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Abstract

Recent studies have demonstrated the effectiveness of the combination of machine
learning and logical reasoning, including data-driven logical reasoning, knowledge
driven machine learning and abductive learning, in inventing advanced technologies
for different artificial intelligence applications. One-step abductive multi-target
learning (OSAMTL), an approach inspired by abductive learning, via simply
combining machine learning and logical reasoning in a one-step balanced multi-target
learning way, has as well shown its effectiveness in handling complex noisy labels of
a single noisy sample in medical histopathology whole slide image analysis
(MHWSIA). However, OSAMTL is not suitable for the situation where diverse noisy
samples (DiNS) are provided for a learning task. In this paper, giving definition of
DiNS, we propose one-step abductive multi-target learning with DINS (OSAMTL-
DINS) to expand the original OSAMTL to handle complex noisy labels of DiNS.
Applying OSAMTL-DINS to tumour segmentation for breast cancer in MHWSIA, we
show that OSAMTL-DINS is able to enable various state-of-the-art approaches for
learning from noisy labels to achieve more rational predictions. We released a model
pre-trained with OSAMTL-DINS for tumour segmentation in HE-stained pre-treatment
biopsy images in breast cancer, which has been successfully applied as a pre-processing
tool to extract tumour-associated stroma compartment for predicting the pathological
complete response to neoadjuvant chemotherapy in breast cancer.

Key words
Abductive learning; Machine learning; Logical reasoning; Tumour segmentation for
breast cancer.

1 Introduction

Perception and cognition, two instincts of human beings for information processing
in problem-solving, can be respectively realized by machine learning (Wichmann et al.,
2005) and logical reasoning (Rips, 1983). Usually, the paradigm for information
processing of machine learning is data-driven, i.e., machine learning constructs the flow
of information processing based on collected data. Whereas, the paradigm for
information processing of logical reasoning is knowledge-driven, i.e., logical reasoning
constructs the flow of information processing based on accumulated knowledge. In
most history of artificial intelligence research, machine learning and logical reasoning
have been separately developed (Zhou, 2019), due to their significant differences in the
representation for the flow of information processing. In recent years, however, with
the argument that human beings perform information processing in problem-solving
based on the leverage of both perception and cognition, researchers have shown that
more effective flows of information processing can be constructed via the combination
of machine learning and logical reasoning (D’Amato et al., 2012; D. Li et al., 2020;
Zhou, 2019). Existing efforts of combining machine learning and logical reasoning for
advanced artificial intelligence technologies can be summarized as in data-driven



logical reasoning (DDLR) (D’ Amato et al., 2012), knowledge-driven machine learning
(KDML) (D. Li et al., 2020) and abductive learning (ABL) (Zhou, 2019).

DDLR maintains logical reasoning as the dominant paradigm for information
processing, in which some data-driven flows constructed by machine learning serves as
intermediate components. KDML maintains machine learning as the dominant
paradigm for information processing, in which some knowledge-driven flows
constructed by logical reasoning serves as intermediate components. DDLR prioritizes
logical reasoning over machine learning while KDML prioritizes machine learning over
logical reasoning. As a result, machine learning and logical reasoning are not fully
exploited in DDLR and KDML. To overcome this problem, ABL unifies machine
learning and logic reasoning in a balanced way and targets at achieving mutual benefit
between machine learning and logical reasoning in an iterative strategy.

Apart from the fact that the original paradigm of ABL has been demonstrated to be
effective in some real-world applications (Dai et al., 2019; Y. X. Huang et al., 2020),
recent studies (Yang et al., 2020, 2024) show approach that simply exploits the concept
of unifying machine learning and logical reasoning in a balanced way from ABL is as
well fairly effective in specific application. This approach is so called one-step
abductive multi-target learning (OSAMTL) (Yang et al., 2024), since it only combines
machine learning and logical reasoning in a one-step balanced way without targeting at
a mutual benefit in an iterative strategy. OSAMTL targets at alleviating the situation
where it is often difficult for experts to manually achieve the accurate ground-truth
labels, which leads to labels with complex noisy for a learning task (aka, learning from
noisy labels (Frénay & Verleysen, 2014; Karimi et al., 2020; Song et al., 2022)). Based
on the concept of unifying machine learning and logical reasoning in a balanced way
from ABL, OSAMTL exploits multiple inaccurate targets abduced from a single noisy
sample via logical reasoning to achieve more reasonable predictions via multi-target
learning. On a H. pylori segmentation task in medical histopathology whole slide
images (Hanna et al., 2020) analysis (MHWSIA) (Yang et al., 2020, 2024), for the first
time, OSAMTL has been reported to possess potentials in handling complex noisy
labels in MHWSIA. More details about existing approaches in combination of machine
learning and logical reasoning can be found in section 2.1.

Since it is based on a single noisy sample, OSAMTL is naturally not suitable for
the situation where diverse noisy samples (DiNS) are provided for a learning task. DINS
contain at least two types of noisy samples, where diversity exists between any two
non-repeating noisy samples. Due to this property, DINS can constitute a noisy data
that have very complex noise. In this paper, formally giving definition of DINS, we
propose one-step abductive multi-target learning with DINS (OSAMTL-DINS) and
provide analyses of OSAMTL-DiNS compared with the original OSAMTL. Being able
to handle DINS, OSAMTL-DINS only require very inaccurately labelled (complex
noisy) samples to produce a predictive model. This property forms the major advantage
of OSAMTL-DINS, since the data preparation can be much less labour-tensive though
at least two types of noisy samples are needed. Thus, OSAMTL-DINS is suitable to
address some tasks in the field of medical analysis where the problem of low
consistency always exists. Low consistency, here in the context of DINS, can refer to



that large is the difference between the noisy distributions of two different noisy
samples prepared by experts for a same medical analysis task, which usually results in
more complex noisy in data annotations. More details about DiNS and the proposed
OSAMTL-DINS can be found in section 2.2.

Quantitative evaluation of tumour in breast cancer can provide clues important to
subsequent therapy of breast cancer (Pu et al., 2020; Yau et al., 2022). The key point is
to achieve tumour segmentation for breast cancer (TSfBC), which is a fundamental key
technique that can be leveraged to calculate the tumour-stroma ratio which has been
proven to be a prognostic factor in breast cancer (de Kruijf et al., 2011). Existing deep
learning (LeCun et al., 2015) enhanced approaches that can be leveraged to achieve
TSfBC can be classified into two schemes: learning with noisy-free/accurate labels
(Bhattacharjee et al., 2022; Priego-Torres et al., 2020, 2022) and learning with
noisy/inaccurate labels (Diao et al., 2022; G. Xu et al., 2019; Y. Xu et al., 2014). The
first type of scheme adopts the supervised learning paradigm. However, due to the
difficulty in accurately labelling the tumour in breast cancer on whole slide images,
very limited noisy-free data is often available, which will inevitably limit the
generalization of the prediction model. The second type of scheme adopts the weakly
supervised learning paradigm, which avoids the problem of the difficulty in obtaining
noisy-free data faced by the first type of scheme. However, the popular strategy of using
image patch-level labels to achieve pixel-level segmentation (Diao et al., 2022; G. Xu
etal., 2019; Y. Xu et al., 2014) has the drawbacks in MHWSIA that the work load of
image patch-level labelling can still be very massive due to the large size of whole slide
images and the prediction results can be very coarse at high resolution.

To alleviate this situation, in this paper, we applied the proposed OSAMTL-DIiNS
to TSfBC in MHWSIA. As OSAMTL-DINS only requires very inaccurately labelled
(complex noisy) samples, the difficulty in pixel-level labelling for the task of TSfBC in
MHWSIA is considerably reduced. Referring to the proposed OSAMTL-DINS, we
implemented an OSAMTL-DiNS-based image semantic segmentation solution for
TSfBC in MHWSIA and conducted extensive experiments to demonstrate the
potentials of OSAMTL-DINS in MHWSIA. More details about the application of
OSAMTL-DINS to TSfBC and corresponding strategies for experimental conduction
can be found in section 2.3 and section 2.4.

Experiment results show that OSAMTL-DINS is able to enable various existing
approaches for learning from noisy labels (Algan & Ulusoy, 2021; Frénay & Verleysen,
2014; Sukhbaatar & Fergus, 2014), including naively learning from noisy labels,
Forward, Backward (Patrini et al., 2017), Boost-Hard, Boost-Soft (Arazo et al., 2019;
Reed et al., 2015), D2L (Ma et al., 2018), SCE (Wang et al., 2019), Peer (Liu & Guo,
2020), DT-Forward (Yao et al., 2020), and NCE-SCE (Ma et al., 2020), to achieve more
rational predictions. We also released a predictive model pre-trained with OSAMTL-
DiNS for tumour segmentation in HE-stained pre-treatment biopsy images in breast
cancer, which has been successfully applied as a pre-processing tool to extract tumour-
associated stroma compartment for predicting the pathological complete response to
neoadjuvant chemotherapy in breast cancer (F. Li et al., 2022).

In summary, the contributions of this work are as follows:



® One-step abductive multi-target learning with diverse noisy samples
(OSAMTL-DINS) is proposed, which only require very inaccurately labelled
(complex noisy) samples to produce a predictive model.

® The proposed OSAMTL-DINS is applied to address the task of tumour
segmentation for breast cancer (TSfBC) in medical histopathology whole slide
image analysis (MHWSIA).

® Extensive experiments show that the proposed OSAMTL-DINS is able to
enable various existing approaches for learning from noisy labels to achieve
more rational predictions in the task of TSfBC in MHWSIA, which reflects the
potential effectiveness of OSAMTL-DINS in handling complex noisy labels in
MHWSIA.

® A predictive model pre-trained with OSAMTL-DINS for tumour segmentation
in HE-stained pre-treatment biopsy images in breast cancer is released and has
been successfully applied as a pre-processing tool to extract tumour-associated
stroma compartment for predicting the pathological complete response to
neoadjuvant chemotherapy in breast cancer, which reflects the potentials of
using OSAMTL-DINS to help building basic tools for MHWSIA.

2 Material and Methods

This section is structured as follows. In section 2.1, we briefly formalize existing
methodologies for combining machine learning and logical reasoning and summarize
their differences. In section 2.2, we present the methodology of the proposed
OSAMTL-DINS and corresponding summaries about its properties. In section 2.3, we
apply the proposed OSAMTL-DINS to tumour segmentation for breast cancer (TSfBC)
in MHWSIA. In section 2.4, on the basis of the implemented application of OSAMTL-
DiNS to TSfBC, we present the experimental strategies for conducting extensive
experiments to investigate the contributions of OSAMTL-DINS in handling complex
noisy labels.
2.1 Combination of machine learning and logical reasoning

In this subsection, we briefly formalize the methodologies for combining of
machine learning and logical reasoning and summarize their differences. Firstly, in
section 2.1.1, we give the preliminary formalizations about machine learning and
logical reasoning. Secondly, we formalize existing methodologies of combining
machine learning and logical reasoning respective in sections 2.1.2-5. Finally, in
section 2.1.6, we summarize the differences of existing methodologies based on their
formalizations.
2.1.1 Preliminary

Machine learning Commonly for a machine learning task in artificial intelligence

research, a collected dataset containing certain instances (x) and corresponding labels
(y) for the task is provided. The objective of the task here is to estimate a predictive
function f parameterized by 6 (f(6)) that can map x to corresponding predictions
(f (x; 8)) which are as correct as possible compared with y. Formally, the objective of
a machine learning task can be expressed as



f(8) = argmin ||f(x;6) -y,
fE@ﬁ@E@g

where O is the function space of f, @, is the parameter space of 6 corresponding to
f and ||f (x; ) — y|| denotes the error between f(x; 8) and y.

Logical reasoning Commonly for a logical reasoning task in artificial intelligence
research, a collected dataset containing certain instances (x) and corresponding labels
(y) for the task and a collected knowledge base (kb) containing various prior
knowledge or facts about the task are both provided. The objective of the task here is
to search a reasoning path r that can from x and y draw conclusions (r(< x,y >))
consistent with some knowledge or facts in kb. Formally, the objective of a logical
reasoning task can be expressed as

7 = argsearch r(< x,y >) = kb,
TEO,

where 0,. is the reasoning path space of r and (< x,y >) = kb denotes r(< x,y >)
is consistent with kb.
2.1.2 Data-driven logical reasoning

Data-driven logical reasoning (DDLR) (D’Amato et al., 2012) adapts machine
learning to logical reasoning. Formally, the objective of a DDLR task can be expressed
as

# = argsearch r(< x, f(x; 0) >) = kb, (1)
TEO,
where f(8) = argmin ||f(x;0) — y||.
fE@ﬁQE@g

2.1.3 Knowledge-driven machine learning
Knowledge-driven machine learning (KDML) (D. Li et al., 2020) adapts logical
reasoning to machine learning. Formally, the objective of a task can be expressed as

f(8) = argmin |If(F(< x,y >);6) = yll, (2)
fE@ﬁ@E@g
where # = arg searchr(< x,y >) = kb.

TEO,
2.1.4 Abductive learning
Abductive learning (ABL) (Zhou, 2019) has two important concepts: 1) unifying
machine learning and logic reasoning in a balanced way, and 2) targeting at achieving
a mutual benefit between machine learning and logical reasoning in an iterative strategy.
Formally, the objective of a ABL task can be expressed as

7y = arg seeearch r(< X, Vi k >) =kb, Vmip = fk_l(x; ék—l)
rev,

fk(é) = argmin ||f(x;0) = Vi kll, Virg = TN‘k(< X, Ymik >) ’
fE@ﬂHE@g

where k = 1,---, N and £,(8,) can be a pre-trained machine learning model.
2.1.5 One-step abductive multi-target learning

One-step abductive multi-target learning (OSAMTL) (Yang et al., 2024) only
combines machine learning and logical reasoning in a one-step balanced multi-target
learning way. Formally, the objective of a OSAMTL task can be expressed as

©)



7 = argsearch r(< x,y >) = kb
T€EO,

£(8) = argmin ||f(x;0) = ||, Fir = F(< 2,7 >) = {tg, -, tn}
fE@f,@E@g

where y can be rough labels provided by experts or predictions of a pre-trained machine
learning model, and ¥, is a set of multiple inaccurate targets which can be expressed
as {ty, ", tp}.

2.1.6 Summary

From formula (1), we can note that DDLR prioritizes logical reasoning over
machine learning by maintaining logical reasoning as the dominant paradigm for
information processing, in which the results produced by machine learning serves as
some inputs. From formula (2), we can note that KDML prioritizes machine learning
over logical reasoning by maintaining machine learning as the dominant paradigm for
information processing, in which the results produced by logical reasoning serves as
some inputs. In the paradigms of both DDLR and KDML, machine learning and logical
reasoning are not fully exploited by adapting one to the other.

From formula (3), we can note that the results produced by machine learning serve
as some inputs of logical reasoning and the results produced by logical reasoning serve
as the target of machine learning. This indicates that machine learning and logical
reasoning are placed in equal positions in the objective of a ABL task. Iteratively, let
k=1,---,N, ABL is able to fully exploit machine learning and logical reasoning,
which cannot be fulfilled by DDLR or KDML.

From formula (4), we can note that it can be regarded as a special case of formula
(3) when k = 1. In formula (4), the objective of logical reasoning is independent of the
objective of machine learning and the results produced by logical reasoning serve as a
set of multiple targets of machine learning. These two indicate, being a special case of
ABL, OSAMTL only combines machine learning and logical reasoning in a one-step
balanced way without targeting at a mutual benefit in an iterative strategy.

Overall speaking, the differences of DDLR, KDML, ABL and OSAMTL for the
combination of machine learning and logical reasoning can be summarized as Fig. 1.
2.2 Proposed OSAMTL-DINS

In this subsection, we propose one-step abductive multi-target learning with
diverse noisy samples (OSAMTL-DINS) to expand the original OSAMTL to handle
complex noisy labels of diverse noisy samples. The outline for the methodology of
OSAMTL-DINS is shown as Fig. 2. Specifically, section 2.2.1 gives the definition for
DiNS; section 2.2.2 presents the formalizations for the proposed OSAMTL-DINS; and
section 2.2.3 summarizes some properties of the proposed OSAMTL-DiNS.

4
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Figure. 1. Summarization for differences of DDLR, KDML, ABL and OSAMTL for the combination of machine learning and logical reasoning.




2.2.1 Definition of diverse noisy samples

A noisy sample (NS,) consists of an instance sample (IS,) and a noisy label sample
(NLS,). An instance sample contains a number of instances (/) and a noisy label sample
contains a number of noisy labels (NL). The instances of IS, are one-to-one
corresponding to the noisy labels of NLS,. Formally, a noisy sample can be denoted by

NS, = {IS,,NLS,} = {{1*,1, e Ly L{NL.1,",NL, . }

={(1.1,NL.1),~ (L, NL.n,) }
where n, is the number for instances or noisy labels of NS,.

The diversity of two noisy samples (Div, ;) can be evaluated by the differences
between their instances and corresponding noisy labels. Formally, the diversity of two
noisy samples can be denoted by

Div,, = Dif ferenciate (NS,, NSy)
= Dif ferenciate(IS,, IS,) * Dif ferenciate(NLS,, NLS}p).
For simplicity, we define Div, ; € [0,1], where 1 signifies diversity exists between
NS, and NS, while 0 indicates the opposite.

