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Abstract

This paper provides a complete classification of all t-norms on a family of lattices

in terms of t-norms on discrete chains. Moreover, the cardinal of some classes

on discrete chains is computed. Therefore, the number of t-norms on the family

of lattices is obtained. Also, new results involving Archimedean and divisible

t-norms are presented. Finally, we bring out dual results for t-conorms.
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1. Introduction

T-norms and t-conorms are basic tools in the framework of Fuzzy Logic.

They extend the conjunction and disjunction of classical sets and are suitable

to define fuzzy algebraic structures (for instance, see [1, 32]).

Firstly, they were defined on the interval [0, 1], but the need to work with5

incomparable elements is required in many contexts, so a more general algebraic

structure is fundamental (see [19]). Consequently, they have been studied on

bounded lattices (for instance, see [13, 15]).

One object of interest is to find which operators defined on bounded lattices

are t-norms (or t-conorms), or at least to estimate the number of them. If the10

bounded lattice is not finite, the number of them is infinite. Also, finite lattices

are used in the practice. For these reasons, we have focused on a family of finite

lattices in the paper.
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A pioneering article in this context was written by De Baets and Mesiar in

1999. They provided the number of t-norms on discrete chains up to a length15

of fourteen by computational methods (see [12]). Also, Bartušek and Navara

studied conjunctions on finite chains using a computer program generating all

t-norms (see [4]), and Petŕık focused on the building of finite negative totally

ordered monoids, in particular, discrete t-norms (see [30, 31]). Recently, the

number of t-norms on other families of lattices is found in [5].20

In general, the study of obtaining t-norms and t-conorms on bounded lat-

tices is a current topic (for instance, see [3, 10, 17]). There are different lines

of research focused on obtaining and building new t-norms. In 2005, Zhang

provided a method to obtain t-norms through monotone functions on bounded

partially ordered sets (see [38]). In particular, his work can be applied to finite25

lattices. In the studies of Palmeira et al., methods and techniques are presented

to extend t-norms (and t-conorms) from sublattices to lattices that contain them

(see [28, 29]).

Another way to obtain new t-norms from ones already given is through the

ordinal sum. However, the ordinal sum of t-norms on a finite lattice does not30

have to be a t-norm. In 2008, Saminger et al. studied the ordinal sum of t-

norms and the horizontal sum of bounded lattices (see [35]). In 2012, Medina

determined several necessary and sufficient conditions so that the ordinal sum

of two t-norms is also a t-norm (see [26]). In 2018, it is provided a method to

construct ordinal sums of t-norms (and t-conorms) on any bounded lattice (see35

[9]). Recently, new constructions of ordinal sums of t-norms (and t-conorms)

on bounded lattices have been presented (see [11, 14, 16]).

It is worth noting that t-norms and t-conorms are not the only operators that

are being investigated. Uninorms were recently defined on bounded lattices (see

[22]) and characterized by means of t-norms and t-conorms (see [8, 21]). More40

generally, aggregation functions and t-operators can be defined on bounded

lattices (see [7, 23]). All these operations are generalizations of the two concepts

that we study in-depth in this paper: the t-norm and the t-conorm.

In this article, we describe each and every one of the t-norms defined on a

2
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family of finite lattices in terms of the t-norms defined on the discrete chains.45

Some of them can be obtained using the ordinal sum, but most are not. The

lattices (see Figure 1) resemble the horizontal sum of discrete chains (see [33]).

Our family of lattices has the same elements as a horizontal sum of discrete

chains, but the imposition of a new connection between two elements makes our

lattice more complex to study.50

After the introduction, we present the basic concepts to understand the

article. Auxiliary information about t-norms on discrete chains is exposed in

Section 3. More precisely, we compute the number of some classes of t-norms

that are used in the following section. Section 4 is the main one and each t-norm

is completely described. Results are separated according to the properties of55

the t-norms. A significant class of t-norms is the class of Archimedean t-norms

(see for instance [34, 37]). Section 5 determines what are the Archimedean t-

norms. Another relevant class is the set of divisible t-norms. This property

is the proper equivalent to the continuity of t-norms on the interval [0, 1] in

the framework of discrete t-norms (see [24]). When the lattice is a discrete60

chain, these t-norms are exactly the 1-Lipschitz t-norms and they are well-

known (see [25]). Also, t-norms generate partial orders, and whenever a t-norm

is divisible, the corresponding partial order is a lattice (see [2]). More details

about divisible t-norms can be found in [18]. Section 6 is devoted to describing

them. Finally, Section 7 highlights the importance of the duality between t-65

norms and t-conorms. Each result written in the previous parts has a dual

result for t-conorms.

2. Preliminaries

We introduce the notions that will be used throughout the article.

Definition 2.1 ([6]). Let (L,≤) be a lattice. We say that L is a bounded lattice70

if there are 0, 1 ∈ L such that 0 ≤ x and x ≤ 1 for each x ∈ L.

Notice that each finite lattice is a bounded lattice.

3
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The first definition of the t-norm was given by Menger in [27]. The following

two notions are the generalization of t-norms and t-conorms from the interval

[0, 1] to a bounded lattice L.75

Definition 2.2 ([13]). Let (L,≤, 0, 1) be a bounded lattice. A function T :

L × L −→ L is called a triangular norm (a t-norm) on L if it satisfies the

following axioms:

1. T (x, y) = T (y, x) for all x, y ∈ L.

2. T (x, 1) = x for all x ∈ L.80

3. If x ≤ y, then T (x, z) ≤ T (y, z) for all x, y, z ∈ L.

4. T (x, T (y, z)) = T (T (x, y), z) for all x, y, z ∈ L.

Definition 2.3 ([13]). Let (L,≤, 0, 1) be a bounded lattice. A function S :

L × L −→ L is called a triangular conorm (a t-conorm) on L if it satisfies the

following axioms:85

1. S(x, y) = S(y, x) for all x, y ∈ L.

2. S(x, 0) = x for all x ∈ L.

3. If x ≤ y, then S(x, z) ≤ S(y, z) for all x, y, z ∈ L.

4. S(x, S(y, z)) = S(S(x, y), z) for all x, y, z ∈ L.

Computationally, in [12] De Baets and Mesiar calculated the number of t-90

norms on discrete chains. We show that data in Table 1. Due to the duality

between t-norms and t-conorms, this table provides the same information about

the number of t-conorms because a discrete chain is a self-dual lattice (more

information in Section 7).

3. Auxiliary information about t-norms on chains95

To illustrate the results of the paper, in this section we provide the number

of t-norms defined on a chain that are used in the main section.

Given a discrete chain

C = {0, α1, α2, . . . , αn, 1}

4
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n Pn n Pn

1 2 7 13775

2 6 8 86417

3 22 9 590489

4 94 10 4446029

5 451 11 37869449

6 2386 12 382549464

Table 1: Numbers of t-norms on discrete chains with n + 2 elements, that is, n non-trivial

elements.

satisfying 0 < α1 < α2 < · · · < αn < 1, we present the number of the following

families of t-norms on C.

1. T-norms T on the chain C satisfying T (α1, α1) = 0, that is, t-norms100

on a discrete chain satisfying that the smallest non-trivial element is not

idempotent. The number of them is denoted by An. See Column 2 in

Table 2.

2. T-norms T on the chain C satisfying T (α1, α1) = α1, that is, t-norms on

a discrete chain satisfying that the smallest non-trivial element is idem-105

potent. The number of them is denoted by A′n. See Column 3 in Table 2.

3. T-norms T on the chain C satisfying T (αn, αn) < αn, that is, t-norms on

a chain satisfying that the biggest non-trivial element is not idempotent.

