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Abstract

This paper aims to develop simplified yet improved delay-dependent robust control
for uncertain T-S fuzzy systems with time-varying delay. This is achieved through
constructing new Lyapunov-Krasovskii functionals and improving Jensen’s inequal-
ity. Unlike existing work in this area, the approach developed in this paper employs
neither free weighing matrices nor model transformations. As a result, simplified
yet improved stability conditions are obtained for T-S fuzzy systems with norm-
bounded-type uncertainties. For controller synthesis of the fuzzy systems, the sta-
bilization problem with memoryless state feedback control is solved via utilizing
a cone complementarity minimization algorithm. Numerical examples are given to
demonstrate the effectiveness of the proposed approach.

Key words: T-S fuzzy systems; Robust stability; Time-delay systems; Linear
Matrix Inequalities(LMIs); Stabilization.

1 Introduction

Since the pioneer work of Takagi and Sugeno [1], Takagi-Sugeno (T-S) fuzzy
model based control has been intensively investigated. It combines the flexible
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fuzzy logic theory and fruitful linear system theory into a unified framework
to approximate complex nonlinear systems, and thus becomes a powerful tool
to deal with modelling and control of complex systems, including time delay
systems.

Time delay, one of the instability sources in dynamical systems, is a com-
mon and complex phenomenon in many industrial and engineering systems,
e.g., many chemical processes, long transmission lines in pneumatic, hydraulic,
rolling mill systems, communication networks [2,3]. Much effort has been made
in analysis and synthesis of fuzzy systems with time delay during the last two
decades. For recent progress, refer to [2,4-9] and the references therein.

Some approaches developed for general delay systems have been borrowed to
deal with fuzzy systems with time delay. For instance, Cao [2] and Wang [10]
applied the Lyapunov-Razumikhin functional approach in stability analysis
and stabilization study of T-S fuzzy systems. Using the Lyapunov-Krasovskii-
based approach, Guan [5] and Chen [11] investigated delay-dependent guar-
anteed cost controller design and robust H., control problem for T-S fuzzy
systems with delay, respectively; however, both of them employed model trans-
formations and Moon’s inequality [12] for bounding cross terms in their deriva-
tion. It is known that the bounding technology and the model transformation
technique are potential sources of conservativeness [3].

To further improve the performance of the delay-dependent stability criteria
for T-S fuzzy systems with time delay, much effort has been recently devoted
to the development of the free weighting matrix method, e.g., [4,6-8,13,9].
The free weighting matrix method has been shown to be less conservative
than previous methods, such as the model transformation method and Park’s
inequality method, which are employed in [5] and [11] to deal with cross terms.
However, it has been realized that too many free variables introduced in the
free weighting matrix method will complicate the system synthesis and conse-
quently lead to a significant computational demand [14-16]. The problem of
improving system performance while reducing the computational demand will
be addressed in this paper.

Addressing T-S fuzzy systems with time-varying delay and norm-bounded un-
certainties, this paper aims to develop improved delay-dependent robust stabil-
ity criteria over the latest results available from the open literature [4,6,7,17].
In order to significantly reduce the conservativeness and considerably improve
the computational efficiency, inspired by the work of Wu, He [18,19] and
Parlake1[20,21], we adopt the technique that we recently developed [15,16]:
simplified augmented matrix method incorporated with improved Jensen’s in-
equality method. Unlike existing work in this area, this technique employs
neither model transformation nor free weighting matrices in the derivation
of the stability results. It has been shown [15,16] to be more effective than



previous methods, e.g., the descriptor model transformation method [22], the
free weighting method [18,23,24], and the augmented matrix method coupled
with the free weighting method [19,25,20,21], for time delay system.

The main contributions of this paper are highlighted as follows. (1) Delay-
dependent stability criteria are developed, which are an improvement over
the latest results available from the open literature [4,6,17,7]. (2) Theoretical
proof is provided to show that the results in [4] is a special case of the results
derived in this paper. The approach developed in this work uses the least
number of unknown variables, and consequently is the least mathematically
complex and most computationally efficient. (3) An efficient search algorithm
is proposed to obtain control parameters and the maximum allowable delay
bound simultaneously. Compared with the trial and error algorithm in [4,6—
8] with infinite searching scopes to obtain a suboptimal solution, the search
algorithm proposed in this paper ensures a larger allowable delay bound for
time-varying delays affecting the state vector of an uncertain T-S fuzzy system
with norm-bounded uncertainties.

Notation: Throughout this paper, N stands for positive integers, R™ denotes
the n-dimensional Euclidean space, R"*™ is the set of n x m real matrices, [
is the identity matrix of appropriate dimensions. The notation X > 0 (respec-
tively, X > 0), for X € R™™™ means that the matrix X is a real symmetric
positive definite (respectively, positive semi-definite). For an arbitrary matrix

B
B and two symmetric matrices A and C, denotes a symmetric matrix,
x C

where * denotes the entries implied by symmetry.