Diverse noisy samples (DINS) have at least two noisy samples, where diversity
exists between any two non-repeating noisy samples. Due to this property, DiNS can
constitute a noisy data that have very complex noise. Formally, diverse noisy samples
can be defined as

DIiNS = {NSy,--,NS;} = {{IS;, NLS,},-+,{IS4, NLS}}

= {{{11.1' . Il,nl}' {NLl,l' 'NL1,n1}}' e {{Id,li 'Id,nd}' {NLd,li 'NLd,nd}}}

= {11, MLy, (g NLy )} (e NLaa), = (lang NLang)}}
s.t. Va, Vb €{l,--,d}and a # b, 3 Div,, = 1.
2.2.2 One-step abductive multi-target learning with DiINS
With the given definition of DINS, we propose one-step abductive multi-target
learning with diverse noisy samples (OSAMTL-DINS). OSAMTL-DINS constitutes of
four components, including input materials, one-step logical reasoning, target
rearrangement and multi-target learning.

Input materials The input materials of OSAMTL-DINS include some given
diverse noisy samples (DiNS) and a knowledge base (KB) containing a list of domain
knowledge about the true target of a specific task. Referring to the formulations of DNS
presented in Section 3.1, the input materials of OSAMTL can be more specifically
denoted as follows

DiNS = {NS,;,---,NS,},
KB = {Ky,-,K,}.

One-step abductive logical reasoning with DiINS With the given DiNS and KB,
the one-step logical reasoning procedure of OSAMTL-DINS, which consists of four
substeps, abduces multiple targets containing information consistent with the domain
knowledge about the true target of a specific task.



OSAMTL-DNS: one-step abductive multi-target
learning (OSAMTL) with diverse noisy samples (DiNS)
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Figure. 2. The outline for the methodology of OSAMTL-DINS. For simplicity of elaborating the methodology of OSAMTL-DIiNS, we assume that each instance sample (IS,)
and each noisy sample (NLS,) of the given diverse noisy samples (DNS) only have one instance and one noisy label respectively. This simplified elaboration can be deduced
to the situation where each instance sample (IS,) and each noisy sample (NLS,) of the given diverse noisy samples (DNS) have a set of instances and a set of noisy labels
respectively.



The substep one extracts a list of groundings from the given set of noisy label
samples that can describe the logical facts contained in the given diverse noisy samples.
Formally, this grounding extract (GE) step can be expressed as

G = GE(DiNS; p®E) = {GE(NSy; p©F1), -+, GE(NSg; p©Ed)}

= {61 = {611, Gur.} . G = {Gap Gy} (5)
Via logical reasoning, the substep two estimates the inconsistencies between the
extracted groundings G and the domain knowledge in the knowledge base KB .
Formally, this reasoning (R) step can be expressed as
IC = R(G,KB; p*) = {R(G1, KB; p®),-,R(Gg, KB; p*4)}

={1C, = {IC, 1, 1C 3.}, 1Cq = {ICq .+, 1Ca s, }} (6)
The substep three revises the groundings of the given set of noisy label samples by
logical abduction based on reducing the estimated inconsistency IC. Formally, this
logical abduction (LA) step can be expressed as
RG = LA(IC; p**) = {LA(ICy; p"*1), -+, LA(IC4; p*44)}

= {{GRl,lr e GRl.zl}' :{GRd,lr e GRd,zd}}

={RG1(GRy11),*,RGs(GRy,,)}  s.t. s=XL,z. (7
Finally, the substep four leverages the revised groundings RG to abduce multiple
targets containing information consistent with our domain knowledge about the true
target for the instance sample of the given noisy smaples. Formally, this target abduce
(T A) step can be expressed as
T =TA({RG}:;p™)

_ {TA({RGLL +, RGye, Jip™), }
TA ({RGm,lﬁ Tty RGm,em}; pTAm)
={Ty,,Tm} s.t. {RG.1,",RG...} € RG. (8)

In the four formulas (1)-(4), each p* denotes the hyper-parameters corresponding
to the implementation of respective expression.

Target rearrangement The target rearrangement procedure of OSAMTL-DINS
rearranges the multiple targets abduced by the one-step logical reasoning with DiNS
into ordered multiple targets that are corresponding to each instance sample of the given
diverse noisy samples. Formally, the target rearrangement ( TR) procedure of
OSAMTL-DINS can be expressed as

fs = TR(T,p™)
= {TR({T;|i € [1,m],T; € T}, p™™), -, TR({T;|i € [1,m], T; € T},p"Ra)}
= {85, = {By0, -, By, oo B = (g, Bar}} st G5, €Tandr > 1.
9)
Here, pTR denotes the hyper-parameters corresponding to the implementation of a
target rearrangement procedure.
The formula (5) reflects that each instance sample of the given diverse noisy

samples (IS.) has corresponding r number of targets (£, = {{E*,l, -, E*,n}}) abduced by



the one-step logical reasoning. Referring to the situation where each instance sample of
the given diverse noisy samples only has one instance, the formular (5) can be deduced
to imply that each instance contained in an instance sample of the given diverse noisy
samples has corresponding multiple targets abduced by one-step logical reasoning.
With this implication, we can rewrite the rearranged targets for an instance sample of
the given diverse noisy samples as

Es* = {Es*,l; Yy Es*,r*} = {{f(*,l),lﬁ Y f(*,l),r*}' T {E(*,n*);l’ T f(*;n*);r*}}' (10)
As a result, the instances (I) contained in the given diverse noisy samples and
corresponding rearranged multiple targets (£) can be denoted as

[=US V- VISa) = {{11.1""'11,n1} U--u {Id,l' "';Id,nd}} ={ly, -, I},
{{5(1’1)'1, e, E(l,l),rl}: L {E(l;nl),ll e, E(Lm)ﬂﬁ}} U---uU
{{E(d'l)'l' o E(d'l)'rd}' T {E(d’nd)'l’ T E(d,nd)ﬂ‘d}}

= {f1 = {51,1: y f1,r1}: ety = {En,l' " En,rn}}’ s.t. n= 2?:1”1’- (11)
Multi-target learning The multi-target learning procedure of OSAMTL-DINS is
carried out on the basis of a specifically constructed learning model that maps input
instances (1) into its corresponding target prediction (t), which can be expressed as
t=LM(,w) ={ty, ", tn}. (12)
Here, LM is short for learning model, and «w denotes the hyper-parameters
corresponding to the construction of a specific learning model.

The multi-target learning procedure of OSAMTL-DINS, which constitutes of a
joint loss construction and optimization, imposes the rearranged multiple targets ()
upon machine learning to constrain the prediction of the learning model (t). The joint
loss is constructed by estimating the error between t, and ,, which can be expressed
as

t ={ts;U--Uts,} =

~ 1 Ti ~ Ti
L(t, t; '3) = ;Z?zl Ziil aii’(tj, tj,i) s. t. Ziil a; = 1. (13)
Here, £ denotes the hyper-parameters corresponding to the construction of the basic
loss function, and a; is the weight for estimating the loss between ¢; and an abduced

target (£; ;) contained in £;. Then, the objective can be expressed as
mtin(L(t, t; 0); 1). (14)

Here, A denotes the hyper-parameters corresponding to the implementation of an
optimization approach.
2.2.3 Summary

OSAMTL-DINS inherits properties from OSAMTL (Yang et al., 2024), including
the difference of OSAMTL from abductive learning (ABL) (Zhou, 2019) and the
distinctiveness of OSAMTL from various state-of-the-art approaches that are based on
pre-assumptions about noisy-labelled instances (Arazo et al., 2019; Liu & Guo, 2020;
Ma et al., 2018, 2020; Reed et al., 2015; Wang et al., 2019; Yao et al., 2020) or need
premised requirements (Acuna et al., 2019; L1, J., Socher, R., & Hoi, 2020; Xiao et al.,
2015) to be carried out to handle noisy labels. OSAMTL-DINS also inherits the essence
of the multi-target learning procedure of OSAMTL, which is that the multi-garget



learning procedure can enable the learning model to learn from a weighted
summarization of multiple targets that contain information consistent to our prior
knowledge about the true target of a specific task. For more details of these properties
of OSAMTL-DINS inherited from OSAMTL, readers can refer to (Yang et al., 2024).

OSAMTL-DINS improves OSAMTL. The one-step logical reasoning procedure of
OSAMTL-DINS abduces multiple targets using given diverse noisy samples and
knowledge base, while the logical reasoning procedure of OSAMTL abduces multiple
targets using given one noisy sample and knowledge base. OSAMTL-DINS is suitable
to address tasks where a knowledge base and multiple noisy samples are available and
each noisy sample has a different noisy distribution in labels. From this side, OSAMTL
can only handle a subset of the tasks for which OSAMTL-DINS are suitable, since it
can only handle the situation where the available noisy sample has one noisy
distribution in labels. Thus OSAMTL-DINS expands the generalization of original
OSAMTL to a wider range of tasks.

Besides, OSAMTL-DIiNS possesses an extra target rearrangement procedure that
rearranges the multiple targets abduced by the one-step logical reasoning with DiNS
into ordered multiple targets corresponding to the instances contained in the given
diverse noisy samples. As a result, the instances contained in the given diverse noisy
samples and corresponding rearranged multiple targets can be conveniently employed
by the multi-target learning procedure of OSAMTL-DINS.

As OSAMTL-DINS is proposed to handle DiNS, it can produce a predictive model
based on very inaccurately labelled (complex noisy) samples. This property forms the
major advantage of OSAMTL-DINS, since the data preparation can be much less
expensive and less labour-tensive though at least two types of noisy samples are needed.
Being able to handle DINS, OSAMTL-DINS is suitable to address some tasks in the
field of medical analysis where the problem of low consistency always exists. Low
consistency, here in the context of DINS, can refer to that large is the difference between
the noisy distributions of two different noisy samples prepared by experts for a same
medical analysis task, which usually results in more complex noisy in data annotations.

Notably, OSAMTL-DINS is independent from the machine learning architectures,
which is the same as the original OSAMTL. This property of OSAMTL-DINS makes
it possible to be combined with various state-of-the-art deep learning architectures
chosen for specific tasks, such as deep convolutional neural networks, transformers or
very large models.

2.3 OSAMTL-DINS applied on tumour segmentation for breast cancer

In this section, we apply OSAMTL-DINS on tumour segmentation for breast
cancer (TSfBC) in medical histopathology whole slide image analysis (MHWSIA).
Firstly, in section 2.3.1 we introduce the background of TSfBC, and in section 2.3.2 we
give application settings of applying OSAMTL-DIiNS on TSfBC. Secondly, in sections
2.3.3-6, we implement the OSAMTL-DINS based solution for TSfBC. Finally, in
section 2.3.7 we summarize the outline of the implementation of the OSAMTL-DiINS
based solution for TSfBC.

2.3.1 Tumour segmentation for breast cancer



Fig. 2 shows the illustrations for two tasks of TSfBC. The two tasks include a task
that aims to segment tumour in HE-stained pre-treatment biopsy images and a task that
aims to segment residual tumour in HE-stained post-treatment surgical resection images.
From the illustrations presented in Fig. 3.A and Fig. 3.B, we can note that it is indeed
difficulty to accurately annotate the true targets for both segmentation tasks. Referring
to these illustrations and additional suggestions from pathology experts, we here claim
that the tumour segmentation task in HE-stained post-treatment surgical resection
images is more difficult than the tumour segmentation task in HE-stained pre-treatment
biopsy images.

Existing deep learning (LeCun et al., 2015) enhanced approaches that can be
leveraged to achieve TSfBC can be classified into two schemes: learning with noisy-
free/accurate labels (Bhattacharjee et al., 2022; Priego-Torres et al., 2020, 2022) and
learning with noisy/inaccurate labels (Diao et al., 2022; G. Xu et al., 2019; Y. Xu et al.,
2014). The first type of scheme adopts the supervised learning paradigm. However, due
to the difficulty in accurately labelling the tumour in breast cancer on whole slide
images (Hanna et al., 2020), very limited noisy-free data is often available, which will
inevitably limit the generalization of the prediction model. The second type of scheme
adopts the weakly supervised learning paradigm, which avoids the problem of the
difficulty in obtaining noisy-free data faced by the first type of scheme. However, the
popular strategy of using image patch-level labels to achieve pixel-level segmentation
(Diaoetal., 2022; G. Xu et al., 2019; Y. Xu et al., 2014) has the drawback in MHWSIA
that the work load of image patch-level labelling can still be very massive due to the
large size of whole slide images. To alleviate this situation, we apply the proposed
OSAMTL-DINS to TSfBC.

2.3.2 Application setting

On one hand, due to the difficulty to visually annotate the true target for TSfBC on
HE-stained images, we asked two pathology experts to provide weak annotations: one
pathology expert only aims to as accurate as possible exclude the non-true target on one
data set; and another pathology expert only aims to as accurate as possible include the
target on another dataset. As a result, two diverse noisy samples (DiNS) are provided
for TSTBC from the vision perspective. On the other hand, existing knowledge of
pathology can semantically give clear descriptions, that is a list of semantic sentences
from pathological knowledge can present what is the true target for TSfBC. As a result,
we also asked the two pathology experts to provide a knowledge base (KB) about the
true target for TSfBC from the semantic perspective.

The noisy labels contained in visual DINS are inaccurate but can be easily
transformed into learnable target, meanwhile, the sentences contained in semantic KB
are clear but cannot be easily transformed into learnable target. It is desirable to take
the advantages of both visual DiNS and semantic KB into machine learning to achieve
more reasonable predictions. Fortunately, the proposed OSAMTL-DINS framework
can take advantages of both visual DiNS and semantic KB by transforming visual DiNS
into multiple learnable inaccurate targets containing information consistent with the
knowledge of semantic KB for the true target via one-step abductive logical reasoning.
Thus, on the basis of the provided visual DINS and semantic KB, we employ



OSAMTL-DINS to address tumour segmentation in HE-stained pre-treatment biopsy
images and tumour segmentation in HE-stained post-treatment surgical resection
images.

Figure. 3. lllustrations for two tumour segmentation tasks for breast cancer. A: tumour segmentation in
HE-stained pre-treatment biopsy images. B: tumour segmentation in HE-stained post-treatment surgical
resection images. A-Left: A 1x magnification shown medical histopathology whole slide image
digitalized from a HE-stained pre-treatment biopsy slide; A-Right: A 10xmagnification shown image
patch cropped from the left whole slide image at the boxed area. B-Left: A 0.5xmagnification shown
medical histopathology whole slide image digitalized from a HE-stained post-treatment surgical
resection slide; B-Right: A 10xmagnification shown image patch cropped from the left whole slide
image at the boxed area. Red boxes in A-Right image or B-Right image: areas that confidently contain
tumour. Blue boxes in A-Right image or B-Right image: areas that possibly (not sure) contain tumour.
Rest of A-Right image or B-Right image: areas that confidently do not contain tumour. Pathology experts
annotated these boxes shown in A-Right image and B-Right image.
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Figure. 4. Examples of diverse noisy samples provided for the two tumour segmentation tasks for breast

cancer. A: diverse noisy samples for tumour segmentation in HE-stained pre-treatment biopsy images.
B: diverse noisy samples for tumour segmentation in HE-stained post-treatment surgical resection images.

2.3.3 Input materials
Diverse noisy samples The diverse noisy samples (DiNS) provided for the two
tumour segmentation tasks for breast cancer are denoted as follows.
DNS = {NSy,NS,} = {{IS,, NLS;},{IS;, NLS,}}

= {{{11,1, Yy I1,n1}: {NL1,1: Ty NLl,nl}} ’ {{12,1' t Iz,n2 }» {NL2,1' » NLz,nz}}}

= {{(11,1’ NL1,1)’ (11,n1: NL1,n1)}' {(12,1' NL2,1)» (Iz,nZ' NLz,nz)}}-

Some examples of the provided DiNS for the two tasks are shown as Fig. 4. The
noisy labels contained in the provided DiNS can significantly alleviate the mission for
accurate ground-truth labels, however, these noisy labels also suffer from severe
inaccuracy compared with the true target for TSfBC. From Fig. 4, we can observe that
many non-tumour areas are included as tumour by the labels of NS; while many tumour
areas are excluded as non-tumour by the labels of NS,.



Knowledge base Regarding to existing knowledge of pathology, the knowledge
base (KB) provided for the two tumour segmentation tasks for breast cancer are shown
as Table 1.

KB = {K;,K,, K3, K4, K5, K¢}

Table 1. Knowledge provided for tumour segmentation for breast cancer

Knowledge Base

K;: Tumour is composed of tumour cells.

K,: Tumour cells may be arranged in cords, clusters, and trabeculae.

K3: Some tumours are characterized by predominantly solid or syncytial infiltrative pattern
with little associated stroma.

K,: Cytoplasm of tumour cell is eosinophilic and vacuolated.

Ks: Nuclei of tumour cell is enlarged and chromatin of tumour cell is vacuolated.

Kg: Nuclei of tumour cell is degenerated.

2.3.4 One-step abductive logical reasoning with DiNS
Grounding Extract The Grounding Extract step takes the provided DNS (shown
in Fig. 2) as input and produces a list of groundings that describe the logical facts of the
provided DiNS. Referring to Eq. (5), we use the semantics contained in the provided
DNS as p“E to implement the Grounding Extract step, which can produce groundings
as follows
G = GE(DNS; {semantics contained in DNS})
NS, = {IS;,NLS;};
({semantics contained in NLS; for labeling ISl})’
B CE < NS, = {{IS;, NLS,}}; ) ’
{semantics contained in NLS, for labeling IS,}
_ {61 = {61,1, G1,2}'}
G, = {62,1,G2,2} '
Details of the extracted groundings are provided in Table 2.

Table 2. Details of the extracted groundings

Extracted Groundings

G1,1- pixels of IS; outside the polygons of NLS; are tumour negatives
Gy, pixels of IS, inside the polygons of NLS; are tumour positives
G,,1: pixels of IS, inside the polygons of NLS, are tumour positives
G, 7. pixels of IS, outside the polygons of NLS, are tumour negatives

Reasoning The Reasoning step takes the G extracted by the Grounding Extract
step and the provided KB as inputs and produces a list of inconsistencies that describe
the gap between the extracted groundings G and the provided KB from various
perspectives. On the basis of the extracted groundings G and the provided KB, we
derive two reasonings (Reasoning 1 and Reasoning 2). The validity of the two derived



reasonings are respectively proved by Proof-R1 and Proof-R2 which are provided in
Supplementary 1.