The number of them is denoted by Bn. See Column 4 in Table 2.

4. T-norms T on the chain C satisfying T (αn, αn) = αn, that is, t-norms on110

a chain satisfying that the biggest non-trivial element is idempotent. The

number of them is denoted by B′n. See Column 5 in Table 2.

5. Fixed a k ∈ {1, 2, ..., n}, t-norms Tk on the chain C satisfying Tk(α1, αn) =

0 and Tk(αn, αn) ≤ αk. See Table 3.

Obviously, for each n ∈ N, we have that An +A′n = Pn (see Columns 2 and115

3) and Bn +B′n = Pn (see Columns 4 and 5). Moreover, A′n = Pn−1.
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n An A′n Bn B′n

1 1 1 1 1

2 4 2 3 3

3 16 6 11 11

4 78 22 46 48

5 357 94 215 236

6 1935 451 1108 1278

7 11389 2386 6273 7502

8 72642 13775 39114 47303

9 504072 86417 271604 318885

Table 2: Auxiliary information about the number of some families of t-norms on a discrete

chain.

4. Main results

We study the t-norms on the lattice described in Figure 1, where p, q are

natural numbers.

0

β1

β2

βp

βp−1

γ1

γ2

γq

γq−1

1

Figure 1: The lattice L.

Throughout the paper, Cβ and Cγ denote the following discrete chains with120
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k \ n 1 2 3 4 5 6 7 8 9

1 1 2 4 8 16 32 64 128 256

2 3 7 18 51 158 526 1844 6691

3 10 28 89 323 1358 6581 35912

4 40 127 481 2156 11593 75332

5 181 643 2869 15652 105115

6 914 3635 19127 126985

7 5118 23093 145198

8 31842 167468

9 222733

Table 3: For each k and n, the number of t-norms Tk on a discrete chain with n+2 elements

satisfying that Tk(α1, αn) = 0 and Tk(αn, αn) ≤ αk.

the induced order:

Cβ = {0, β1, . . . , βp, 1}

Cγ = {0, γ1, . . . , γq, 1}

Therefore, Cβ and Cγ are sublattices of L (see Figure 1).

Lemma 4.1. If T is a t-norm on L, then T (βi, γj) = 0 for each i ∈ {1, 2, ..., p}

and j ∈ {1, 2, ..., q − 1}.

Proof. T (βi, γj) ≤ βi∧γj = 0 for each i ∈ {1, 2, ..., p} and j ∈ {1, 2, ..., q−1}.125

Now, we present each t-norm on L. We have divided the propositions ac-

cording to the values of T (β1, β1) and T (γq, γq).

Proposition 4.2. Each t-norm T on L satisfying T (β1, β1) = β1 and T (γq, γq) =

7
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β1 is expressed as follows:

T (x, y) =



T ′(x, y) if x, y ∈ Cβ ,

x ∧ y if x = 1 or y = 1,

β1 if (x, y) ∈ {(βi, γq), (γq, βi) | i ∈ {1, ..., p}},

β1 if x = y = γq,

0 otherwise.

(1)

where T ′ is a t-norm on Cβ satisfying T ′(β1, β1) = β1.

Proof. Firstly, we prove that each t-norm T on L satisfying T (β1, β1) = β1

and T (γq, γq) = β1 has this expression. Finally, we will prove that each binary130

operator T on L which has this expression is a t-norm satisfying the mentioned

conditions.

If T is a t-norm on L, then T |C2
β

is a t-norm on Cβ . Moreover, since

T (β1, β1) = β1, we have that T |C2
β
(β1, β1) = β1. Put T ′ = T |C2

β
.

If x = 1 or y = 1, then T (x, y) = x ∧ y because T is a t-norm. Without

loss of generality due to commutativity, take x = βi for some i ∈ {1, ..., p} and

y = γq. By monotonicity,

β1 = T (β1, β1) ≤ T (x, y) ≤ βi ∧ γq = β1.

Under our hypothesis, T (γq, γq) = β1.135

In the last case, we have that T (γi, γq) ≤ T (γq, γq) = β1 for each i ∈

{1, ..., q−1}. This implies that T (γi, γq) ≤ γi∧β1 = 0. Consequently, T (γi, γj) ≤

T (γi, γq) = 0 for each i, j ∈ {1, ..., q−1}. Lemma 4.1 provides the rest of values.

Now, consider a binary operator T expressed by formula (1). The element 1

is the neutral element by definition of T and commutativity is straightforward.140

To prove the monotonicity, let us take x, y, z ∈ L \ {1} such that x ≤ y (if one

of them is equal to 1, the condition of monotonicity is trivial). If all of them

belong to Cβ , then T (x, z) = T ′(x, z) ≤ T ′(y, z) = T (y, z). If all of them belong

to Cγ , then monotonicity is clear due to the definition of T . Otherwise:

1. If x ∈ Cβ , necessarily y ∈ Cβ . Hence, z = γi for some i ∈ {1, ..., q}.145

8

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



When z = γq, then T (x, z) = β1 = T (y, z) and when z 6= γq, then

T (x, z) = 0 ≤ T (y, z).

2. If x ∈ Cγ , then y ∈ Cγ and z ∈ Cβ . If x = γq, then x = y and the

condition of monotonicity is trivial. If x 6= γq, then T (x, z) = 0 ≤ T (y, z).

Finally, let us check that T is associative. Take x, y, z ∈ L \ {0, 1} (whenever150

one of them is equal to 0 or 1, associativity is trivial).

If x, y, z ∈ Cβ , then T (x, T (y, z)) = T ′(x, T ′(y, z)) = T ′(T ′(x, y), z) =

T (T (x, y), z).

If one of them is equal to γi for some i < q, then T (x, T (y, z)) = 0 =

T (T (x, y), z) by definition of T . Therefore, the last case must consider one of155

them equal to γq. It is easy to check by definition of T that T (T (x, y), z) = β1 =

T (x, T (y, z)). We conclude that T is a t-norm on L. Besides, T (β1, β1) = β1

and T (γq, γq) = β1.

Proposition 4.3. Each t-norm T on L satisfying T (β1, β1) = β1 and T (γq, γq) =

γq is expressed as follows:

T (x, y) =



T1(x, y) if x, y ∈ Cβ ,

T2(x, y) if x, y ∈ Cγ ,

β1 if (x, y) ∈ {(βi, γq), (γq, βi) | i ∈ {1, ..., p}},

0 otherwise.

(2)

where T1 is a t-norm on Cβ satisfying T1(β1, β1) = β1 and T2 is a t-norm on

Cγ satisfying T2(γq, γq) = γq.160

Proof. Firstly, we prove that each t-norm T on L satisfying T (β1, β1) = β1

and T (γq, γq) = γq has this expression. Finally, we will prove that each binary

operator T on L which has this expression is a t-norm satisfying the mentioned

conditions.

If T is a t-norm on L, then T |C2
β

and T |C2
γ

are t-norms on Cβ and Cγ165

respectively. Notice that we can guarantee that T |C2
γ

is a t-norm because

T (γq, γq) ∈ Cγ , and therefore, it is well-defined. Moreover, since T (β1, β1) = β1

and T (γq, γq) = γq, we can set T1 = T |C2
β

and T2 = T |C2
γ
.

9
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Without loss of generality due to commutativity, take x = βi for some i ∈

{1, ..., p} and y = γq. By monotonicity,

β1 = T (β1, β1) ≤ T (x, y) ≤ βi ∧ γq = β1.

The last case is Lemma 4.1.

