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Abstract. This paper is focused on the study of modal logics defined from
valued Kripke frames, and particularly, on computability and expressibility
questions of modal logics of transitive Kripke frames evaluated over certain
residuated lattices. It is shown that a large family of those logics -including
the ones arising from the standard MV and Product algebras- yields an un-
decidable consequence relation. Later on, the behaviour of transitive modal
 Lukasiewicz logic is compared with that of its non transitive counterpart, ex-
hibiting some particulars concerning computability and equivalence with other
logics. We conclude the article by showing the undecidability of the validity
and the local SAT questions over transitive models when the ∆ operation is
added to the logic.

1. Introduction

Modal logic is one of the most developed and studied non-classical logics, yielding
a beautiful equilibrium between computational complexity and expressibility. Gen-
eralizations of the concepts of necessity and possibility offer a rich setting to model
and study notions from many different areas, including proof-theory, temporal and
epistemic concepts, work-flow in software applications, etc. On the other hand, sub-
structural logics provide a formal framework to manage vague and resource sensitive
information in a very general (and so, adaptable) fashion.

Modal many-valued logics appear in the literature both pursuing purely theoreti-
cal development and also with the objective of offering a richer framework to model
complex environments that might require valued information as well as qualifica-
tion operators. While the first publications on the topic can be traced back to the
90s [15, 16] (that focus on the problem over finite Heyting algebras), it has been
only in the latter years when a more systematic work has been developed. In [20] a
brief study of the S5 modal logics over BL algebras is presented, but it is in more
recent works where the modal logics over arbitrary Kripke frames (also referred to
in the literature as minimal modal logics) are studied.

Several works since have studied different aspects of these logics. Most rele-
vant for the present paper are the works related to axiomatizability and proof-
theoretic questions, addressing the minimal modal logics over finite MTL algebras
[4],  Lukasiewicz finite and infinite standard algebras [22], Product standard algebra
[26], and Gödel standard algebra [8, 9], [23].

Concerning computability, in [6, 7] it is proven that the minimal (local) modal
Gödel logics with both � and ✸ modal operators are decidable (both over models
with a crisp accessibility relation and with a valued one). It is also shown that
the S5 extension of the previous logic with crisp accessibility (equivalent to the

http://arxiv.org/abs/1904.01407v1
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one-variable fragment of predicate Gödel logic) is decidable too. However, in re-
lation to the present paper, we point out that the question whether the purely
transitive extension is decidable or not is left open. For modal  Lukasiewiccz and
Product logics, no general results on decidability have been proven, and the failure
of the finite model property, as well as the difficulties to get recursive and finitary
axiomatizations for them make the possible answers to this question non trivial to
conjecture.

The nearest problem addressed in the literature concerns the decidability of
some Fuzzy Description Logics (FDL) (see eg. [25], [21], [1], [12], [3]). These logics
expand towards the valued setting the so-called Description Logics, a formalism
used intensively in AI and ontologies which can be seen as semantic variations (in
some cases, also syntactic) of modal logic. In relation to fuzzy modal logic, we
can see FDL as a multi-modal system over models with both weighted accessibility
relations and formulas, that is not based on the complete usual logical language
but that has, on the other hand, names for worlds and the possibility of referring
(via constants) to each element of the algebra of evaluation. The study of decision
procedures in FDL is focused in variants of the r-SAT (existence of a valuation that
valuates to at least r) problem, and in [11] we can find a translation of the known
results to the context of many-valued modal logics. However, since these results are
limited to the context of valued accessibility relation and multi-modal operations,
it does not seem likely to exist a uniform translation of them to modal logics arising
from classical frames with valued formulas, the topic of study in the ongoing work.
Moreover, questions concerning validity and derivability in the logic remain, in most
cases, open.1 A general approach to determine undecidability of consistency over
FDLs is developed in [3], proving in particular that the SAT problem over Product
and  Lukasiewicz FDLs is undecidable as long as certain expressivity conditions are
met. However, the approach is not suited to cope with the problems studied in
this paper, since they belong to non-comparable settings. On the one hand, our
main goal is that of shedding some light over decidability of the minimal logics
(both as sets of theorems or as deduction systems) arising from valued models with
a crisp accessibility relation. On the other hand, the methods from the previous
reference are focused on the question of consistency (nor reducible to validity since
the logic is many-valued) and moreover, strongly related to the language of FDLs
(with incorporates eg. constants for the elements of the models) and the possibility
of assigning degrees to the accessibility relations, none of which can be done in our
context.

Along this paper, we focus on the study of the decidability of the local conse-
quence relation on modal logics over models with crisp accessibility relation valued
on certain classes of FLew-algebras, that comprehend the well-known cases of the
 Luaskewicz standard algebra, the class of finite MV chains, the standard Product
algebra and the one-generated product algebra. The main contribution of the paper
is that the consequence over transitive models of the above kind are undecidable,
also if we restrict the logic to the one arising from only the finite models in the
class. Remarkably enough, transitive models are one of the most common kind
of relational models naturally appearing in CS and other fields (from accessibility

1It is known from [21] that validity over the multi-modal  Lukasiewicz logic with fuzzy acces-
sibility relation is decidable, and a similar result concerning the product case was presented with
partial mistakes in [10], and corrected in unpublished notes by the authors.
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models of the real world to dynamic-logic style software formalizations, preferences
and other epistemic notions modelling, etc). Thus, the undecidability of these log-
ics points to the problems that might arise with their use for applications in an
unrestricted way, as well as opens to consideration the study of weaker logics with
better computational behaviour.

A second main contribution of this paper is an study of some particularities of
the modal logics defined extending propositional  Lukasiewicz logics. First, arising
as a consequence of some results from [21] and [5], we show the decidability of
the local modal  Lukasiewicz logic (as consequence relation), which interestingly
provides us with an example of a decidable modal logic whose transitive expansion
is undecidable (a phenomena of which, to the best of our knowledge, there were
not known examples up to now). On the other hand, we also observe that, while
the minimum (local) modal logic over the standard MV algebra, and that over all
finite MV algebras coincide, this is not the case for the respective transitive logics.

The paper is structured as follows: In section 2 we introduce all the definitions
that will be used throughout the paper, aiming to be as self-contained as possible.
Section 3 focuses on the undecidability result stated above, and details the reduc-
tion of the logical consequence over transitive models to the Post Correspondence
Problem. Section 4 shows the decidability of the local modal  Lukasewicz logic, and
provides a separating example for transitive modal logic over the standard MV al-
gebra and the one over all finite MV chains. Lastly, in Section 5 we observe how
the previous logics expanded with the Monteiro-Baaz ∆ operation turn to have not
only undecidable consequence relation, but also undecidable validity and SAT.

