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Abstract

Countries worldwide have been implementing different actions national
strategies for Artificial Intelligence (AI) to shape policy priorities and guide
their development concerning AI. Several AI indices have emerged to assess
countries’ progress in AI development, aiding decision-making on investments
and policy choices. Typically, these indices combine multiple indicators us-
ing linear additive methods such as weighted sums, although they are limited
in their ability to account for interactions among indicators. Another lim-
itation concerns the use of deterministic weights, which can be perceived
as subjective and vulnerable to debate and scrutiny, especially by nations
that feel disadvantaged. Aiming at mitigating these problems, we conduct
a methodological analysis to derive AI indices based on multiple criteria
decision analysis. Initially, we assess correlations between different AI di-
mensions and employ the Choquet integral to model them. Thus, we apply
the Stochastic Multicriteria Acceptability Analysis (SMAA) to conduct a
sensitivity analysis using both weighted sum and Choquet integral in order
to evaluate the stability of the indices with regard the weights. Finally, we
introduce a novel ranking methodology based on SMAA, which considers
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several sets of weights to derive the ranking of countries. As a result, in-
stead of using predefined weights, in the proposed approach, the ranking is
achieved based on the probabilities of countries in occupying a specific po-
sition. In the computational analysis, we utilize the data employed in The
Global AI Index proposed by Tortoise. Results reveal correlations in the
data, and our approach effectively mitigates bias. In the sensitivity analysis,
we scrutinize changes in the ranking resulting from weight adjustments. We
demonstrate that our proposal rankings closely align with those derived from
weight variations, proving to be more robust.

Keywords: Artificial Intelligence, Multi criteria decision analysis, Index,
SMAA, Choquet integral

1. Introduction

Artificial Intelligence (AI) is a field focused on creating computer systems
capable of executing tasks that usually demand human intelligence, includ-
ing problem-solving, learning, and decision-making. AI has a high potential
of transforming our society in profound ways, with implications for ethics,
employment, privacy, and its impact extends across numerous domains, such
as healthcare, finance, education, manufacturing, transportation, agriculture
[1, 2, 3]. Given this scenario, countries worldwide are increasingly recog-
nizing the importance of developing national strategies and policies for its
improvement [4, 5].

These strategies focus on–to varying degrees depending on the country–
fostering research and development, ensuring ethical AI use, preparing the
workforce for AI-related jobs and prioritizing investments. Canada’s national
Artificial Intelligence Strategy was the first AI national strategy in the world
with the aim of guiding AI policy priorities at a country level2. Finland
developed its national AI strategy also in 2017, closely followed by Japan,
France, Germany and the United Kingdom in 2018. More than 30 other
countries and regions have launched their national AI strategies as of 20213,
including Brazil.

2https://ised-isde.canada.ca/site/ai-strategy/en. Accessed date: 26 Novem-
ber, 2023.

3https://hai.stanford.edu/news/state-ai-10-charts. Accessed date: 26
November, 2023.
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These national strategies and public policies are shaped and influenced
somehow by global rankings of IA, in which countries are ranked by their
AI capacity [6], in order to grasp the degree to which they are prepared to
leverage its potential for reshaping business, government, and society4. So,
given the positive and negative potential effects that the utilization of such
AI metrics can have in the different society aspects, having robust indica-
tors representing country’s AI capabilities are essential for informed decision-
making, resource allocation, and fostering AI innovation, thus contributing
to economic growth, societal advancement, and global competitiveness.

In this paper, we intend to investigate the requirements that usually
stands behind the development of robust indicators. For this purpose, we
start from the indicator proposed by Tortoise Media5, The Global AI Index
(GAII). GAII was the first index proposed to rank countries based on their
AI capacity. This index is comprised by 7 dimensions (infrastructure, oper-
ating environment, research, development, commercial ventures, government
strategy) that are grouped by associative themes around three main pillars:
investment, innovation and implementation of AI, serving therefore as a com-
posite index. To each AI dimension used in the index construction is given a
relative importance weight, intending to consider the fact that contributions
of different dimensions have different impact degrees into the AI capacity.
In order to construct The Global AI Index, Tortoise adopted deterministic
weights based on the comprehensiveness of the source dataset. By using the
weighted sum aggregation procedure, the Global AI Index is calculated and
then used to rank the 62 countries.

From the Global AI Index description, our focus is to discuss such an index
from a methodological perspective. From the ten-step process guide outlined
in the handbook on composite indicators [7], we aim to scrutinize three,
which can enhance the transparency and quality of such as indicator. These
characteristics include Step 5, which pertains to the weights employed; Step
6, addressing the aggregation of data; and Step 8, concerning the robustness
and sensitivity analysis of the final ranking through weight adjustments. We
assume that the other seven steps undertaken by Tortoise are appropriate,
and therefore, their discussion is beyond the scope of our study.

4https://www.tortoisemedia.com/wp-content/uploads/sites/3/2023/07/

AI-Methodology-2306-4.pdf. Accessed date: 26 November, 2023.
5https://www.tortoisemedia.com/wp-content/uploads/sites/3/2023/07/

AI-Methodology-2306-4.pdf
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The three steps we examine here are of a particular interest. As high-
lighted by [8], indicators considering multiple dimensions should undergo
careful aggregation and weighting by addressing correlation and compensabil-
ity issues among dimensions and avoiding subjective weighting approaches.
Numerous studies, including those by [9, 10], underscore the critical role
of weights and aggregation techniques in constructing composite indicators.
The European Commission, in its communication on better regulation6, also
delves into the sensitive nature of employing weights. They advocate for
justifying weight choices based on robust ethical, scientific, or legal argu-
ments [11]. Besides, the Commission recommends conducting sensitivity and
robustness analyses to enhance transparency regarding the assumptions un-
derlying weight values. In GAII, the problem subjectivity in the definition
of weights was even noted by Tortoise itself [12].

In order to address these three steps in the construction of IA index, our
goal is to answer the following three research questions:

1. Is the hypothesis of interactions between AI dimensions true? If so,
how should these interactions be considered in order to mitigate bias
in the resulting AI ranking?