Now, consider a binary operator T expressed by formula (2). The element170

1 is the neutral element because T1 and T2 are t-norms, and commutativity is

straightforward for the same reason. To prove the monotonicity, let us take

x, y, z ∈ L \ {1} such that x ≤ y (if one of them is equal to 1, the condition of

monotonicity is trivial). If all of them belong to Cβ , then T (x, z) = T1(x, z) ≤

T1(y, z) = T (y, z). Analogously, if all of them belong to Cγ . Otherwise:175

1. If x ∈ Cβ , necessarily y ∈ Cβ . Hence, z = γi for some i ∈ {1, ..., q}.

When z = γq, then T (x, z) = β1 = T (y, z) and when z 6= γq, then

T (x, z) = 0 ≤ T (y, z).

2. If x ∈ Cγ , the procedure is analogous.

Finally, let us check that T is associative. Take x, y, z ∈ L \ {0, 1} (when-180

ever one of them is equal to 0 or 1, associativity is trivial). If x, y, z ∈ Cβ ,

then T (x, T (y, z)) = T1(x, T1(y, z)) = T1(T1(x, y), z) = T (T (x, y), z). Analo-

gously, if x, y, z ∈ Cγ , then T (x, T (y, z)) = T2(x, T2(y, z)) = T2(T2(x, y), z) =

T (T (x, y), z).

Therefore, let us suppose that some of them (but not all) belong to Cβ and185

the rest belongs to Cγ . If one of them is equal to γj for some j < q, then

T (x, T (y, z)) = 0 = T (T (x, y), z) by definition of T . Otherwise, we have two

possibilities: exactly one or two elements are equal to γq. In any case, we have

easily that T (T (x, y), z) = β1 = T (x, T (y, z)). We conclude that T is a t-norm

on L satisfying T (β1, β1) = β1 and T (γq, γq) = γq.190

The following result involves a class of t-norms on chains depending on a

value k ∈ {1, 2, ..., p}.

10

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Proposition 4.4. Each t-norm T on L satisfying T (β1, β1) = 0 and T (γq, γq) =

β1 is expressed as follows: There is k ∈ {1, 2, ..., p} such that

T (x, y) =



Tk(x, y) if x, y ∈ Cβ ,

x ∧ y if x = 1 or y = 1,

β1 if (x, y) ∈ {(βi, γq), (γq, βi) | i > k},

β1 if x = y = γq,

0 otherwise.

(3)

where Tk is a t-norm on Cβ satisfying Tk(β1, βp) = 0 and Tk(βp, βp) ≤ βk.

Proof. Firstly, we prove that each t-norm T on L satisfying T (β1, β1) = 0 and

T (γq, γq) = β1 has this expression. Finally, we will prove that each binary195

operator T on L which has this expression is a t-norm satisfying the mentioned

conditions.

Suppose that T is a t-norm on L. First of all, notice that T (β1, γq) = 0

because if T (β1, γq) = β1, on the one hand

T (T (β1, γq), γq) = T (β1, γq) = β1,

and on the other hand

T (β1, T (γq, γq)) = T (β1, β1) = 0,

which is a contradiction.

β1 = T (β1, γq) = T (β1, T (γq, γq)) = T (T (β1, γq), γq) = T (β1, β1) = 0,

that is a contradiction. Taking this into account, let us check that T (β1, βp) = 0.

By associativity, we have

T (β1, βp) = T (T (γq, γq), βp) = T (γq, T (γq, βp)) ≤ T (γq, β1) = 0.

Now, take k = max{i ∈ {1, 2, ..., p} | T (βi, γq) = 0}. Clearly, the set is not empty

because T (β1, γq) = 0. Let us prove that T (βp, βp) ≤ βk. By contradiction,

suppose that T (βp, βp) > βk, by associativity and monotonicity, we have the

following contradiction

β1 = T (γq, T (βp, βp)) = T (T (γq, βp), βp) ≤ T (β1, βp) = 0.
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Therefore, putting Tk = T |C2
β
, we conclude that Tk is a t-norm on Cβ satis-

fying Tk(β1, βp) = 0 and Tk(βp, βp) ≤ βk.

Moreover, by definition of k, T (x, y) = β1 for each pair (x, y) ∈ {(βi, γq), (γq, βi)}200

with i > k. Finally, taking into account the definition of k, we have that

T (βi, γq) = 0 whenever i ≤ k and using Lemma 4.1, we have that T (βi, γj) = 0

for each i ∈ {1, 2, ..., p} and j ∈ {1, 2, ..., q − 1}.

Now, let us consider a binary operator T expressed by formula (3) and let

us prove that it is a t-norm. Monotonicity, commutativity and the fact that the205

element 1 is the neutral element are straightforward by definition of T .

To prove the associative property, take x, y, z ∈ L \ {0, 1} (whenever one of

them is equal to 0 or 1, associativity is trivial).

If one of them belongs to the set {β1, γ1, γ2, ..., γq−1}, then T (T (x, y), z) =

0 = T (x, T (y, z)) by definition of T . Hence, let us suppose that x, y, z ∈

{β2, β3, ..., βp, γq}. If none of them is equal to γq, then

T (x, T (y, z)) = Tk(x, Tk(y, z)) = Tk(Tk(x, y), z) = T (T (x, y), z).

Therefore, we can consider that γq ∈ {x, y, z} in the rest of the proof. If all of

them are equal to γq, it is trivial. If exactly two of the elements are equal to γq,210

using that T (γq, γq) = β1 and the fact that T (β1, βi) = 0 for each i ∈ {1, 2, ..., p},

we obtain that T (x, (T (y, z)) = 0 = T (T (x, y), z). If only one of the elements is

equal to γq, we have the following three cases:

1. x = γq. We have that

T (x, T (y, z)) ≤ T (γq, T (βp, βp)) ≤ T (γq, βk) = 0

and

T (T (x, y), z) ≤ T (T (γq, βp), βp) ≤ T (β1, βp) = 0.

2. y = γq. We have that

T (x, T (y, z)) ≤ T (βp, β1) = 0

and

T (T (x, y), z) ≤ T (β1, βp) = 0.
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3. z = γq. It is similar to the first case.

We conclude that T is a t-norm on L. In addition, T (β1, β1) ≤ T (β1, βp) = 0215

and T (γq, γq) = β1.

Proposition 4.5. Each t-norm T on L satisfying T (β1, β1) = 0 and T (γq, γq) ∈

Cγ \ {γq} is expressed as one of the following two formulas:

T (x, y) =


T1(x, y) if x, y ∈ Cβ ,

T2(x, y) if x, y ∈ Cγ ,

0 otherwise.

(4)

where T1 is a t-norm on Cβ satisfying T1(β1, β1) = 0 and T2 is a t-norm on Cγ

satisfying T2(γq, γq) < γq, or, there is k ∈ {2, 3, ..., p} such that

T (x, y) =



T1(x, y) if x, y ∈ Cβ ,

T2(x, y) if x, y ∈ Cγ ,

β1 if (x, y) ∈ {(βi, γq), (γq, βi) | i ≥ k},

0 otherwise.

(5)

where T2 is a t-norm on Cγ satisfying T2(γq, γq) < γq and T1 is a t-norm on

Cβ satisfying

1. T1(βi, β1) = 0 for i < k.

2. If T1(βk, βk) = βk, then

T1(β1, βp) = T1(β1, βk) = β1.

3. If T1(βk, βk) < βk, then

T1(β1, βp) = T1(β1, βk) = 0

and

T (βp, βp) ≤ βk−1.

Proof. Firstly, we prove that each t-norm T on L satisfying T (β1, β1) = 0 and220

T (γq, γq) ∈ Cγ \ {γq} has one of these expressions. Finally, we will prove that

each binary operator T on L which has one of these expressions is a t-norm

satisfying the mentioned conditions.