2. Preliminaries

Modal many-valued logics arise from Kripke structures evaluated over certain
algebras, putting together relational and algebraic semantics in a fashion adapted
to model different reasoning notions. Along the present work, the algebraic basis
of these semantics will be the one of FLew-algebras, the corresponding algebraic
semantics of the Full Lambek Calculus with exchange and weakening [17],[13]. This
will offer a very general approach to the problem while relying in well-known alge-
braic structures. Along this section, we will formally introduce the previous algebras
and the basic definitions necessary for the further development of the paper.

Definition 2.1. A FLew-algebra is a structure A = 〈A;∧,∨, ·,→, 0, 1〉 such that

• 〈A;∧,∨, 0, 1〉 is a bounded lattice;
• 〈A; ·, 1〉 is a commutative monoid;
• A satisfies a · b 6 c if and only if a 6 b→ c for any a, b, c ∈ A.

We will usually write ab instead of a·b, and abbreviate

n
︷ ︸︸ ︷
x · x · · ·x by xn. Moreover,

as it is usual, we will define ¬a to stand for a → 0. In the setting of the previous
definition, we will denote by Fmp the algebra of formulas built over a countable
set of variables V using the language corresponding to the above class of algebras
(i.e., 〈∧/2,∨/2, ·/2,→ /2, 0/0, 1/0〉). As usual, we let

(x↔ y) := x→ y) · (y → x) and ¬x := x→ 0.

Let us introduce some well-known examples FLew-algebras over the universe
[0, 1] (in fact, also BL algebras, i.e, further satisfying prelinearity -MTL- and divis-
ibility [20],[14]). In the algebras below, ∧ and ∨ stand for usual lattice conjunction
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(min) and disjunction (max) in [0, 1], and all standard algebras have as universe
the real unit interval [0, 1]. Then

• [0, 1]G, the standard Gödel algebra , further lets

a · b := a ∧ b and a→ b :=

{

1 if a 6 b

b otherwise

• [0, 1] L, the standard MV algebra , further lets

a · b := max{0, a+ b − 1} and a→ b := min{1, 1 − a+ b}

• MVn, the finite MV algebra of n+1 elements, is the subalgebra of [0, 1] L
with respect to the subuniverse {0, 1

n
, . . . , n

n
};

• [0, 1]Π , the standard Product algebra , further lets

a · b := a× b and a→ b :=

{

1 if a 6 b

b/a otherwise

for × the usual product between real numbers;
• A �1 [0, 1]Π , one-generated product algebras (all are isomorphic), is

any subalgebra of [0, 1]Π with universe {0, 1} ∪
⋃

i∈ω a
i for some a ∈ (0, 1).

Le us also point out some particular characteristics of some FLew-algebras that
will be of use later.

Definition 2.2. Let A be a FLew-algebra.

• A is n-contractive whenever an+1 = an for all a ∈ A.
• A is weakly-archimedean if for any two elements a, b ∈ A, if a 6 bn for

all n ∈ ω then ab = a.

Observe that if A is n-contractive, the element an is idempotent for any a ∈ A.
Simple examples of these algebras comprehend Heyting and Gödel algebras, and
MVn algebras. On the other hand, the (infinite) standard MV-algebra, the standard
product algebra and any one-generated subalgebra of the latter one are not n-
contractive for any n.

For what concerns weak-archimedeanicity, observe that if the element inf bn ex-
ists in a weakly-archimedean algebra, then it is an idempotent element. Examples
of weakly-archimedean algebras are the standard MV-algebra, the standard prod-
uct algebra, as well as the algebras belonging to the generalised quasi-varieties
generated by them. In particular, any (non-trivial) one-generated subalgebra of
the standard product algebra is weakly-archimedean .

For what concerns this work, it is interesting to recall that the logic FLew,
the Full Lambek Calulus with exchange and weakening, is complete with respect
to the class of logical matrices {〈A, {1} : A ∈ FLew}. That is to say, for any
Γ, ϕ ⊂ω Fmp,

2

Γ ⊢FLew ϕ iff ∀A ∈ FLew, ∀h ∈ Hom(Fmp,A), h([Γ ]) ⊆ {1} implies h(ϕ) = 1

The algebra of modal formulas Fm will be built in the same way as Fmp, but
by expanding the language of FLew-algebras with two unary operators � and ✸.
While it is clear how to extend a propositional evaluation from V into an FLew-
algebra to Fmp, the semantic definition of the modal operators is defined from the
relational structures in the following way.

2The notation ⊂ω denotes, as usual, a finite subset.
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Definition 2.3. Let A be a FLew-algebra. An A-Kripke model is a structure
M = 〈W,R, e〉 such that

• 〈W,R〉 is a Kripke frame. That is to say, W is a non-empty set of so-called
worlds and R is a binary relation over W , called accessibility relation;

• e : V ×W → A. e is extended to Fmp in such a way that (world-wise) it is
a homomorphism into A, and to Fm by further letting

e(v,�ϕ) :=
∧

〈v,w〉∈R

e(w,ϕ) and e(v,✸ϕ) :=
∨

〈v,w〉∈R

e(w,ϕ)

whenever that infima/suprema exist, and undefined otherwise.

To lighten the notation, we will usually write Rvw, and say in this case that w
is a successor of v, to denote 〈v, w〉 ∈ R.

Definition 2.4. (1) A model is safe whenever the values of e(v,�ϕ) and
e(v,✸ϕ) are defined for any formula at any world. We will denote by FLew-

Kripke models to the class of all A-Kripke models for any FLew-algebra
A.

(2) A safe model is witnessed whenever for any modal formula Mϕ and each
world v ∈ W , there is wMϕ ∈ W such that RvwMϕ and e(v, Mϕ) = e(wMϕ, ϕ).

For what concerns notation, given a class of models C, we denote by ωC the
finite models in C (observe these are always safe and witnessed). On the other
hand, for a class of algebras C (or a single algebra A) we write KC (correspondingly
KA) to denote the class of safe Kripke models over the algebras in the class (or
over the single algebra specified). Finally, in order to lighten the reading, we will
let K L, Kω L and KΠ to denote respectively K[0,1] L , K{MVn : n∈ω} and K[0,1]Π .

As it happens for classical models, we can also consider some condition only over
the kind of accessibility relation and study the logic arising from the corresponding
classes of models. Along this work, we are focused in the restriction to transitive
accessibility relations, i.e., those models such that for any u, v, w ∈ W , if Ruv and
Rvw then Ruw. As usual, for an arbitrary class of models C, we will denote the
transitive models in it by 4C. Observe, however, this is only a naming convention,
since we are not assuming in any case that the transitive logic corresponds to an
extension of the minimal one by the 4 axiom(s) schemata.