2. Do the criteria weights influence the resulting AI ranking of countries?

3. Is it possible to determine a robust AI ranking without defining the
weights in a deterministic manner?

To answer these questions, we employ advanced techniques of Multi-
ple Criteria Decision Analysis (MCDA) [13]. This approach, renowned for
its ability to address the inherent complexity of considering multiple di-
mensions, offers a robust and nuanced perspective on indicator composite
development[8, 14, 11]. To explore the first question, we utilize the Pearson
correlation coefficient [15] to evaluate the interactions between criteria and
demonstrate that there are redundancy among some of them. Thereafter, we
apply a non-linear aggregation operator known as the Choquet integral [16].
As in the Choquet integral one is able to model intercriteria interactions,
such as complementary and/or redundancy effects, the use of supplementary
information about the data can help to prevent biased outcomes. We then

6https://commission.europa.eu/law/law-making-process/

planning-and-proposing-law/better-regulation/better-regulation-guidelines-and-toolbox_

en
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compare the rankings obtained by the Choquet integral and the GAII, whose
weights are the same as proposed in Tortoise.

To address the second question, we employ the MCDA method known as
Stochastic Multicriteria Acceptability Analysis (SMAA). SMAA is a widely
used approach for assessing the robustness of weighting mechanisms in deci-
sion models. It has been designed for modeling decisions in situations where
certain parameters, such as the weights, are either unknown or challenging
to be predefined. These uncertain parameters are addressed through Monte
Carlo simulation. Among the array of descriptive measures provided by
SMAA, one of the key outputs is the probability of each country’s ranking
position. Consequently, by means of the utilization of SMAA, we can analyze
the robustness of the proposed GAII ranking when weights are altered.

Finally, to address the third question, we derive rankings based on the
Condorcet method [17, 18] after applying the SMAA technique using both
the weighted sum and the Choquet integral. The proposed rankings achieve a
more robust result since the weights are not deterministic and the procedure
is based on a well-established approach to rank candidates given preference
information over them.

In a previous study [19], we presented a preliminary critical analysis of
2022 GAII. However, in this current paper, we combine the SMAA methodol-
ogy and the Choquet integral in order to conduct a robustness analysis with
respect to model structure. Moreover, we also apply the Condorcet method
to the results provided by SMAA aiming at proposing a new AI ranking
of the countries. It is worth mentioning that, in 2023, Tortoise released an
updated GAII which we are taking into consideration in this study.

This paper is organized as follows. In Section 2, we introduce the Multiple
Criteria Decision Analysis problem and provide the theoretical background
on the SMAA methodology and the Choquet integral. Section 3 presents an
overview of the methodology used in Tortoise to derive the Global AI Index.
Section 4 presents the methodology adopted in this paper in order to answer
the three research questions set above. Results are presented and discussed
in Section 5. We conclude this paper in Section 6.

2. Multiple Criteria Decision Analysis

Multiple Criteria Decision Analysis is a research field focused on math-
ematical and computational design tools that can be employed by either
ranking or classifying alternatives. One of the key advantages of MCDA

5



is its ability to consider multiple perspectives, preferences, and uncertain-
ties. Through techniques such as Analytic Hierarchy Process (AHP), Ana-
lytic Network Process (ANP), and outranking methods like PROMETHEE,
MCDA allows for the incorporation of diverse stakeholder opinions and the
assessment of trade-offs between criteria. These methods enable the construc-
tion of more robust and context-specific indicator systems [8, 14, 11, 20].

In MCDA, alternatives A = {a1, a2, . . . , am} are evaluated according to
a set of criteria G = {g1, g2, . . . , gn} which represent relevant attributes to
be considered in the decision process. One generally represents by Xm×n

the decision matrix, whose each row i, i = 1, . . . ,m, indicates the criteria
values for alternative ai. Each element of Xm×n is denoted by gj(ai), which
indicates the performance of the alternative ai with respect to the criterion
gj, j = 1, . . . , n. In the case of the weighted sum aggregation, associated to
each criterion gj, one defines a relative importance wj called criterion weight.
We denote by w = (w1, w2, . . . , wn) the (criteria) weight vector. A crucial
step in many MCDA techniques is the aggregation procedure, which maps
each row i of the decision matrix into a scalar that can be used as a score
for alternative i. In the ranking context, one can determine a ranking for the
alternatives by sorting their scores.

2.1. Choquet integral

The weighted sum method is a widely employed aggregation method in
many real-world decisions, including in the construction of GAII (Equa-
tion (9)), mainly due its simplicity. This method may be suitable when
statistical dependence among criteria holds. However, in cases with inter-
actions among criteria, applying the weighted sum method, overlooking this
structural characteristic in the data, may introduce bias in the obtained rank-
ing. For instance, if two criteria have a high positive correlation, aggregating
then involves counting the same latent information twice. In such scenarios,
the Choquet integral [16] emerges as a preferable option [21, 22, 23]. By using
the Choquet integral, one is able to model negative (or positive) interactions
among criteria, which is useful, for instance, to deal with correlations in the
decision data [24]. Therefore, one can soften the impact of correlated criteria
in the aggregation procedure, which contributes to enhance the robustness
of obtained ranking.

The discrete Choquet integral (CI) is a non-linear aggregation function

6



defined as follows:

sCI
i =

n∑
j=1

[
g(j)(ai)− g(j−1)(ai)

]
µ ({(j), . . . , (n)}) , (1)

where (1), . . . , (n) indicates a permutation of indices j such that 0 = g(0)(ai) ≤
g(1)(ai) ≤ g(j)(ai) ≤ . . . ≤ g(n)(ai) and µ(·) represents the set of parameters
known as capacity coefficients. A capacity µ : 2N → R+ is a set function
defined on the power set of N = {1, 2, . . . , n} (the set of criteria) satisfying
the following axioms:

(a) Normalization: µ(∅) = 0 and µ(N) = 1,

(b) Monotonicity: ∀A ⊆ B ⊆ N,µ(A) ≤ µ(B).

An interesting property of the Choquet integral parameters is that they
can be represented by means of the Shapley values and Shapley interaction
indices [21, 25]. The Shapley values [26] is a well-established concept in
cooperative game theory which provides a fair division of the total game
payoff among its players. In the context of the MCDA, the Shapley values will
then indicate the marginal contribution of each criterion into the aggregation
procedure. The Shapley value of a criterion gj is defined by

ϕj =
∑

A⊆N\j

(n− |A| − 1)! |A|!
n!

[µ(A ∪ {j})− µ(A)] , (2)

where |A| indicates the cardinality of the subset A, ϕj ≥ 0 and
∑n

j=1 ϕj = 1.
By making a parallel between the Shapley value and the weights in the
weighted sum, both ϕj and wj can be interpreted as the relative importance
of the associated criterion into the aggregation function.