Suppose that T is a t-norm on L. We consider two possibilities:
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1. Case T (βp, γq) = 0. By monotonicity, T (βi, γq) = 0 for all i ∈ {1, 2, ..., p}.225

Since T is a t-norm satisfying T (γq, γq) ∈ Cγ \ {γq}, the restriction T2 :=

T |Cγ
is a t-norm on Cγ satisfying the same condition. Also, the restriction

T1 = T |Cβ
is a t-norm on Cβ satisfying T1(β1, β1) = 0. Therefore, T is

given by formula (4).

2. Case T (βp, γq) = β1. We are going to check that T is given by formula

(5). Take

k = min{j | T (βj , γq) = β1}.

By monotonicity T (β1, γq) ≤ T (γq, γq) ≤ γq−1, hence T (β1, γq) ≤ β1 ∧

γq−1 = 0. Since T (β1, γq) = 0, we have that k ∈ {2, 3, ..., p}. By mono-

tonicity and commutativity, T (βi, γq) = T (γq, βi) = βi for all i ≥ k.

Analogously to the previous case, we have that T1 := T |Cβ
is a t-norm on

Cβ satisfying T1(β1, β1) = 0 and T2 := T |Cγ
is a t-norm on Cγ satisfying

T2(γq, γq) ∈ Cγ \ {γq}. If i < k, we have

T (β1, βi) = T (β1, βi) = T (T (γq, βk), βi) = T (γq, T (βk, βi)) ≤ T (γq, βi) = 0.

Now, we will check that T1(βk, β1) = T1(βp, β1):

T (βk, β1) = T (βk, T (γq, βp)) = T (T (βk, γq), βp) = T (β1, βp) = T (βp, β1).

If T1(βk, βk) = βk, we have that

T (β1, βp) = T (β1, βk) = T (T (γq, βk), βk) = T (γq, T (βk, βk)) = T (γq, βk) = β1.

If T1(βk, βk) < βk, we have that

T (β1, βp) = T (β1, βk) = T (T (γq, βk), βk) = T (γq, T (βk, βk)) ≤ T (γq, βk−1) = 0

and

0 = T (β1, βp) = T (T (γq, βp), βp) = T (γq, T (βp, βp))

hence, T (βp, βp) < βk. Therefore, T1 = T |Cβ
satisfies the required prop-230

erties.
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Now, let us consider a binary operator T expressed by formula (4) or (5)

and let us prove that it is a t-norm. If T is given by the first one, axioms of

t-norms are trivially fullfilled.

We study when T is given by formula (5). Monotonicity, commutativity235

and the fact that the element 1 is the neutral element are straightforward by

definition of T taking into account that T1 and T2 are t-norms.

To prove the associative property, take x, y, z ∈ L \ {0, 1} (whenever one of

them is equal to 0 or 1, associativity is trivial).

If x, y, z ∈ Cβ or x, y, z ∈ Cγ , then T (T (x, y), z) = T (x, T (y, z)) because T1240

and T2 are t-norms on Cβ and Cγ respectively.

Therefore, in the rest of the proof let us suppose that some of them (but

not all) belong to Cβ and the rest belongs to Cγ . If one of them is equal to

γj for some j < q, then T (x, T (y, z)) = 0 = T (T (x, y), z) using monotonicity.

Otherwise, at least one of them is equal to γq. If exactly two of them are equal to245

γq, it is easy to check that T (x, T (y, z)) = 0 = T (T (x, y), z) using monotonicity

and the fact T (β1, γq) = 0. If only one of the elements is equal to γq, we have

three cases:

1. x = γq, y = βi and z = βj .

If i, j < k, then

T (T (γq, βi), βj) = T (0, βj) = 0

and

T (γq, T (βi, βj)) ≤ T (γq, βi ∧ βj) = 0.

If i < k and j ≥ k, then

T (T (γq, βi), βj) = T (0, βj) = 0

and

T (γq, T (βi, βj)) ≤ T (γq, βi) = 0.

If i ≥ k and j < k, then

T (T (γq, βi), βj) = T (β1, βj) = 0

15
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and

T (γq, T (βi, βj)) ≤ T (γq, βj) = 0.

If i, j ≥ k, then we cosider the following two cases:250

A) T (βk, βk) = βk.

T (T (γq, βi), βj) = T (β1, βj) = β1

and

T (γq, T (βi, βj)) ≥ T (γq, T (βk, βk)) = T (γq, βk) = β1.

B) T (βk, βk) < βk.

T (T (γq, βi), βj) = T (β1, βj) = 0

and

T (γq, T (βi, βj)) ≤ T (γq, T (βp, βp)) ≤ T (γq, βk−1) = 0.

2. x = βi, y = γq and z = βj . If i < k or j < k, it is easy to check that

T (βi, T (γq, βj)) = 0 = T (T (βi, γq), βj).

Otherwise, let us assume that i, j ≥ k. Then,

T (βi, T (γq, βj)) = T (βi, β1) = T (βp, β1)

and

T (T (βi, γq), βj) = T (β1, βj) = T (β1, βp).

3. x = βi, y = βj and z = γq. It is similar to the first case.

We conclude that T is a t-norm on L. Moreover, T (β1, β1) ≤ T (β1, βp) = 0

and T (γq, γq) = T ′(γq, γq) ∈ Cγ \ {γq}.

Proposition 4.6. Each t-norm T on L satisfying T (β1, β1) = 0, T (γq, γq) = γq,

and T (β1, γq) = β1 is expressed as follows:

T (x, y) =



T ′(x, y) if x, y ∈ Cγ ,

x ∧ y if x = 1 or y = 1,

β1 if (x, y) ∈ {(βi, γq), (γq, βi) | i ≥ 1},

0 otherwise.

(6)
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where T ′ is a t-norm on Cγ satisfying T ′(γq, γq) = γq.255

Proof. Firstly, we prove that each t-norm T on L satisfying T (β1, β1) = 0,

T (γq, γq) = γq and T (β1, γq) = β1 has this expression. Finally, we will prove

that each binary operator T on L which has this expression is a t-norm satisfying

the mentioned conditions.

If T is a t-norm on L that satisfies the hypotheses, we have that

β1 = T (β1, γq) ≤ T (βi, γq) ≤ β2 ∧ γq ≤ β1

for each i ≥ 1. Moreover, T ′ = T |C2
γ

is a t-norm on Cγ satisfying T ′(γq, γq) =

γq. Now, we are going to prove that T (βi, βj) = 0 for each i, j ∈ {1, 2, ..., p}.

By hypothesis, T (β1, β1) = 0. Firstly, by contradiction, let us suppose that

T (β1, βi) = β1 for some i ∈ {1, 2, ..., p}. Hence, β1 = T (γq, βi) by monotonicity.

Therefore,

0 = T (β1, β1) = T (T (γq, βi), β1) = T (γq, T (βi, β1)) = T (γq, β1) = β1,

that is a contradiction. We conclude that T (β1, βi) = 0 for each i ∈ {1, 2, ..., p}.

Secondly, let us check that T (βi, βj) = 0 for each i, j ∈ {1, 2, ..., p}. By contra-

diction, assume that T (βi, βj) ≥ β1 for some i, j ∈ {1, 2, ..., p}. Then, taking

into account that β1 = T (γq, βj) as a consequence of the hypothesis due to

monotonicity, we have that

0 = T (β1, βi) = T (T (γq, βj), βi) = T (γq, T (βj , βi)) ≤ T (γq, β1) = β1,

that is a contradiction. Hence T (βi, βj) = 0 for each i, j ∈ {1, 2, ..., p}. The rest260

of values are obtained from Lemma 4.1.