Towards the definition of modal logics over FLew-algebras relying in the notion
of FLew-Kripke models, it is natural to preserve the notion of world-wise truth
being {1} (in order to obtain, if restricted to world-wise, the propositional FLew
logic). With this in mind, for any A-Kripke model M and v ∈ W we say that M

satisfies a formula ϕ in v, and write M, v |= ϕ, whenever e(v, ϕ) = 1. Similarly,
we simply say that M satisfies a formula ϕ, and write M |= ϕ whenever for all
v ∈W M, v |= ϕ.

Over the previous notion of satisfiability, two different consequence relations can
be defined, a local and a global one. Along the present work, we will focus on the
preservation of truth locally.

Definition 2.5. Let Γ, ϕ ⊆ω Fm, and C be a class of FLew-Kripke models. Then
we say that ϕ follows from Γ locally in C, and we write Γ ⊢C ϕ, whenever for
any M ∈ C and any v ∈ W ,

M, v |= Γ implies M, v |= ϕ;



6 AMANDA VIDAL

When C is clear from the context, we will simply write ⊢. Moreover, for a model
M and a world v ∈ W , we will write Γ 6⊢〈M,v〉 ϕ to denote that e(v, Γ ) ⊆ {1} and
e(v, ϕ) < 1.

Observe the necessity rule ϕ ⊢ �ϕ is only valid in the above deductive system
for theorems of the logic, as it happens in the classical local modal logic.

The following basic notions concerning manipulation of Kripke models will be of
use later on.

Definition 2.6. Given a Kripke model M and w ∈ W , we let the depth of w be
given by

d(w) := sup{k ∈ N : ∃w0, . . . , wk with w0 = w and Rwiwi+1 for all 0 6 i < k}.

Observe that if there exists some cycle in the model, all worlds involved in it
have infinite depth.

Definition 2.7. We let the propositional subformulas of ϕ be the set defined
by

PSFm(p) := {p}, for p propositional variable or constant

PSFm(Mϕ) := {Mϕ} for M ∈ {�,✸}

PSFm(ϕ1 > ϕ2) := SFm(ϕ1) ∪ SFm(ϕ2) ∪ {ϕ1 > ϕ2} for > ∈ {∧,∨,→}

For Γ a set of formulas we let PSFm(Γ ) :=
⋃

γ∈Γ PSFm(γ).

Let us finish the preliminaries by stating a well-known undecidable problem,
that will be used in the next sections to show undecidability of some of the modal
logics introduced above. Recall that given two numbers x, y in base s ∈ ω, their
concatenation xy is given by w1 · s‖y‖ + y (for ·,+ the usual real product and sum),
where ‖ y ‖ is the number of digits of y in base s.

Definition 2.8 (Post Correspondence Problem (PCP)). An instance P of the
PCP consists on a list 〈v1, w1〉 . . . 〈vn, wn〉 of pairs of numbers without repetitions3 in
some base s > 2. A solution for P is a sequence of indices i1, . . . , ik with 1 6 ij 6 n
such that

vi1vi2 . . .vik = wi1wi2 . . . wik .

Finding a solution for PCP-instances yields an undecidable procedure [24].

3. Undecidability of transtive local deduction

Along the following sections, unless stated otherwise, we let A to be a class of
weakly-archimedean linearly ordered FLew algebras such that for any n ∈ ω there
is some An ∈ A such that An is non n-contractive4. That is to say, there is some
a ∈ An such that an+1 < an.

Examples of classes of algebras like the above one are {[0, 1] L} {MVn : n ∈ ω},
{[0, 1]Π} and {A} for A �1 [0, 1]Π . Natural examples of classes of algebras that
do not satisfy the above conditions are {[0, 1]G} (and the variety generated by it)
and the varieties of MV and product algebras.

3That is, for each 1 6 i 6= j 6 n either vi 6= vj or wi 6= wj.
4We conjecture that the same results hold if we remove the linearity condition. However, due

to the lack of existing or natural examples from this more general framework, and the drawback
that the undecidability proof gets much more cumbersome, have together led the author to avoid
formulating the result in that more general fashion.
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By relying on the properties specified above for the class of algebras A, we can
prove the following result.

Theorem 3.1. The problem of determining whether ϕ follows locally from Γ in
4KA is undecidable. Moreover, also the problem of determining whether ϕ follows
locally from Γ in ω4KA is undecidable. More in particular, the three-variable frag-
ments of both previous deductive systems are undecidable.

Its proof follows as a simple consequence of Proposition 3.9, which we now
proceed to formulate and prove. In order to do so, given an arbitrary instance
P = {〈v1, w1〉, . . . , 〈vm, wm〉} of the Post correspondence problem, let us define a
set of formulas ΓP ∪ ϕP . We let ΓP be the union of the following formulas with
variables V = {y, v, w}:

(1) �y ↔ ✸y;

(2) �
∨

16i6m

(v ↔ (�v)s
‖vi‖

yvi) ∧ (w ↔ (�w)s
‖wi‖

ywi);

(3) �(�(vw) → (�v�w))

Finally, let

ϕP = (v ↔ w) → (y ∨ (vw → vwy))

Let us prove some technical lemmas concerning Kripke models with a world in
which ΓP holds, but not ϕP .

First, we can easily see how variable y is forcing certain conditions on the under-
lying structure of those models. ΓP suffices to prove a completeness with respect
to models where the variable y takes the same value everywhere, except possibly in
the root world (whose value is irrelevant for the proof).

Lemma 3.2. Let M ∈ 4KA be a transitive A-Kripke model and u ∈ W be such
that ΓP 6⊢〈M,u〉 �ϕP . Then there is αy ∈ A such that for all t1, t2 ∈ W with Rut1
and Rut2

e(t1, y) = e(t2, y) = αy.

Proof. Assume Rut1 and Rut2, and towards a contradiction let e(t1, y) < e(t2, y).
Then, by definition, e(u, y) 6 e(t1, y) < e(t2, y) 6 e(u,✸y), contradicting that
e(u, (1)) = 1.

⊠

Since the model is transitive, this allows us to affirm that if ΓP 6⊢4KA �ϕ, then
it happens in a tree M with root u, and so that there is αy ∈ A such that for all
world t ∈ W \ {u},

e(t, y) = αy.

We will resort to this fact below without further notice.
The way we chose both ΓP and ϕP are also determining that the model (as in

the above paragraph) is of finite depth. Contrary to what happens in the minimal
modal logics, where the local deduction is naturally complete with respect to models
of finite depth (indeed, bounded by the maximum modal depth of the formulas
involved in the derivation), observe this is not the case in general for transitive
logics.

Lemma 3.3. Let M ∈ 4KA and u ∈ W be such that ΓP 6⊢〈M,u〉 �ϕP . Then there
is some z ∈W such that Ruz, e(z, ϕP ) < 1 and z has finite depth.
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Proof. The existence of z ∈W such that Ruz and e(z, ϕP ) < 1 follows by definition,
since e(u,�ϕP ) < 1. To prove that z has finite depth, we can rely in the formula
(2) from ΓP , the previous lemma and the formula in the right side of ϕP and prove
by transfinite induction on the depth of the world that for any t ∈ W such that
Rut and any n ∈ ω,

(1) If d(t) > n then e(t, v) 6 αny

• for d(t) = 0 is trivial since α0
y = 1 by definition.