In addition to assessing marginal contributions, one can also analyze the
interaction between pairs of criteria7. The Shapley interaction index between
two criteria {gj, gj′} is defined as follows:

7We could also evaluate the interaction for coalitions of more than two criteria. How-
ever, as the interpretation for such coalitions are not straightforward, we only consider
interactions between pairs of criteria in our analysis.
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Ij, j′ =
∑

A⊆N\{j,j′}

(n− |A| − 2)! |A|!
(n− 1)!

[µ(A ∪ {j, j′})− µ(A ∪ {j})− µ(A ∪ {j′}) + µ(A)] ,

(3)
where Ij,j′ ∈ [−1, 1] and can be interpreted as the interaction degree of coali-
tion of criteria i, i′. These indices offer a direct and practical interpretation
about the degree of interaction between criteria: Ij,j′ > 0 models synergy
between {gj, gj′} (or complementary effect), Ij,j′ < 0 represents redundancy
between {gj, gj′} (or negative effect), and Ij,j′ = 0 indicates no interaction
between {gj, gj′} (criteria act independently).

A drawback in the Choquet integral that can be observed from Equa-
tion (1) is that the number of parameters to be elicited may be large. In-
deed, it exponentially increases with the number of criteria. With the aim
of reducing the number of parameters to be elicited, we adopt in this paper
the 2-additive capacity representation introduced by [27]. The presence of
a 2-additive capacity implies that interactions only exist between pairs of
criteria, and we assume that the interaction among three or more criteria is
negligible. In this case, the Choquet integral can be defined by mans of the
Shapley values and the interaction indices as follows:

s2adCI
i =

∑
Ij,j′>0

min{gj(ai), gj′(ai)}Ij,j′ +
∑

Ij,j′<0

max{gj(ai), gj′(ai)}|Ij,j′ |

+
n∑

j=1

gj(ai)(ϕj −
1

2

∑
j′ ̸=j

|Ij,j′|). (4)

One may note from Equation (4) that the numbers of parameters drasti-
cally reduced from 2n to 2n. As in this equivalent formulation of the Choquet
integral one also needs to ensure the axioms of a capacity, one must satisfy
the following conditions (see [28] for further details):

n∑
j=1

ϕj = 1 (5)

and

ϕj −
1

2

∑
j′ ̸=j

|Ij,j′| ≥ 0,∀j ∈ N. (6)
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Since it is challenging for the decision-maker to determine the Shapley
interaction indices, an alternative is to employ an unsupervised approach
to learn suitable values based on the correlation coefficient extracted from
data [29]. In this study, we utilize two distinct approaches to estimate the
Shapley index. The first approach, proposed by [29] (see [30] for an alter-
native formulation which simplifies the optimization problem), is referred
to as Unsupervised 1 (u1) and is detailed in Subsection 2.1.1. The second
approach, introduced by [31], is designated as Unsupervised 2 (u2) and is
outlined in Subsection 2.1.2. The u2 technique represents an improvement
over u1, as it reduces bias in determining the Shapley interaction indices.
We assess the performance of both methods on our dataset, testing the ef-
fectiveness and draw conclusions about their suitability for our application.

2.1.1. Unsupervised approach 1 to learn the Choquet integral parameters (u1)

The Choquet integral-based unsupervised approach is used here to au-
tomatically adjust the Shapley interaction indices. The goal is to achieve
interaction indices Ij,j′ as close as possible from the negative of a similarity
measure ρj,j′ between pairs of criteria, such as the Pearson correlation coef-
ficient between them [15]. For instance, if two criteria gj, gj′ are positively
correlated (ρj,j′ > 0), one should assign a negative interaction index for them
(Ij,j′ < 0) in order to model a redundant effect. In this formulation, the
optimization problem used to automatically adjust the Shapley interaction
indices is given as follows [29, 30]:

min
Ij,j′ ,∀j,j′∈N

∑
j,j′ (Ij,j′ + ρj,j′)

2

s.t. ϕj − 1
2

∑
j′ ̸=j ±Ij,j′ ≥ 0, ∀j ∈ N∑

j ϕj = 1

, (7)

where ± in the first constraint avoids the use of absolute values in Ij,j′ . Note
that, in this optimization problem, we do not find the Shapley values, they
should be predefined. Moreover, as it is a quadratic problem, it can be easily
tackled by most of the available solvers.

2.1.2. Unsupervised approach 2 to learn the Choquet integral parameters (u2)

The unsupervised approach 1 is a suitable method for learning the Cho-
quet integral Shapley parameter. However, as discussed in [31], u1 may
exhibit bias, some Ij,j′ might be much closer to ρj,j′ than others parame-
ters Ij′′,j′′′ to ρj′′,j′′′ . Aiming at overcoming this inconvenience, [31] proposed
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a novel Choquet integral-based unsupervised approach to automatically de-
fined the Shapley interaction indices. The key idea consists in minimizing
the difference between all Ij,j′ and −ρj,j′ while ensuring consistent ratio t
between them. In other words, we ensure that t = −Ij,j′/ρj,j′ for all j, j′.
This condition is satisfied by solving the following optimization problem:

max
t,I

t

s.t. ϕj − 1
2

∑
j′ ̸=j sign(−ρj,j′)Ij,j′ ≥ 0, ∀j ∈ N

Ij,j′ − sign(−ρj,j′)tρj,j′ = 0, ∀j, j′ ∈ N∑
j ϕj = 1

0 ≤ t ≤ 1

, (8)

where sign(z) is the sign function: sign(z) = 1 if z ≥ 0 and -1 otherwise. The
ratio t is confined to the range [0, 1]. One may note that the first and third
constraints mirror those of the u1 approach, while the newly introduced
constraint aims to guarantee the consistency of the ratio for all pairs of
criteria.

2.2. Weighting robustness analyses

SMAA stands out as a simulation-driven technique applicable to discrete
multicriteria decision-making issues, especially in scenarios where model pa-
rameters, including criteria weights, exhibit uncertainty, imprecision, or are
partially or wholly unavailable [32, 33]. Uncertain criteria information are
represented by stochastic variables with joint density function. During a
Monte Carlo simulation procedure, uncertain variable values are drawn from
their respective distributions, and alternatives are assessed using the deci-
sion model, which may involve a weighted average or any other aggregation
method. In the context of ranking problems, SMAA identifies all potential
rankings for the alternatives, expressing the outcomes in probabilistic terms.
Thus, instead of providing a deterministic rank, SMAA generates a matrix
where the rows represent the alternatives and the columns denote their po-
tential positions in the ranking. Each element in this matrix is known as rank
acceptability index, bsi , and represents the probability of alternative i being
positioned at s. This index ranges between 0 and 1, and the closer bsi is to
1, the greater the probability of ai being in position s. The SMAA method
can also be applied in the sorting context ([34, 35, 36, 37, 38, 39, 40]).