Reasoning 1. If G, is given and KB is given, then inconsistency between the false
tumour negatives covered by G; ; and the false tumour negatives covered by KB is low,
inconsistency between the false tumour positives covered by G, , and the false tumour
positives covered by KB is high, inconsistency between the true tumour positives
covered by G; , and the true tumour positives covered by KB is low, and inconsistency
between the true tumour negatives covered by G;; and the true tumour negatives
covered by KB is high.

Reasoning 2. If G, is given and KB is given, then inconsistency between the false
tumour positives covered by G, ; and the false tumour positives covered by KB is low,
inconsistency between the false tumour negatives covered by G, , and the false tumour
negatives covered by KB is high, inconsistency between the true tumour negatives
covered by G, , and the true tumour negatives covered by KB is low, and inconsistency
between the true tumour positives covered by G;; and the true tumour positives
covered by KB is high.

Referring to Eg. (6), we use Reasoning 1 and Reasoning 2 as p® to implement the
Reasoning step, which can produce estimated inconsistencies between the extracted
groundings G and the provided KB as follows

IC = R(G,KB;{Reasoning 1, Reasoning 2})
= {R(G,,KB; Reasoning 1), R(G,, KB; Reasoning 2)}
_ {161 ={ICy1,1C,5,1Cy 3, 161_4},}
IC, = {ICy1,1C55,1C55,1C, 4}
Details of the estimated inconsistencies are provided in Table 3.

Table 3. Details of the estimated inconsistencies

Estimated Inconsistencies

1C, 1: inconsistency between the false tumour negatives covered by G; ; and the false tumour
negatives covered by KB is low

1C, ,: inconsistency between the false tumour positives covered by G, , and the false tumour
positives covered by KB is high

ICy 3: inconsistency between the true tumour positives covered by G; , and the true tumour
positives covered by KB is low

I1C, 4: inconsistency between the true tumour negatives covered by G, ; and the true tumour
negatives covered by KB is high

1C, 1 inconsistency between the false tumour positives covered by G, ; and the false tumour
positives covered by KB is low

1C, ,: inconsistency between the false tumour negatives covered by G, , and the false tumour
negatives covered by KB is high

1C, 3: inconsistency between the true tumour negatives covered by G, , and the true tumour
negatives covered by KB is low

1C, 4: inconsistency between the true tumour positives covered by G, ; and the true tumour
positives covered by KB is high




Abduction The Abduction step takes the IC estimated by Reasoning step and the
G extracted by the Grounding Extract step as inputs and produces a list of revised
groundings that reduce the inconsistencies in IC. On the basis of the estimated /C and
the extracted G, we derive two reasonings (Reasoning 3 and Reasoning 4). The validity
of the two derived reasonings are respectively proved by Proof-R3 and Proof-R4 which
are provided in Supplementary 1.

Reasoning 3. If IC; is given, then G, ; should not be revised to remain IC; 1, Gy,
should not be revised to remain IC, 5, Gy should be revised to reduce IC, 4, and G, ,
should be revised to reduce IC ,.

Reasoning 4. If IC, is given, then G, ; should not be revised to remain IC, 1, then
G,,> should not be revised to remain IC, 3, G, ; should be revised to reduce IC; ,, and
G, should be revised to reduce IC, 4.

Referring to Eq. (7), we use Reasoning 3 and Reasoning 4 as p4 to implement the
Abduction step, which can produce revised groundings as follows

RG = LA({IC}; {Reasoning 3, Reasoning4})
_ {LA({ICl}; Reasoning 3),}

LA({IC,}; Reasoning 4)
_ {{GRLl, GRy2, GRy3, GRM},}
{GRy1,GR,4,GR,3,GR, 4}

{Ral(GRl,l),RGZ(GRLZ), RG5(GRy3), RG4,(GR1,4),}
RGs(GR241),RGs(GR,5),RG;(GRy3), RGg(GRy,4)

Details of the grounding revisions and the revised groundings are respectively
provided in Table 4 and Table 5.

Table 4. Details of the grounding revisions

Grounding Revisions

GR; 1: G1,1 should not be revised to remain IC; 4
GR, ;: Gy, should not be revised to remain IC; 3
GR; 3: G should be revised to reduce IC; 4
GR, 4: Gy, should be revised to reduce IC;
GR; 1: G, 1 should not be revised to remain IC; 4
GR;: G, should not be revised to remain IC; 3
GR;3: G, 1 should be revised to reduce IC; 4
GR; 4: G, should be revised to reduce IC; ,

Table 5. Details of the revised groundings

Revised Groundings

RGl(GRLl): = G4, pixels of IS; outside the polygons of NLS; are tumour negatives
RGZ(GRl_Z): = Gy, pixels of IS; inside the polygons of NLS; are tumour positives



RG, (GR1,3) : pixels of IS; outside the polygons of NLS; are not exactly true tumour
negatives

RG, (GRM): pixels of 1S; inside the polygons of NLS; are not exactly true tumour positives
RGS(GRZJ): = G, 1, pixels of IS, inside the polygons of NLS, are tumour positives
RG6(GR2,2): = G, pixels of IS, outside the polygons of NLS, are tumour negatives
RG7(GR2,3): pixels of IS, inside the polygons of NLS, are not exactly true tumour positives
RG8(6R2_4) : pixels of IS, outside the polygons of NLS, are not exactly true tumour
negatives

Target Abduce The target abduce step takes the RG produced by the Abduction
step as input and abduces a list of multiple targets to more appropriately represent the
true target of tumour for breast cancer. On the basis of the input RG, we derive four
reasonings (Reasoning 5, Reasoning 6, Reasoning 7 and Reasoning 8). The validity of
the four derived reasonings are respectively proved by Proof-R5-9 which are provided
in Supplementary 1.

Reasoning 5. If RG; is given and RG, is given, then a target (T;) can be abduced
from the union of RG, and RG,, and T; has a high recall of true tumour positives and
a high precision of true tumour negatives.

Reasoning 6. If RGs is given and RGg is given, then a target (T,) can be abduced
from the union of RGs and RGg, and T, has a high precision of true tumour positives
and a high recall of true tumour negatives.

Reasoning 7. If the target (T;) abduced from the union of RG, and RG, is given,
RG5 is given and RG, is given, then T; has a low precision of true tumour positives and
a low recall of true tumour negatives.

Reasoning 8. If the target (T,) abduced from the union of RGs and RG is given,
RG- is given and RGg is given, then T, has a low recall of true tumour positives and a
low precision of true tumour negatives.

Reasoning 9. If the target (T;) abduced from the union of RG; and RG, is given
and the target (T,) abduced from the union of RGs and RGg is given, then a target (T3)
can be abduced by improving T, with T,, a target (T,,) can be abduced by improving T,
with T;, T; can have a relatively higher precision of true tumour positives than T; and
a relatively higher recall of true tumour negatives than T;, and T, can have a relatively
higher recall of true tumour positives than T, and a relatively higher precision of true
tumour negatives than T,.

Referring to Eq. (8), we use Reasoning 5-9 as p”4 to implement the Target Abduce
step, which can be denoted as follows

T = TA(RG; {Reasoning 5, -, Reasoning 9})
TA({RG,,RG,}; Reasoning 5), TA({RG,, RGs}; Reasoning 6),
{RG,,RG,,RG5,RG,, RGs, RG};
({Reasoning 5, Reasoning 7, Reasoning 9})'
TA( {RG,,RGs, RG4,RG,,RG, RG,}; )
{Reasoning 6, Reasoning 8, Reasoning 9}
={T1, T2, T5, Ta}.



With Reasoning 5, we generate the target T; by the union of RG; and RG, to keep
a high recall of true tumour positives and a high precision of true tumour negatives.
With Reasoning 6, we generate the target T, by the union of RG, and RG to keep high
precision of true tumour positives and a high recall of true tumour negatives. With
Reasoning 5-9, we generate the target T; to keep a relatively higher precision of true
tumour positives than T; and a relatively higher recall of true tumour negatives than T;.
Specifically, we first employed NLS; to train an image semantic segmentation model
and then tested it on the instance images of NLS, to produce T;. With Reasoning 6-9,
we generate the target T, to keep a relatively higher recall of true tumour positives than
T, and a relatively higher precision of true tumour negatives than T,. Specifically, we
first employed NLS, to train an image semantic segmentation model and then tested it
on the instance images of NLS; to produce T,. Some examples of the abduced multiple
targets for the two tumour segmentation tasks for breast cancer illustrated in Fig. 2 are
provided in Supplementary 2.
2.3.5 Target rearrangement

The target rearrangement step takes the T produced by the Target Abduce step as
input and produce ordered multiple targets that are corresponding to each of the two
given diverse noisy samples. On the basis of the input T, we derive two reasonings
(Reasoning 10 and Reasoning 11). The validity of the two derived reasonings are
respectively proved by Proof-R10 and Proof-R11 which are provided in Supplementary
1.

Reasoning 10. If T, is given and T is given, then T; and T5 can be combined to
approximate the true target for NS;.

Reasoning 11. If T, is given and T, is given, then T, and T, can be combined to
approximate the true target for NS,.

Referring to Eq. (9), we use Reasoning 10 and Reasoning 11 as p™® to implement
the Target Rearrangement step, which can produce rearranged targets as follows

ts = TR(T,{Reasoning10, Reasoning11})
_ (TR({Ty, T3}, Reasoning10),
B {TR({TZ, T,}, Reasoningll)}

= {t~51 = {591,1' t~51,2} ={Ty, T}, ts, = {5'2,1, %2,2} ={Ty, Tz}}-
On the basis of the rearranged ts and referring to Eq. (10)-(11), the instances (/)

contained in the given DNS and their corresponding rearranged multiple targets are
denoted as follows.

I={y, 0 E={t ={fpbah b= (o bna)}), st n=ny+n,

Some examples of the rearranged multiple targets are provided in Supplementary
2.
2.3.6 Multi-target learning

Referring to Eq. (12), we employ deep convolutional neural network (DCNN) to
implement the learning model (LM) that maps input instances (/) into its corresponding
target predictions (t) by

t =LM(I,DCNN) = {t,, -, t,}.



The DCNN employed for the learning model of tumour segmentation here is a
symmetric image semantic segmentation architecture that we constructed in (Yang et
al., 2024) by referring to the commonly used FCN (Shelhamer et al., 2017), which is
the representative for the fully convolutional networks based solutions and has inspired
various other solutions (Badrinarayanan et al., 2017; Chen et al., 2018; Falk et al., 2019;
Fu et al., 2019; Zhao et al., 2017) achieving state-of-the-art performances in image
semantic segmentation.

On the basis of the rearranged targets ¢ and the target prediction of implemented
learning model and referring to Eq. (13), we employ cross entropy (CE) to implement
the multi-target learning procedure by

L(tE CE) = 237, (a CE(t;, B1) + apCE(t, E0)) st ag +ap = 1.
Referring to Eq. (14), we employ stochastic gradient descent (SGD) to implement

the objective by
min(L(t, t; CE); SGD).

2.3.7 Summary

Referring to the contents of sections 2.3.3-6, the outline of the OSAMTL-DINS
solution implemented for the TSfBC in HE-stained pre-treatment biopsy images is
shown as Fig. 5 and Fig. 6. On the basis of Fig. 5 and Fig. 6, the simplified outline of
the OSAMTL-DINS solution implemented for residual TSfBC in HE-stained post-
treatment surgical resection images is simplistically shown as Fig. 7.
2.4 Experimental strategies

On the basis of the OSAMTL-DINS solutions implemented for the two tumour
segmentation tasks for breast cancer, we conduct extensive experiments to demonstrate
the contributions of OSAMTL-DINS in handling complex noisy labels. In this
subsection, we give descriptions about the overall design, data preparation, evaluation
metrics and experimental details for conducting the experiments. In section 2.4.1, we
give the overall design for the conducted experiments. The details about the data
preparation for the conducted experiments are provided in section 2.4.2. The section
2.4.3 gives the metrics used to evaluation the results of the conducted experiments.
Finally, in section 2.4.4, we describe the experimental details for the conducted
experiments.
2.4.1 Overall design

Due to the fact that accurate/noisy-free ground-truth labels for the two tumour
segmentation tasks for breast cancer illustrated in Fig. 2 (tumour segmentation task in
HE-stained pre-treatment biopsy images and tumour segmentation task in HE-stained
post-treatment surgical resection images) are quite difficult to collect, we prepare a
small noisy-free dataset for each of the two tumour segmentation tasks for usual
evaluations with accurate ground truth labels (AGTLs). The prepared AGTLs can be
regarded as golden standards for performance evaluation.



Input materials

One-step abductive logical reasoning with DiNS

Grounding Extract

groundings(2)

grounding revisions(2)

Go,1: pixels of IS, inside the polygons of NLS, are tumour positives

GR31: G4 should not be revised to remain IC; 1; GRy 3: G5, sho

multiple abduced-targets

NLS,

K1: Tumour is composed of tumour cells.
K,: Tumour cells may be arranged in
cords, clusters, and trabeculae.

K3: Some tumours are characterized by
predominantly solid or syncytial infiltrati
ve pattern with little associated stroma.

KB

NLS,

Grounding Extract

3

T;: target abduced fro
m RG; and RG,

Target Abduce

T,: target abduced fro
m RG, and RGs

T3: target abduced fro

m RGi_¢

G,: pixels of 1Sy inside the polygons of NLS, are tumour positives

P uld not b ised t inICy3; GRy 3: G4 should b ised
G,,2: pixels of IS, outside the polygons of NLS, are tumour negatives 5 d :0 rzguc:IrCe‘;/LS'eGRj:ezaz”lhoilsd be ?SViS(:alti) rOeL:iuceeIrCezv:e
°
E-
<
@ | IC; p:inconsistency between the false tumour positives covered by Gy, 4
'g and the false tumour positives covered by KB is low revised groundin
H IC; :inconsistency between the false tumour negatives covered by evised grou 8s
& G, , and the false tumour negatives covered by KB is high
"] IC, 3tinconsistency between the true tumour negatives covered by fr?t(ucrf;jz;:gaftlice:splxas of IS, outside the polygons of NLS,
G2 and the true tumour negatives covered by KB is low
22° . & v - RGZ(GRl Z): = G 5: pixels of IS; inside the polygons of NLS; ar
I1C, 4:inconsistency between the true tumour positives covered by G, ; 2 7L
and the true tumour positives covered by KB is high e tumour p05|tA|ves X
- - RG3(GRL3): pixels of 1S; outside the polygons of NLS; are not
inconsistency(2) exactly true tumour negatives
RG4(GRy,4): pixels of IS; inside the polygons of NLS; are not e
xactly true tumour positives
. . RG5(GR,1): = Gyy: pixels of IS, inside the polygons of NLS, ar
inconsistency(1) e tumour positives
ICy q:inconsistency between the false tumour negatives covered by RGé(GRZZ): = G, ,:pixels of IS, outside the polygons of NLS,
Gy,1 and the false tumour negatives covered by KB is low are tumo'ur negati{/es
IC, ;:inconsistency between the false tumour positives covered by G , RG7(GR23): pixels of IS, inside the polygons of NLS, are not e
> and the fals.e tumour positives covered by KB is hAig‘h xactly trué tumour positives
.uén ICy 3:inconsistency between the true tumour positives covered by G, RGS(GRZ 4): pixels of IS, outside the polygons of NLS, are not
5 and the trug tumour positives covered by KB is Iow' exactly true tumour negatives
§ IC, 4:inconsistency between the true tumour negatives covered by Gy ;
3 and the true tumour negatives covered by KB is high A
c
2
t
3
E-1 GRy1: Gy 4 should not be revised to remain IC; 1; GRy : Gy 5 sh
Gy4: pixels of IS; outside the polygons of NLS; are tumour negatives <. oulglnotlble revised to remain ICy 3: GRy o: Gy ;;houlzzbe :ézvise

d to reduce ICy 4; GRy 4: Gy, should be revised to reduce IC; ,

Ty: target abduced fro

m RG4_7 and RG;_,

groundings(1)

grounding revisions(1)

—— e e e e e M M M e e e e e e e e e o ]

U

Figure. 5. The outline for the input materials and one-step abductive logical reasoning with DiNS for the OSAMTL-DINS solution implemented for the TSfBC in HE-stained

pre-treatment biopsy images.
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HE-stained post-treatment surgical resection images referring to Fig. 5 and Fig. 6.

We first respectively conducted experiments of various existing solutions that learn
from complex noisy labels and experiments of various existing solutions that introduce
OSAMTL-DINS for enhancement in handling complex noisy labels. Then, we compare
the results of these two series of approaches to show the contributions of OSAMTL-
DiNS in handling complex noisy labels. In addition, we also provide some qualitative
example results as visualized proofs to show the contributions of OSAMTL-DINS in
handling complex noisy labels.

For all experiments, we first use a training dataset to learn segmentation models,
then we use a validation dataset to select the model for testing. The experimental results
of segmentation models are averaged on corresponding dataset. The preparation for the
training, validation and testing is described in section 2.4.2.