• For d(t) = n + 1 there is r ∈ W with Rtr and d(r) = n. Then, for some
1 6 i 6 m,

e(t, v) = e(t,�v)s
‖vi‖

αvi
y 6 e(r, v)s

‖vi‖

αvi
y from (2) in ΓP .

By Induction Hypothesis, and since P does not have empty words, the
previous is less or equal than αnyαy, and so, e(t, v) 6 αn+1

y , proving the
step.

• Assume d(t) = ω. Then, for any n ∈ ω, there is some rn ∈ W with Rtrn
and d(rn) > n. As before,

e(t, v) = e(t,�v)s
‖vi‖

αvi
y

and so,

e(t, v) 6 e(rn, v) for all n ∈ ω.

By induction hypothesis, e(rn, v) 6 αny , and so, e(t, v) 6 αny for all n ∈ ω.

Now, assume towards a contradiction that d(z) were to be infinite. From condition
(1) it would hold that e(z, v) 6 αny for all n ∈ ω. Since the algebras in A were re-
quired to be weakly-archimedean, we know this implies that e(z, v)e(z, y) = e(z, v).
However, since e(z, ϕP ) < 1, in particular necessarily e(z, v → vy) < 1, contradict-
ing the assumption and proving the lemma.

⊠

At this point, we have proven completeness with respect to to trees of finite
depth (by simply taking a model given by the root, the world identified in the
previous Lemma, and all the successors of it). We can now turn our attention to
the behaviour of variables v, w y that model.

Lemma 3.4. Let M ∈ 4KA be a tree of finite depth with root u such that ΓP 6⊢〈M,u〉

�ϕP , and z be as in the previous lemma. Then, for each r ∈ W with Rzr or r = z,
there are ar, br ∈ ω for which

e(r, v) = αary and e(r, w) = αbry .

Moreover, if Rtr then ar < at and br < bt.

Proof. We can prove it by induction in the depth of r. We do the case for v, the
other one is analogous:

• if d(r) = 0, then from (2) in ΓP it holds there is some 1 6 i 6 m for which

e(r, v) = e(r,�v)s
‖vi‖

αvi
y , thus e(r, v) = 1αvi

y .
• For d(r) = n + 1, again by (2) and applying I.H, there is some 1 6 i 6 m

for which

e(r, v) = (
∧

Rrt

e(t, v))s
‖vi‖

αvi
y = (

∧

Rrt

αaty )s
‖vi‖

αvi
y
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(with at ∈ ω).
Observe that |{at : Rrt}| = ω would imply that e(r, v) 6 αny , and thus

e(z, v) 6 αny , for all n ∈ ω. Then, by the same reasoning from the previous
lemma, we would get a contradiction with e(z, ϕP ) < 1. This implies that
necessarily |{at : Rrt}| is a finite set, and so it has a maximum element a.
Thus,

e(r, v) = (αay)s
‖vi‖

αvi
y

proving the first part of the lemma.

The last claim is a simple conclusion of the above relying in the fact that e(z, vy) <
e(z, v) and e(z, wy) < e(z, w). ⊠

Observe this also proves that we can restrict the proof to witnessed models, since
for any modal formula in ΓP , the value taken is no longer an infimum (respectively,
supremum) but a minimum (maximum).

Our objective is now to prove completeness with respect to the class of linearly
ordered models in the sense of Figure 1. Since from the previous lemma we get that
the model is witnessed, intuitively we are only lacking to prove that, for a given
world, we can select a particular unique successor (up to transitivity), and that this
action preserves the value of the relevant formulas. Formula (3) in ΓP takes care
of this aspect.

Lemma 3.5. Let M ∈ 4KA be finite tree with root u such that ΓP 6⊢〈M,u〉 �ϕP ,
and let z as in 3.3. Then, for each t ∈ W with Rzt or t = z, and such that it has
successors, there is some world tw ∈W such that Rttw and

e(t,�v) = e(tw, v) and e(t,�w) = e(tw, w).

Proof. Suppose towards a contradiction that there is not a common witness for �v
and �w, i.e., there are r1, r2 with Rtr1, Rtr2 and

• e(t,�v) = e(r1, v) = α
ar1
y ,

• e(t,�w) = e(r2, w) = α
br2
y ,

• For any r with Rtr, ar 6 ar1 and br 6 br2 , and one of them is a strict
inequality.

Then, for any Rtr, it holds that e(r, vw) > α
ar1+br2−1
y , so e(t,�(vw)) >

α
ar1+br2−1
y . On the other hand, e(t,�v�w) = α

ar1
y α

br2
y . Now, for formula (3) in ΓP

to hold, it is necessary that α
ar1+br2−1
y 6 α

ar1+br2
y , and so, α

ar1+br2+n
y = α

ar1+br2−1
y

for any n ∈ ω. However, this leads to have that e(z, vw) = α
ar1+br2−1
y =

α
ar1+br2+n
y = e(z, vw)αy, which results in a contradiction since e(z, ϕP ) < 1. ⊠

Relying in the previous results, we can conclude a completeness lemma with
respect to a very particular class of models: namely, with frames like in Figure 1
and quite special evaluations.

Let us denote by 4KA

∧

the class of models definable over frames with the structure
in Fig. 1, i.e., for arbitrary but finite n ∈ ω,

• W = {u0, u1, . . . , un} and
• R = {〈ui, uj〉 : for all i 6 j}

Observe there is no bound on the size of the frames, while all of them are finite.

Lemma 3.6. The following are equivalent:
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• ΓP ⊢4KA ϕP ,
• ΓP ⊢

4KA

∧ϕP

Proof. Soundness is immediate. Concerning the left-to-right direction, assume there
is a model M ∈ 4KA with u ∈W be such that ΓP 6⊢〈M,u〉 ϕP .

Then consider the submodel M
∧

defined from M by taking its restriction to the
universe

W
∧

=
⋃

i∈N

wi
∧

where

• w0

∧

:= {u}
• w1

∧

:= {z} as given in Lemma 3.3
• Let {t} = wi

∧

. Then put

wi+1

∧

:=

{

{tw} as given in Lemma 3.5 if t has any successors

∅ if t has no successors

It is a transitive model since the original M was so, and it clearly has the required
frame (since z had finite depth in the original model, for some n onwards the set
wn
∧

will be empty).
Taking submodels does not change the value taken at each world by the proposi-

tional variables, i.e., for any p ∈ V (and thus, also for any non-modal formula) and

any t ∈ W
∧

it holds that e
∧

(t, p) = e(t, p). Then we have that e
∧

(z, ϕP ) = e(z, ϕP ) < 1
(so e

∧

(u,�ϕP ) < 1) and also that e
∧

(u,�y) = αy = e
∧

(u,✸y) (from Lemma 3.2),
taking care of formula (1) in ΓP .