Various descriptive measures for alternatives have been proposed in the
literature [33]. One such measure is the central weight vector wc

i , which
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enables the decision-maker to learn the weights that result in an alterna-
tive being ranked first, rather than predefining them before addressing the
problem. Additionally, the confidence factor pci represents the probability of
an alternative being the preferred one, given the criteria weights expressed
by its central weight vector. Moreover, the pairwise winning index cik can
be utilized to quantify the extent to which one alternative outperforms an-
other, considering the stochastic weight distribution. In essence, the pairwise
winning index represents the probability of one alternative being better to
another. The pairwise winning indices can also be employed to create a
probabilistic ranking of the alternatives, as elaborated in Section 2.3.

SMAA can be applied with a complete lack of information, where weights
are generated following a uniform distribution. This technique can also be
used when partial preference information is available, such as specifying the
ordinal relevance of the criteria [41].

2.3. Obtaining a robust ranking

In order to derive a ranking from the probabilities given by SMAA, we
can employ an approach based on the Condorcet method. The Condorcet
method, as described in [17, 18], is a preferential voting system designed to
determine the candidate who would prevail in a pairwise comparison against
every other candidate. In this method, each voter submits ranked prefer-
ences for the candidates. Pairwise comparisons are then conducted between
each possible pair of candidates, evaluating which candidate is preferred over
the other. The candidate who consistently emerges as the preferred choice
in every individual comparison is deemed the Condorcet winner. If a clear
Condorcet winner exists, that candidate is declared the overall winner. How-
ever, in cases where a circular tie occurs, known as the Condorcet paradox
or cycle, with each candidate defeating another but being defeated by a dif-
ferent candidate, additional methods, such as those outlined in [42, 43], may
be necessary to resolve the deadlock.

This approach can be applied within the context of MCDA to derive a
ranking through pairwise comparisons in the SMAA method. Thus, for a pair
of alternatives, ai and ak, it is possible to compute a pairwise winning index,
cik, representing the probability of alternative i being more preferred than k.
The procedure is as follows. In each SMAA simulation, if the score of ai is
greater than the score of ak, the counter Cik is incremented. Conversely, if
the score of ak is greater than the score of ai, the counter Cki is incremented.
It is noteworthy that, with real-valued functions and continuous distributions
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for criteria weights, occurrences of identical scores for two alternatives are
rare [44, 41]. At the end of the S simulations, the pairwise winning indices
are computed as:

cik = Cik/S,

for all pairs of alternatives, where cik ∈ [0, 1] and cik + cki = 1. If cik = 1,
it indicates total preference for ai over ak, and if cik > 0.5, it means that
ai is (statistically) preferred to ak [44, 41]. Thus, the complete ranking is
obtained by performing pairwise comparisons of the winning indices.

However, the Condorcet paradox can occur among three alternatives, ai,
ak, and aℓ, if cik = ckℓ = cℓi = 2/3, and cki = cℓk = ciℓ = 1/3. In this study,
we use the Schulze method [45] to resolve the cycle.

3. The Global AI Index: Tortoise methodology

The Global AI Index (GAII) aims to assess the national ecosystems influ-
encing AI capacity across 62 countries, denoted by [a1, a2, · · · , a62]. To deter-
mine the ranking, data were selected based on relevance, up-to-date sources,
and alignment with key AI sector issues. These data are then categorized into
three primary pillars: Implementation, Innovation, and Investment, further
subdivided into seven sub-pillars or criteria. The Implementation pillar eval-
uates the operationalization of AI by practitioners, covering 3 criteria: talent,
infrastructure, and the operating environment. The Innovation pillar scruti-
nizes technology breakthroughs and methodological advancements indicative
of future AI capacity, encompassing 2 criteria: research and development.
The Investment pillar assesses financial and procedural commitments to AI,
including 2 criteria: commercial ventures and government strategy.

The data used to build GAII comes from 28 different sources, encompass-
ing government reports, public databases from international organizations,
think tanks, private companies, and Tortoise’s proprietary research.

Country scores (si) are obtained through the weighted sum aggregation
method, calculated as follows:

si =
n∑

j=1

wjgj(ai),∀i, (9)

where gj(ai) represents the evaluation of criterion j, j = 1, · · · , 7, for country
ai, i = 1, · · · , 62, and wj denotes the weights assigned to the corresponding
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criterion. In the 2023 ranking, the Tortoise-chosen criteria (and weights)
were as follows: Infrastructure (w1 = 0.11), Operating Environment (w2 =
0.06), Talent (w3 = 0.15), Development (w4 = 0.14), Research (w5 = 0.26),
Commercial ventures (w6 = 0.24), Government Strategy (w7 = 0.04). All
data, final ranking, and Methodology Report used by Tortoise can be found
in [12].

4. Methodology

To address the three research questions set in this study, we propose the
following methodologies (one for each research question).

Methodology 1: This methodology was proposed to address the first ques-
tion concerning the interaction between criteria. To tackle this issue,
we assumed as the Shapley values (ϕj) the deterministic weights (wj),
as proposed by Tortoise and detailed in Section 3. Subsequently, we
calculate the correlations between pairs of criteria using Pearson cor-
relation coefficients (ρj,j′ , where j, j′ = 1, . . . , 7). We then apply the
unsupervised approaches described in Subsections 2.1.1 and 2.1.2 to
derive the interaction indices Iu1j,j′ and Iu2j,j′ , respectively. Finally, we
apply Equation (4) using Iu1j,j′ and Iu2j,j′ to obtain the rankings denoted
as CIu1 and CIu2, respectively.

Methodology 2: The aim here is to analyze the second question concern-
ing the influence of criteria weights on the final ranking. To achieve
this, we utilize the SMAA technique, where weights are randomly gen-
erated. In the aggregation step, we apply both the weighted sum and
Choquet integral (employing both the u1 and u2 unsupervised learning
methods). The outputs are the rank acceptability indices for each of
the three approaches (weighted sum, Choquet + u1, and Choquet +
u2).