2 System and Problem Descriptions

Consider the T-S fuzzy model with time-varying delay. The ith rule of the
model is described by the following IF-THEN form

R If z1(t) is Wi and --- and z,(t) is Wi,

_ _ _ (1)
Then &(t) = Ajx(t) + Agax(t — 7(t)) + Bu(t),
where x(t) € R" is the state vector and u(t) € R™ is the input vector; W is
the fuzzy set, z;(t) (j = 1,2,...,n) is the premise variables; 7(¢) is a time-
varying function representing time delay with known constant scalars 7 and d
satisfying

0<7(t)<7,|7(t)] <d (2)



x(t) = @(t), t € [-7,0], ¢(t) is the initial condition of the state; A; = A; +
AAi(t), Adi = Adi + AAdi(t) and Bi = Bi + ABl(t), Ai, Adi and Bl(l =
1,2,...,n) are constant matrices with compatible dimensions; A A;(t), AAg(t)
and AB;(t) are time-varying matrices with appropriate dimensions, and are
defined as

AAi(t) = HiFi(t) By, AAgi(t) = HiFy(t) By, ABi(t) = HiFy(t) By, (3)

where 1 = 1,2,...,n, H; and Fy;, F.q, Ey are known constant real matrices
with appropriate dimensions and Fj(t) are unknown real time-varying matrices
with Lebesgue measurable elements bounded by

FTOE®) <1 (4)

By using the center-average defuzzifier, product inference and singleton fuzzi-
fier, the global dynamics of T-S fuzzy system (1) can be expressed as

n

a(t) =Y pmilz(t)) Vlil’(t) + Agix(t —7(t)) + Biu(t)] ; (5)

i=1

where
n

pi2(t) = wil2(1))/ X wilz(t)), wilz(t)) = T, Wj(z(1)),

i=1

and W/(z;(t)) is the membership value of z;(t) in W}, some basic properties
of u;(2(t)) are

pa2(1)) 2 0, ity pu(2(t)) = 1.

In this paper, a state feedback T-S fuzzy-model-based controller will be de-
signed for stabilizing T-S fuzzy system (5). The ith controller rule is

RU:TIf 2z (t)is Wi and --- and z,(t) is W¢,

(6)
Then u(t) = K;x(t).
The defuzzified output of controller rule (6) is proposed as
u(t) =Y palz(t) Kia(t). (7)

i=1

Combining (5) and (7), we obtain the following closed-loop fuzzy system



(t) = Ax(t) + Agz(t — 7(1)),
x(t) = ¢(t), t € [-7,0]. (8)

W(h(;;e A= Sy (20 (2 (0))(Ai+ BiK;), Aa = iy pi(2(t)) Aago(t —
T(t)).

The following improved lemma is derived from Jensen’s integral inequality [3].
It prevents a tighter bound to deal with cross terms, and is useful in deriving
our stability criteria.

Lemma 1 [3,15] For any constant matrices Q11, Qa2, Q12 € R™" Q11 > 0,
Q11 Q12

Qa2 > 0, > 0, scalar 1y < 7(t) < 7, and vector function & :
* Qoo

[—T2, —71] — R™ such that the following integration is well-defined, it holds

that

T _
—(r2— 1) /t_T1 7(s) Qu Quz | | als) ds
= | i(s) k Qu| | @(s)
T )
x(t — 1) —Qa Qn —Qfy | |z(t—m7)
S a(t—7(t)) x  —Qun Qf | [z(t—71(1)) (9)
e | | e —qu] |5 et

Remark 1 Lemma 1 will play a key role in the derivation of a less conserva-
tive criterion for robust delay-dependent stability analysis in this paper; and
the additional design matriz Q12 in (9) gives a potential relaxation. Compared
with some recent results in, e.g., [6,7,9], where free-weighting matrices are in-
troduced to deal with cross product terms, results from Lemma 1 gives improved
results while employing none of free-weighting matrices.

3 Delay-Dependent Robust Stability Criteria

In this section, we aim to develop an innovative approach to deal with the
problem of robust stability performance analysis for system (8). The basic
idea of the approach comes from our recent work in [15,16]. For the stability
analysis of system (8), it is assumed that the feedback gain matrices K; have
been well designed and uncertainties (3) are not considered in the following
Lemma 2.



For notational simplicity, let

~ Qll QIQ ~ Pll P12
Q

I

* Qo * Py

Lemma 2 For given scalars T > 0, d > 0 and matrices K;, if there exist
matrices R > 0, S > 0, Z > 0, Q >0, P > 0 with compatible dimensions
such that the followmg LMIs hold fori,j=1,2,....nand 1 <i<j<mn:

T4 T Tis
E?j = * —Q 0 < O,

* * ng
Tll—l—T” T“ T” \/_Tlg
* — 0 0
Q _ <0,
* *x —Q 0
* * x5
where
I T T Yy, IH
Th=| « T% T8 | Th=|7ALQE, 7A5Qxn | -
o« T 0 0
dP;, 0
—-dsS 0
Ti3= 0 dPy |, Ts3=
0 —d7
0 0
and

Flﬁ =R — Qa + Pia+ P+ Pi(Ai + BiK;) + (A; + BiK;)" Piy,

I = Qa0 + Pi1Ay — Pia, F% = (A + B‘K‘)Tpn + Py — Q1

14:T(Q11 + (4 + BiK;)"Q1,), I, = 7(Quz + (A; + BiK;) T Qa2),

Th=—(1-d)R— Qo +dS, T¥% = Qf, + ALPis — Py,
I, =dZ — Qu1.

then the equilibrium of system (8) is asymptotically stable in the large.