The remaining cases are the formulas with some modality and inside the scope
of a � operation in ΓP , namely

•
∨

16i6m

(v ↔ (�v)s
‖vi‖

yvi) ∧ (w ↔ (�w)s
‖wi‖

ywi) and

• �(vw) → (�v�w)

We just need to check that the values of those formulas are preserved from M to

M

∧

in any world t ∈ W
∧

\ {u}. To do that, observe the only modal subformulas
appearing are �v, �w and �(vw), so it is enough to show the values of those three
modal formulas are preserved.

This can be easily done by induction in the depth (over the restricted model) of
the world t.

• If d(t) = 0, then also in M the world t does not have successors, so clearly
1 = e

∧

(t,�ϕ) = e(t,�ϕ) for any formula ϕ.
• For d(t) = n+ 1, then also in M the world t has successors, so e(t,�v) =
e(tw, v) from Lemma 3.5, and we know that e

∧

(t,�v) 6 e
∧

(tw, v) = e(tw, v) by

Induction (since tw ∈W
∧

. Moreover, it is clear that also e
∧

(t,�v) > e(t,�v)

given that M

∧

is a submodel of M. Thus, e
∧

(t,�v) = e(t,�v) and the same
for what concerns w. Moreover, also e(t,�(v&w)) = e(tw, v&w), so the
same reasoning applies.

⊠

It is an easy observation that whenever we use (2) from ΓP to get that, at a
certain point r there is some 1 6 i 6 m such that

e(r, v) = e(r,�v)s
‖vi‖

αvi
y



ON TRANSITIVE MODAL MANY-VALUED LOGICS 11

•
uk

//
$$ &&

•
uk−1

'' ))
•
u2

// •
u1

•
u

gg❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖❖

__❃❃❃❃❃❃❃❃

AA✄✄✄✄✄✄✄✄

88qqqqqqqqqqqqqqq

OO

Figure 1. Frame structure

there is in fact a unique such index 1 6 i 6 m, both for the value of v and of w.
Indeed, do not forget that (2) determines with the same index the value of v and
that of w. Since there are no repetitions in P , for 1 6 i 6= j 6 m it necessarily holds
that either vi 6= vj or wi 6= wj. Assuming any of those inequalities leads to have
some a ∈ ω such that αay is idempotent, and moreover, if we consider the inequality

for the vs (and the same happens for w), that e(z, v) = αby for some a 6 b. Then,
e(z, v)αy = e(z, v), contradicting once again e(z, ϕP ) < 1.

It is now natural to obtain an exact characterization of v and w in terms of αy
in each world of a model as in Figure 1 satisfying ΓP in world u0 and not satisfying
ϕP in that world .

Lemma 3.7. Let M ∈ 4KA

∧

such that ΓP 6⊢〈M,u〉 ϕP and uk is the element identified
in Lemma 3.3.

Then, for all 1 6 j 6 k

e(uj, v) = α
vi1 ...vij
y and e(uj, w) = α

wi1 ...wij
y

for in being the unique value5 in {1, . . . ,m} such that

e(un, v) = e(t,�v)s
‖vin‖α

vin
y and e(t, w) = e(t,�w)s

‖win‖α
win
y .

Moreover, for all 1 6 j 6 k,

e(uj , v) = e(uj, w) if and only if vi1 . . . vij = wi1 . . . wij .

Proof. We will prove the first claim by induction on j. The details are only given
for the v case, the other one is proven in the same fashion.

• If j = 1 we know that u1 has no successors, so from formula (2) from ΓP
we get

e(u1, v) = e(u1,�v)s
‖vi1

‖

e(u1, y)vi1 = α
vi1
y

• For j = n+ 1 using again formula (2) we get that

e(un+1, v) = e(un+1,�v)s
‖vin+1

‖

e(un+1, y)vin+1

From Lemma 3.4 we get that e(un+1,�v) = e(un, v) (observe the other
worlds to which un+1 is related have all smaller depth, and so bigger val-
ues of v). Applying Induction Hypothesis we get the following chain of
equalities

e(un+1, v) = (α
vi1 ...vin
y )s

‖vin+1
‖

α
vin+1

y = α
vi1 ...vin ·s

‖vin+1
‖
+vin+1

y = α
vi1 ...vinvin+1

y .

5This is properly defined, see the observation above.
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Concerning the second claim, suppose towards a contradiction that there is 1 6

j 6 k such that vi1 . . . vij 6= wi1 . . . wij and e(uj, v) = α
vi1 ...vij
y = α

wi1 ...wij
y = e(uj , w).

If vi1 . . . vij < wi1 . . .wij , from the residuated lattices properties it follows that

α
vi1 ...vij
y αy = α

vi1 ...vij
y . It then follows that e(uj , vy) = e(uj, v) and trivially, that

e(uk, vy) = e(uk, v). This contradicts e(uk, ϕP ) < 1, since this would require that
e(uk, vy) < e(uk, v)

The analogous reasoning serves the case where vi1 . . . vij > wi1 . . . wij . ⊠

It is now a simple observation that in a model as the one appearing in the above
lemma, e(uk, ϕP ) < 1 implies that e(uk, v) = e(uk, w), since either those two values
are equal or there is some natural number n > 1 that e(uk, v) ↔ e(uk, w) = αny 6

αy, and so, making e(uk, ϕP ) = 1.
Putting together all the previous results, we can provide a completeness condition

for the ΓP ⊢ ϕP deductions.

Corollary 3.8. Assume ΓP 6⊢4KA ϕP . Then there is A ∈ A, k ∈ ω and M =

〈{u, u1, . . . , uk}, {〈u, ui〉 : 1 6 i 6 k} ∪ {〈ui, uj〉 : 1 6 j < i 6 k}, e〉 ∈ K{A}

∧

such
that there exists a mapping f : {1 . . . k} → {1 . . .m} and an element α ∈ A for
which:

• For each 1 6 j 6 k, e(uj, v) = αvf(1)...vf(j) and e(uj, w) = αwf(1)...wf(j)

• vf(1) . . .vf(k) = wf(1) . . . wf(k).

It is now very natural to introduce the reduction itself from the Post Correspon-
dence Problem to the local deduction over transitive models. Moreover, as we saw
above, the reduction can be specified to finite models only.

Proposition 3.9. Let P be an instance of the Post Correspondence Problem. Then
the following are equivalent:

(1) P is satisfiable;
(2) ΓP 6⊢4KA �ϕP ;
(3) ΓP 6⊢ω4KA �ϕP .