Methodology 3: This approach was developed to address the third ques-
tion, aiming to obtain a robust AI ranking without relying on deter-
ministic weights. To achieve this, the rank acceptability index obtained
using both the weighted sum and Choquet integral (utilizing both the
u1 and u2 unsupervised learning methods) is subjected to the Con-
dorcet method, as explained in Subsection 2.3. This process yields
three final rankings: WS-Cond., CIu1-Cond., and CIu2-Cond.
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5. Results and Discussion

As discussed earlier, GAII was constructed using the weighted summethod
and deterministic weights proposed by Tortoise. As highlighted by Tortoise
itself, the selected weights are grounded in subjective assumptions, with one
of these assumptions concerning the completeness of the data [12]. This sub-
jective decision has the potential to influence the scoring of countries and
subsequently impact their positions in the rankings.

In this section, we conducted analyses on the 2023 GAII proposed by Tor-
toise, utilizing the same data (available on their website) for the 62 countries
as alternatives and applying the identical set of seven AI criteria: Infras-
tructure (g1), Operating Environment (g2), Talent (g3), Development (g4),
Research (g5), Commercial ventures (g6), Government strategy (g7). The
Python code used to obtain the results can be found at this link.

In a first analysis, presented in Subsection 5.1, our goal is to verify the
hypothesis of interactions between AI dimensions and investigate if there are
differences in the final ranking when considering interactions between criteria
using the same weights as in GAII. To achieve this, we use Methodology 1
to obtain CIu1 and CIu2 rankings.

In a second analysis, presented in Subsection 5.2, the objective is to per-
form a robustness analysis for weighting by applying SMAA, assuming a
complete absence of weight information. Methodology 2 is employed to an-
alyze sensitivity to changes in weights, while Methodology 3 is utilized to
compare the robustness between the GAII ranking and our proposed rank-
ings, namely WS-Cond., CIu1-Cond., and CIu2-Cond.

The third analysis, outlined in Subsection 5.3, is akin to the second one,
but in SMAA, weights adhere to an ordinal preference, following the same
preference order as used to derive the GAII ranking: Research ≻ Commercial
Venture≻ Talent≻Development≻ Infrastructure≻Operating Environment
≻ Government Strategy. Thus, similar to the second analysis, Methodologies
2 and 3 are employed to analyze sensitivity to changes in weights and to com-
pare the robustness between the GAII ranking and our proposed rankings,
WS-Cond., CIu1-Cond., and CIu2-Cond.

To measure the difference between the countries ranking in GAII and
in our approaches, we use the Kendall’s tau distance [46]. This coefficient
quantifies the degree of similarity between two rankings when comparing the
same set of objects. The Kendall tau value represents the number of pairwise
inversions required to align both rankings [47]. For two rankings, denoted as
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r and r̂, the Kendall tau distance between them can be expressed as ∥r− r̂∥κ
or τr×r̂, and it is computed as follows:

τr×r̂ =
2

n(n− 1)
|{(q, u) : q < u, (τr(q) < τr(u) ∧ τr̂(q) > τr̂(u))

∨(τr(q) > τr(u) ∧ τr̂(q) < τr̂(u))}|, (10)

where τr(q) and τr̂(q) represent the positions of element q in vectors r and
r̂, respectively. The τr×r̂ value is constrained between zero and one; a value
of zero indicates identical rankings, while a value of one signifies opposite
rankings.

5.1. Exploring interactions among criteria considering the same weights as
proposed in Tortoise

Firstly, we verified that there are interactions between the AI dimen-
sions by calculating the correlation coefficients (a described in the second
column of Table 1). Then, in order to investigate the impact of interactions
between criteria in the final ranking, we apply both u2 and u1 unsuper-
vised approaches and obtained the interaction indices presented in the third
and fourth columns of Table 1, respectively. We highlight rows with signifi-
cant correlations (e.g., ρj,j′ ≥ 0.70), which indicates redundancies within the
dataset (see, for instance, the correlations between criteria {g3, g5}, {g4, g5},
{g4, g6}and {g5, g6}).

An important observation is that g5 exhibits a significant correlation with
other criteria, suggesting redundancy in its data concerning other criteria.
As a result, it should be penalized in its weight to avoid bias. However, in
deriving the GAII ranking, where correlation was not taken into account,
g5 received the highest weight value (w5 = 0.26). These initial findings
underscore the importance of analyzing criteria correlations for constructing
an index and employing an appropriate method to address them.

A second remark in Table 1 regards the difference of the interaction indices
between approaches u2 and u1. One can observe that u2 distributes the
values of Iu2j,j′ more evenly based on the ρj,j′ values; specifically, higher the
value of ρj,j′ , lower the interaction degree Iu2j,j′ . In contrast, u1 yielded Iu11,4 = 0
when ρ1,4 = 0.5868, and Iu11,6 = −0.0078 when ρ1,6 = 0.5226. This implies
that higher ρj,j′ values do not consistently translate to lower Iu1j,j′ , indicating
a lack of equity in these values, potentially resulting in biased outcomes.
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Table 1: Correlation coefficients and interaction indices.

Coalition of
criteria j,j’

Correlation coefficient
(ρj,j′)

Interaction index
(Iu2j,j′)

Interaction index
(Iu1j,j′)

1,2 0.5435 -0.0181 -0.1008

1,3 0.3607 -0.0120 0.0000

1,4 0.5868 -0.0196 0.0000

1,5 0.6186 -0.0206 -0.0506

1,6 0.5226 -0.0174 -0.0078

1,7 0.5338 -0.0178 -0.0608

2,3 0.3503 -0.0117 0.0000

2,4 0.3320 -0.0111 0.0000

2,5 0.3332 -0.0111 0.0000

2,6 0.2464 -0.0082 0.0000

2,7 0.5136 -0.0171 -0.0192

3,4 0.6338 -0.0212 -0.0136

3,5 0.7565 -0.0253 -0.1572

3,6 0.6754 -0.0225 -0.1293

3,7 0.3913 -0.0131 0.0000

4,5 0.8534 -0.0285 -0.1179

4,6 0.8309 -0.0277 -0.1485

4,7 0.3483 -0.0116 0.0000

5,6 0.8558 -0.0286 -0.1943

5,7 0.3815 -0.0127 0.0000

6,7 0.2282 -0.0076 0.0000

Table 2 displays the top ten countries in the GAII ranking, along with
the rankings obtained using our proposed method, CIu1 and CIu2. We apply
the Choquet integral with same weights as those used in GAII, and the inter-
action index detailed in Table 1. One can observe that the ranking obtained
using CIu2 is more similar to GAII than the ranking using CIu1. However,
notable changes include Canada and South Korea swapping positions at 5th
and 6th in CIu2 compared to GAII. Moreover, Israel and Germany exchanges
positions at 7th and 8th.

