connected with multiple paths to each other. The numbers beside
the switches represent physical port numbers on the OpenFlow switch. These
port numbers later to show the results of the network throughput.

First, we launched application #1 on application node A1. The window of
this application was specified to be displayed on the monitor of display node
D2. While application #1 kept sending a pixel stream to D2, we launched

10



Figure 6: Congested Route Assignment without Our Proposed Method

another application #2 on application node A2 at the time of T=60. The
application window of application #2 was specified to be displayed on the
monitor of the display node D1. In the later part of this section, allocated
paths and throughput are presented in cases with and without our proposed
method.

5.1.1. Case 1: Without our proposed method
Without our proposed method, the shortest route in terms of hop count

from the source to the destination is assigned for each packet flow and there-
fore an identical link of the network tends to be shared by two applications
even if there is still available bandwidth on other links. Figure 6 snapshots
the allocated routes for each application in this case. In this case, a link
between switch 0xd4 and 0xd5 was shared by the two applications. Fig-
ure 7 shows packet count per second for both transmitted packets (TX) and
received packets (RX) on each port on the OpenFlow switch.

As observed in Fig. 7, RX on port 44 was fully loaded during this case
without our proposed method. However, the use of ports 21, 36 and 41 were
reduced after application #2 was launched. This fact means that network
congestion took place on the link between port 38 and port 44. Reduced
packets were forwarded through the switch 0xd5 from the application #1.
Figure 8 also shows frame rate drops on the two display nodes when the
network congestion occurred.

5.1.2. Case 2: With our proposed method
With our proposed method, the congested route was not assigned. As

shown in Fig. 9, the two packet flows for the two applications were completely

11



Figure 7: Packet Count Per Second on Each Virtual Switch

Figure 8: Frame Rate Drops on the TDW during Network Congestion

12



Figure 9: Route Assignment with Our Proposed Method

Figure 10: Packet Count Per Second on Each Virtual Switch with Our Proposed Method

isolated. All network flows were also very stable, as shown in Fig. 10. In
addition, the frame rate also keeps the high frame rate stable (Fig. 11).

13



Figure 11: Frame Rate with Our Proposed Method

Table 2: The application specification for the 2nd scenario

Applications #1 & #2

Name Atlantis (shipped with SAGE)

Resolution 1100 ⇥ 620

Frame rate 30 frame/s

Bandwidth requirement 500Mbps

5.2. Dynamic Tra�c Changes caused by User-Interaction

The next scenario was conducted to confirm the e↵ectiveness of our pro-
posed method when the network congestion caused by application window
movement. The setup of the application used in this scenario is described in
Table 2. Without our dynamic route allocation method, the new application
stream caused by user-interaction kept using an heavy-loaded link, which
leads to frame rate drops. With our proposed method, the route assignment
is always recalculated when the user-interaction a↵ects on network tra�c.

Figure 12 shows the logical network topology in the second scenario. In
this experiment, we divided the OpenFlow switch into four virtual switches
numbered from 0xd1 to 0xd4. Two application nodes and display nodes are
connected to di↵erent switches, switch 0xd1, 0xd3 and 0xd2 respectively.
These switches can be considered edge switches in each di↵erent administra-
tive domain site. In this experiment, we imposed a bandwidth limitation on
the intermediate links connecting the edge switches to emulate a wide area
network. In this way, we assume that the local links presented as bold lines
are available with 1 Gbps bandwidth, and that the global links presented as

14



Figure 12: Network Topology Model for the Second Scenario

Figure 13: Congested Route Assignment without Our Proposed Method

thin lines are limited up to 500Mbps.
Under this setting and configuration, we first launched both applications

#1 and #2 on the application node A2, and both application windows were
configured to be displayed on the monitor of display node D1. Next, we
moved the window of the application #2 to the center of displays D1 and
D2. This generated another new pixel stream from A2 to D2. Finally, we
moved the window of the application #2 to the display D2 completely. In
the following section, allocated paths and throughput are also presented in
the case of with and without our proposed method.

15



Figure 14: Packet Count Per Second on Each Virtual Switch

Figure 15: Frame Rate Drops on the TDW during Network Congestion

5.2.1. Case 1: Without our proposed method
Without our proposed method, as shown in the previous experiment, a

shortest route from the source to the destination is assigned to each packet
flow and an identical link may be shared by multiple applications. Figure 13
snapshots the allocated routes for each application stream. All application
streams were assigned into the same route from switch 0xd3 to 0xd2 and
caused network congestion. Figure 14 shows packet count per second on

16



Figure 16: Route Assignment with Our Proposed Method

each physical port on the OpenFlow switch.
As illustrated in Fig. 14, RX on port 16 was fully loaded throughout the

experiment. In this case, port 21 could have consumed a more bandwidth.
However, all streams got stacked at port 16 and could not fully utilize the
local link. Fig. 15 shows how the frame rate drops as caused by network
congestion. From this figure, the change in the network use caused by appli-
cation window movement can be observed.