Proof. Trivially (3) implies (2). Moreover, Lemma 3.6 proves that (2) implies (3).
On the other hand, the fact that (3) implies (1) follows immediately from Corol-

lary 3.8. Indeed, if ΓP 6⊢4KA
ϕP , then from that corollary we know there is some k

and map f : {1 . . . k} → {1 . . .m} such that f(1), . . . , f(k) is a solution for P .
To prove that (1) implies (3) assume that P has a solution i1, . . . , ik, and assume

without loss of generality that there is no j < k such that i1, . . . , ij is a solution too.
By assumption, there is some A ∈ A such that A is not 2 · (vi1 . . .vik)-contractive,

so there is some element α for which α2·(vi1 ...vik )+1 < α2·(vi1 ...vik ).
Then define the Kripke model M = 〈W,R, e〉 by letting

• W = {u, u1, . . . , uk},
• R = {〈u, ui〉 : 1 6 i 6 k} ∪ {〈ui, uj〉 : 1 6 j < i 6 k},
• For each 1 6 j 6 k, define the evaluation at each uj, for 1 6 j 6 k, by:6

– e(uj, y) = α,
– e(uj, v) = αvi1 ...vij ,
– e(uj, w) = αwi1 ...wij

6 The evaluation of variables in u is irrelevant to the evaluation of ΓP , ϕP .



ON TRANSITIVE MODAL MANY-VALUED LOGICS 13

It is now a matter of simple calculations to see that M globally validates the
formulas from ΓP . On the other hand, observe that e(uk, v ↔ w) = 1 (i1, . . . , ik
was a solution for P). Since e(uk, y) = α < 1, and e(uk, (vw → vwy) < 1 for all
1 6 j 6 k (since α was chosen non 2 · (vi1 . . . vik)-contractive), this gives us that
e(uk, ϕP ) < 1, concluding the proof. ⊠

Theorem 3.1 results as a direct corollary of the previous result.

4. Modal  Lukasiewicz logics

We can now turn our attention to two of the modal fuzzy logics studied in the
previous section: the ones arising respectively from [0, 1] L and from {MVn : n ∈
ω}. We will see in this way some interesting phenomena that are revealed when
comparing the minimal modal logics and their corresponding transitive versions.

Interestingly enough, we can prove that the logic ⊢K L
is decidable. To the best of

our knowledge, examples of logics turning undecidable when transitivity is involved
affect more complex situations, referring for instance to the addition of a transitive
closure operator to predicate logics [18], [19], or related to very expressive logics
that include forward and backward accessibility relations and also allow a certain
level of quantification [27]. The case of study here shows a relatively surprising
example of a decidable local deduction whose transitive extension is undecidable.

In order to prove decidability of ⊢K L
it is crucial the continuity of all underlying

propositional operations, which will leads to a good behaviour of the  Lukasiewicz
Kripke models. It can be proven that the logic ⊢K L

is complete with respect
to witnessed models, by relying in the analogous result for predicate (standard)
 Lukasiewicz logics ([21],[5]).

To prove the completeness of the modal logic wrt witnessed models, it is only
necessary to use the natural translation from modal into predicate logics and back.
Since it is lacking in the literature, we proceed with the details, but the main techni-
cal issue is the analogous proof of completeness in first order standard  Lukasiewicz.
No previous knowledge on the topic is required to proceed, through some observa-
tions and results from [20] [21] and [5] will be used.

Recall that, given a type of relations {Ri} of respective arity ar(Ri), a (standard
FO)  Lukasiewicz model is a structure

M = 〈DM, {R
M

i }i∈I〉

where RM
i : D

ar(Ri)
M

7→ [0, 1]. For a certain formula ϕ(x) we write ϕ[a]M to denote
the value taken by ϕ in the structure under any evaluation that sends x to a, defined
inductively by

• Ri[a]M = RM
i (a),

• (ψ > χ)[a]M = ψ[a]M > χ[a]M for > propositional connective,
• (∃xϕ)[a]M = supw∈W ϕ[w, a]M,
• (∀xϕ)[a]M = infw∈W ϕ[w, a]M.

Since the  Lukasiewicz negation is involutive, we have that ∀xϕ(x) = ¬∃x¬ϕ(x) (and
correspondingly, in the modal logic, �ϕ = ¬✸¬ϕ), so we will be referring below
only to the existential quantifier (and respectively, to the ✸ modal operator).

A  L∀-embedding of an structure M into a structure N is a mapping h : DM →

DN such that for any first order formula ϕ, and any a ∈ D
ar(ϕ)
M

it holds that

ϕ[a]M = ϕ[h(a)]N.
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In particular, the valuation of sentences is preserved.
Moreover, we say that a structure M is witnessed (analogously to the definition

for Kripke models) whenever for any formula ∃xϕ(x, y) and any a tuple of |y|
elements of DM there is some b ∈ DM for which

(∃xϕ)[a]M = ϕ[b, a]M.

On the other hand, given two [0, 1] L Kripke models M and N, a mapping
h : WM → WN is a  LK-embedding whenever for any modal formula ϕ and any
v ∈WM, it holds that

e(v, ϕ) = e(h(v), ϕ).

Lemma 4.1. ([21, Lemma 3] and [5, Prop. 3.10]) Any standard FO  Lukasiewic
model can be  L∀-embedded in a witnessed one.

From that, we can easily get the analogous result for K L.

Lemma 4.2. Any  Lukasiewic Kripke model M can be  LK-embedded in a witnessed
one.

Proof. For a (countable) set of variables V , let τ be the predicate language
{R/2, {P/1: p ∈ V}}. It s clear that we can stablish a bijection between  Lukasiewicz
Kripke models (M) and (standard FO)  Lukasiewicz models (M′) on language τ that
satisfy the sentence CR : ∀x, y(R(x, y)∨¬R(x, y)), in such a way that the two struc-
tures share domain and for each ϕ modal formula and each v ∈ W it holds

e(v, ϕ) = ϕ♯[v]M
′

where ψ♯(x) is the standard translation into FO, i.e.,

p♯(x) := P (x)

(ϕ ⋆ ψ)♯(x) := ϕ♯(x) ⋆ ψ♯(x) for ⋆ ∈ {,→,∧, ...}

(✸ϕ)♯(x) := ∃y(R(x, y)ϕ♯(y)).

Simply take the same domain, and let

Rvw ⇐⇒ R[v, w]M
′

= 1 and e(v, p) = P [v]M
′

.