(10)



Proof: Construct a Lyapunov-Krasovskii functional candidate as

V() = Vi(we) + Va(ay) + Va(ay) (12)
where
Vl(:rt)—/t:(t) o7 (v)Ra(v)dv, (13)
o [aw] - e
Vo(ay) =T Q dvds, (14)
LL el
v:a,m)—[ o } 15{ o } (15)
Sy w(s)ds Sy w(s)ds

and R >0, Q >0, P> 0 are to be determined. The time derivative of V()
is taken along state trajectory (8), yielding

Vi(ae) = 2 () Ra(t) — (L — 7(1)a” (¢ — () Ra(t — 7(t)) (16)

V() = 72 {%(t)} Q {%(t)} —%/tf {%(t)} Q {%(t)} dt  (17)
x(t) x(t) =7 () x(t)

The first term of the right hand side of (17) can be expressed as

T I AT I AT '
P (O I () B I .
| Q |=7&@)|0AT| Q0 AT | &) (18)
(t) (t)
00 0 0
where ,
€7(0) = (70,27t = 7). ([ ()] (19)

It is seen that there are no any linear correlated items in the constructed &(¢).
This is a key feature in our approach to reduce the computational demand
[15,16].

Furthermore, it follows from Lemma 1 that the rightmost term of (17) satisfies

—Qa Q2 —Q1T2
dt < fT(t) * —Qa Q1T2 {(t) (20)
* *  —Qn




o) -2 { 2(1) 5 i(t) }
S o a(s)ds o(t) = (1= #(t))a(t — 7(t))
10 4 0
—2"(t) 00| P ‘ }m (21)
o I —(1—#(t) 0

For some matrices Z > 0, S > 0 and any scalar d satisfying (2), the following
inequities always hold.

27 ()T (t) Py (t — 7(t)) < da” (t)PaS™  PLa(t) + da™ (t — 7(t))Sa(t — 7(t))
(22)

202" (t = T(O)P [ @)t < do” (= () PraZ” Pt = 7(1)

v tm) a7 [ ety (23)

Jt—7(t)

From (21) - (23), we have
Va(x) < €7(8)O(t) (24)

where

O PuAyg— P2 ATPy+ Py
O=| % dS+dPyZ 1Py ATP, — Py
* * dz
©11 =Pz + Py + Py A+ AT Py + dPS™' P

Considering (16)-(24) together and applying Lemma 2 of Guan et al. [5], we
have

V (z:) < 5 Z Z ,UJ ))[Tlljl - T%Q—l[T?ﬂT - T13T531T1T3]5(t)
i=1j=1
n—1 n
{Z pa(2(1))*[ 7y = THQHTH]T — T Loy Ths] + D >~ mal2(1))
i=1 j>i
15 (=(t ))[Th + 111 = THOYHT = THQ T - 2T13T531T1T3]}&€ (t))
25



where Y%, Y%, T15 and Ys3(i,j = 1,...,n) are defined in Lemma 2.

By using Schur complements, Eqn. (10) is equivalent to Y#-Y%Q~![Ti|7-
T13 T35 1T, < 0and (11) is equivalent to T +T-THhQ Y] T-T15Q 1 [T,]T-
2713 Y33 YT, < 0. Therefore, from (25) we have V(z;) < 0, implying the
asymptotical stability of system (8). This completes the proof. [

Because parameter uncertainties are not considered in (10) and (11), Lemma
2 cannot be directly utilized to determine the stability of closed-loop system
(8). The following results of Theorem 1 provide sufficient criteria for system
(8) to be asymptotically stable.

Theorem 1 Assume that 0 < 7(t) < 7, 0 < 7(t) < d and given matrices
K;, if there exist matrices S > 0, Z > 0 and R > 0, Q >0 and P > 0 with
compatible dimensions, any scalars €;; > 0, such that the following LMIs hold
fori,j=12 ... nandl1 <i<j<n:

Y Y% Da Yis
. ¥ —0Q D, 0
Tit = Q Do <0, (26)
x +x —gul 0

(TH + TR TH T Do Da VT
* ~Q 0 Dy Dy 0
* x —Q 0 0 0
< <0, (27)
* *  x —egyl 0 0
* * % *  —eul 0
| * * % * * Tss |
where
I, 1Y, T o
Tll]l - | * ng F% ) Tllj2 - 7_'AdTiQ% 7_'AdTiQQQ ;
x o« ¥ 0 0
T T
Do = |HIPY 0 O Ph| » Do = | TH{Qf, TH] Q2| (28)

and



U9 =T% + cij(Bai + By K;)T (B + EyK;),
T =T% + cij( Bai + BuK;)T Bai,
f‘% = 1“12]2 + 5ijE£'Edi-

where T%, T, T T9 TW T T T% T and Tss are defined in Lemma
2, then the equilibrium of system (8) is asymptotically stable in the large.