2.4.2 Dataset preparation



For the tumour segmentation task in HE-stained pre-treatment biopsy images, we
collected a total amount of 144 WSIs. Among the collected WSIs, 105 WSIs were used
by pathology expert to produce noisy sample one (NS; shown in the first row of Fig.
3.A), 20 WSiIs were used by pathology expert to produce noisy sample two (NS, shown
in the second row of Fig. 3.A), and the rest 19 WSIs were used by pathology expert to
produce a relatively noisy-free sample (RNFS). Both NS;and NS, were prepared for
training without AGTLs, and RNFS was prepared for validation and testing with
AGTLs. NS; contains 992 pairs of images and corresponding noisy labels for training
without AGTLs. NS, contains 142 pairs of images and corresponding noisy labels for
training without AGTLs. RNFS contains 158 pairs of images and corresponding
accurate labels, among which 79 pairs are for validation and 79 pairs are for testing
with AGTLs.

Similarly, for the tumour segmentation task in HE-stained post-treatment surgical
resection images, we collected a total amount of 126 WSIs. Among the collected WSIs,
94 WSIs were used by pathology expert to produce noisy sample one (NS; shown in
the first row of Fig. 3.B), 20 WSIs were used by pathology expert to produce noisy
sample two (NS, shown in the second row of Fig. 3.B), and the rest 12 WSIs were used
by pathology expert to produce a relatively noisy-free sample (RNFS). Both NS;and
NS, were prepared for training without AGTLs. NS, contains 2944 pairs of images and
corresponding noisy labels for training without AGTLs. NS, contains 1431 pairs of
images and corresponding noisy labels for training without AGTLs. RNFS contains
242 pairs of images and corresponding accurate labels, among which 121 pairs are for
validation and 121 pairs are for testing with AGTLSs.

The image patches prepared for experiments were cropped at 10x magnification
of the given WSIs and the size of each cropped image patch was at 256 x 256 pixels
(width x height) to remain distinguishable morphologies of tumour.

2.4.3 Evaluation metrics

We employed usual metrics for image semantic segmentation evaluation. Let TP
(true positive) be the number of pixels correctly predicted to belong to the H. pylori
class, FP (false positive) be the number of pixels incorrectly predicted to belong to the
H. pylori class, and FN (false negative) be the number of missing pixels predicted to
belong to the background class. These metrics are tightly related to the foreground class
which we are interested the most. Based on TP, FP and FN, we further employed
precision, recall, f1 and foreground intersection over union (floU) for evaluation of the
performance for image segmentation. These evaluation metrics were chosen for
evaluation because they are most commonly used for evaluating image segmentation.
2.4.4 Experimental details

All of our experiments were performed on an Intel core Xeon E5-2630 v4s with a
memory capacity of 128GB and eight NVIDIA GTX 1080Ti GPUs. Our developing
environment is based on Tensorflow 1.10.1 and Python 3.5.

We started the training procedures of the employed DCNN for the learning model
of tumour segmentation with the same initialization and hyperparameters including
Adam (Kingma & Ba, 2015) selected as the optimizer, batch size set to 32, learning rate



set to 0.0001, and online augmentations involving vertical and horizontal flips and
random brightness. These hyperparameters were chosen because they have been the
default setting in many opensource developing libraries of deep learning.

Various existing approaches for learning from noisy labels (LfNLs) (Fréay &
Verleysen, 2014; Karimi et al., 2020; Song et al., 2022), including naively learning
from noisy labels (BaseLine), Forward, Backward (Patrini et al., 2017), Boost-Hard,
Boost-Soft (Arazo et al., 2019; Reed et al., 2015), D2L (Ma et al., 2018), SCE (Wang
et al., 2019), Peer (Liu & Guo, 2020), DT-Forward (Yao et al., 2020), and NCE-SCE
(Ma et al., 2020), were chosen for experimental investigations. These approaches were
chosen due to their flexibility to be applied to the situation where no clean dataset is
available, the targeted object cannot be clearly defined, and any of the given labels
cannot be confidently regarded as clean. We respectively set the hyper parameters of
these approaches as suggested by corresponding papers.

In default, we set the weights for the multi-task learning procedure of OSAMTL-
DiINS to fifty-fifty in this TSfBC case, considering that both targets are equally
important. When calculating the evaluation metrics, we used 0.5 to thresh the logits of
the optimized DCNN for segmentation, as it is a default value to separate the predictions
into target and non-target which can balance the bias and variance of the optimized
DCNN.

3. Results

We show the results of various existing methods for learning from noisy labels
(LfNLs) and the results of various existing methods with OSAMTL-DINS introduced
for LfNLs respectively on the two tumour segmentation tasks for breast cancer,
respectively in sections 3.1 and 3.2. Based on the results presented in sections 3.1 and
3.2, we further show the contributions of OSAMTL-DINS in handling complex noisy
labels in section 3.3. On the basis of the contents indicated in section 3.3, we show the
generalization contributions of OSAMTL-DINS from validation to testing in section
3.4. In section 3.5, we give some qualitative testing results to show the contributions of
OSAMTL-DINS. Finally in section 3.6, we give information of a released predictive
model pre-trained with OSAMTL-DINS for tumour segmentation in HE-stained pre-
treatment biopsy images in breast cancer and its application as a pre-processing tool to
extract tumour-associated stroma compartment for predicting the pathological complete
response to neoadjuvant chemotherapy in breast cancer (F. Li et al., 2022).
3.1 Results of various existing methods for LfNLs

For simplicity, we denote Taskl as the tumour segmentation task in HE-stained
pre-treatment biopsy images and Task2 as the tumour segmentation task in HE-stained
post-treatment surgical resection images. In this subsection, we respectively show the
experimental evaluations of various existing approaches for LfNLs mentioned in
section 5.1.3 on Task1 and Task2.
3.1.1 Evaluations on Taskl with AGTLs



We evaluate the results of employing various existing methods for LFNLs on Task1
using usual evaluations with AGTLs. Experimental statistics for validation and testing

are respectively shown as Table 6 and Table 7.

Table 6. Evaluations of various existing method for validation on Task1

Solution TP FP FN precision recall f1 floU

BaseLine 19278 15955 2807 54.72 87.29 67.27 50.68
Forward 20243 16860 1843 54.56 91.66 68.40 51.98
Backward 19069 14239 3016  57.25 86.34 68.85 52.50
Boost-Hard 18806 14959 3279 55.70 85.15 67.34 50.77
Boost-Soft 20138 17912 1948 52.93 91.18 66.97 50.35
D21 19676 17020 2410  53.62 89.09 66.95 50.31
SCE 19500 15153 2585 56.27 88.30 68.74 52.37
Peer 19775 14660 2310  57.43 89.54 69.98 53.82
DT-Forward 19806 16229 2280  54.96 89.68 68.15 51.69
NCE-SCE 20015 16580 2071 54.69 90.62 68.22 51.76

Table 7. Evaluations of various existing method for testing on Task1

Solution TP FP FN precision recall f1 floU

BaseLine 22707 13298 3249 63.07 87.48 73.29 57.85
Forward 23494 15160 2462 60.78 90.51 72.73 57.14
Backward 21858 13453 4098  61.90 84.21 71.35 55.46
Boost-Hard 22184 12652 3771 63.68 85.47 72.98 57.46
Boost-Soft 23724 15849 2231 59.95 91.40 72.41 56.75
D21 23068 14632 2888 61.19 88.87 72.48 56.83
SCE 22753 13499 3203 62.76 87.66 73.15 57.67
Peer 22658 12704 3298 64.07 87.29 73.90 58.61
DT-Forward 23280 14239 2676 62.05 89.69 73.35 57.92
NCE-SCE 23395 14452 2561 61.81 90.13 73.34 57.90

3.1.2 Evaluations on Task2 with AGTLs
We evaluate the results of employing various existing methods for LFNLs on Task?2
using usual evaluations with AGTLs. Experimental statistics for validation and testing

are respectively shown as Table 8 and Table 9.

Table 8. Evaluations of various existing method for validation on Task?2

Solution TP FP FN precision recall f1 floU
BaseLine 18507 12766 11120 59.18 62.47 60.78 43.66
Forward 18176 11995 11451 60.24 61.35 60.79 43.67
Backward 19632 14650 9995 57.27 66.26 61.44 44.34
Boost-Hard 20238 14820 9389 57.73 68.31 62.57 45.53
Boost-Soft 23277 17557 6351 57.00 78.56 66.07 49.33
D21 19617 12892 10010 60.34 66.21 63.14 46.13
SCE 18807 12118 10821 60.81 63.48 62.12 45.05
Peer 21279 18131 8349 53.99 71.82 61.64 44.55
DT-Forward 18509 13330 11119 58.13 62.47 60.22 43.09
NCE-SCE 19801 14619 9826 57.53 66.83 61.83 44.75




Table 9. Evaluations of various existing method for testing on Task2

Solution TP FP FN precision recall f1 floU

BaseLine 15446 13831 8467 52.76 64.59 58.08 40.92
Forward 15129 13409 8783 53.01 63.27 57.69 40.54
Backward 16373 17083 7540 48.94 68.47 57.08 39.94
Boost-Hard 16599 15904 7313 51.07 69.42 58.85 41.69
Boost-Soft 19000 18353 4912 50.87 79.46 62.03 44 .95
D21 16331 14876 7581 52.33 68.30 59.26 42.10
SCE 15604 13286 8309 54.01 65.25 59.10 41.95
Peer 17366 19348 6546 47.30 72.62 57.29 40.14
DT-Forward 15374 15525 8538 49.76 64.29 56.10 38.98
NCE-SCE 16356 16574 7556 49.67 68.40 57.55 40.40

3.2 Results of various existing methods with OSAMTL-DINS introduced for
LfNLs

In this subsection, we respectively give experimental evaluations of OSAMTL-
DiNS introduced to various existing approaches for LFNLs mentioned in section 5.1.3
on Task1 and Task2.
3.2.1 Evaluations on Taskl

We evaluate the results of employing various existing methods with OSAMTL-
DiNS introduced for LfNLs on Taskl using usual evaluations with AGTLS.
Experimental statistics for validation and testing are respectively shown as Table 10
and Table 11.

Table 10. Evaluations of various existing method with OSAMTL-DINS introduced for
validation on Task1

Solution TP FP FN precision recall fl floU

BaseLine 18026 8651 4059 67.57 81.62 73.93 58.65
Forward 17266 7505 4819 69.70 78.18 73.70 58.35
Backward 17814 8371 4272 68.03 80.66 73.81 58.49
Boost-Hard 17348 7606 4738 69.52 78.55 73.76 58.43
Boost-Soft 17855 8059 4231 68.90 80.84 74.40 59.23
D21 17597 8128 4489 68.40 79.67 73.61 58.24
SCE 16774 7302 5311 69.67 75.95 72.68 57.08
Peer 17681 8557 4404 67.39 80.06 73.18 57.70
DT-Forward 17218 7393 4868 69.96 77.96 73.74 58.41
NCE-SCE 16305 6562 5781 71.30 73.83 72.54 56.91

Table 11. Evaluations of various existing method with OSAMTL-DiNS introduced for testing
on Taskl

Solution TP FP FN precision recall fl floU
BaseLine 21010 6381 4946 76.70 80.94 78.77 64.97
Forward 20215 5579 5740 78.37 77.88 78.13 64.11
Backward 20818 6124 5137 77.27 80.21 78.71 64.90

Boost-Hard 20230 5732 5725 77.92 77.94 77.93 63.84



Boost-Soft 20657 5936 5298 77.68 79.59 78.62 64.77

D21 20348 5981 5608 77.28 78.39 77.83 63.71
SCE 19719 5651 6236 77.73 75.97 76.84 62.39
Peer 20379 6634 5577 75.44 78.51 76.95 62.53
DT-Forward 19958 5347 5998 78.87 76.89 77.87 63.76
NCE-SCE 18712 4594 7244 80.29 72.09 75.97 61.25

3.2.2 Evaluations on Task2

We evaluate the results of various existing methods with OSAMTL-DINS
introduced for LfNLs on Task2 using usual evaluations with AGTLs. Experimental
statistics for validation and testing are respectively shown as Table 12 and Table 13.

Table 12. Evaluations of various existing method with OSAMTL-DINS introduced for
validation on Task?2

Solution TP FP FN precision recall fl floU
BaseLine 19291 4878 10337 79.82 65.11 71.72 55.91
Forward 18257 3530 11370 83.80 61.62 71.02 55.06
Backward 18966 4648 10661 80.32 64.02 71.25 55.33
Boost-Hard 18990 3964 10637 82.73 64.10 72.23 56.53
Boost-Soft 18850 5732 10777 76.68 63.62 69.55 53.31
D21 18438 3154 11190 85.39 62.23 71.99 56.24
SCE 18449 5022 11178 78.60 62.27 69.49 53.24
Peer 20269 6413 9358 75.97 68.41 71.99 56.24
DT-Forward 18371 4117 11256 81.69 62.01 70.50 54.44
NCE-SCE 16177 2620 13451 86.06 54.60 66.81 50.16

Table 13. Evaluations of various existing method with OSAMTL-DINS introduced for testing
on Task2

Solution TP FP FN precision recall fl floU

BaseLine 16000 5649 7912 7391 66.91 70.24 54.13
Forward 14825 3948 9088 78.97 62.00 69.46 53.21
Backward 15441 5648 8471 73.22 65.57 68.62 52.24
Boost-Hard 15713 4611 8200 77.31 65.71 71.04 55.09
Boost-Soft 15799 6017 8114 72.42 66.07 69.10 52.79
D21 15109 3599 8803 80.76 63.18 70.90 54.92
SCE 15168 5151 8744 74.65 63.43 68.59 52.19
Peer 16954 7478 6958 69.39 70.90 70.14 54.01
DT-Forward 15175 4483 8737 77.20 63.46 69.66 53.44
NCE-SCE 13101 2749 10811 82.66 54.79 65.90 49.14

3.3 Contributions of OSAMTL-DINS in handling complex noisy labels

In this subsection, we show the contributions of OSAMTL-DINS in handling
complex noisy labels on Task1 and Task2.
3.3.1 Contributions of OSAMTL-DINS on Task1

We reflect the contributions of OSAMTL-DINS on Taskl by the differences
between Table 6 and Table 10 for validation and the differences between Table 7 and
Table 11 for testing, which are respectively shown as Fig. 8 and Fig. 9. More



specifically, the contributions of OSAMTL-DINS on Task1 are quantitatively evaluated
by statistics of Table 10 minus statistics of Table 6 for validation and statistics of Table
11 minus statistics of Table 7 for testing, which are respectively shown as Table 14 and
Table 15. And the confident intervals for the contributions of OSAMTL-DINS on Task1
are shown in Table 16.

Table 14. Contributions of OSAMTL-DINS to various existing method for validation on Task1

Solution TP FP FN precision recall fl floU
BaseLine -1252 -7304 1252 12.85 -5.67 6.66 7.97
Forward -2977 -9355 2976 15.14 -13.48 5.3 6.37
Backward -1255 -5868 1256 10.78 -5.68 4.96 5.99
Boost-Hard -1458 -7353 1459 13.82 -6.6 6.42 7.66
Boost-Soft -2283 -9853 2283 15.97 -10.34 7.43 8.88
D21 -2079 -8892 2079 14.78 -9.42 6.66 7.93
SCE -2726 -7851 2726 13.4 -12.35 3.94 4.71
Peer -2094 -6103 2094 9.96 -9.48 3.2 3.88
DT-Forward -2588 -8836 2588 15 -11.72 5.59 6.72
NCE-SCE -3710 -10018 3710 16.61 -16.79 4.32 5.15
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Fig. 8. Differences between Table 6 and Table 10 for validation of Task1.



Table 15. Contributions of OSAMTL-DINS to various existing method for testing on Task1

Solution TP FP FN precision recall fl floU
BaseLine -1697 -6917 1697 13.63 -6.54 5.48 7.12
Forward -3279 -9581 3278 17.59 -12.63 5.4 6.97
Backward -1040 7329 1039 15.37 -4 736 9.44
Boost-Hard -1954 -6920 1954 14.24 -7.53 4.95 6.38
Boost-Soft -3067 -9913 3067 17.73 -11.81 6.21 8.02
D21 -2720 -8651 2720 16.09 -10.48 5.35 6.88
SCE -3034 -7848 3033 14.97 -11.69 3.69 4.72
Peer -2279 -6070 2279 11.37 -8.78 3.05 392
DT-Forward -3322 -8892 3322 16.82 -12.8 4.52 5.84
NCE-SCE -4683 -9858 4683 18.48 -18.04 2.63 3.35
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Fig. 9. Differences between Table 7 and Table 11 for testing of Task1.

Table 16. Confident intervals for contributions of OSAMTL-DINS to various existing method

on Taskl

Dataset TP FP FN precision  recall fl floU
lower limit 2810 29202 1675 1229 -12.72 447 537
Validation mean 22242 -8143 2242  13.83 -10.15 545 6.53
upper limit ~ -1674 27085 2810 15.37 -7.58 642 7.68
) lower limit 3099 -9027 1876 13.74 -11.94  4.13 532

Testing
mean -2488 -8013 2488 15.31 -9.58 511  6.59




upper limit ~ -1877 -7000 3099 16.89 -7.23 6.10 7.86

3.3.2 Contributions of OSAMTL-DINS on Task?2

Similarly, we reflect the contributions of OSAMTL-DINS on Task2 by the
differences between Table 8 and Table 12 for validation and the differences between
Table 9 and Table 13 for testing, which are respectively shown as Fig. 10 and Fig. 11.
More specifically, the contributions of OSAMTL-DINS on Taskl are quantitatively
evaluated by statistics of Table 12 minus statistics of Table 8 for validation and statistics
of Table 13 minus statistics of Table 9 for testing, which are respectively shown as
Table 17 and Table 18. And the confident intervals for the contributions of OSAMTL-
DiNS on Task2 are shown in Table 19.
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Fig. 10. Differences between Table 8 and Table 12 for validation of Task2.