We calculate the Kendall tau distance to assess the difference between
the GAII ranking and the ranking obtained using CIu2, yielding τGAII,CIu2 =
0.2125. Similarly, when comparing the GAII ranking with the one obtained
using CIu1, we observe τGAII,CIu1 = 0.2866. These results indicate that both

16



Table 2: Ranking from GAII and rankings using our proposal, applying the Choquet
integral and utilizing the same criterion weights as in GAII, along with the interaction
index shown in Table 1, for the top ten countries.

Position
Countries

GAII CIu2 CIu1

1st USA USA USA
2nd China China China
3rd Singapore Singapore Singapore
4th UK UK South Korea
5th Canada South Korea UK
6th South Korea Canada Germany
7th Israel Germany Canada
8th Germany Israel Switzerland
9th Switzerland Switzerland Israel
10th Finland Finland India

rankings obtained using CIu1 and CIu2 differ from the GAII. Furthermore,
they suggest that the ranking derived from CIu2 is slightly closer to the GAII
than the one obtained using CIu1. In summary, these findings highlight
variations in the ranking when evaluating the correlation between criteria
using the same weight values as applied to derive the GAII.

5.2. Robustness analysis of weights applying SMAA and Condorcet in the
absence of weight information

In this subsection, we assume a total absence of weight information, gen-
erating random weights following a uniform distribution, where wj ∼ U(0, 1)
∀j. As a preliminary analysis, we constructed Table 3, which features the
top ten countries in the GAII ranking alongside three rankings derived from
our approach using Methodology 2 and 3.

Table 3 shows that the USA, China, and Singapore secured the same
positions in all rankings, except in the CIu1 - Cond. ranking. This initial
analysis may lead to the conclusion that the positions of the USA and China
are robust since they do not depend on weights to occupy those positions.
Furthermore, correlations between criteria do not affect their positions. In
contrast, the UK, which holds the 4th position in GAII, is placed 7th fol-
lowing our approaches. A similar outcome is observed for Canada, which is
ranked 5th in GAII but 6th in our approaches.
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Table 3: Comparison of ranking positions for the top ten countries in GAII and those
determined using our approaches, considering the absence of weight information.

Position
Countries

GAII WS - Cond. CIu2 - Cond. CIu1 - Cond.
1st USA USA USA USA
2nd China China China China
3rd Singapore Singapore Singapore South Korea
4th UK South Korea South Korea Singapore
5th Canada Germany Germany Germany
6th South Korea Canada Canada Canada
7th Israel UK UK UK
8th Germany Finland Finland Finland
9th Switzerland Japan Japan Japan
10th Finland Netherlands Netherlands Netherlands

To delve deeper into this analysis and identify disparities between these
rankings, we created Figure 1, illustrating the Kendall tau distances obtained
through pairwise comparisons of the complete rankings across all countries.
From this figure, one can observe that the differences between GAII and
our approaches are approximately 0.30, indicating significant distinctions.
Hence, it demonstrates that a sensitivity analysis of the weights proves that
distinct rankings can be achieved by varying weights.

While still analyzing the results shown in Figure 1, we observe that Rank-
ings WS - Cond. and CIu2 - Cond. are very similar, whereas WS - Cond.

Figure 1: Kendall tau distances to measure differences between rankings.
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and CIu1 - Cond. are significantly different. Since we found in Subsection 5.1
that the u2 approach is fairer in penalizing bias in correlated criteria, we can
deduce that, based on this data and with a total absence of information on
weight values, considering the correlation between criteria does not lead to
significantly different rankings.

In order to analyze robustness in rankings, we elaborate two more results
shown in Figures 2 and 3. In Figures 2a, 2c, and 2e, we arrange the countries
on the y-axis based on the GAII ranking and illustrate the acceptability
indices of each country in the columns, obtained using SMAA with weighted
sum, CIu2, and CIu1, respectively. In Figures 2b, 2d, and 2f, we organize the
countries on the y-axis according to WS - Cond., CIu2 - Cond., and CIu1 -
Cond., respectively, and depict the acceptability indices of each country in
the columns obtained using SMAA.

A primary observation regarding Figure 2a concerns the high dispersion
of the acceptability indices for countries in relation to the GAII ranking.
This observation suggests that, in the total absence of weight information,
the GAII does not exhibit robustness, as the probabilities of most countries
being in their positions in this ranking are low. Conversely, the comparison
between the acceptability indices and the WS - Cond. ranking, illustrated
in Figure 2b, shows less dispersion around their position in this ranking. A
similar observation can be made by comparing Figure 2c with Figure 2d, and
Figure 2e with Figure 2f.

The additional robustness analysis is illustrated in Figure 3. Each box
in this figure represents the distribution of Kendall tau distances when com-
paring a specific ranking with the various rankings obtained from the SMAA
simulation by randomly varying criteria weights. Therefore, the first box
measures the Kendall tau dispersion when comparing the GAII ranking with
all rankings obtained from SMAA. The second and third boxes indicate the
Kendall tau dispersion by comparing the rankings presented in Table 2, which
were obtained using the same weight values wj used to derive GAII, but ap-
plying CIu2 and CIu1, respectively, with all rankings obtained from SMAA.
Finally, the last three boxes were obtained by comparing WS - Cond., CIu2

- Cond., and CIu1 - Cond., respectively, with all rankings obtained from
SMAA.
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(a) WS - GAII’s ranking. (b) WS - Condorcet’s ranking.

(c) CIu2 - GAII’s ranking. (d) CIu2 - Condorcet’s ranking.

(e) CIu1 - GAII’s ranking. (f) CIu1 - Condorcet’s ranking.

Figure 2: SMAA acceptability indices considering total absence of weight information.
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Upon analyzing Figure 3, one can observe that the three rankings—GAII,
CIu1, and CIu2—performed less effectively than WS - Cond., CIu2 - Cond.,
and CIu1 - Cond., as indicated by the the median Kendall tau, which were
around 0.25 and 0.1, respectively. Furthermore, GAII, CIu1, and CIu2 ex-
hibited a higher degree of dispersion when compared to WS - Cond., CIu2

- Cond., and CIu1 - Cond. From this analysis, it is possible to infer that,
in situations where it is not possible or fair to determine weight values, our
approach obtains a more robust ranking.