Proof: Decomposing the resulting matrix inequalities (10) into nominal and
uncertain parts lead to

Y= Egj + DiFi(t)Eij + EEFT (t)DT

where

Eij: {(Eai + Ebin) FE; 0000 O}

DT —

HIPL 0 HY Py 7HIQL, 7HIQS, 00 .

%Y, is defined in (10). It is clear that there exist e;; > 0, thus the following
inequalities always hold

Sij = Sy + DiFy(t) By + ELF] (t)D] <59+ Diej' DI + Elei; By
Using Schur’s complement, one can obtain (26). Similarly, one can also obtain
(27) from matrix inequalities (11). This completes the proof. |

Remark 2 (1) There are no correlated terms in £(t), implying that there is
no redundant information in our criteria. Therefore, significant improvement
in computational efficiency can be expected from our approach.

(2) Because the additional design matrices in Q and P give a potential re-
laxzation [9,18,20,21,15], less conservativeness can be expected in our methods,
which will be shown through numerical examples.

(3) The augmented Lyapunov functional approach has been employed in our
work and also in [9,18,20,21]. Compared with the free-weighting matriz method
to deal with cross product terms in existing works [9,18,20,21], Lemma 1 is
a more general and tighter bounding technology to deal with cross terms. By
using Lemma 1, neither free weighting matrices nor model transformations
are employed in the proof of our results. Hence, the approach developed in
this paper has inherited the advantages of the augmented Lyapunov functional
method and has also improved Jensen’s inequality bounding technology.

For the case of time-invariant delay, we can get the following Corollary 1 from
Theorem 1. The proof of the corollary is omitted here.

10



Corollary 1 Gwen a scalar T > 0 and matrices K;. The equilibrium of the
system (8) is asymptotically stable in the large for any constant time-delay
T satisfying 0 < 7 < 7, if there exist matrices R > 0,Q > 0,P > 0 with
compatible dimensions, any scalars €;; > 0, such that the following LMIs hold
fori,j=12 ... nandl1 <i<j<n:

T4 la=o Ti Da
* —Q Dig < 07 (29)

* * _Eii]

Y% la=o + 111 la=o Y To Di Da
* —Q 0 Dp Dy
% « —Q 0 0 |<0, (30)
* * ok —eyl 0
* X% *  —eyl

where T Y9, Dy and Dy are defined in Theorem 1.

The augmented matrices P and Q in constructed Lyapunov functional (12)
play an important role in conservativeness reduction. For comparations with
existing results without augmented matrices in the Lyapunov functional can-
didate, let us consider the same Lyapunov-Krasovskii functional as that in
4]

V(x) = 2 (t)Pa(t +/ v)Rx(v dv+7/ / 0) Qa2 (v)duds,
T Ji+s (31)
From the introduced free weighting matrices and ¢7(t) = [27(t), 27(t — 7),
#7(t), (ff . &(t)dt)T], the following Corollary 2 is derived in [4]. For simplicity,
the parameter uncertainties of system (8) are not considered in the following
Corollary 2 and Corollary 3.

Corollary 2 (Corollary 1 in [4] without consideration of uncertainties) Given
a scalar T > 0. System (8) with u(t) = 0 is asymptotically stable for any con-
stant time-delay T satisfying 0 < 7 < 7, if there exist matrices R > 0, Q29 > 0,
P >0,T >0, as well as some matrices My, My, Mz, My with compatible

11



dimensions, such that the following LMIs hold fori=1,2,...,n:

(©.,(i) (i) ATT + MP — M, + MT
x  Boy(i) ALT — MT —My, — MTF
B, — 22(i) Agi 3 2 — Mj <0 (32
* ¥ TQo — 2T — M,
o * * —7 Qg — My — M |

where

@11 (i) = R+ P A; + AT Py + My + MY
q)lz(i) = PllAgi — M, + ]\fQT, @Qg(i) =—R— My — ]\[2T

However, from Lemma 1 and choosing ¢F(t) = [T (¢), 27 (t—7)], we can obtain
the following results. The proof is similar to that of Lemma 2 and is omitted
here.