Now, let us consider a binary operator T expressed by formula (6). Mono-

tonicity, commutativity and the fact that the element 1 is the neutral element

are straightforward by definition of T taking into account that T ′ is a t-norm

on Cγ . Let us check that T is associative. Take x, y, z ∈ L \ {0, 1} (whenever

one of them is equal to 0 or 1, associativity is trivial).

If all of them belong to Cγ , then

T (x, T (y, z)) = T ′(x, T ′(y, z)) = T ′(T ′(x, y), z) = T (T (x, y), z).
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If all of them belong to Cβ , then

T (x, T (y, z)) = 0 = T (T (x, y), z).

Therefore, let us suppose that some of them (but not everyone) belong to Cβ

and the rest belongs to Cγ . If one of them is equal to γj for some j < q, then

T (x, T (y, z)) = 0 = T (T (x, y), z) by definition of T . Otherwise, the elements

that belong to Cγ are equal to γq. Since T (γq, βi) = β1 and T (βi, βj) = 0 for

each i, j ∈ {1, 2, ..., p}, we have that if exactly two of them are equal to γq, then

T (x, T (y, z)) = β1 = T (T (x, y), z)

and if exactly one of them is equal to γq, then

T (x, T (y, z)) = 0 = T (T (x, y), z).

Therefore, T is a t-norm on L and it satisfies T (β1, β1) = 0, T (γq, γq) =

T ′(γq, γq) = γq, and T (β1, γq) = β1.

Proposition 4.7. Each t-norm T on L satisfying T (γq, γq) = γq and T (β1, γq) =

0 is expressed as follows:

T (x, y) =


T1(x, y) if x, y ∈ Cβ ,

T2(x, y) if x, y ∈ Cγ ,

0 otherwise.

(7)

where T1 is a t-norm on Cβ satisfying T1(β1, β1) = 0, and T2 is a t-norm on

Cγ satisfying T2(γq, γq) = γq.265

Proof. Firstly, we prove that each t-norm T on L satisfying T (β1, β1) = 0,

T (γq, γq) = γq and T (β1, γq) = 0 has this expression. Finally, we will prove that

each binary operator T on L which has this expression is a t-norm satisfying

the mentioned conditions.

If T is a t-norm on L, then T |C2
β

and T |C2
γ

are t-norms on Cβ and Cγ

respectively. Notice that we can guarantee that T |C2
γ

is well-defined because

T (γq, γq) = γq ∈ Cγ . Moreover, since T (β1, β1) = 0 and T (γq, γq) = γq, we can
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put T1 = T |C2
β

and T2 = T |C2
γ
. Now, let us check that T (βi, γq) = 0 for each

i ∈ {1, 2, ..., p}. By monotonicity and associativity, we have

0 = T (β1, γq) ≥ T (T (βi, γq), γq) = T (βi, T (γq, γq)) = T (βi, γq) ≥ 0.

The rest of values are obtained from Lemma 4.1.270

Now, let us consider a binary operator T expressed by formula (7). Mono-

tonicity, commutativity and the fact that the element 1 is the neutral element

are straightforward by definition of T taking into account that T1 and T2 are t-

norms on Cβ and Cγ . Let us check that T is associative. Take x, y, z ∈ L\{0, 1}

(whenever one of them is equal to 0 or 1, associativity is trivial). If x, y, z ∈ Cβ275

or x, y, z ∈ Cγ , then T (x, T (y, z)) = T (T (x, y), z) because T1 and T2 are t-

norms on Cβ and Cγ respectively. Otherwise, by definition of T , we have that

T (x, T (y, z)) = 0 = T (T (x, y), z). Therefore, T is a t-norm on L. In addition,

T (β1, β1) = T1(β1, β1) = 0, T (γq, γq) = T2(γq, γq) = γq, and T (β1, γq) = 0.

After studying each case, we propose a theorem that compiles the previous280

results.

Theorem 4.8. If T is a t-norm on L, then T is expressed by formula (1), (2),

(3), (4), (5), (6) or (7).

Proof. We have that T (β1, β1) ≤ β1, that is, two possible values.

1. If T (β1, β1) = β1, by monotonicity β1 ≤ T (γq, γq) ≤ γq. Hence, T (γq, γq) ∈285

{β1, γq}. This implies that T is expressed by formula (1) or (2) using

Proposition 4.2 and 4.3 respectively.

2. If T (β1, β1) = 0, we consider several cases: If T (γq, γq) = β1, by Propo-

sition 4.4, T is expressed by formula (3). If T (γq, γq) ∈ Cγ \ {γq}, by

Proposition 4.5, T is expressed by formula (4) or (5). If T (γq, γq) = γq,290

we must take into account the two possible values of T (β1, γq), that is,

T (β1, γq) ∈ {0, β1}. By Proposition 4.6 and 4.7, T is expressed by formula

(6) or (7), respectively.
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5. Archimedean t-norms295

In this section, we enunciate the results that involve the Archimedean t-

norms on L.

Let us consider the following notation (it can be found in [24]). Given a

bounded lattice L, a t-norm T and x ∈ L, the term x
(n)
T denotes the following

x
(1)
T = x and x

(n)
T = T (x

(n−1)
T , x) for n ≥ 2.

Definition 5.1 ([36]). Let L be a bounded lattice and T : L×L −→ L a t-norm

on L. The t-norm T is called Archimedean if for each x, y ∈ L \ {0, 1} there is

n ∈ N such that x
(n)
T < y.300

We will use the following characterization for Archimedean t-norms on finite

lattices.

Proposition 5.2 ([5]). Let L be a finite lattice and T : L× L −→ L a t-norm.

The following facts are equivalent.

(1) T is an Archimedean t-norm.305

(2) T has only two idempotents: 0 and 1.

In [26], Medina defined subidempotence when the t-norm satisfies condition

(2). His aim was to characterize the ordinal sum of t-norms. Subidempotence

plays a significant role in his results. Under the hypotheses of Proposition 5.2,

the set of subidempotent t-norms and the set of Archimedean t-norms are equal.310

In Table 4, we present the Archimedean t-norms on a discrete chain satisfying

the same condition of Table 3.

The condition T ′n(αn, αn) ≤ αn is redundant. In addition, Archimedean

property implies that T ′n(α1, αn) = 0 as the following result shows. Therefore,

the diagonal of Table 4 provides the number of Archimedean t-norms on a315

discrete chain with n+ 2 elements.

Proposition 5.3. If T is an Archimedean t-norm on a chain

C = {0 < α1 < α2 < · · · < αn < 1},

20

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



k \ n 1 2 3 4 5 6 7 8 9

1 1 2 4 8 16 32 64 128 256

2 2 6 17 50 157 525 1843 6690

3 6 22 80 309 1335 6541 35839

4 22 95 419 2024 11279 74493

5 95 471 2467 14559 101633

6 471 2670 16508 118239

7 2670 17387 127559

8 17387 131753

9 131753

Table 4: For each k and n, the number of Archimedean t-norms T ′k on a discrete chain with

n+ 2 elements satisfying that T ′k(α1, αn) = 0 and T ′k(αn, αn) ≤ αk.

then T (α1, αn) = 0.

Proof. By contradiction, let us suppose that T (α1, αn) = α1. We have that

α1 = T (α1, αn) = T (T (α1, αn), αn) = T (α1, T (αn, αn)) ≤ T (α1, αn−1) ≤ α1

Hence T (α1, αn−1) = α1, again

α1 = T (α1, αn−1) = T (T (α1, αn−1), αn−1) = T (α1, T (αn−1, αn−1)) ≤ T (α1, αn−2) ≤ α1

Recursively, in a finite number of steps, we obtain that T (α1, α1) = α1, that is,

a contradiction.