5.2.2. Case 2: with our proposed method
With our proposed method, the route assignment is always recalculated

when the use of the network is changed by any user-interaction. Figure 16
shows the route assignments when we moved the window of application #2
in the center of displays D1 and D2. The blue line indicates the pixel stream
of application #1, and the red and green lines indicates the two pixel streams
of application #2. The user-interaction created another new stream and we
had three application streams in total. However, our proposed method has
succeeded to assign an appropriate route to each application stream.

As shown in Fig. 17, port 21 was fully used compared to the case without
our proposed method. The incoming tra�c on the port 16 which delivers the
stream for application #1 was stable even if we launched another application
and moved the application window on TDW. Also, Fig. 18 shows how both
application frame rates succeeded to keep the high frame rate steady.

17



Figure 17: Packet Count Per Second on Each Virtual Switch with Our Proposed Method

6. Conclusion

In this research, we proposed a method to avoid network congestion when
high-quality visual data streams are received and displayed on a network-
aware tiled display wall (TDW) via wide-area network. One of the techni-
cal challenges here was to allocate appropriate network routes to each data
stream when a new application was launched. The another challenge was
to rearrange network routes of existing data streams when users’ interaction

18



Figure 18: Frame Rate with Our Proposed Method

with TDW was triggered, which may cause unbalance in network tra�c and
consequently degradation of visualization quality. Our experimental results
show that our proposed method can successfully avoid network congestion.
For future work, we will apply our method to a real wide-area network and
consider the influence of network delay beyond the Internet. Finally, consider
to apply our proposed method to visual contents in higher resolution, such
as 4K and 8K.

Acknowledgment

This research was partly supported by the collaborative research of Na-
tional Institute of Information and Communications Technology (NICT) and
Osaka University (Research on high functional network platform technology
for large-scale distributed computing).

[1] P. J. Quinn, D. G. Barnes, I. Csabai, C. Cui, F. Genova, B. Hanisch,
A. Kembhavi, S. C. Kim, A. Lawrence, O. Malkov, M. Ohishi, F. Pasian,
D. Schade, W. Voges, The International Virtual Observatory Alliance:
recent technical developments and the road ahead, Proc. SPIE 5493,
Optimizing Scientific Return for Astronomy through Information Tech-
nologies, 137 , Jun. 2004.

[2] B. Jeong, L. Renambot, R. Jagodic, R. Singh, R. J. Aguilera, A. John-
son, and J. Leigh, High-performance dynamic graphics streaming for

19



scalable adaptive graphics environment, Proc. of Supercomputing 2006
(SC06) , p.24, Nov. 2006.

[3] D. Rantzau, U. Lang, R. Lang, H. Nebel, A. Wierse and R. Ruehle,
Collaborative and Interactive Visualization in a Distributed High Per-
formance Software Environment, Proc. of the International Workshop
on High Performance Computing for Computer Graphics and Visuali-
sation, pp.207–216, Jul. 1995.

[4] K. U. Doerr and F. Kuester, CGLX: A Scalable High-Performance Visu-
alization Framework for Networked Display Environments, IEEE Trans-
action ov Visualization and Computer Graphics , vol.17, issue 3, pp.320–
332, Mar. 2011.

[5] I. Yamauchi, T. Miyake, Y. Mikamo, J. Shimada, K. Kobayash and
H. Esaki, JGN II (Japan Gigabit Network II): A Research and Devel-
opment System for Advanced Broadband Networks, Proc of the 2005
Symposium on Applications and the Internet Workshops (SAINT 2005)
, pp.34–37, Jan. 2005.

[6] National Institute of Information and Communications Technology,
JGN-X,
http://www.jgn.nict.go.jp/english/

[7] S. Ishii, E. Kawai, Y. Kanaumi, S. Saito, T. Takata, K. Kobayashi and
S. Shimojo, A Study on Designing OpenFlow Controller RISE 3.0, Proc
of the 19th IEEE International Conference on Networks (ICON2013),
pp.1–5, Dec. 2013.

[8] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker and J. Turner, OpenFlow: Enabling Innovation in
Campus Networks, ACM SIGCOMM Computer Communication Review
, vol.44, issue 2, pp.69–74, Apr. 2008.

[9] The Open Flow Switch Specification, Version 1.1.0,
http://www.openflow.org/documents/openflow-spec-v1.1.0.pdf, (2011).

[10] T. Furuichi, S. Date, H. Yamanaka, K. Ichikawa, H. Abe, H. Takemura
and E. Kawai, A Prototype of Network Failure Avoidance Functionality
for SAGE Using OpenFlow, Proc. of 2012 IEEE 36th International Con-
ference on Computer Software and Applications Workshops (The Sixth

20



Middleware Architecture in the Internet (MidArch 2012)), pp.88–93, Jul.
2012.

[11] Full-stack OpenFlow Framework in Ruby and C,
http://trema.github.com/trema/

21