Corollary 3 Given a scalar 7 > 0. System (8) is asymptotically stable for
any constant time-delay T satisfying 0 < 7 < 7, if there exist matrices R >
0, Qa9 > 0, P11 > 0 with compatible dimensions, such that the following LMIs
hold fori=1,2,....n:

Q= Tuli) Tul) ) (33)

x  Woo(i)

where

1
Uy1(i) =R+ Py A; + A Py — ;QQQ + FAT Qg A
) 1 _
Uiy(i) = Py Agi + ;Qm + TAiTQQQAdi;

. 1 _
Woy(i) = —;Qm — R+ 7AL Q2 Ay

The relationship between Corollaries 2 and 3 is given below in Corollary 4.
Corollary 4 The following two statements are equivalent:

(1) There exist matrices R > 0, Qqp > 0, P11 > 0 with compatible dimensions,
such that (33) holds;

(2)There exist matrices R > 0, Qg > 0,P;; > 0,7 > 0, as well as some
matrices My, My, M3, My with compatible dimensions, such that (32) hold.

12



Proof: From &7 (t) = [27(t), 27 (t—7), 7 (t), (J} - #(t)dt)"] chosen in the proof
of Corollary 2 in [4], we have

ET()DE(t) = €7 (1)[@] + BT (1) (34)
where
R4 PuA+ATP, PRAT  ATT 0
, ¢ —R ALT 0
o) = ,
* ¥ TQe — 2T 0
* * * —7_'_1@222 |
M, + MT —M, + MI MT —M, + M|
| % —My— MT —MI —My— MT
i —
* * 0 —Mj
* * x =My — J\JZ_

From Newton-Leibinz formula, when M = [ M M M M] ], it is clear that

t

€T (B)BRE(E) = 26T ()M [w(t) — at —7) — [

t—7

:'c(t)dt} —0 (35
Choosing £7(t) = [27(t), 2T (t — 7)], we have

OB = O + 20" (AT + 2T (¢~ A ALIT()
i (1)(7Qu = 2T)i(0) = 7 ( (a0 Qul [ _alt)a]
=€l (0046 (1) + 7 ()(Qu)i(e) — 7 [ AT / il

t—T —T
T
. AT AT I
=& (t)[@% + 7 ; Qo | ' -7t [ ] Q2 {I —]}]fl(t)
i A% ~I
=& ()& (1) (36)
where @é _ R+ PUAiJrAITPU PHAE- .
* —R
From (34), (35) and (36), we have
M (t)PiE(t) = & ()& (2) (37)

13



So the solvability of (32) is equivalent to that of (33). |

Remark 3 It is worth mentioning that £7(t) is chosen as [2T(t), 2T (t — 7),
T(t), (Jf . @(t)dt)T] in [4]. However, it can be seen that the items " (t) and
(ff - @(t)at)T can be expressed as linear combinations of x” (t) and 27 (t — 7).
This means that there is redundant information in 7 (t). In this case, the free
weighting matrices are necessary in their proof.

In comparison, using the simpler approach developed in this paper, one does not
see any linearly correlated items in the constructed augmented matriz & (t),
implying that no redundant information has been used in &X' (t). Compared to
8 unknown variables in [4], only 3 unknown variables are employed in our
approach to obtain equivalent results. This is an indication of higher compu-
tational efficiency of our approach.

Remark 4 (1) A comparison between Corollary 1 and Corollary 3 shows that
to the same T-S fuzzy system (8), setting Pia = 0 and Q12 = 0 in Corollary 1
will give the same results as those obtained from Corollary 3. However, when
Py # 0 and Q12 # 0, because of the augmented matrices P and Q in the
constructed Lyapunov function(12), one can obtain less conservative results
from Corollary 1 than those from Corollary 3.

(2) From Corollary ?? that states the equivalence of Corollary 2 and Corol-
lary 3, one can expect that the approach developed in this paper, e.g., the aug-
mented matrixz method incorporated with Lemma 1, always outperforms those
approaches solely based on the free-weighting matriz method [4,6,7]. The per-
formance tmprovement will be shown in Section 5 through numerical examples.

4 Robust Controller Design with Augmented Matrices in Effect

The previous section has proposed new delay-dependent stability criteria for
T-S fuzzy systems with known feedback gain. This section considers the sta-
bilization problem for closed-loop T-S fuzzy systems. A delay-dependent sta-
bilization method will be developed such that the obtained controller will
guarantee the asymptotical stability of closed-loop system (8) in the large.

The following theorem summarizes our method for the design of a memoryless
Parallel Distributed Compensation (PDC) controller (7) to stabilize the fuzzy
system. Similar idea can be found in the work of Parlakci[21] to deal with

uncertain linear time-delay systems with augmenting matrices in effect.