Figure 3: Visualization of variability in Kendall tau’s distance of the different rankings
considering total absence of weight information.

5.3. Robustness analysis of weights applying SMAA and Condorcet consid-
ering preference order of weights as defined in Tortoise

In their report, Tortoise underscores the strategy employed in assigning
weights to criteria. They argue that varying levels of data completeness
across different sources necessitate careful integration of completeness con-
siderations into the weighting system. Simultaneously addressing missing
values through imputation, the weighting of indicators is adjusted in cases of
limited data availability. Tortoise justifies reducing the relative weight of the
indicator in such instances, emphasizing the importance of confidence in the
data’s representativeness, thereby allowing for a more substantial weighting
of this factor.

While the emphasis on data completeness is commendable, our prior
study [19] demonstrated that the deterministic assignment of weights, with-
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out a comprehensive sensitivity analysis, can result in an indicator lacking
robustness. The failure to consider the potential consequences of minor vari-
ations in weights undermines the stability and reliability of the indicator.

To illustrate the sensitivity of the indicator to variations in weights, con-
sider a scenario in which all weights remain constant except for w1 (set at 0.11
by Tortoise) and w2 (set at 0.06 by Tortoise). A marginal adjustment to 0.12
for w1 and 0.05 for w2, resulted in a shift in country rankings. Specifically,
Canada and South Korea exchanged positions, underscoring the vulnerability
of the indicator to minor alterations in weights.

Therefore, in this section, we adhere to a preference weight order estab-
lished by Tortoise to underscore the significance of confidence in the data’s
representativeness. However, we propose a more robust approach to derive
the final ranking, aiming to mitigate sensitivity to minor variations in the
weights. Additionally, we investigate the impact of data correlation on the
final ranking to address potential biases in data aggregation.

In the initial analysis, we generated Table 4, which illustrates the GAII
ranking alongside our approaches (WS - Cond., CIu2 - Cond., and CIu1 -
Cond.), adhering to the preference weight order as in GAII. Examining the
rankings presented in Table 4, it is evident that the USA, China, Singapore,
and the UK consistently hold the 1st, 2nd, 3rd, and 4th positions, respectively
across all approaches. This consistency indicates their robustness to weight
variations and aggregation methods, showcasing stability in the rankings.

Table 4: Comparison of ranking positions for the top ten countries in GAII and those
determined using our approaches, considering preference order of weights.

Position
Countries

GAII WS - Cond. CIu2 - Cond. CIu1 - Cond.
1st USA USA USA USA
2nd China China China China
3rd Singapore Singapore Singapore Singapore
4th UK UK UK UK
5th Canada Israel Switzerland Switzerland
6th South Korea Switzerland Canada Germany
7th Israel Canada Israel South Korea
8th Germany Germany Germany Israel
9th Switzerland South Korea South Korea Canada
10th Finland Netherlands Netherlands India
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Conversely, some countries undergo changes in their positions when con-
sidering different approaches. For instance, Switzerland, which holds the 7th
position in GAII, rises to the 6th position in WS - Cond., and 5th in CIu2 -
Cond. and CIu1 - Cond. Furthermore, Canada is ranked 5th in GAII, while
in WS - Cond., it holds the 7th position; in CIu2 - Cond., it is placed 6th,
and in CIu1 - Cond., it falls to the 9th position. This variability highlights
the sensitivity in their positions, indicating potential changes when adjusting
weights or considering correlations.

To identify disparities between these rankings, we calculate the Kendall
tau distances obtained through pairwise comparisons of the complete rank-
ings across all countries. We find that this distance between GAII and WS
- Cond. is 0.26, between GAII and CIu2 - Cond. is 0.2, and between GAII
and CIu1 - Cond. is 0.31. Additionally, the τ value between WS - Cond.
and CIu2 - Cond. is 0.18. This result underscores that the rankings obtained
from different approaches differ when weights are not deterministic but follow
a preference order, as well as when considering biases in the data.

The next step in the analysis is to determine which ranking is more robust
in terms of changes in the weights’ values. For this analysis, we elaborate
Figures 4 and 5. In Figure 4a, we arrange the countries on the x-axis based
on the GAII ranking and illustrate the acceptability indices of each country
in the columns, obtained using SMAA plus weighted sum, while adhering to
the same preference order as in GAII. This figure illustrates the probability
of the countries being in the positions as in GAII. In Figures 4b, 4c, and
4d, we organize the countries on the y-axis according to WS - Cond., CIu2

- Cond., and CIu1 - Cond., respectively, and depict the acceptability indices
of each country in the columns obtained using SMAA. These figures indicate
the probability of the countries being in the positions as in WS - Cond.,
CIu2 - Cond., and CIu1 - Cond. rankings.

The comparison between Figures 4a and 4b indicates that the ranking
WS - Cond. is more robust, since the probability of a certain country be
in their position in the ranking is high in most of countries, regardless the
weight associated to the criteria. Instead, in GAII, one can note that these
probabilities are more scattered. In addition, some countries present a great
probability of being in a position that is not their position in GAII. Similar
results can be found in the comparison between Figures 4a and 4c, and
Figures 4a and 4d.

To delve deeper into the robustness analysis, Figure 5 illustrates the dis-
tribution of the Kendall tau distances when comparing a specific ranking
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(a) WS - GAII’s ranking. (b) WS - Condorcet’s ranking.

(c) CIu2 - Condorcet’s ranking. (d) CIu1 - Condorcet’s ranking.

Figure 4: SMAA Acceptability indices considering preference order of weights.

with various rankings obtained from SMAA simulations by adjusting criteria
weights in the order presented in GAII. The first box in this figure quan-
tifies the dispersion when comparing the GAII ranking with all rankings
obtained from SMAA, following the same weight order as in GAII. Similarly,
the second and third boxes indicate the distance dispersion by comparing
the rankings presented in Table 2. These rankings were obtained using the
same weight values wj used to derive GAII but applying CIu2 and CIu1,
respectively, with all rankings obtained from SMAA. Finally, the last three
boxes compare WS - Cond., CIu2 - Cond., and CIu1 - Cond., respectively,
with the rankings obtained from SMAA using their respective methods.
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Figure 5: Kendall tau’s distance for ordered weights.