Now, we present all Archimedean t-norms on the lattice L (see Figure 1).320

Corollary 5.4. If T is an Archimedean t-norm on L, we have three possible

cases:
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1. There is k ∈ {1, 2, 3, ..., p} such that

T (x, y) =



Tk(x, y) if x, y ∈ Cβ ,

x ∧ y if x = 1 or y = 1,

β1 if (x, y) ∈ {(βi, γq), (γq, βi) | i > k},

β1 if x = y = γq,

0 otherwise.

(8)

where Tk is an Archimedean t-norm on Cβ satisfying Tk(βp, βp) ≤ βk, and

T ′ is an Archimedean t-norm on Cγ .

2.

T (x, y) =


T1(x, y) if x, y ∈ Cβ ,

T2(x, y) if x, y ∈ Cγ ,

0 otherwise.

(9)

where T1 is an Archimedean t-norm on Cβ and T2 is an Archimedean325

t-norm on Cγ .

3. There is k ∈ {2, 3, ..., p} such that

T (x, y) =



T1(x, y) if x, y ∈ Cβ ,

T2(x, y) if x, y ∈ Cγ ,

β1 if (x, y) ∈ {(βi, γq), (γq, βi) | i ≥ k},

0 otherwise.

(10)

where T1 is an Archimedean t-norm on Cβ satisfying that T1(βp, βp) < βk,

and T2 is an Archimedean t-norm on Cγ .

Proof. It is a consequence of Theorem 4.8, Proposition 5.2, and Proposition

5.3.330

6. Divisible t-norms

In this section we focus on the divisible t-norms defined on the lattice of

Figure 1. We study each t-norm presented in Section 4 and determine when

they are divisible t-norms. It is important to point out that, sometimes, the

existence of divisible t-norms depends on the values of p and q. Let us start335

recalling the notion.
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Definition 6.1 ([20]). Let L be a bounded lattice and T : L×L −→ L a t-norm

on L. The t-norm T is called divisible if for all x, y ∈ L satisfying x ≤ y, there

is z ∈ L such that T (y, z) = x.

When the lattice is a discrete chain, a t-norm is 1-Lipschitz if and only if it340

is divisible (see [12]).

Under the premise that the lattice is a discrete chain, their divisible t-norms

(or 1-Lipschitz t-norms) are completely described in [25]. The following result

will help us to know the number of them.

Lemma 6.2 ([25]). Let C be the chain {0, α1, α2, ..., αn, 1}. Then there is a345

bijection between the set of all divisible t-norms on C and the power set ℘(C \

{0, 1}). Thus there are 2n divisible t-norms on C.

In fact, a divisible t-norm on a discrete chain is determined by its non trivial

idempotent elements.

Remark 6.3. The only divisible and Archimedean t-norm on a discrete chain

C = {0, α1, α2, ..., αn, 1} is the  Lukasiewicz t-norm TL (see [25]), whose values

TL(αi, αj) are the following

TL(αi, αj) =

 αi+j−n−1 if i+ j − n− 1 > 0,

0 otherwise.

Now, we present two lemmas which will be used in some propositions.350

Lemma 6.4. If T is a divisible t-norm on L and ω ∈ L is an idempotent

element of T , we have that

1. If x ≤ ω, T (ω, x) = x.

2. If ω ≤ x, T (ω, x) = ω.

Proof. If x ≤ ω, by divisibility, there is z ∈ L such that T (ω, z) = x. By

associativity,

T (ω, x) = T (ω, T (ω, z)) = T (T (ω, ω), z) = T (ω, z) = x.

The second case is clear using the monotonicity of T .355
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Lemma 6.5. If T is a divisible t-norm on L and T (γq, γq) ∈ Cγ , then T |C2
γ

is

a divisible t-norm on Cγ .

Proof. The restriction is well-defined because T (γq, γq) ∈ Cγ . Take x, y ∈ Cγ
satisfying x ≤ y. If x = 0 or x = 1, divisibility is clear. Otherwise, x = γj for

some j ∈ {1, 2, ..., q}. Since T is a divisible t-norm, there is z ∈ L such that360

T (y, z) = x. This implies that γj ≤ z, hence z ∈ Cγ .

Unlike the case of Cγ , if a t-norm T is divisible on L, it is not possible to

ensure that the restriction on the chain Cβ is also a divisible t-norm (due to the

structure of the lattice). Therefore, each case must be analyzed independently.

Below, based on formulas (1)-(7), we present the divisible t-norms on L.365

Proposition 6.6. If q ≥ 2, there are no divisible t-norms on L satisfying

formula (1).

Proof. By contradiction, let us suppose that T is a divisible t-norm according

to formula (1). Since γ1 ≤ γq, there is z ∈ L such that T (z, γq) = γ1. However,

by definition of T , T (z, γq) ∈ {0, β1, γq}, and q ≥ 2.370

Proposition 6.7. If q = 1 and T is a divisible t-norm on L satisfying T (β1, β1) =

β1 and T (γ1, γ1) = β1, then T is expressed as follows:

T (x, y) =



T ′(x, y) if x, y ∈ Cβ ,

x ∧ y if x = 1 or y = 1,

β1 if (x, y) ∈ {(βi, γ1), (γ1, βi) | i ∈ {1, ..., p}},

β1 if x = y = γ1,

0 otherwise.

(11)

where T ′ is a divisible t-norm on Cβ satisfying T ′(β1, β1) = β1.

Proof. Firstly, we prove that each divisible t-norm T on L satisfying T (β1, β1) =

β1 and T (γ1, γ1) = β1 has this expression. Finally, we will prove that each binary

operator T on L which has this expression is a divisible t-norm satisfying the

mentioned conditions.375
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If T is a divisible t-norm on L, by Proposition 4.2, T must be like formula

(1). Let us prove that T ′ = T |C2
β

is divisible. Take x, y ∈ Cβ \ {0, 1} satisfying

x ≤ y. If x = β1, by monotonicity of T , taking z = β1 we have that β1 =

T (β1, β1) ≤ T (y, z) ≤ β1. If x > β1, since T is divisible, there is z ∈ L such that

T (y, z) = x. This implies that x ≤ z, hence x ∈ Cβ . Therefore, T ′ is divisible.380

Conversely, take the binary operator T of the formula. We know that T is

a t-norm due to Proposition 4.2. Now, let us prove that T is divisible. Take

x, y ∈ L such that x ≤ y. If x = β1, put z = β1. If x > β1, divisibility of T ′

provides an element z ∈ Cβ ⊆ L such that T (z, y) = x. If x /∈ Cβ , then x = γ1.

Here, divisibility is trivial because y = x or y = 1.385

Proposition 6.8. Each divisible t-norm T on L satisfying T (β1, β1) = β1 and

T (γq, γq) = γq is expressed as follows:

T (x, y) =



T1(x, y) if x, y ∈ Cβ ,

T2(x, y) if x, y ∈ Cγ ,

β1 if (x, y) ∈ {(βi, γq), (γq, βi) | i ∈ {1, ..., p}},

0 otherwise.

(12)

where T1 is a divisible t-norm on Cβ satisfying T1(β1, β1) = β1 and T2 is a

divisible t-norm on Cγ satisfying T2(γq, γq) = γq.

Proof. Firstly, we prove that each divisible t-norm T on L satisfying T (β1, β1) =

β1 and T (γq, γq) = γq has this expression. Finally, we will prove that each binary

operator T on L which has this expression is a divisible t-norm satisfying the390

mentioned conditions.