Theorem 2 For giwen scalars 7 > 0 and d > 0, if there exist matrices R > 0,

14



Qn C?12 >0, Py {312

* Qo * Py
dimensions such that the following matrix inequalities hold fori,j =1,2,....,n
and 1 <1 <3< n:

S>0,G>0 2Z>0, > 0 with compatible

et X el ¥ e

=11 —12 —13

* EQQ 0 < 0, (38)
* * Egg
=+ 511 =4 5 IS
* a0 0 V22
22 23 <0, (39)
* * EQQ 0
* * % a3
where
Qlﬂ 11]2 Py — ~{2 77'@11 f@u Q% 0
* QQQ Q{Z — pgg 0 0 ’T_'Xzzlzl; 0
Zh=1 « « Q33 0 0 |.Eh= 0 PL|,
* K * —Qu —Qm 0 le
|+ X * * —Qm_ L 0 6?22_
dPy 0 s
_ -G 0 _ - _ —-ds 0
Zog = , 213 = 0 dPs|,=33= .
x —XG1X 0 —dz
O3x1 03x1
and

QY =R~ Qas + Pro+ Ph+ A X + XAT + BY; + v/ Bl
th=Qun+ AuX — P, Q% = 7(AXT + BY;),
Qoo =—(1—d)R — Qs + dS,
Qa3 =dZ — Qu (40)

then the equilibrium of system (8) is asymptotically stable in the large with
feedback gain K; = Y; X1

Proof: Let us first derive matrix inequalities (38). Pre- and post-multiplying
(10) with diag[ X; X; X; X; X; X; X], where X! = P, and denoting X (1) X =
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() and V; = K; X give

D= | x 1:.[22 0 | <0,
* * f133
where
O O O O, O Py 0
M= % O Q% | I, = Q4 QL Mis=| 0 dPy
* * 5233 O 0 0 O
Mgy = ~Qu _?12 ,flgg = diag{—dg, —dZ}.
| * —Q2
and
Qi{,, = XATX Py + Y B X ' Piy + P — Q1
Qfy = 7[Qu + XA XT'QL + Y, BI X T'Q),
Q% = T[Qn + XAT X~ 1@22 +Y, "Bl X~ 1@22]
0 = QF, +XA X LPy — Po,
Q14 = TXA 127 Q22]5 = _XAde 1@227
Q4 QY Qs and Q33 are defined in (40)
Decomposing ®;; in (41) yields
Dy = OF + Y X 1D, + T XL @YY < 0
where ) .
Qi Qfy Py — Qf, 7Qu1 7Q1z dPy 0
* S)QQ C?%; — j%g 0 0 0 (ijzg
* * 5233 0 O 0 O
OF = | x = * —Qu—Qr 0 0
* % * * —@22 0 0
* %k * * ¥ —dS 0
* % * * * x —dZ

~ii g T
II11 II12 IIl3
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. _ — — T
o7 = [%(AiXT +BiY;) TAuX 00000

Dy = {0 0 Py QF, Qg5 0 o}
For any G > 0, the following inequalities always hold:
YNy + T X H(@Y) < BV (DY) + DT (XGTIX) By (43)

Substituting (43) into (42) and applying Schur’s complement yield matrix
inequalities (38).

Similarly, pre- and post-multiplying (11) with diag[ X; X; X; X; X; X; X; X; X],
we can obtain matrix inequalities (39).

According to Lemma 2, if conditions (38) and (39) hold, fuzzy system (8) is
asymptotically stable in the large with the memoryless state-feedback con-
troller K; = Y;X~!. This completes the proof. n

The following Theorem is used to design a robust, memoryless, state feedback,
T-S fuzzy-model-based controller for stabilizing T-S fuzzy system (5).

Theorem 3 For gwen scalars 7 > 0, d > 0, if there exist matrices R > 0,
o Q Py P

On C?m > 0, . ~12 > 0 with compatible
* Q2o * Doy

dimensions, scalars ;; > 0 such that the following matriz inequalities hold for

,7=1,2,...,nand 1 <i<j<n:

S>0,G>0, 7 >0,

- D =
=

—11 =12 13
* 522 0 < 07 (44)
* * 533
(i | 2o 2 it ]
=11 —11 —12 =12 —13
* EQQ 0 0
5 <0, (45)
* k 522 0
* x % g
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where

FY Fh P — QY 7Qu 7Qre Fs 0 F%
x FQl—Py 0 0 FXAT 0 XET
élljl - * k F33 0 0 7é’ij2 — O plg O )
* ok * —Q11 —Q12 0 Qn 0
x % * * —QQQ 0 (222 0
Fes 0 0 APy 0 N
- N _d§ 0
Zpe=| x —XG'X 0 Z13=| 0 dPy|,Z33= _ s
0 —dZz
* * _EZ]] O4><1 O4><1

Fh=R—Qun+ Po+ Ph+ AX+ XA + BY; + VBl + e H;H]
lejg :@22 + AdiX — plg, Fllje == f(AiXT + Bin)T + fEiniHiT,
F=XEL+ Y/ EL Fa=—(1—d)R— Qy +dS,

Fas=dZ — Qu, F s = —G+ ey H T

then the equilibrium of system (8) is asymptotically stable in the large with
feedback gain K; = V; X1

Proof: Decompose the resulting matrix inequalities (38) into nominal and un-
certain parts to obtain

Sy = X% + D Fi(t) By + ELFT (t) DY (46)

where

g;=0 =13 I0

co 0 [I=10T],

=ij
€i5=0 Einl

10 =
= * :221

* * 333 00

~ T .
Di: H;TOOOO’T'HZTOOO} 7Eij: {EaiXﬁLE(n‘Y}' EdiX 01><7

It is clear that there exist ;; > 0, and thus the following inequalities always
hold.