Table 17. Contributions of OSAMTL-DiNS to various existing method for validation on Task?2

Solution TP FP FN precision recall fl floU
BaseLine 784 -7888 -783 20.64 2.64 10.94 12.25
Forward 81 -8465 -81 23.56 0.27 10.23 11.39
Backward -666 -10002 666 23.05 -2.24 9.81 10.99
Boost-Hard -1248 -10856 1248 25.00 -4.21 9.66 11.00
Boost-Soft -4427 -11825 4426 19.68 -14.94 3.48 3.98

D21 -1179 -9738 1180 25.05 -3.98 8.85 10.11



SCE -358 7096 357 17.79 -1.21 7.37 8.19
Peer -1010 -11718 1009 21.98 -3.41 10.35 11.69
DT-Forward -138 -9213 137 23.56 -0.46 10.28 11.35
NCE-SCE -3624 -11999 3625 28.53 -12.23 498 5.41
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Fig. 11. Differences between Table 9 and Table 13 for testing of Task2.

Table 18. Contributions of OSAMTL-DINS to various existing method for testing on Task?2

Solution TP FP FN precision recall fl floU

BaseLine 554 -8182 -555 21.15 2.32 12.16 13.21
Forward -304 -9461 305 25.96 -1.27 11.77 12.67
Backward -932 -11435 931 24.28 -2.90 11.54 12.30
Boost-Hard -886 -11293 887 26.24 3.71 12.19 13.40
Boost-Soft -3201 -12336 3202 21.55 -13.39 7.07 7.84

D21 -1222 -11277 1222 2843 5.12 11.64 12.82
SCE -436 -8135 435 20.64 -1.82 9.49 10.24
Peer 412 -11870 412 22.09 -1.72 12.85 13.87
DT-Forward -199 -11042 199 27.44 -0.83 13.56 14.46
NCE-SCE -3255 -13825 3255 3299 -13.61 8.35 8.74




Table 19. Confident intervals for contributions of OSAMTL-DINS to various existing method

on Task2

Dataset TP FP FN precision  recall fl floU
lower limit 2347  -11115 10 20.70 792 6.79 7.60

Validation — mean -1179  -9880 1178  22.88 398  8.60 9.64
upper limit ~ -10 -8645 2347  25.07 -0.03 1040 11.67
lower limit ~ -1928 -12176 131 22.27 =798 9.58 10.35

Testing mean -1029  -10886 1029  25.08 421 11.06 11.96
upper limit ~ _13] -9596 1928 27.89 043  12.55 13.56

3.4 Generalization contributions of OSAMTL-DiNS from validation to testing

In this subsection, we show the generalization contributions of OSAMTL-DINS by
statistics between the contributions of OSAMTL-DINS on validation and the
contributions of OSAMTL-DINS on testing. The results for Taskl and Task2 are
respectively shown as Table 20 and Table 21.

Table 20. Statistics between the contributions of OSAMTL-DINS on validation and the

contributions of OSAMTL-DINS on testing for Task 1

Statistics TP FP FN precision recall f1 floU
Mean validation 2242 8143 2242 13.83 -10.15 5.45 6.53
testing 2708 -8198 2707 15.63 -1043  4.86 6.26
P-value 0270 0933 0271  0.080 0.871 0.364  0.741
Similarity 0.960 0932 0960  0.862 0.960 0.628  0.645

Table 21. Statistics between the contributions of OSAMTL-DiINS on validation and the

contributions of OSAMTL-DINS on testing for Task 2

Statistics TP FP FN precision recall  fl floU
Mean validation -1179  -9880 1178  22.88 398  8.60 9.64
testing -1029  -10886 1029  25.08 421  11.06  11.96
P-value 0.821  0.219 0.822  0.180 0.926  0.028  0.058
Similarity 0.976  0.936 0.976  0.944 0979 0957  0.957

3.5 Qualitative testing results

Some typical testing results of various state-of-the-art approaches (respectively
without OSAMTL-DINS introduced and with OSAMTL-DINS introduced) for
handling complex noisy labels on Taskl1 and Task2 are respectively shown as Fig. 12
and Fig. 13. More testing results are provided in Supplementary 3.
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complex noisy labels on Task1. Top row: testing results of various state-of-the-art approaches without OSAMTL-DINS introduced. Bottom row: testing results of state-of-the-
art approaches with OSAMTL-DINS introduced. The green solid polygons are the relatively accurately labelled tumour areas provided by pathology experts and the green
transparent masks are the tumour areas predicted by image semantic segmentation models.
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Fig. 13. Typical testing results of various state-of-the-art approaches (respectively without OSAMTL-DINS introduced and with OSAMTL-DINS introduced) for handling
complex noisy labels on Task2. Top row: testing results of various state-of-the-art approaches without OSAMTL-DIiNS introduced. Bottom row: testing results of state-of-the-
art approaches with OSAMTL-DINS introduced. The green solid polygons are the relatively accurately labelled tumour areas provided by pathology experts and the green
transparent masks are the tumour areas predicted by image semantic segmentation models.



3.6 Released predictive model

We released a predictive model pre-trained with OSAMTL-DINS for tumour
segmentation in HE-stained pre-treatment biopsy images in breast cancer. The released
model was based on the BaseLine solution with OSAMTL-DINS introduced, since it
showed the best generalization performance for Task 1. The release model has also
been successfully applied as a pre-processing tool to extract tumour-associated stroma
compartment for predicting the pathological complete response to neoadjuvant
chemotherapy in breast cancer. For more details about how the released predictive
model was utilized, readers can refer to our paper (F. Li et al., 2022). The released
model is available at https://github.com/YongQuanYang/TS-Score.

4 Discussion

In the application of the proposed OSAMTL-DINS to the TSfBC, we primarily
conducted two series of experiments: 1) simply using various state-of-the-art
approaches for handling complex noisy labels to produce predictive models for TSfBC;
2) introducing OSAMTL-DINS to various state-of-the-art approaches for handling
complex noisy labels to produce predictive models for TSfBC. We compared the
respective results of these two series of predictive models, which were obtained from
the testing dataset with AGTLs provided by pathological experts. As the compared
results of experiments are obtained from AGTLs which can be regarded as golden
standards, the comparison between the two series of experiments can be effective to
investigate the effectiveness of the proposed OSAMTL-DINS in handling complex
noisy labels for TSfBC. Further, the investigation of the effectiveness of OSAMTL-
DiNS applied to TSfBC can also reflect the potentials of applying OSAMTL-DINS to
address specific challenges like TSfBC in MHWSIA, since the situation, where it is
often difficult for experts to manually achieve the accurate ground-truth labels, is quite
normal in MHWSIA.

Specifically, OSAMTL-DINS was able to enable various state-of-the-art
approaches for handling complex noisy labels to achieve significantly more rational
predictions for Taskl of TSfBC on both validation and testing, by appropriately
increasing the precision performance while reducing the recall performance (see
respective metrics in Fig. 8, Fig. 9, Table 14 and Table 15). For the Taskl of TSfBC,
the achieved mean improvements in overall performances of f1 and floU on validation
were respectively 5.45%(4.47%, 6.42%) and from 6.53% (5.37%, 7.68%), while the
achieved mean improvements in overall performances of f1 and floU on testing were
respectively 5.11%(4.13%, 6.10%) and 6.59%(5.32%, 7.86%) (see statistics in Table
16). Identically, OSAMTL-DINS was also able to enable various state-of-the-art
approaches for handling complex noisy labels to achieve significantly more rational
predictions for Task2 of TSfBC on both validation and testing, by appropriately
increasing the precision performance while reducing the recall performance (see
respective metrics in Fig. 10, Fig. 11, Table 17 and Table 18). For the Task2 of TSfBC,
the achieved mean improvements in overall performances of f1 and floU on validation
were respectively 8.60%(6.79%, 10.40%) and from 9.64% (7.60%, 11.67%), while the
achieved mean improvements in overall performances of f1 and floU on testing were
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respectively 11.06%(9.58%, 12.55%) and 11.96%(10.35%, 13.56%) (see statistics in
Table 19). As the experimental results were obtained from dataset with AGTLSs
provided by pathological experts, these contributions of OSAMTL-DINS to various
state-of-the-art approaches for handling complex noisy labels imply that OSAMTL-
DINS can help to improve the accuracy and consistency of the predictive model for
TSfBC regarding to the results of pathological experts.

The statistics for the comparison between the contributions of OSAMTL-DINS
respective on validation and testing show that OSAMTL-DINS can robustly improve
the accuracy and consistency of the predictive model for TSfBC (see statistics in Table
20 and Table 21). The P-values of the statistics indicate that there are no significant
differences between the contributions of OSAMTL-DINS respectively on validation
and testing, as all P-values are greater than 0.01 and most P-values are greater than 0.05.
The similarity-values of the statistic indicate that the contributions of OSAMTL-DINS
respectively on validation and testing are quite analogical, as all similarity-values are
greater than 0.62 and most similarity-values are greater than 0.95. As a result, the
contributions of OSAMTL-DINS on validation can be well generalized to testing,
which implies the robustness of OSAMTL-DINS in improving the accuracy and
consistency of the predictive model for TSfBC.

The visualized testing results for the two series of experiments show that, the
testing results of predictive models produced with OSAMTL-DINS introduced, are
much more accurate than the results of the predictive models simply produced with
various state-of-the-art approaches as the former results have much more clean
predictions compared with the labels provided by pathological experts (see Fig. 12 and
Fig. 13). This visual comparison indicates that OSAMTL-DINS can be helpful to
produce predictive model that can achieve predictions visually more consistent with
AGTLs provided by pathology experts for TSfBC.

In addition to the contributions of OSAMTL-DINS to TSfBC, which reflect the
potentials of OSAMTL-DINS to address specific challenges like TSfBC in MHWSIA,
the usage of the released model pre-trained with OSAMTL-DINS as a pre-processing
tool to extract tumour-associated stroma compartment for predicting the pathological
complete response to neoadjuvant chemotherapy in breast cancer (F. Li et al., 2022)
further proves that the proposed OSAMTL-DINS has the potentials to facilitate medical
image analytics in MHWSIA.

Although the results of the proposed OSAMTL-DINS applied on TSfBC have
shown favourable advantages, it is foreseeable the released predictive model pre-
trained with OSAMTL-DINS for tumour segmentation in HE-stained pre-treatment
biopsy images in breast cancer will have limited generalization to some unseen testing
HE-stained pre-treatment biopsy images in breast cancer. This is because only a very
small amount of inaccurately labelled data was prepared and the machine learning
architecture selected to produce the released predictive model was a relatively shallow
deep learning architecture.

Notably, recently proposed large models (Kirillov et al., 2023) (mostly based on
the machine learning architectures of transformers (Khan et al., 2022)) have appeared
to be very effective for achieving the general purpose of image segmentation. However,



recent reports have demonstrated that these large models for the general purpose of
image segmentation have limited generalization to data of specific fields, such as
medical images (Y. Huang et al., 2024) and images of concealed scenes (Ji et al., 2023).
This situation proves that it is still worthwhile to produce relatively small models that
are appropriate for particular image segmentation tasks in specific fields, though they
definitely will be not as strong as large models to segment anything.

5 Conclusions and Future Work

In this paper, we proposed one-step abductive multi-target learning (OSAMTL)
with diverse noisy samples (DiNS) (OSAMTL-DIiNS) to expand the original OSAMTL
to handle complex noisy labels of DINS. We applied OSAMTL-DINS to tumour
segmentation for breast cancer (TSfBC) in medical histopathology whole slide image
analysis (MHWSIA). Results of extensive experiments showed that OSAMTL-DINS
is able to enable various state-of-the-art approaches for learning from noisy labels to
achieve more rational predictions for TSfBC. We also released a model pre-trained with
OSAMTL-DINS for tumour segmentation in HE-stained pre-treatment biopsy images
in breast cancer.

In this paper, giving definition of diverse noisy samples (DiNS), we proposed one-
step abductive multi-target learning with DINS (OSAMTL-DINS) that expands the
original OSAMTL to handle complex noisy labels of DiINS. The major advantage of
OSAMTL-DINS is that it can produce a predictive model based on a chosen machine
learning architecture simply using very inaccurately labelled (complex noisy) data,
which makes OSAMTL-DINS suitable to address some tasks in the field of medical
analysis where the problem of complex noisy in data always exists.

Based on the proposed OSAMTL-DINS, we implemented solutions for tumour
segmentation for breast cancer in medical histopathology whole slide image analysis
(MHWSIA) and conducted extensive experiments. Experiment results for contributions
of OSAMTL-DINS in handling complex noisy labels show that introducing OSAMTL-
DiNS to existing various methods for learning from noisy labels can significantly
enhance the abilities of these methods in handling complex noisy labels. At the
meantime, experiment results for the generalization of OSAMTL-DINS show that the
contributions of OSAMTL-DINS in handling complex noisy labels can be well
generalized form validation to testing. Additionally, visualized qualitative results as
well show that, with OSAMTL-DINS introduced, various methods for learning from
noisy labels can achieve predictions that are more consistent with the relatively accurate
labels provided by experts. These results reflect the potential effectiveness of the
proposed OSAMTL-DINS in handling complex noisy labels in MHWSIA.

Based on the conducted experiments, we also chose to release a model pre-trained
with OSAMTL-DINS for tumour segmentation in HE-stained pre-treatment biopsy
images in breast cancer. The released model has been successfully applied as a pre-
processing tool to extract tumour-associated stroma compartment for predicting the
pathological complete response to neoadjuvant chemotherapy in breast cancer, which



further reflects the potentials of using OSAMTL-DINS to build basic tools to facilitate
medical image analytics in MHWSIA..

Although the application of OSAMTL-DINS on TSfBC has reflected the potentials
of the proposed OSAMTL-DINS in handling complex noisy labels in MHWSIA, the
more rational predictions of OSAMTL-DINS in TSfBC was achieved by appropriately
increase the precision performance while reducing the recall performance to obtain a
better overall performance in floU, compared with various state-of-the-art approaches
for handling complex noisy labels. As the recall performance for a target is very
important to medical evaluations, in future works, we will continue, with limited
annotations, to improve the solution for tumour segmentation of breast cancer to fulfil
the goal that increases the recall performance while being able to promote or at least
maintain the floU performance.

As the proposed OSAMTL-DINS is independent from the machine learning
architectures chosen for specific tasks and recently proposed large models have shown
limited generalization to some tasks of specific fields, it is also interesting to combine
OSAMTL-DINS with very large models to enhance their generalization to particular
tasks. In fact, a recent work, which employed weaker learners to supervise a pre-trained
strong learner to enhance its generalization ability (Burns et al., 2023), has shown the
promise of this idea. Intrinsically, the essence of the proposed OSAMTL-DINS and the
strategy of weak-to-strong generalization is identical, since the multiple inaccurate
targets abduced from DiNS in this paper can be regarded as predictions of multiple
weaker learners (see the details of how the multiple inaccurate targets are generated in
the last paragraph of the section 2.3.4). The main difference is that we are focusing
more on revealing the science behind the weak-to-strong generalization strategy,
instead of chasing the state-of-the-art results. Our focus is to prove whether we can use
multiple weak labels to validate a predictive model reasonably (Yang, 2024a), because
if we can validate a predictive model with multiple weak labels then we can also use
them to train a predictive model. We will continue this focus, as we believe it can
scientifically contribute to part of the artificial intelligence alignment problem (Yang,
2023), especially when the state-of-the-art deep neural network of machine learning for
building predictive model has been becoming standardized and reaching its limits in
some specific Al applications (Yang, 2024b).
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Supplementary 1

Preliminary of Logical Reasoning

We introduce some propositional connectives and rules for proof of propositional
logical reasoning, which are respectively shown as Table 1 and Table 2, for the logical
reasonings conducted in this paper.

Table 1. Propositional connectives

Connective Meaning

A conjunction
- implication

Table 2. Rules for proof of propositional logical reasoning, | denotes ‘bring out’

Rule Meaning

A — reductive law of conjunction: A A B, FAorB.
A+ additional law of conjunction: A, B, FAAB.

MP  modus ponens: A — B, A, } B.

HS  hypothetical syllogism: A—» B, B— C, FA— C.

Proof of Reasoning 1

Reasoning 1. If G, is given and KB is given, then inconsistency between the false
tumour negatives covered by G, ; and the false tumour negatives covered by KB is low,
inconsistency between the false tumour positives covered by G, , and the false tumour
positives covered by KB is high, inconsistency between the true tumour positives
covered by G , and the true tumour positives covered by KB is low, and inconsistency
between the true tumour negatives covered by G;; and the true tumour negatives
covered by KB is high.

Proof-R1. Firstly, with G, and KB, we have following derived preconditions for

Reasoning 1.

1. If G, is given, then NS; = {IS;, NLS;} exists. (G, is associated with NS; in
Grounding Extract)

2. If NS; = {IS;, NLS,} exists, then NLS; can exclude tumour negatives of IS, as
accurate as possible, and NLS; can include many tumour negatives of IS, as
tumour positives. (facts contained in the existing NS;)

3. If Gy isgiven, then G, ;: pixels of IS; outside the polygons of NLS; are tumour
negatives is given, and G, ,: pixels of IS; inside the polygons of NLS; are
tumour positives is given. (groundings extracted from NS; by Grounding
Extract)

4. If Gy, pixels of IS; outside the polygons of NLS; are tumour negatives is
given, and G ,: pixels of IS; inside the polygons of NLS; are tumour positives
Is given, then G, ; and G, , are complementary to each other.



10.

11.

12.

13.

14.

15.

If NLS; can exclude tumour negatives of IS; as accurate as possible, and Gy ;:
pixels of 1S; outside the polygons of NLS, are tumour negatives is given, then
false tumour negatives covered by G, , are rare.