Then, consider a  Lukasiewicz Kripke models M, and its corresponding FO model
M

′. The previous lemma gives us a witnessed FO model N′ in which M can be
 L∀-embedded with a mapping σ. In particular, true sentences are preserved, so
N

′ |= CR. Thus, we can use the previous bijection and refer to the Kripke model

N over domain DN′ and such that eN(v, ϕ) = ϕ♯[v]N
′

for any modal formula ϕ.
It is easy to see also that N is witnessed too. For pick a modal formula ✸ϕ and

a world v in the universe of N. If e(v,✸ϕ) = 0 it is trivially witnessed (by any
related world). Otherwise, we have the following chain of equalities:

eN(v,✸ϕ) = (✸ϕ)♯[v]N
′

= (∃yR[v, y])ϕ♯(y))N
′ N

′witnessed
=

(R[v, w]ϕ♯[w])N
′

= eN(w,ϕ) and Rvw (in N)

Clearly, the same mapping σ that was a  L∀-embedding from M
′ to N

′ is also a
 LK-embedding from M to N, since for any formula ϕ and any v ∈ WM,

eM(v, ϕ) = ϕ♯[v]M
′

= ϕ♯[σ(h)]N
′

= eN(σ(v), ϕ).

⊠
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Corollary 4.3. ⊢K
 L

is complete with respect to witnessed models.

From here, it is not hard to prove decidability of ⊢K L
, in a similar fashion to the

procedure given in [21, Def. 3].
Fix Γ ∪ {ϕ} ⊂ω Fm. Let

• Σ0 := {✸χ ∈ PSFm(Γ ∪ {ϕ}),
• Σi+1 := {✸χ ∈ PSFm({ψ : ✸ψ ∈ Σi})}.

Observe that, since Γ ∪ {ϕ} is a finite set it has a maximum modal depth degree
N , and Σi is empty for all i > N .

Let then W0 := {w〈0〉}, Wi+1 := {w〈σ,✸χ〉 : w〈σ〉 ∈ Wi,✸χ ∈ Σi}, and let W :=
⋃

i<N Wi. Observe W is a finite set. Our goal is to use w〈σ,✸χ〉 for witnessing the
value of ✸χ at world w〈σ〉.

Assume V is the set of propositional variables of Γ ∪ {ϕ}. Let us define V✸ as
the following extended set of propositional variables combining the two previous
notions and the original set V :

• xw for each x ∈ V , w ∈ W ,
• ✸ψw for each ✸ψ ∈ Σi and w ∈Wi, for 1 6 i < N .

We will now use the previous language to define a set of propositional formulas
that will determine intrinsically the same conditions that hold in a corresponding
Kripke model. To do that, let us first define a translation from the original modal
formulas (in V) to the natural correspondent over V✸.

Let

• 0
♯
(w) := 0, 1

♯
(w) := 1,

• x♯(w) := xw for x ∈ V ,
• (ψ ⋆ χ)♯(w) := ψ♯(w) ⋆ χ♯(w) for ⋆ propositional connective (,→)
• (✸ψ)♯(w) := ✸ψw

Observe that, by construction, the set Γ ♯(w0)∪{ϕ♯(w0)} is a finite set of propo-
sitional  Lukasiewicz formulas in the set of variables V✸.

Let us now define the set of formulas Ψ(Γ∪{ϕ}) that will determine the behaviour
of modal formulas/variables, as the union of

✸ψw〈σ〉
↔ ψ♯(w〈σ,✸ψ〉) and

∨

w〈σ,✸χ〉∈W

ψ♯(w〈σ,✸χ〉) → ψ♯(w〈σ,✸ψ〉)

for each ✸ψw〈σ〉
∈ V✸. Observe that if ✸ψw〈σ〉

∈ V✸, then for any w〈σ,✸χ〉 ∈W ,

the formula ψ♯(w〈σ,✸χ〉) is in the language of V✸. Thus Ψ(Γ ∪ {ϕ}) is also a finite
set of propositional  Lukasiewicz formulas in the set of variables V✸.

Lemma 4.4. Γ ⊢K
 L
ϕ if and only if Γ ♯(w0),Ψ(Γ ∪ {ϕ}) ⊢ L ϕ

♯(w0).7

Proof. To prove left to right direction assume Γ 6⊢K L
ϕ. From Corollary 4.3 we know

there is a witnessed model M and w ∈ W such that e(w, Γ ) = 1 and e(w,ϕ) < 1.
Since it is witnessed, for each formula ✸ψ and each world v ∈ W it holds that
there is some world v✸ψ such that Rvv✸ψ(v,✸ψ) and e(v,✸ψ) = e(v✸ψ, ψ). Let us
denote w by w〈0〉 and, inductively from w〈0〉, let w〈σ,✸ψ〉 denote the world w〈σ〉✸ψ

.

Then, consider the mapping h : V✸ → [0, 1] given by

• h(xw〈σ〉
) = e(w〈σ〉, x) for x ∈ V ,

• h(✸ψw〈σ〉
) = e(w〈σ〉,✸ψ).

7Where ⊢ L denotes the usual propositional (finitary)  Lukasiewicz [0, 1]-valued logic
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It is clear that h(Γ ♯(w0)) = e(w0, Γ ) = 1 and h(ϕ♯(w0)) = w(w0, ϕ) < 1. On the
other hand, since the model is witnessed

h(✸ψw〈σ〉
) = e(w〈σ〉,✸ψ) = e(w〈σ,✸ψ〉, ψ)

and so, h(Ψ(Γ ∪ {ϕ})) = 1 too, proving that Γ ♯(w0),Ψ(Γ ∪ {ϕ}) 6⊢ L ϕ
♯(w0).

For what concerns left to right direction, the construction of the Kripke model
from a propositional homomorphism h : V✸ → [0, 1] L that sends the premises to
1 and the conclusion to less than 1 is immediate. Simply, define the universe of
the model by W as introduced above, and let R = {〈w〈σ〉, w〈σ,✸ψ〉〉 : w〈σ,✸ψ〉 ∈W}.
Moreover, let e(w〈σ〉, x) = h(xw〈σ〉

) for each x ∈ V . It is simple to prove by induction

that for any modal formula ψ and any w ∈ W such that ψ♯(w) is in variables V✸,
it holds that

e(w,ψ) = h(ψ♯(w))

It is trivial for the propositional connectives. For what concerns the modal formulas,
observe that by definition

e(w〈σ〉,✸ψ) =
∨

Rw〈σ〉v

e(v, ψ) =
∨

w〈σ,✸χ〉∈W

e(w〈σ,✸χ〉, ψ).

By Induction Hypothesis, this equals to
∨

w〈σ,✸χ〉∈W
h(ψ♯w〈σ,✸χ〉

). But from the

formulas in Ψ(Γ ∪ {ϕ}) we know that h(ψ♯w〈σ,✸χ〉
) 6 h(ψ♯w〈σ,✸ψ〉

) for all such worlds,

so in particular we get that

e(w〈σ〉,✸ψ) = h(ψ♯w〈σ,✸ψ〉
)

From Ψ(Γ ∪ {ϕ}) it also holds that h(✸ψw〈σ〉
) = h(ψ♯w〈σ,✸ψ〉

), concluding the proof.

⊠

Since it is well known that ⊢ L is decidable [20], the following is immediate.