Sy = 59 + DiFy(t) By + ELFT () DF < 5% + Diey DT + Ele ' By (47)

Using Schur’s complement, one can obtain (44). Then, similar proof to that
of Lemma 2 can be carried out to obtain (45). This completes the proof. M
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Note that Theorems 2 and 3 include nonlinear term —XG~'X. Therefore,
they cannot be solved directly by using the LMI technique. Instead, one can
consider an iterative algorithm to get a feasible solution set for Theorem 2.

Assume that there exist new matrix variables L = LT satisfying
XG'X > L (48)

Then, by Schur’s complement, (48) is equivalent to

Lt Xt
>0 (49)

XTI gt
Thus, by introducing new matrix variables M = L™!, N = X!, T'= G, the
original conditions (38) and (39) are kept while the nonlinear term XG~1X

in (38) and (39) are replaced by L and condition (49) can be replaced by (50)
below

M N

>0 (50)
NT'T

According to the above discussions, instead of the original non-convex mini-
mization problem, the following nonlinear minimization is presented using the
idea of the cone complementarity [26]:

Min tr(ML + NX + TG)
Subject to: (38) and (39)(XG ' X are replaced by L)

‘M ON LI 9y O
> O > O Qll QlZ

>0, 20, - | =20
NTT I M * QQQ

— 7

X7 e Py P
20 20’ 11 12 >

I N I T *P22

(51)

Although (51) gives only a suboptimal solution to the original problem (38)
and (39), it is much easier to solve than the original non-convex minimization
problem. To get a solution to (51), the following algorithm is proposed.

Algorithm 1 Finding an upper bound delay 7 and feedback gain K; = Y; X1
(1) Choose a sufficiently small initial T > 0 such that there exists a feasible

set (M,N,T,L,X,G)° satisfying LMIs in (51). Set k = 1.
(2) Solve the following LMI problem for variables {M, N, T, L, X,G}
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Min tr(MFL + L*M + X*N + N*X + G*T 4 T*Q) (52)
Subject to: (38) and (39)( XG~'X are replaced by L)
Set (M, N, T, L, X,G)*"' = (M,N,T, L, X,G)

(3) Substitute the obtained matriz variables G, X, R etc. into (38) and (39).
If the conditions of (38) and (39) are satisfied, then return to Step 2 after
increasing T to some extent; if (38) and (39) are not satisfied within a
specified number of iterations, then exit. Otherwise, set k = k+1 and go
to Step 2.

Remark 5 The proposed algorithm is significantly different from those in
Tian and Peng [6], Wu and Li [7] and Yoneyama [9]. For example, in [9)],
parameters ti,...,t; must be pre-described to satisfy the assumption T; = t;5
in the proof of Theorem 4.1. These extra requirements will introduce some
conservativeness; and how to tune ty,...,t; remains difficult because the search
ranges forty ,..., and t; are infinite [27,15]. Similar problems can be found in
many recent papers, e.g., [7,6,8,9,28]. Compared with the methods with some
constraints on searching scopes in [6,7,9], the algorithm proposed in this paper
does not have any search scope bounds. This makes it possible to obtain a less
conservative solution.

Remark 6 An alternate algorithm to deal with the nonlinear item XG~1X is
to set X = G in (44) and (45), where ¢ is a prescribed constant. However, the

results from this method are more conservative than those from the algorithm
proposed in this paper.

5 Numerical Examples

In this section, we aim to demonstrate the effectiveness of the proposed ap-
proach. For comparisons with existing methods [4,6,7,17], we choose the sys-
tem governed by (8) as in these inferences.

Example 1 Consider a system with the following rules

Rule 1: If x1(t) is Wy, then

i(t) = Aja(t) + Apa(t — 7(t)) (53)

Rule 2 : If x1(t) is Wy, then

() = Ao (t) + Apa(t — (1)) (54)
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and the membership functions for rules 1 and 2 are

1
t)) = t)=1-— t)). 55
(i) = oy (0) = L= (). (69)
where A; and Ag(i = 1,2) are given as
-2 0 —10.5 -1 0 -1 0
A1: 7A2: 7Ad1: 7Ad2:
0 —0.9 0 —1 -1 -1 0.1 -1

It is also assumed that the delay is time-invariant, i.e., d = 0, Table 1 lists the
results of the maximum allowable delay bounds derived from various methods
including, Chen, Liu and Tong [4], Tian and Peng [6], Lien et al. [29], Wu and
Li [7] and the one proposed in this paper. It is seen from Table 1 that the
results obtained from our method are less conservative than those obtained
from existing methods. Figure 1 shows the response of the fuzzy system with
7 = 1.6341 and initial condition x(¢)=[1 0]7, ¢ €]-1.6341 0].