If NLS; can include many tumour negatives of IS; as tumour positives, and
Gy, pixels of IS, inside the polygons of NLS; are tumour positives is given,
then false tumour positives covered by G, , are many.

If false tumour negatives covered by G, are rare, and G, and G;, are
complementary to each other, then G, , covers almost all true tumour positives.
If false tumour positives covered by G, are many, and G;, and G, are
complementary to each other, then G, covers only a part of true tumour
negatives.

If KB is given, then the information of KB can clearly describe what are the
true tumour positives, and the opposite information of KB can clearly describe
what are the true tumour negatives. (facts contained in the given KB)

If the information of KB can clearly describe what are the true tumour positives,
then true tumour positives covered by KB are all-sided, and false tumour
negatives covered by KB are none.

If the opposite information of KB can clearly describe what are the true tumour
negatives, then true tumour negatives covered by KB are all-sided, and false
tumour positives covered by KB are none.

If false tumour negatives covered by G, ; are rare, and false tumour negatives
covered by KB are none, then inconsistency between the false tumour
negatives covered by G, ; and the false tumour negatives covered by KB is low.
If false tumour positives covered by G, , are many, and false tumour positives
covered by KB are none, then inconsistency between false tumour positives
covered by G, , and the false tumour positives covered by KB is high.

If G,, covers almost all true tumour positives, and true tumour positives
covered by KB are all-sided, then inconsistency between the true tumour
positives covered by G, , and the true tumour positives covered by KB is low.

If G, , covers only a part of true tumour negatives, and true tumour negatives
covered by KB are all-sided, then inconsistency between true tumour negatives
covered by G; ; and the true tumour negatives covered by KB is high.

Secondly, we give the propositional symbols for the above preconditions 1-15 for
Reasoning 1, which are shown in Table 3.

Table 3. Propositional symbols of preconditions for Reasoning 1

Symbol

Meaning

MO Q0 T Q

G, is given

NS; = {IS;, NLS;} exists

NLS; can exclude tumour negatives of 1S; as accurate as possible

NLS; can include many tumour negatives of 1S; as tumour positives

Gy,1: pixels of IS; outside the polygons of NLS; are tumour negatives is given
G1,: pixels of IS; inside the polygons of NLS; are tumour positives is given



G11 and G, , are complementary to each other

false tumour negatives covered by G ; are rare

false tumour positives covered by G , are many

Gy, covers almost all true tumour positives

Gy, covers only a part of true tumour negatives

KB is given

the information of KB can clearly describe what are the true tumour positives

the opposite information of KB can clearly describe what are the true tumour negatives

true tumour positives covered by KB are all-sided

false tumour negatives covered by KB are none

true tumour negatives covered by KB are all-sided

false tumour positives covered by KB are none

inconsistency between the false tumour negatives covered by G, ; and the false tumour

negatives covered by KB is low

t inconsistency between false tumour positives covered by G, , and the false tumour
positives covered by KB is high

u inconsistency between the true tumour positives covered by G; , and the true tumour
positives covered by KB is low

v inconsistency between true tumour negatives covered by G;; and the true tumour

negatives covered by KB is high

“m QT O SS ~x~~>Q

Thirdly, referring to Table 3, we signify the propositional formalizations of the
preconditions 1-15 for Reasoning 1 and Reasoning 1 via the propositional connectives
listed in Table 1 as follows.

1) a—»b Precondition
2) b—-(cnd) Precondition
3) a-(eAf) Precondition
4) (enf)—g Precondition
5 (che)—h Precondition
6) (dAf)—i Precondition
7) (hAg)—j Precondition
8) (ing) -k Precondition
9) > (mAn) Precondition
10)m - (o Ap) Precondition
11)n—->(gAr) Precondition
12) (hAp) - s Precondition
13)(iAr) >t Precondition
14)(jAo) - u Precondition
15) (kAq) » v Precondition
(anl) = (sAtAuAvD) Reasoning 1

Fourthly, we show the validity of Reasoning 1 via the rules for proof of
propositional logical reasoning listed in Table 3 as follows.
~(@anl)-> (sAtAuAv)

16)anl Hypothesis
17)a 16); A —
18) 1 16); A —

19)a - (cAd) 1),2); HS



20)cnd 19),17); MP
2)enf 3),17); MP
22) c 20); A —
23)d 20); A —
24) e 21); A —
25) f 21); A —
26)cAe 22),24); A +
2N dNf 23),25); A +
28) h 5),26); MP
29) i 6),27); MP
0)a—-g 3),4); HS
A1) g 30),17); MP
32)hAg 28),31); A +
33)ing 29),31); A+
34)j 7),32); MP
35) k 8),33); MP
36)mAn 9),18); MP
37)m 36); A —
38)n 36); A —
39 o0Ap 10),37); MP
40)g AT 11),38); MP
41) o 39); A—
42)p 39); A —
43) q 40); A —
44) r 40); A —
45)h A p 28),42); A+
46)i AT 29),44); A +
47)j Ao 34),41); A +
48) k A q 35),43); A +
49) s 12),45); MP
50)t 13),46); MP
51)u 14),47); MP
52) v 15),48); MP
53) sAtAuAv 49),50),51),52); A +
54)(aAl) > (SAtAUAD) 16)-53); Conditional Proof

Since the hypothesis a A [ of the 16) step can be fulfilled by the input materials of
OSAMTL-DINS applied on tumour segmentation for breast cancer and Grounding
Extract, Reasoning 1 is proved to be valid.

Proof of Reasoning 2

Reasoning 2. If G, is given and KB is given, then inconsistency between the false
tumour positives covered by G, ; and the false tumour positives covered by KB is low,
inconsistency between the false tumour negatives covered by G, , and the false tumour



negatives covered by KB is high, inconsistency between the true tumour negatives
covered by G, , and the true tumour negatives covered by KB is low, and inconsistency
between the true tumour positives covered by G;; and the true tumour positives
covered by KB is high.

Proof-R2. Firstly, with G, and KB, we have following derived preconditions for
Reasoning 2.

1.

10.

11.

12.

If G, is given, then NS, = {IS,, NLS,} exists. (G, is associated with NS, in
Grounding Extract)

If NS, = {IS,, NLS,} exists, then NLS, can include tumour negatives of IS, as
accurate as possible, and NLS, can exclude many tumour positives of IS, as
tumour negatives. (facts contained in the existing NS,)

If G, is given, then G, ;: pixels of IS, inside the polygons of NLS, are tumour
positives is given, and G,,: pixels of IS, outside the polygons of NLS, are
tumour negatives is given. (groundings extracted from NS, by Grounding
Extract)

If G, 1: pixels of IS, inside the polygons of NLS, are tumour positives is given,
and G, ,: pixels of IS, outside the polygons of NLS, are tumour negatives is
given, then G, ; and G, , are complementary to each other.

If NLS, can include tumour negatives of IS, as accurate as possible, and G ;:
pixels of IS, inside the polygons of NLS, are tumour positives is given, then
false tumour positives covered by G, ; are rare.

If NLS, can exclude many tumour positives of IS, as tumour negatives, and
G, ,: pixels of IS, outside the polygons of NLS, are tumour negatives is given,
then false tumour negatives covered by G, , are many.

If false tumour positives covered by G,, are rare, and G,, and G,, are
complementary to each other, then G, , covers almost all true tumour negatives.
If false tumour negatives covered by G,, are many, and G, and G,, are
complementary to each other, then G, covers only a part of true tumour
positives.

If KB is given, then the information of KB can clearly describe what are the
true tumour positives, and the opposite information of KB can clearly describe
what are the true tumour negatives. (facts contained in the given KB)

If the information of KB can clearly describe what are the true tumour positives,
then true tumour positives covered by KB are all-sided, and false tumour
negatives covered by KB are none.

If the opposite information of KB can clearly describe what are the true tumour
negatives, then true tumour negatives covered by KB are all-sided, and false
tumour positives covered by KB are none.

If false tumour positives covered by G, ; are rare, and false tumour positives
covered by KB are none, then inconsistency between the false tumour positives
covered by G, ; and the false tumour positives covered by KB is low.



13. If false tumour negatives covered by G, , are many, and false tumour negatives

covered by KB are none, then inconsistency between false tumour negatives
covered by G, , and the false tumour negatives covered by KB is high.

14.1f G,, covers almost all true tumour negatives, and true tumour negatives

covered by KB are all-sided, then inconsistency between the true tumour
negatives covered by G, , and the true tumour negatives covered by KB is low.

15. If G, ; covers only a part of true tumour positives, and true tumour positives

covered by KB are all-sided, then inconsistency between true tumour positives
covered by G, ; and the true tumour positives covered by KB is high.

Secondly, we give the propositional symbols for the above preconditions 1-15 for
Reasoning 2, which are shown in Table 3.

Table 3. Propositional symbols of preconditions for Reasoning 2

Symbol

Meaning

M I QO TVOIS ~xF~~Qw0o an o>

G, is given

NS, ={IS,, NLS,} exists

NLS, can include tumour negatives of IS, as accurate as possible

NLS, can exclude many tumour positives of IS, as tumour negatives

G, 1: pixels of IS, inside the polygons of NLS, are tumour positives is given

G, »: pixels of IS, outside the polygons of NLS, are tumour negatives is given

G, 1 and G, , are complementary to each other

false tumour positives covered by G, ; are rare

false tumour negatives covered by G, , are many

G, , covers almost all true tumour negatives

G, 1 covers only a part of true tumour positives

KB is given

the information of KB can clearly describe what are the true tumour positives

the opposite information of KB can clearly describe what are the true tumour negatives
true tumour positives covered by KB are all-sided

false tumour negatives covered by KB are none

true tumour negatives covered by KB are all-sided

false tumour positives covered by KB are none

inconsistency between the false tumour positives covered by G, ; and the false tumour
positives covered by KB is low

inconsistency between false tumour negatives covered by G, , and the false tumour
negatives covered by KB is high

inconsistency between the true tumour negatives covered by G, , and the true tumour
negatives covered by KB is low

inconsistency between true tumour positives covered by G, and the true tumour
positives covered by KB is high

Thirdly, referring to Table 3, we signify the propositional formalizations of the
preconditions 1-15 for Reasoning 2 and Reasoning 2 via the propositional connectives
listed in Table 1 as follows.

1) a-b Precondition
2) b-(cAd) Precondition
3) a-(eAf) Precondition

4) (enf)—-g Precondition



5 (che)—h
6) (dAf)—i
7) (hag)—j
8) (ing) -k
9) > (mAn)
10)m - (o Ap)
1)n-(gAr)
12) (hAT) > s
13)(iAp) >t
14)(GAq) »u
15) (kAo0) = v
(anl) > (sAtAuUAD)

Fourthly, we show the validity of Reasoning 1 via the rules for proof of

propositional logical reasoning listed in Table 3 as follows.
~(@anl)->(sAthuAhv)
16)a Al
17)a
18)
19)a - (cAd)
20)cAd
21)e N f
22) ¢
23)d
24) e
25) f
26)cANe
201V d A f
28) h
29) i
30)a—-g
g
32)hng
33)iNg
34) j
35) k
36)mAn
37)m
38)n
39o0Ap
40)g AT
41) o
42) p
43) q

Precondition
Precondition
Precondition
Precondition
Precondition
Precondition
Precondition
Precondition
Precondition
Precondition
Precondition
Reasoning 2

Hypothesis
16); A —
16); A —
1),2); HS
19),17); MP
3),17); MP
20); A —
20); A —
21); A —
21); A —
22),24); A +
23),25); A+
5),26); MP
6),27); MP
3),4); HS
30),17); MP
28),31); A+
29),31); A+
7),32); MP
8),33); MP
9),18); MP
36); A —
36); A —
10),37); MP
11),38); MP
39); A—
39); A —
40); A —



44)r 40); A —

45)h AT 28),44); A +
46) i Ap 29),42); A +
47)j N g 34),43); A +
48) k Ao 35),41); A +
49) s 12),45); MP
50) t 13),46); MP
51)u 14),47); MP
52) v 15),48); MP
53) sAtAuAv 49),50),51),52); A +
54)(anl) - (SAtAUAD) 16)-53); Conditional Proof

Since the hypothesis a A [ of the 16) step can be fulfilled by the input materials of
OSAMTL-DINS applied on tumour segmentation for breast cancer and Grounding
Extract, Reasoning 2 is proved to be valid.

Proof of Reasoning 3

Reasoning 3. If IC; is given, then G, ; should not be revised to remain IC; 1, G;,
should not be revised to remain IC, 5, Gy should be revised to reduce IC; 4, and G, ,
should be revised to reduce IC ,.

Proof-R3. Firstly, with I1¢,, we have following derived preconditions for

Reasoning 3.

1. If IC, is given, then G, exists. (IC; is associated with G, in Reasoning)

2. IfICy is given, then ICy 4 is given, IC, , is given, IC, 3 is given, and IC; 4 is
given.

3. If Gyexists, then G ; exists, and G , exists.

4. IfICy 4 isgiven, then inconsistency between the false tumour negatives covered
by G;, and the false tumour negatives covered by KB is low. (inconsistency
estimated by Reasoning)

5. If Gy, exists, and inconsistency between the false tumour negatives covered by
Gy, and the false tumour negatives covered by KB is low, then G, ; should not
be revised to remain ICy ;.

6. If ICy 3 is given, then inconsistency between the true tumour positives covered
by G, and the true tumour positives covered by KB is low. (inconsistency
estimated by Reasoning)

7. If Gy, s given, and inconsistency between the true tumour positives covered
by G, , and the true tumour positives covered by KB is low, then G, , should
not be revised to remain IC; 3.

8. If ICy , is given, then inconsistency between the false tumour positives covered

by G, , and the false tumour positives covered by KB is high. (inconsistency
estimated by Reasoning)



9. If Gy, exists, and inconsistency between the false tumour positives covered by
Gy, and the false tumour positives covered by KB is high, then G, , should be
revised to reduce IC 5.

10. If IC; 4 s given, then inconsistency between the true tumour negatives covered
by G, ; and the true tumour negatives covered by KB is high. (inconsistency
estimated by Reasoning)

11. If G, ; exists, and inconsistency between the true tumour negatives covered by
G1, and the true tumour negatives covered by KB is high, then G, ; should be
revised to reduce IC 4.

Secondly, we give the propositional symbols for the above preconditions 1-11 for

Reasoning 3, which are shown in Table 5.

Table 5. Propositional symbols of preconditions for Reasoning 3

Symbol Meaning

ICy is given

G, exists

ICy 1 is given

ICy ; is given

IC, 3 is given

IC; 4 is given

Gy, exists

Gy exists

inconsistency between the false tumour negatives covered by G, ; and the false tumour

negatives covered by KB is low

Gy, should not be revised to remain IC; 4

inconsistency between the true tumour positives covered by G; , and the true tumour

positives covered by KB is low

l G1 > should not be revised to remain IC; 3

m inconsistency between the false tumour positives covered by G, , and the false tumour
positives covered by KB is high

n then G, , should be revised to reduce IC; ,

0 inconsistency between the true tumour negatives covered by G; ; and the true tumour
negatives covered by KB is high

p G1,1 should be revised to reduce IC; 4

-~ > o Qa0 o Q

o~

Thirdly, referring to Table 5, we signify the propositional formalizations of the
preconditions 1-11 for Reasoning 3 and Reasoning 3 via the propositional connectives
listed in Table 1 as follows.

1) a-»b Precondition
2) a—->(cAhdnreAf) Precondition
3) b->(gAh) Precondition
4) c-i Precondition
5 (gni)—=j Precondition
6) ek Precondition
7) (hAk) =1 Precondition

8 d-m Precondition



9) (hAm)—->n Precondition

10)f - o Precondition
11) (gAo) = p Precondition
a-> (ALANAD) Reasoning 3

Fourthly, we show the validity of Reasoning 3 via the rules for proof of
propositional logical reasoning listed in Table 2 as follows.
~a-> (GALAnAD)

12) a Hypothesis
13)a - (gAh) 1),3); HS
14)gAh 13),12); MP
15) g 14); A —
16) h 14); A —
1N cAndAenf 2),12); MP
18) ¢ 17); A —
19)d 17); A —
20) e 17); A —
21) f 17); A —
22) i 4),18); MP
23) g Ni 15),22); A+
24) 5),23); MP
25) k 6),20); MP
26) h Ak 16),25); A +
27) 1 7),26); MP
28) m 8),19); MP
29)hAm 16),28); A +
30)n 9),29); MP
31)o 10),21); MP
32)gAno 15),31); A +
33)p 11),32); MP
34)jAlAnAp 24),27),30),33); A+
3B)a—=jAlAnAp 12)-34); Conditional Proof

Since the hypothesis a of the 17) step can be fulfilled by the Reasoning step,
Reasoning 3 is proved to be valid.

Proof of Reasoning 4

Reasoning 4. If IC, is given, then G, ; should not be revised to remain IC, 1, then
G, should not be revised to remain IC, 3, G, ; should be revised to reduce IC, ,, and
G, should be revised to reduce IC; 4.

Proof-R4. Firstly, with IC,, we have following derived preconditions for
Reasoning 4.

1. If IC, is given, then G, exists. (IC, is associated with G, in Reasoning)

2. IfIC; is given, then IC, , is given, IC,, is given, IC; 3 is given, and IC, 4 is

given.



10.

11.

If G,exists, then G, ; exists, and G, , exists.

If IC, 1 is given, then inconsistency between the false tumour positives covered
by G, and the false tumour positives covered by KB is low. (inconsistency
estimated by Reasoning)

If G, ; exists, and inconsistency between the false tumour positives covered by
G, 1 and the false tumour positives covered by KB is low, then G, ; should not
be revised to remain IC, ;.