Corollary 4.5. The finitary companion of ⊢K
 L

is decidable.

A second observation concerns the relation between the modal logics arising
from the standard MV algebra (⊢K L

) and from the family of all finite MV algebras
(⊢K

ω L
). It is well known that at a propositional level, the two logics coincide (see

eg. [20]). This fact, in combination with Lemma 4.4 above, give us a direct proof
of the fact that the (minimal) local modal logic arising from K L and the one arising
from K{MVn : n∈ω} coincide too. Indeed, while it is immediate that ⊢K L

⊆⊢4K
ω L

,
the other inclusion comes using the same construction of a Kripke model from a
propositional homomorphism that sends the premises to 1 and the conclusion to
less than 1, simply taking now h : V✸ →MVn for some suitable (big enough) n.

Surprisingly enough, the corresponding transitive logics do not coincide, as the
following construction shows.

Lemma 4.6. The following hold:

• x↔ (�x)2,�(x↔ (�x)2),¬✸� ⊥⊢4K
ω  L

¬x ∨ x and

• x↔ (�x)2,�(x↔ (�x)2),¬✸� ⊥6⊢4K
 L
¬x ∨ x.

Proof. On the one hand, it is not hard to find a model validating the second state-
ment. Indeed, let M := 〈ω, {〈n,m〉 : n < m ∈ ω}, e〉 with e(0, x) = 0.1 (any
arbitrary value in (0, 1) serves our porpoise) and

e(n+ 1, x) =
e(n, x) + 1

2
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Clearly, e(n,� ⊥) = 0 for all n, since each world has a successor, and trivially
e(0, x ∨ ¬x) < 1.

For each world in the model, it is easy to see that e(n, x) < 1 for all n ∈ ω, and
that n < m implies e(n, x) < e(m,x), so e(n,�x) = e(n + 1, x) for all n ∈ ω. In

particular, e(n, (�x)2) = 2 e(n,x)+1
2 − 1 = e(n, x), proving that e(0, x ↔ (�x)2) =

1 = e(0,�(x↔ (�x)2)).
On the other hand, suppose there is n ∈ ω and M a transitive model over

MVn = {0, 1
n
, . . . , n

n
}, with v a world of the model in which e(v, x) = l

n
with

0 < l < n, l ∈ ω. Assume further that e(v,¬✸� ⊥) = 1, so any successor of v
has also some successor world. For the other premise to hold in v, there must be
some sequence of worlds {vi : i ∈ ω} with v0 = v, Rvivi+1 and e(vi, x) = e(vi+1, x

2).
However, for this sequence it would then hold e(vi, x) < e(vi+1, x), while having
e(vi, x) < 1 for all i (otherwise, the whole sequence would evaluate x to 1 and so
would do the initial world v). Since MVn has finitely many elements, this increasing
sequence cannot exist, proving our claim.

⊠

It can be proven that the previous example also serves to differentiate ⊢4KΠ

and the transitive modal logic over a one-generated subalgebra of [0, 1]Π . However,
we do not know whether their corresponding minimal modal logics (not transitive)
coincide.

Corollary 4.7. ⊢K
ω  L

coincides with ⊢K
 L

, while ⊢4K
ω  L

is strictly stronger than
⊢4K

 L
.

A consequence of this fact is that it cannot exist a set of axioms and rules G4
such that both

• the extension of ⊢K L
with G4 coincides with ⊢4K L

, and
• the extension of ⊢K

ω L
with G4 coincides with ⊢4K

ω L
.

In particular, usual axiom 4 : �ϕ → ��ϕ is no longer enough to characterize
transitive models of the class in at least one of the previous cases.

5. The presence of ∆

As in fragments of predicate logics (see eg. [2]), in the presence of the projection
operation ∆ we can translate the undecidability results to the set of theorems of the
respective logics, and also to the local SAT problem8 -since, with ∆, the problems
of validity and local SAT are easily reducible one to the other, contrary to the
situation without ∆.

The observation is totally natural, but nevertheless, relevant for what concerns
possible applications of these logics, since in practical uses, the possibility of talk
about absolute truth of a formula seems reasonable. However, the fact that in
its presence we can more easily fall in undecidable questions gives an idea of the
possible step in expressibility power taken when adding ∆ to the language.

Monteiro-Baaz ∆ operation is defined, for an arbitrary FLew-chain by letting

∆(a) =

{

1 if a = 1

0 otherwise.

8Given a formula, is there some model and some world in it that evaluates the formula to 1?
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Then, the Deduction Theorem, not necessarily holding in the modal logics studied
in Section 39 is fully recovered. Indeed, we have that for any class C of models
evaluated over FLew-chains,

γ ⊢C ϕ if and only if ⊢C ∆γ → ϕ

Allow us to write ⊢∆
C

to denote the logic over the class of models C whose
language has been expanded by the ∆ operation interpreted (at each world) as
described above.

Lemma 5.1. (1) The set of valid formulas of ⊢∆4KA
is undecidable. Moreover,

the set of valid formulas of ⊢∆ω4KA
is also undecidable.

(2) The problems of local SAT in 4KA and in ω4KA with ∆ are undecidable.

Proof. (1 ) follows naturally from the DT and Theorem 3.1. For the second, it is
trivial that ϕ is valid in ⊢∆4KA

(resp. ω ⊢∆4KA
) if and only if ¬∆ϕ is not locally SAT

in 4KA (resp. ω4KA) with ∆. ⊠

6. Conclusions and Future work

We have studied the computability of a large family of transitive modal many-
valued logics, proving their undecidability. Moreover, we have compared the be-
haviour of the transitive  Lukasiewicz modal logics (over [0, 1] L and over {MVn : n ∈
ω}) and their corresponding transitive versions, observing some particular be-
haviours that contrast with the known results in other modal logics.

Several interesting open problems are remaining after this study. First natural
question is whether transitive modal Gödel logic (over models with a crisp accessi-
bility, in particular) is decidable, which would provide a full understanding of the
three main left-continuous t-norm based logics. In ongoing works we are studying
this question, non trivial from [7] since the logic is not necessarily complete with
respect to models of finite depth.

On the other hand, the question of whether the local modal product logic with
crisp-accessibility models is decidable or not also remains open. In particular, the
proof from [10] concerning decidability of SAT and theoremhood questions over the
analogous logic over valued-accessibility models seems hardly adaptable to the crisp
case, since it is crucial in the proof to allow the accessibility relation to be valued
in (0, 1).
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9Observe not even the usual local DT (analogous to the one holding in propositional Π and

 L logics) seems natural to prove: while for each particular model it is true that γ |=M ϕ iff there
is some n ∈ ω such that |=M γn → ϕ, this index may vary from one model to the other, and in
particular, the family might fail to have a supremum in ω. A deeper study of this question is left
for future works.
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