Table 1
The maximum allowable delay bound ( Example 1).
Paper upper bound 7 Num. of variables
Li et al. [30] 1.00 5
Tian et al. [6] 1.5974 24
Chen et al. [4] 1.5974 8
Wu [7](Coro. 1) 1.5974 9
Lien et al.[29] 1.5974 8
Coro.1(Q12 =P12 = 0),Coro.2 1.5974 5,3
Coro.1 (any Q12,P12) 1.6341 7

Table 1 also shows that some existing results are the special cases of our
results. For example,

e To our Corollary 1 or Corollary 3, when ()12 = 0 and Pjs = 0, the maximum
allowable upper delay bound is equivalent to those derived from Chen, Liu
and Tong [4], Tian and Peng [6], Wu and Li [7] and Lien et al. [29].

e To our Corollary 1, when Q)12 # 0 and P35 # 0, our results in this paper are
better than all other results.

Now, let us consider the number of variables in different methods. Generally

speaking, to the same upper delay bound 7, the fewer the variables are, the
less computational power is required.
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Fig. 1. Time response of the systems (Example 1)

e To obtain the same results as those in Chen, Liu and Tong [4], Tian and
Peng [6] and Wu and Li [7], we need only 5 variables in Corollary 1 or 3
variables in Corollary 3, compared to 24 in Tian and Peng [6] and 9 in Wu
and Li [7] and Chen, Liu and Tong [4], respectively;

e To obtain better results than existing ones in Liu [17], Chen, Liu and Tong
[4], Tian and Peng [6] and Wu and Li [7], we use only 7 variables.

Example 2 Consider the following T-S fuzzy model with the same member-
ship functions as those in Example 1.

2

i=1
where
_0 0.6 10 0.50.9 —0.15 0.2
A1: y 412 = 7Ad1: 7Eai: ’
01 10 1 1.6 0 0.04
_0.9 0 1 —-03 0 —0.05 —0.35
Ad2: 7Bi: 7Hi: 7Edi:
1 1.6 1 0 0.3 0.08 —0.45

When 7(t) is time-invariant and AA; = AAy = 0, (56) is reduced to the
case of Example 2 of [7]. Table 2 lists the maximum allowable upper delay
bound 7 with or without known feedback gains, respectively. When d = 0 and
K,=[2.3778 -7.6871], K,=[1.9344 -8.5771] as in [7], from Lemma 2, we obtain
7 =0.3012; when d = 0 and K; and K, are unknown, from Theorem 2 we
obtain 7 = 1.0947 and K;=[2.3778 -7.6871], K,=[1.9344 -8.5771] as shown in
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Fig. 2. Time response of the systems (Example 2)

the second row of Table 3. This clearly shows the superiority of the results
derived in this paper to those obtained from Chen and Liu [11], Guan and
Chen [5] and Wu and Li [7].

In the presence of parameter uncertainties, the obtained results are shown in
Table 3 in terms of Theorem 3. Figure 2 shows the response of the fuzzy system
of example 2 with 7 = 1.0947 and initial condition z(¢)=[2 0], t €[-1.0947 0].

It should be pointed out that to obtain the results in Theorem 2 of [7], the
parameters A;, Ay and A3 must be pre-described. This is also the case in Chen,
Liu and Tong [4] and Tian and Peng [6]. However, the convergence of the
algorithm used in these references is guaranteed in terms of similar results of
Ghaoui et al. [26] and Moon et al. [12], implying that one can always obtain
the optimal solution.

%izliniximum allowable delay bound without uncertainties(Example 2).
Method Maximum allowable 7
Chen and Liu [11] 0.1524
Guan and Chen[5] 0.2302
Wu and Li [7] 0.2664
Lemma 2 of this paper 0.3012
Theorem 2 of this paper 1.0947
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Table 3
The maximum allowable delay bound and feedback gain with different d (Example
2).

AA;(AAg) d Tmax Feedback gain K3 Feedback gain K5
AAi(AAg) =0 0 1.0947 [18.6473 — 55.3714]  [30.0944 — 85.4340]
0 0.6957 [18.3872 — 46.2284] [35.2130 — 83.9719]
AAj(AAg) #0 0.3 0.6145 [43.7785 — 104.6138] [66.8175 — 155.2358]
0.6 0.6072 [63.7542 — 153.6723] [94.4585 — 223.3842]

6 Conclusion

In this paper, we have investigated the delay-dependent stability and controller
design problems of uncertain nonlinear systems with time-varying delay via T-
S fuzzy modeling. Simplified and improved delay dependent stability criteria
have been established by using new and simplified Lyapunov-Krasovskii func-
tions and improved Jensen’s inequality. Furthermore, the stabilization problem
of the fuzzy systems with memoryless state feedback control is investigated;
and the stabilization criteria are derived in terms of matrix inequalities. The
maximum allowable delay and the feedback gain can be obtained simulta-
neously through solving an optimization problem via a cone complementarity
minimization algorithm. Numerical examples have demonstrated the effective-
ness of the developed approach.
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