If IC, 5 is given, then inconsistency between the true tumour negatives covered
by G, , and the true tumour negatives covered by KB is low. (inconsistency
estimated by Reasoning)

If G, , is given, and inconsistency between the true tumour negatives covered
by G, , and the true tumour negatives covered by KB is low, then G, , should
not be revised to remain IC; 3.

If IC;, is given, then inconsistency between the false tumour negatives covered
by G, , and the false tumour negatives covered by KB is high. (inconsistency
estimated by Reasoning)

If G, , exists, and inconsistency between the false tumour negatives covered by
G, and the false tumour negatives covered by KB is high, then G, , should be
revised to reduce IC, ,.

If IC, 4 is given, then inconsistency between the true tumour positives covered
by G, , and the true tumour positives covered by KB is high. (inconsistency
estimated by Reasoning)

If G, ; exists, and inconsistency between the true tumour positives covered by
G, 1 and the true tumour negatives covered by KB is high, then G, ; should be
revised to reduce IC, 4.

Secondly, we give the propositional symbols for the above preconditions 1-11 for
Reasoning 4, which are shown in Table 6.

Table 6. Propositional symbols of preconditions for Reasoning 4

Symbol

Meaning

-~ > "o Qa0 o Q

=~

IC, is given

G, exists

1C, 1 is given

1C, 5 is given

IC; 3 is given

1C; 4 is given

G, 1 exists

G, , exists

inconsistency between the false tumour positives covered by G, ; and the false tumour
positives covered by KB is low

G,,1 should not be revised to remain IC; ;

inconsistency between the true tumour negatives covered by G, , and the true tumour
negatives covered by KB is low

G, > should not be revised to remain IC; 3



m inconsistency between the false tumour negatives covered by G , and the false tumour
negatives covered by KB is high

n then G, , should be revised to reduce IC;, ,

0 inconsistency between the true tumour positives covered by G, ; and the true tumour
positives covered by KB is high

D G,,1 should be revised to reduce IC; 4

Thirdly, referring to Table 6, we signify the propositional formalizations of the
preconditions 1-11 for Reasoning 4 and Reasoning 4 via the propositional connectives
listed in Table 1 as follows.

1) a—»b Precondition
2) a=(cAhdAheAf) Precondition
3) b->(gAh) Precondition
4) c—-i Precondition
5 (gAi)—j Precondition
6) e—>k Precondition
7) (hAk) =1 Precondition
8) d-m Precondition
9) (hAm)—>n Precondition
10)f - o Precondition
11) (gAo) - p Precondition
a-> (ALANAD) Reasoning 3

Fourthly, we show the validity of Reasoning 3 via the rules for proof of
propositional logical reasoning listed in Table 2 as follows.
~a-> (GALAnAD)

12) a Hypothesis
13)a—-> (gAh) 1),3); HS
14 gAh 13),12); MP
15) g 14); A —
16) h 14); A —
1N cAdAeAf 2),12); MP
18) ¢ 17); A —
19)d 17); A —
20) e 17); A —
21) f 17); A —
22) i 4),18); MP
23) g Ni 15),22); A +
24)j 5),23); MP
25) k 6),20); MP
26) h Ak 16),25); A +
27) 1 7),26); MP
28) m 8),19); MP
29)h Am 16),28); A +

30)n 9),29); MP



31) 0 10),21); MP

32)gANo 15),31); A+

33)p 11),32); MP

34)jALANAD 24),27),30),33); A+
3B)a—-jAlAnAp 12)-34); Conditional Proof

Since the hypothesis a of the 17) step can be fulfilled by the Reasoning step,
Reasoning 4 is proved to be valid.

Proof of Reasoning 5

Reasoning 5. If RG; is given and RG, is given, then a target (T;) can be abduced
from the union of RG; and RG,, and T; has a high recall of true tumour positives and
a high precision of true tumour negatives.

Proof-R5. Firstly, with RG; and RG,, we have following derived preconditions for
Reasoning 5.

1. If RG, is given, then RG,is equivalent to Gy, : pixels of IS; outside the
polygons of NLS, are tumour negatives. (revised grounding produced by
Abduction)

2. If RG, is given, then RG, is equivalent to G;,: pixels of IS; inside the
polygons of NLS; are tumour positives. (revised grounding produced by
Abduction)

3. If RGyis equivalent to G, 1: pixels of IS; outside the polygons of NLS; are
tumour negatives and RG, is equivalent to G;,: pixels of IS; inside the
polygons of NLS, are tumour positives, then RG; indicates where are tumour
negatives of 1S; and RG, indicates where are tumour positives of 1S;.

4. If RG, indicates where are tumour negatives of IS; and RG, indicates where
are tumour positives of 1S,, then a target (T;) can be abduced from the union
of RG, and RG,.

5. If T; can be abduced from the union of RG; and RG,, RG,is equivalent to G, ;:
pixels of 1S; outside the polygons of NLS; are tumour negatives, and RG,, is
equivalent to G;, pixels of IS; inside the polygons of NLS; are tumour
positives, then the recall of T, for true tumour positives can be denoted by true
tumour positives covered by G, , (TP(G42)) dividing the sum of TP(G ;) and
false tumour negatives covered by G;; (FN(Gy 1)), i.e., TP(G12)/( TP(G12)+
FN(G11)); and the precision of T; for true tumour negatives can be denoted by
true tumor negatives covered by G, 1 (TN(G4,1)) dividing the sum of TN(G ;)
and FN(Gy 1), i.e., TN(G1,1)/(TN(Gy1)+ FN(G11)).

6. If RG, is given, then Gy, should not be revised to remain IC,,. (revised
grounding produced by Abduction is only associated with corresponding
grounding revision in Abduction)

7. If Gy 4 should not be revised to remain IC; 4, then G, ; should not be revised to
remain the fact that inconsistency between FN(G, ;) and false tumour negatives
covered by KB (FN(KB)) is low. (fact contained in IC, ;)



10.

11.

12.

13.

14.

15.

16.

17.

18.

If Gy, is not revised to remain the fact that inconsistency between FN(Gy ;)
and FN(KB) is low, then FN(G ;) can be regarded as close to FN(KB).

If FN(G1 1) can be regarded as close to FN(KB), then FN(G, ;) can be regarded
as close to 0.

If FN(Gy1) can be regarded as close to O, then tumour negatives covered by
Gy, can be regarded as true tumor negatives.

If tumour negatives covered by G; ; can be regarded as true tumor negatives,
then TN(G, ;) can be regarded as a constant positive integer.

If RG, is given, then G, , should not be revised to remain IC; 3. (revised
grounding produced by Abduction is only associated with corresponding
grounding revision in Abduction)

If G, , should not be revised to remain IC, 3, then G, , should not be revised to
remain the fact that inconsistency between TP(G ,) and true tumour positives
covered by KB (TP(KB)) is low.

If G, , should not be revised to remain the fact that inconsistency between
TP(G, ;) and TP(KB) is low, then TP(G, ;) can be regarded as close to TP(KB).
If TP(G,,) can be regarded as close to TP(KB), TP(G4 ;) can be regarded as a
constant positive integer.

If TP(G,,) can be regarded as a constant positive integer and FN(G, ;) can be
regarded as close to 0, and the recall of T;for true tumour positives can be
denoted by TP(G4,)/( TP(Gy )+ FN(G1 1)), then the recall of T; for true tumour
positives is close to 1.

If TN(G,,1) can be regarded as a constant positive integer, FN(G; 1) can be
regarded as close to 0, and the precision of T; for true tumour negatives can be
denoted by TN(G; 1)/(TN(G11)+ FN(Gy,1)), then the precision of T; for true
tumour negatives is close to 1.

If the recall of T; for true tumour positives is close to 1 and the precision of T;
for true tumour negatives is close to 1, then T, has a high recall of true tumour
positives and a high precision of true tumour negatives.

Secondly, we give the propositional symbols for the above preconditions 1-18 for
Reasoning 5, which are shown in Table 7.

Table 7. Propositional symbols of preconditions for Reasoning 5

Symbol Meaning
a RG, is given
b RGyis equivalent to Gy q: pixels of IS; outside the polygons of NLS; are tumour
negatives
c RG, is given
d RG, is equivalent to G, pixels of IS; inside the polygons of NLS; are tumour

Q " o

positives

RG, indicates where are tumour negatives of 1S;

RG, indicates where are tumour positives of 15

a target (T;) can be abduced from the union of RG; and RG,



h the recall of Ty for true tumour positives can be denoted by true tumour positives
covered by G , (TP(G,,)) dividing the sum of TP(G, ;) and false tumour negatives
covered by G; 1 (FN(Gy 1)), i.e., TP(Gy2)/( TP(Gy )+ FN(G1 1))

i the precision of T; for true tumour negatives can be denoted by true tumor negatives

covered by G;; (TN(Gyq)) dividing the sum of TN(Gy,) and FN(G,), ie.,

TN(G1,1)/(TN(G1,1)+ FN(G1,1))

Gy, should not be revised to remain ICy 4

Gy, should not be revised to remain the fact that inconsistency between FN(G, ;) and

false tumour negatives covered by KB (FN(KB)) is low

FN(Gy,1) can be regarded as close to FN(KB)

FN(Gq,1) can be regarded as close to 0

tumour negatives covered by G; ; can be regarded as true tumor negatives

TN(Gq,1) can be regarded as a constant positive integer

G1 > should not be revised to remain IC 3

Gy > should not be revised to remain the fact that inconsistency between TP(G; ) and

true tumour positives covered by KB (TP(KB)) is low

TP(G, ) can be regarded as close to TP(KB)

TP(G, ) can be regarded as a constant positive integer

the recall of Ty (TP(Gy,)/( TP(Gy )+ FN(Gy 1)))for true tumour positives is close to 1

the precision of Ty (TN(Gq 1)/(TN(Gy,1)+ FN(G 1))) for true tumour negatives is close

to 1

v T; has a high recall of true tumour positives and a high precision of true tumour
negatives

QT o 3 3 ~ = .
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Thirdly, referring to Table 7, we signify the propositional formalizations of the
preconditions 1-18 for Reasoning 5 and Reasoning 5 via the propositional connectives
listed in Table 1 as follows.

1) a—»b Precondition
2) c—>d Precondition
3) (band) - (enf) Precondition
4) (enf)—g Precondition
5 (gAbAd) - (hAD) Precondition
6) a—j Precondition
7 j—-k Precondition
8) k-1l Precondition
9) Il->m Precondition
10)m-n Precondition
11)n—-o Precondition
12)b - p Precondition
13)p —q Precondition
14)q > r Precondition
15)r - s Precondition
16) (sAmAh) >t Precondition
1N (oAmAL) > u Precondition
18) (tAu) - v Precondition

(anc)— (gAv) Reasoning 5



Fourthly, we show the validity of Reasoning 5 via the rules for proof of
propositional logical reasoning listed in Table 2 as follows.
~(anc)— (gAv)

19)anc Hypothesis

20) a 19); A —

21) c 19); A —

22) b 1),20); MP

23)d 2),21); MP

24) b A d 22),23); A+

25) (bAd) > g 3),24); HS

26) g 25),24); MP

21V gAbAd 26),24); A +

28) h AT 5),27); MP

29) h 28); A —

30) i 28); A —

3)a->m 6),7),8),9); HS

32)m 31),20); MP

33ym-o 10),11); HS

34)o 33),32); MP

35)b—>s 12),13),14),15); HS

36) s 35),22); MP

37)sAmAh 36),32),29); A +

38)oAmAi 34),32),30); A +

39)t 16),37); MP

40) u 17),38); MP

ADtAu 39),40); A +

42) v 18),41); MP

43)g Av 26),42); A +
48) (aNc) = (g Av) 19)-43); Conditional Proof

Since the hypothesis a A ¢ of the 19) step can be fulfilled by the Abduction step,
Reasoning 5 is proved to be valid.

Proof of Reasoning 6
Reasoning 6. If RGs is given and RGg is given, then a target (T,) can be abduced
from the union of RGs and RG, and T, has a high precision of true tumour positives
and a high recall of true tumour negatives.
Proof-R6. Firstly, with RGs and RG, we have following derived preconditions for
Reasoning 6.
1. If RGs is given, then RGsis equivalent to G, 4 : pixels of IS, inside the polygons
of NLS, are tumour positives. (revised grounding produced by Abduction)
2. If RGg is given, then RGg is equivalent to G,,: pixels of IS, outside the
polygons of NLS, are tumour negatives. (revised grounding produced by
Abduction)



10.

11.

12.

13.

14.

15.

If RGsis equivalent to G, ;: pixels of IS, inside the polygons of NLS, are
tumour positives and RGg is equivalent to G,,: pixels of IS, outside the
polygons of NLS, are tumour negatives, then RGs indicates where are tumour
positives of IS, and RG, indicates where are tumour negatives of IS,.

If RG5 indicates where are tumour positives of 1S, and RG, indicates where are
tumour negatives of IS,, then a target (T,,) can be abduced from the union of
RGs and RG.

If T, can be abduced from the union of RGs and RGg, RGsis equivalent to G 4:
pixels of IS, inside the polygons of NLS, are tumour positives, and RG is
equivalent to G,, pixels of IS, outside the polygons of NLS, are tumour
negatives, then the precision of T, for true tumour positives can be denoted by
true tumour positives covered by G, 1 (TP(G, ,)) dividing the sum of TP(G, 1)
and false tumour positives covered by G,; (FP( Gp1 )), i.e,
TP(G2,1)/( TP(G,,1)*+ FP(G3,1)); and the recall of T, for true tumour negatives
can be denoted by true tumor negatives covered by G, , (TN(G, ;)) dividing the
sum of TN(G, ;) and FP(G,,1), i.e., TN(G32)/(TN(G,2)+ FP(G, 1)).

If RGs is given, then G, ;1 should not be revised to remain IC, ;. (revised
grounding produced by Abduction is only associated with corresponding
grounding revision in Abduction)

If G, 1 should not be revised to remain IC, 1, then G, ; should not be revised to
remain the fact that inconsistency between FP(G, ) and false tumour positives
covered by KB (FP(KB)) is low. (fact contained in IC; ;)

If G, should not be revised to remain the fact that inconsistency between
FP(G,,,) and FP(KB) is low, then FP(G, ;) can be regarded as close to FP(KB).
If FP(G,,1) can be regarded as close to FP(KB), then FP(G, 1) can be regarded
as close to 0.

If FP(G,,1) can be regarded as close to 0, then tumour positives covered by G 4
can be regarded as true tumor positives.

If tumour positives covered by G, ; can be regarded as true tumor positives,
then TP(G,,1) can be regarded as a constant positive integer.

If RGg is given, then G,, should not be revised to remain IC, 3. (revised
grounding produced by Abduction is only associated with corresponding
grounding revision in Abduction)

If G, , should not be revised to remain IC, 3, then G, , should not be revised to
remain the fact that inconsistency between TN(G, ;) and true tumour negatives
covered by KB (TN(KB)) is low.

If G, , should not be revised to remain the fact that inconsistency between
TN(G,,) and TN(KB) is low, then TN(G,,) can be regarded as close to
TN(KB).

If TN(G,,2) can be regarded as close to TN(KB), TN(G, ;) can be regarded as
a constant positive integer.



16.

17.

18.

If TP(G,1) can be regarded as a constant positive integer, FP(G, ) can be
regarded as close to 0, and the precision of T, for true tumour positives can be
denoted by TP(G,1)/( TP(G,1)+ FP(G,1)), then the precision of T, for true
tumour positives is close to 1.

If TN(G,,) can be regarded as a constant positive integer, FP(G, 1) can be
regarded as close to 0, and the recall of T, for true tumour negatives can be
denoted by TN(G,,,)/(TN(G, )+ FP(G,,1)), then the recall of T, for true tumour
negatives is close to 1.

If the precision of T, for true tumour positives is close to 1 and the precision of
T, for true tumour negatives is close to 1, then T, has a high precision of true
tumour positives and a high recall of true tumour negatives.

Secondly, we give the propositional symbols for the above preconditions 1-18 for

Reasoni

ng 6, which are shown in Table 8.

Table 8. Propositional symbols of preconditions for Reasoning 6

Symbol

Meaning

a
b

QU 0

QT o 33 ~ = >SQ o

I & &+ 0 =

RG5 is given

RGsis equivalent to Gy, : pixels of IS, inside the polygons of NLS, are tumour
positives

RGg is given

RGg is equivalent to G, ,: pixels of IS, outside the polygons of NLS, are tumour
negatives

RG5 indicates where are tumour positives of IS,

RG indicates where are tumour negatives of 1S,

a target (T,) can be abduced from the union of RG5 and RG¢

the precision of T, for true tumour positives can be denoted by true tumour positives
covered by G, ; (TP(G,,)) dividing the sum of TP(G, ;) and false tumour positives
covered by G, 1 (FP(G,,1)), i.e., TP(Gy1)/( TP(G3 1)+ FP(G3,1))

the recall of T, for true tumour negatives can be denoted by true tumor negatives
covered by G,, (TN(G,,)) dividing the sum of TN(G,,) and FP(G,q), ie.,
TN(G2,2)(TN(Go,2)t FP(G2,1))

G,,1 should not be revised to remain IC; 4

G, 1 should not be revised to remain the fact that inconsistency between FP(G, ;) and
false tumour positives covered by KB (FP(KB)) is low

FP(G 1) can be regarded as close to FP(KB)

FP(G, 1) can be regarded as close to 0

tumour positives covered by G ; can be regarded as true tumor positives

TP(G,,1) can be regarded as a constant positive integer

G, > should not be revised to remain IC; 3

G, > should not be revised to remain the fact that inconsistency between TN(G, ;) and
true tumour negatives covered by KB (TN(KB)) is low

TN(G,2) can be regarded as close to TN(KB)

TN(G,,;) can be regarded as a constant positive integer

the precision of T, for true tumour positives is close to 1

the recall of T, for true tumour negatives is close to 1

T, has a high precision of true tumour positives and a high recall of true tumour
negatives




Thirdly, referring to Table 8, we signify the propositional formalizations of the
preconditions 1-18 for Reasoning 6 and Reasoning 6 via the propositional connectives

listed in Table 1 as follows.
1) a-b
2) c—>d
3) (bad) - (enf)
4) (enf)—g

5 (gAbAd) - (hAD)

6) a—j

7 jok

8) k-1

9) Il->m
10)m-n
1)n-o
12)b - p
13)p—-q
14)g->r
15)r -» s

16) (oAmAh) >t
17 (sAmAi)-u
18) (tAu) - v
(anc)—(gAv)

Precondition
Precondition
Precondition
Precondition
Precondition
Precondition
Precondition
Precondition
Precondition
Precondition
Precondition
Precondition
Precondition
Precondition
Precondition
Precondition
Precondition
Precondition
Reasoning 6

Fourthly, we show the validity of Reasoning 6 via the rules for proof of

propositional logical reasoning listed in Table 2 as follows.