If T is a divisible t-norm on L, by Proposition 4.3, T must be like formula

(2). By Lemma 6.5, T2 = T |C2
γ

is divisible on Cγ . Now, let us prove that

T1 = T |C2
β

is divisible. Take x, y ∈ Cβ \ {0, 1}. If x = β1, by monotonicity of T ,

taking z = β1 we have that β1 = T (β1, β1) ≤ T (y, z) ≤ β1. If x > β1, since T is395

divisible, there is z ∈ L such that T (y, z) = x. This implies that x ≤ z, hence

x ∈ Cβ . Therefore, T1 is divisible on Cβ .

Conversely, take the binary operator T of the formula. We know that T is
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a t-norm due to Proposition 4.3. Now, let us prove that T is divisible. Take

x, y ∈ L such that x ≤ y, we enumerate all the possibilities:400

1. If x, y ∈ Cβ , there is z ∈ Cβ such that T (z, y) = x because T1 is divisible

on Cβ .

2. If x ∈ Cβ and y ∈ Cγ , necessarily x = β1 and y = γq. Putting z = β1 we

have that T (y, z) = x.

3. If x ∈ Cγ , then y ∈ Cγ . Since T2 is divisible on Cγ , there is z ∈ Cγ such405

that T (z, y) = x.

Proposition 6.9. If q ≥ 2, there are no divisible t-norms on L satisfying

formula (3).

Proof. It is similar to Proposition 6.6.410

Now, we study formula (3) whenever q = 1. If p = 1, L is a discrete chain

and its divisible t-norms are well-known. The following result shows the case

p ≥ 2.

Proposition 6.10. If q = 1 and p ≥ 2, each divisible t-norm T on L satisfying

T (β1, β1) = 0 and T (γ1, γ1) = β1 is expressed as:

T (x, y) =



TL(x, y) if x, y ∈ Cβ ,

x ∧ y if x = 1 or y = 1,

β1 if x = y = γ1,

0 otherwise.

(13)

or

T (x, y) =



TL(x, y) if x, y ∈ Cβ ,

x ∧ y if x = 1 or y = 1,

β1 if (x, y) ∈ {(βp, γ1), (γ1, βp)},

β1 if x = y = γ1,

0 otherwise.

(14)

where TL is the  Lukasiewicz t-norm (see Remark 6.3).
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Proof. Firstly, we prove that each divisible t-norm T on L satisfying T (β1, β1) =415

0 and T (γ1, γ1) = β1 has one of these expressions. Finally, we will prove that

each binary operator T on L which has one of these expressions, is a divisible

t-norm satisfying the mentioned conditions.

By Proposition 4.4, T is expressed by formula (3) for some k ∈ {1, 2, ..., p}.

Let us check that k ≤ p− 2 is not possible under the hypothesis of divisibility.

For each z ≤ βp, we have that

Tk(z, βp) ≤ Tk(βp, βp) ≤ βp−2 < βp−1.

Hence, there is not z ∈ L such that T (z, βp) = βp−1, that is, divisibility fails.

Therefore, k ≥ p− 1.420

Now, taking into account that T is a divisible t-norm, let us study the two

values of k:

1. Case k = p. Take x, y ∈ Cβ \ {0, 1} satisfying x ≤ y. Since T is divisible,

there is z ∈ L such that T (y, z) = x. If x > β1, then z ∈ Cβ . If x = β1,

then z ∈ Cβ ∪ {γ1}. But T (γ1, y) = 0 by definition of T whenever y = βi425

for each i. Hence, z ∈ Cβ and T |C2
β

is a divisible t-norm on Cβ . According

to Lemma 6.4 and the fact that T (β1, βp) = 0, we have that T |C2
β

has no

non-trivial idempotent elements. Therefore, T |C2
β

= TL (check Remark

6.3), and formula (13) is obtained.

2. Case k = p− 1.430

If p = 2, then T (β2, β2) ≤ β1. Divisibility provides z ∈ L such that

T (β2, z) = β1. Since T (β1, β2) = 0, z = β2. Therefore, the values of T |C2
β

are completely determined and it is equal to the  Lukasiewicz t-norm TL.

If p ≥ 3, since T (β1, βp) = 0 and T is divisible, Lemma 6.4 states that the

elements β1, β2, ..., βp are not idempotents. Let us prove that T (βi, βj) <

βi ∧ βj for each i, j ∈ {1, 2, ..., p}. Without loss of generality, suppose

βi ≤ βj . Take

t = min{m ∈ {1, 2, ...., p} | T (βm, βi) = βi}.
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The set is non-empty and i < t ≤ j. By associativity,

βi = T (βi, βt) = T (T (βi, βt), βt) = T (βi, T (βt, βt))

this is a contradiction by definition of t and the fact that βt is not idempo-

tent. Hence, we can conclude that T (βi, βj) < βi, equivalently, T (βi, βj) <435

βi ∧ βj for each i, j ∈ {1, 2, ..., p}.

Given βi ≤ βj , divisibility of T provides an element z ∈ L such that

T (βj , z) = βi. By monotonicity of T and the values of T (βj , γ1), notice

that we can guarantee that z ∈ Cβ for each case, except for i = 1 and

j = p simultaneously. In that case, let us check that T (βp, β2) = β1. We440

list the following steps:

(a) T (βp, βi) = βi−1 for i > 2: Since βi−1 ≤ βp and i − 1 6= 1, there

is z ∈ Cβ such that T (βp, z) = βi−1. For i = p, we have that

z ≥ βp−1, that is, T (βp, z) = βp−1. Using that T (βp, z) < βp ∧ z,

we have that z > βp−1, that is, z = βp. Hence, T (βp, βp) = βp−1.445

The rest of values are obtained recursively. Taking into account that

T (βp, β1) = 0, T (βp, βi) is completely determined except for i = 2.

(b) T (βp−1, β3) = β1: A process similar to the previous one provides that

T (βp−1, βi) = βi−2. In particular, for i = 3 we have T (βp−1, β3) = β1.

Notice that i = 3 can be considered because p ≥ 3.450

(c) T (βp, β2) = β1: We know that T (βp, β2) < βp ∧ β2 = β2. If

T (βp, β2) = 0, then

0 = T (βp, β2) = T (βp, T (βp, β3)) = T (T (βp, βp), β3) = T (βp−1, β3) = β1.

A contradiction, hence T (βp, β2) = β1. This implies that T |C2
β

is a

divisible t-norm on the discrete chain Cβ . Since T |C2
β

has no non-

trivial idempotents, T |C2
β

= TL (check Remark 6.3), and formula (14)

is obtained.

Conversely, if T is expressed by formula (13) or formula (14), it is easy to prove455

that each case is a divisible t-norm, bearing in mind that TL is a divisible

t-norm.
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Proposition 6.11. Each divisible t-norm T on L satisfying T (β1, β1) = 0 and

T (γq, γq) ∈ Cγ \ {γq} is expressed as follows: There is k ∈ {2, 3, ..., p} such that

T (x, y) =



T1(x, y) if x, y ∈ Cβ ,

T2(x, y) if x, y ∈ Cγ ,

β1 if (x, y) ∈ {(βi, γq), (γq, βi) | i ≥ k},

0 otherwise.

(15)

where T2 is a divisible t-norm on Cγ satisfying T2(γq, γq) < γq and T1 is a

t-norm on Cβ satisfying that

1. T1(βi, β1) = 0 for i < k.460

2. If T1(βk, βk) = βk, then

T1(β1, βp) = T1(β1, βk) = β1.