By comparing Figure 5 with Figure 3, which was generated using com-
pletely random weights, it becomes apparent that all boxes in Figure 5 exhibit
lower dispersion. This outcome suggests that, when adhering to a preference
order, the rankings demonstrate better convergence, i.e., less variation when
weights are altered.

Upon analyzing Figure 5, a similar trend emerges as when weights are gen-
erated entirely randomly in SMAA. In other words, the three rankings—GAII,
CIu1, and CIu2—exhibited less effectiveness compared to WS - Cond., CIu2

- Cond., and CIu1 - Cond. Our proposed rankings, derived fromWS - Cond.,
CIu2 - Cond., and CIu1 - Cond., demonstrate significant robustness, as indi-
cated by the average Kendall tau close to zero. This result implies that these
rankings are less sensitive to changes in weights. Thus, with this finding, we
demonstrate that even when a preference order is required to ensure com-
pleteness across various data sources, a more robust ranking can be achieved
without assigning deterministic values to the weights.

6. Conclusion

This paper presented an analysis of AI indicators for comparing countries.
Our objective was to address three questions raised in the introduction: the
first concerning the hypothesis of interactions between AI dimensions, the
second regarding the influence on the ranking when changing criteria weights,
and the last one concerning the determination of a robust AI ranking that
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does not require consideration of deterministic weights. To answer these
questions, we applied the weighted sum with SMAA and the Choquet integral
with SMAA to analyze the Tortoise GAII in terms of criteria weights and
aggregation procedures. Additionally, we propose three approaches, namely
WS - Cond., CIu2 - Cond., and CIu1 - Cond., to derive robust rankings that
do not rely on deterministic weights. Moreover, the CIu2 - Cond. and CIu1

- Cond. approaches also consider the interaction between criteria.
Regarding the first issue, the results confirm significant correlations among

AI dimensions. We observe that criterion 5 (Research) demonstrates high
correlations with other criteria. However, in establishing the GAII ranking,
it was assigned the criterion associated with the highest weight value. Con-
sequently, the criterion that should have had a higher penalization to prevent
bias was the one with greater relevance. Furthermore, our proposal to use the
Choquet integral revealed that rankings can be very different, highlighting
the relevance of applying this method to mitigate bias.

With respect to the second and third questions, we employed two distinct
strategies. In the first one, we generated weights in SMAA entirely randomly,
while in the second, these weights were randomly generated but followed an
ordinal arrangement identical to that used to obtain GAII. In a sensitivity
analysis for the first strategy, we observed a significant difference between the
GAII ranking, which utilized deterministic weights, and our rankings without
deterministic weights. For example, the UK, occupying the 4th position in
GAII, does not exhibit the highest probability of being in the 4th position
when weights are not deterministic, and it drops to the 7th position in our
rankings.

The sensitivity analysis also indicated that the ranking WS - Cond. is
more robust in terms of acceptability indices, demonstrating a higher prob-
ability for countries to maintain their positions in the WS - Cond. ranking
compared to GAII. Additionally, a the comparison in terms of Kendall tau
distance of each ranking with the corresponding rankings obtained by altering
weights showed that, on average, our rankings are more closely aligned with
those resulting from weight variations than GAII. This suggests a reduced
sensitivity to changes in weights when use our proposal.

Concerning to the second strategy, where weights were randomly gener-
ated but followed an ordinal arrangement, our finds were similar to the first
one. Results showed the GAII to be sensitive to weights, and some countries
are in certain position on GAII but with higher probability to be in a dif-
ferent position. Our proposal rankings showed to be more robust in terms
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of the rank acceptability indices. Finally, in terms of Kendall tau distance,
our proposal rankings showed to be, in average, very close to the rankings
obtained in SMAA by varying weights.

Thus, some advantages in the ranking WS - Cond. are related to re-
ducing subjectivity in weight choice and enhancing robustness, leading to
a higher probability of a country maintaining its position. Concerning the
first strategy, which involves using completely random weights, the advan-
tage lies in the ease of comparing the position of each country over the years,
as the values of the weights do not change. However, this strategy has the
disadvantage of not considering the relative importance of criteria, and it
overlooks data reliability and expert opinions. This limitation can be alle-
viated by implementing the second strategy, which enables establishing an
order of preference among criteria without the necessity of determining spe-
cific values, thereby contributing to the reduction of subjectivity.
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[44] I. Montes, M. Rademaker, R. Pérez-Fernández, B. De Baets, A corre-
spondence between voting procedures and stochastic orderings, Euro-
pean Journal of Operational Research 285 (3) (2020) 977–987.

[45] M. Schulze, The schulze method of voting, arXiv preprint
arXiv:1804.02973 (2018).

31

https://www.sciencedirect.com/science/article/pii/S1568494622001776
https://www.sciencedirect.com/science/article/pii/S1568494622001776
https://www.sciencedirect.com/science/article/pii/S1568494622001776
https://www.sciencedirect.com/science/article/pii/S1568494622001776
https://doi.org/https://doi.org/10.1016/j.asoc.2022.108727
https://www.sciencedirect.com/science/article/pii/S1568494622001776
https://www.sciencedirect.com/science/article/pii/S1568494622001776
https://www.sciencedirect.com/science/article/pii/S0957417422011460
https://www.sciencedirect.com/science/article/pii/S0957417422011460
https://www.sciencedirect.com/science/article/pii/S0957417422011460
https://doi.org/https://doi.org/10.1016/j.eswa.2022.117898
https://www.sciencedirect.com/science/article/pii/S0957417422011460
https://www.sciencedirect.com/science/article/pii/S0957417422011460


[46] M. G. Kendall, A new measure of rank correlation, Biometrika 30 (1/2)
(1938) 81–93.

[47] H. Abdi, The kendall rank correlation coefficient, Encyclopedia of Mea-
surement and Statistics. Sage, Thousand Oaks, CA (2007) 508–510.

32


	Introduction
	Multiple Criteria Decision Analysis
	Choquet integral
	Unsupervised approach 1 to learn the Choquet integral parameters (u1)
	Unsupervised approach 2 to learn the Choquet integral parameters (u2)

	Weighting robustness analyses
	Obtaining a robust ranking

	The Global AI Index: Tortoise methodology
	Methodology
	Results and Discussion
	Exploring interactions among criteria considering the same weights as proposed in Tortoise
	Robustness analysis of weights applying SMAA and Condorcet in the absence of weight information
	Robustness analysis of weights applying SMAA and Condorcet considering preference order of weights as defined in Tortoise

	Conclusion