3. If T1(βk, βk) < βk, then

T1(β1, βp) = T1(β1, βk) = 0.

and

T (βp, βp) ≤ βk−1.

4. For βi ≤ βj, with i ≥ 2, there is z ∈ Cβ such that T1(βj , z) = βi.

5. For β1 ≤ βi, with i < k, there is z ∈ Cβ such that T1(βi, z) = β1.

Proof. Firstly, we prove that each divisible t-norm T on L satisfying T (β1, β1) =

0 and T (γq, γq) ∈ Cγ \{γq} has this expression. Finally, we will prove that each

binary operator T on L which has this expression, is a divisible t-norm satisfying465

the mentioned conditions.

By Proposition 4.5, T is expressed as formula (4) or there is k ∈ {2, ..., p}

such that T is expressed as (5). Let us check that the first one is not a divisible

t-norm: We have that β1 ≤ γq, but T (γq, x) 6= β1 for all x ∈ L. Therefore,

T must be expressed as the second formula. Therefore, let us prove that T2 is470

divisible and the items 4 and 5 of T1.
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- T2 is divisible: Take x, y ∈ Cγ satisfying x ≤ y. Since T is divisible, there

z ∈ L such that T (y, z) = x. Then, x ≤ z. Taking into account the configuration

of L, z ∈ Cγ .

- Item 4: Take βi ≤ βj , with i ≥ 2. Since T is divisible, there is z ∈ L such475

that T1(βj , z) = βi. Then, βi ≤ z. Taking into account that i ≥ 2 and the

configuration of L, z ∈ Cβ .

- Item 5: β1 ≤ βi, with i < k. Since T is divisible, there is z ∈ L such that

T1(βi, z) = β1. Then, β1 ≤ z. This implies that z ∈ Cβ or z = γq. However,

z = γq is not possible because T (γq, βi) = 0 whenever i < k.480

We conclude that T is expressed by formula (15).

Conversely, if a binary operator T is expressed by formula (15), then T is

a t-norm because it is a particular case of formula (5). Let us prove that T is

divisible. Take x, y ∈ L such that x ≤ y.

1. If x ∈ Cγ , then y ∈ Cγ . By divisibility of T2 on Cγ , there is z ∈ Cγ such485

that T (y, z) = x.

2. If x ∈ Cβ \ {β1}, then y ∈ Cβ . By item 4, there is z ∈ Cβ such that

T (y, z) = x.

3. If x = β1 and y = βi with i < k, then by item 5, there is z ∈ Cβ such that

T (y, z) = x.490

4. If x = β1 and y = βi with i ≥ k, then T (y, γq) = x.

5. If x = β1 and y = γq, then T (y, βk) = x.

Hence T is a divisible t-norm on L satisfying required conditions.

Proposition 6.12. If p ≤ 2, each divisible t-norm T on L satisfying T (β1, β1) =

0, T (γq, γq) = γq, and T (β1, γq) = β1 is expressed as follows:

T (x, y) =



T ′(x, y) if x, y ∈ Cγ ,

x ∧ y if x = 1 or y = 1,

β1 if (x, y) ∈ {(βi, γq), (γq, βi) | i ≥ 1},

0 otherwise.

(16)

where T ′ is a divisible t-norm on Cγ satisfying T ′(γq, γq) = γq.
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Proof. Firstly, we prove that each divisible t-norm T on L satisfying T (β1, β1) =495

0, T (γq, γq) = γq, and T (β1, γq) = β1 has this expression. Finally, we will prove

that each binary operator T on L which has this expression, is a divisible t-norm

satisfying the mentioned conditions.

By Proposition 4.6, T is expressed by formula (6). By Lemma 6.5, T ′ = T |C2
γ

is a divisible t-norm on Cγ . Moreover, T ′(γq, γq) = T (γq, γq) = γq.500

Conversely, take a binary operator T from formula (16). We know that T

is a t-norm because it is a particular case of formula (6). Finally, let us prove

that T is divisible, taking x, y ∈ L such that x ≤ y.

1. If x ∈ Cγ , then y ∈ Cγ . Since T ′ is divisible on Cγ , there is z ∈ Cγ such

that T (y, z) = x.505

2. If x = β1, then y ∈ {β1, βp} (we admit p = 1). We have that T (γq, βi) = β1

for each i = 1, 2.

3. If x = β2 (only in the case p = 2), then y = β2 or y = 1. Putting z = 1

and z = β2 in each case respectively to obtain T (y, z) = x.

Therefore, T is a divisible t-norm on L satisfying T (γq, γq) = T ′(γq, γq) =510

γq.

Proposition 6.13. If p ≥ 3, there are no divisible t-norms on L satisfying

formula (6).

Proof. By contradiction, let us suppose that T satisfies formula (6) and it is a

divisible t-norm. Since β2 ≤ β3, then there is z ∈ L such that T (β3, z) = β2.515

This implies that z ≥ β2, hence β2 ≤ z ≤ βp (z = 1 is trivially imposible).

However, T (β2, βi) = 0 for each 1 ≤ i ≤ p.

Proposition 6.14. There are no divisible t-norms on L satisfying formula (7).

Proof. If T is a divisible t-norm on L satisfying formula (7), then there is z ∈ L

such that T (z, γq) = β1. However, by definition of T , that is not possible.520
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7. Results about t-conorms

We recall that given a finite lattice (L,≤L), the dual lattice (L′,≤L′) is

formed by the same elements and

x ≤L′ y ⇐⇒ y ≤L x.

Therefore, 0L = 1L′ and 1L = 0L′ .

Discrete chains are self-dual lattices. Lattices of the family of Figure 1 are

self-dual if and only if p = q. However, their dual lattices belong to the same

class, so we may apply the results interchanging the roles of p and q.525

Given a t-norm T on a lattice, the following result provides a method to build

a t-conorm S defined on the dual lattice. Of course, an analogous induction from

t-conorms to t-norms on the dual lattice can be obtained.

Proposition 7.1. Let (L,≤L) a finite lattice. If T : L× L −→ L is a t-norm,

then S : L′ × L′ −→ L′ defined by S(x, y) = T (x, y) is a t-conorm on the dual530

lattice (L′,≤L′).

Proof. Clearly, S is well-defined because L′ and L have the same elements.

1. S(x, y) = T (x, y) = T (y, x) = S(y, x) for each x, y ∈ L′.

2. S(x, 0L′) = T (x, 0L′) = T (x, 1L) = x for each x ∈ L′.

3. Suppose that x ≤L′ y. Equivalently, y ≤L x. We have that

S(x, z) = T (x, z) ≥L T (y, z) = S(y, z)

that is, S(x, z) ≤L′ S(y, z).535

4. S(x, S(y, z)) = T (x, T (y, z)) = T (T (x, y), z)) = S(S(x, y), z) for each

x, y, z ∈ L′.

Due to this proposition, we can transfer the results described for t-norms

in the previous sections to t-conorms taking into account that the dual of each540

lattice is other lattice of the same family. For instance, if p = 5 and q = 11,
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its dual is the lattice that takes p = 11 and q = 5. Hence, we have provided a

complete description of t-conorms defined on the lattices described in Figure 1.

Similarly, for Archimedean and divisible t-conorms.

Conclusion545

We have provided a complete classification and description of the t-norms

defined on a family of lattices in terms of t-norms on discrete chains. Com-

plementarily, the number of t-norms required on discrete chains is obtained by

computational methods. We have done the same for Archimedean and divisible

t-norms. They extend the results given by other authors in discrete chains (see550

[12, 25]). The last part has highlighted that each result can be transferred to

t-conorms. We hope that similar arguments could be applied to some more

general lattices, too.
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