~(anc) - (gAv)
19)aAc
20) a
21) c
22) b
23)d
24)b Nd
25)(bAd) > g
26) g
21YgAbAd
28)h N i
29) h
30) i
3)a—-m
32)m
33)ym-o
34) o
35) b —>s
36) s

Hypothesis
19); A —

19); A —
1),20); MP
2),21); MP
22),23); A+
3),24); HS
25),24); MP
26),24); A +
5),27); MP
28); A —

28); A —
6),7),8),9); HS
31),20); MP
10),11); HS
33),32); MP
12),13),14),15); HS
35),22); MP



37 oAmAh 36),32),29); A +

38)sAmAi 34),32),30); A +
39)t 16),37); MP
40) u 17),38); MP
4D)tAu 39),40); A +
42) v 18),41); MP
43)g A\ v 26),42); A +
48) (aNc) = (g Av) 19)-43); Conditional Proof

Since the hypothesis a A ¢ of the 19) step can be fulfilled by the Abduction step,
Reasoning 6 is proved to be valid.

Proof of Reasoning 7

Reasoning 7. If the target (T;) abduced from the union of RG, and RG, is given,
RG5 is given and RG, is given, then T; has a low precision of true tumour positives and
a low recall of true tumour negatives.

Proof-R7. Firstly, with T;, RG5 and RG,, we have following derived preconditions
for Reasoning 7.

1.

If the target (T;) abduced from the union of RG; and RG, is given, then T; is
abduced based on Gy ;: pixels of IS; outside the polygons of NLS; are tumour
negatives and G;,: pixels of IS; inside the polygons of NLS; are tumour
positives. (revised grounding produced by Abduction)

If the target (T;) abduced from the union of RG; and RG, is given, then the fact
that T; has a high recall of true tumour positives and a high precision of true
tumour negatives exists. (Reasoning 5)

If RG5 is given, then RG5 is equivalent to the fact that pixels of IS; outside the
polygons of NLS, are not exactly true tumour negatives. (revised grounding
produced by Abduction)

If RG, is given, then RG, is equivalent to the fact that pixels of IS; inside the
polygons of NLS; are not exactly true tumour positives. (revised grounding
produced by Abduction)

If T} is abduced based on G, ;: pixels of IS; outside the polygons of NLS; are
tumour negatives and G, ,: pixels of IS; inside the polygons of NLS; are
tumour positives, the fact that T, has a high recall of true tumour positives and
a high precision of true tumour negatives exists, RG is equivalent to the fact
that pixels of IS; outside the polygons of NLS, are not exactly true tumour
negatives, and RG, is equivalent to the fact that pixels of IS; inside the
polygons of NLS; are not exactly true tumour positives, then many true tumour
negatives are taken as as tumour positives by Gy ,.

If many true tumour negatives are taken as tumour positives by G; ,, then false
tumour positives are covered by G, , (FP(G4,)) can be regarded as large.

If FP(G,,) can be regarded as large, and then T; has a low precision of true
tumour positives and a low recall of true tumour negatives.



Secondly, we give the propositional symbols for the above preconditions 1-7 for
Reasoning 7, which are shown in Table 9.

Table 9. Propositional symbols of preconditions for Reasoning 7

Symbol Meaning

the target (T;) abduced from the union of RG; and RG, is given

RG5 1s given

RG, is given

T, is abduced based on G, ;: pixels of IS; outside the polygons of NLS; are tumour
negatives and G, ,: pixels of IS; inside the polygons of NLS; are tumour positives

the fact that T; has a high recall of true tumour positives and a high precision of true
tumour negatives exists

RG is equivalent to the fact that pixels of IS; outside the polygons of NLS; are not
exactly true tumour negatives

RG, is equivalent to the fact that pixels of IS; inside the polygons of NLS; are not
exactly true tumour positives

many true tumour negatives are taken as as tumour positives by G ,

false tumour positives are covered by G; , (FP(G4 ;)) can be regarded as large

T, has a low precision of true tumour positives and a low recall of true tumour
negatives

QL o T Q
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Thirdly, referring to Table 9, we signify the propositional formalizations of the
preconditions 1-7 for Reasoning 7 and Reasoning 7 via the propositional connectives
listed in Table 1 as follows.

1) a—d Precondition
2) a—e Precondition
3y b-f Precondition
4) c—>g Precondition
5 (dAeAfAg)—h Precondition
6) h—i Precondition
7 i-v Precondition
(anbAc)—-v Reasoning 7

Fourthly, we show the validity of Reasoning 7 via the rules for proof of
propositional logical reasoning listed in Table 2 as follows.
~(@anbAc)-v

8) aAbAc Hypothesis

9) a 8); A —

10) b 8); A —

1) c 8); A —

12)d 1),9); MP

13)e 2),9); MP

14) f 3),10); MP

15) g 4),11); MP
16)dAeAfAg 12),13),14),15); A +
17) h 5),16); MP

18)h - v 6),7); HS



19)v 18),17); MP
200(aAbAC)—- v 8)-19); Conditional Proof
Since the hypothesis a A b A ¢ of the 8) step can be fulfilled by Reasoning 5 and

the Abduction step, Reasoning 7 is proved to be valid.

Proof of Reasoning 8

Reasoning 8. If the target (T,) abduced from the union of RGs and RG is given,
RG- is given and RGyg is given, then T, has a low recall of true tumour positives and a
low precision of true tumour negatives.

Proof-R8. Firstly, with T,, RG, and RGg, we have following derived preconditions

for Reasoning 8.

1. If the target (T,) abduced from the union of RGs and RG is given, then T, is
abduced based on G, ;: pixels of IS, inside the polygons of NLS, are tumour
positives and G, ,: pixels of IS, outside the polygons of NLS, are tumour
negatives. (revised grounding produced by Abduction)

2. Ifthe target (T,) abduced from the union of RGs and RG is given, then the fact
that T, has a high precision of true tumour positives and a high recall of true
tumour negatives exists. (Reasoning 6)

3. If RG, is given, then RG- is equivalent to the fact that pixels of IS; inside the
polygons of NLS; are not exactly true tumour positives. (revised grounding
produced by Abduction)

4. If RGg is given, then RGg is equivalent to the fact that pixels of IS; outside the
polygons of NLS; are not exactly true tumour negatives. (revised grounding
produced by Abduction)

5. If T, is abduced based on G, 4: pixels of IS, inside the polygons of NLS, are
tumour positives and G, ,: pixels of IS, outside the polygons of NLS, are
tumour negatives, the fact that T, has a high precision of true tumour positives
and a high recall of true tumour negatives exists, RG- is equivalent to the fact
that pixels of IS; inside the polygons of NLS; are not exactly true tumour
positives, and RGg is equivalent to the fact that pixels of IS; outside the
polygons of NLS; are not exactly true tumour negatives, then many true tumour
positives are taken as as tumour negatives by G ,.

6. If many true tumour positives are taken as as tumour negatives by G, ,, then
false tumour negatives are covered by G, , (FN(G;,)) can be regarded as large.

7. IfFN(G, ;) can be regarded as large, and then T, has a low recall of true tumour
positives and a low precision of true tumour negatives.

Secondly, we give the propositional symbols for the above preconditions 1-7 for

Reasoning 8, which are shown in Table 10.

Table 10. Propositional symbols of preconditions for Reasoning 8

Symbol Meaning

a the target (T,) abduced from the union of RGs and RG is given
b RG- is given



RGg 1s given

T, is abduced based on G, ;: pixels of IS, inside the polygons of NLS, are tumour
positives and G, ,: pixels of IS, outside the polygons of NLS, are tumour negatives

e the fact that T, has a high precision of true tumour positives and a high recall of true
tumour negatives exists

RG is equivalent to the fact that pixels of IS; inside the polygons of NLS; are not
exactly true tumour positives

If RGg is given, then RGg is equivalent to the fact that pixels of IS; outside the
polygons of NLS; are not exactly true tumour negatives

many true tumour positives are taken as as tumour negatives by G, ,

false tumour negatives are covered by G, , (FN(G;;)) can be regarded as large

T, has a low recall of true tumour positives and a low precision of true tumour
negatives

~ Q 0
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Thirdly, referring to Table 10, we signify the propositional formalizations of the
preconditions 1-7 for Reasoning 8 and Reasoning 8 via the propositional connectives
listed in Table 1 as follows.

1) a—-d Precondition
2) a—e Precondition
3) b f Precondition
4) c-g Precondition
5 (dAeAfAg)—=h Precondition
6) h—i Precondition
7 i—j Precondition
(aAnbAc)—j Reasoning 8

Fourthly, we show the validity of Reasoning 8 via the rules for proof of
propositional logical reasoning listed in Table 2 as follows.
~(anbAhnc)—j

8) aAbAc Hypothesis

9 a 8), A —

10) b 8); A —

11) ¢ 8); A—

12) d 1),9); MP

13)e 2),9); MP

14) f 3),10); MP

15) g 4),11); MP

16)dAeAfAg 12),13),14),15); A +

17) h 5),16); MP

18)h > j 6),7); HS

19)j 18),17); MP
20)(anbAc)—j 8)-19); Conditional Proof

Since the hypothesis a A b A ¢ of the 8) step can be fulfilled by Reasoning 5 and
the Abduction step, Reasoning 8 is proved to be valid.

Proof of Reasoning 9



Reasoning 9. If the target (T;) abduced from the union of RG; and RG, is given
and the target (T,) abduced from the union of RGs and RGy is given, then a target (T;)
can be abduced by improving T, with T,, a target (T,,) can be abduced by improving T,
with T;, T; can have a relatively higher precision of true tumour positives than T; and
a relatively higher recall of true tumour negatives than T;, and T, can have a relatively
higher recall of true tumour positives than T, and a relatively higher precision of true
tumour negatives than T,.

Proof-R9. Firstly, with T; and T,, we have following derived preconditions for
Reasoning 9.

1.

If the target (T;) abduced from the union of RG; and RG, is given, then T; has
a high recall of true tumour positives and a high precision of true tumour
negatives and T; has a low precision of true tumour positives and a low recall
of true tumour negatives. (Reasoning 5 and Reasoning 7)

If the target (T,) abduced from the union of RGs and RGg is given, T, has a
high precision of true tumour positives and a high recall of true tumour
negatives and T, has a low recall of true tumour positives and a low precision
of true tumour negatives. (Reasoning 6 and Reasoning 8)

If T, has a low precision of true tumour positives and a low recall of true
tumour negatives and T, has a high precision of true tumour positives and a
high recall of true tumour negatives, then T, is complementary to T, to
represent the true target.

If T, is complementary to T, to represent the true target, then a target (75) can
be abduced by improving T; with T,.

If T; can be abduced by improving T; with T,, T, has a high precision of true
tumour positives and a high recall of true tumour negatives, and T, has a low
precision of true tumour positives and a low recall of true tumour negatives,
then T; can have a relatively higher precision of true tumour positives than T;
and a relatively higher recall of true tumour negatives than T;.

If T, has a low recall of true tumour positives and a low precision of true
tumour negatives and T; has a high recall of true tumour positives and a high
precision of true tumour negatives, then T, is complementary to T, to represent
the true target.

If T, is complementary to T, to represent the true target, then a target (7,) can
be abduced by improving T, with T;.

If T, can be abduced by improving T, with Ty, T; has a high recall of true
tumour positives and a high precision of true tumour negatives, and T, has a
low recall of true tumour positives and a low precision of true tumour negatives,
then T, can have a relatively higher recall of true tumour positives than T, and
a relatively higher precision of true tumour negatives than T,.

Secondly, we give the propositional symbols for the above preconditions 1-8 for
Reasoning 9, which are shown in Table 11.

Table 11. Propositional symbols of preconditions for Reasoning 9



Symbol Meaning

a the target (T;) abduced from the union of RG; and RG, is given
b the target (T,) abduced from the union of RGs and RGy is given

c T; has a high recall of true tumour positives and a high precision of true tumour
negatives

d T, has a low precision of true tumour positives and a low recall of true tumour
negatives

e T, has a high precision of true tumour positives and a high recall of true tumour
negatives

f T, has a low recall of true tumour positives and a low precision of true tumour
negatives

g T, is complementary to T; to represent the true target

h a target (T3) can be abduced by improving T; with T,

i T3 can have a relatively higher precision of true tumour positives than T; and a
relatively higher recall of true tumour negatives than T;

j T; is complementary to T, to represent the true target

k a target (T) can be abduced by improving T, with T;

l T, can have a relatively higher recall of true tumour positives than T, and a relatively

higher precision of true tumour negatives than T,

Thirdly, referring to Table 11, we signify the propositional formalizations of the
preconditions 1-8 for Reasoning 9 and Reasoning 9 via the propositional connectives
listed in Table 1 as follows.

1) a—(cAd) Precondition
2) b->(enf) Precondition
3) (dAae)—g Precondition
4) g-h Precondition
5 (gAheAnd)—i Precondition
6) (fAc)—j Precondition
7 j—-k Precondition
8) (kncnf)—-l Precondition
(anb) > (hAKAIALD Reasoning 9

Fourthly, we show the validity of Reasoning 9 via the rules for proof of
propositional logical reasoning listed in Table 2 as follows.
~(@anb)->(hAkANIAND

9) aAnb Hypothesis
10) a 9); A—
11) b 9); A—
12)cAd 1),10); MP
1)eNf 2),11); MP
14) ¢ 12); A —
15) d 12); A —
16) e 13); A —
1N f 13); A —
18)d Ae 15),16); A +
19) g 3),18); MP

20) h 4),19); MP



21)gAend 19),16),15); A +

22) i 21),5); MP

23)f Ac 17),14); A +

24) j 6),23); MP

25) k 7),24); MP

26)kACAf 25),14),17); A +

27) 1 8),26); MP

28) h Ak AiAL 20),25),22),27); A +
29)(aAb) > (hAKkAINAD 9)-28); Conditional Proof

Since the hypothesis a A b of the 9) step can be fulfilled by Reasoning 5 and
Reasoning 6, Reasoning 9 is proved to be valid.

Proof of Reasoning 10

Reasoning 10. If Ty is given and T is given, then T; and T; can be combined to
approximate the true target for IS;.

Proof-R10. Firstly, with T; and T, we have following derived preconditions for
Reasoning 10.

1.
2.

If T, is given and Tj is given, then T, and T5 are both corresponding to IS,.

If T, is given, then T; has a high recall of true tumour positives and a high
precision of true tumour negatives and T; has a low precision of true tumour
positives and a low recall of true tumour negatives. (Reasoning 5 and
Reasoning 7)

If T3 is given, then T; can have a relatively higher precision of true tumour
positives than T; and a relatively higher recall of true tumour negatives than Tj;.
(Reasoning 9)

If T; has a high recall of true tumour positives and a high precision of true
tumour negatives and T; can have a relatively higher precision of true tumour
positives than T; and a relatively higher recall of true tumour negatives than T;,
then T; and T5; can be combined to possess a high recall of true tumour
positives and a high precision of true tumour negatives while having a relatively
higher precision of true tumour positives and a relatively higher recall of true
tumour negatives.

If T, and T can be combined to possess a high recall of true tumour positives
and a high precision of true tumour negatives while having a relatively higher
precision of true tumour positives and a relatively higher recall of true tumour
negatives, and T, and T; are both corresponding to IS;, then T; and T can be
combined to approximate the true target for IS;.

Secondly, we give the propositional symbols for the above preconditions 1-5 for
Reasoning 10, which are shown in Table 12.

Table 12. Propositional symbols of preconditions for Reasoning 10

Symbol Meaning

a

T,is given



b Tsis given

c T, and T; are both corresponding to 1S;

d T; has a high recall of true tumour positives and a high precision of true tumour
negatives and T; has a low precision of true tumour positives and a low recall of true
tumour negatives

e T; can have a relatively higher precision of true tumour positives than T; and a
relatively higher recall of true tumour negatives than T;
f T, and T3 can be combined to possess a high recall of true tumour positives and a high

precision of true tumour negatives while having a relatively higher precision of true
tumour positives and a relatively higher recall of true tumour negatives
g T, and T5 can be combined to approximate the true target for /S,

Thirdly, referring to Table 12, we signify the propositional formalizations of the
preconditions 1-5 for Reasoning 10 and Reasoning 10 via the propositional connectives
listed in Table 1 as follows.

1) (aAnb)—c Precondition
2) a—-d Precondition
3) b-oe Precondition
4) (dne)—f Precondition
5) (fac)—-g Precondition
(anb) =g Reasoning 10

Fourthly, we show the validity of Reasoning 10 via the rules for proof of
propositional logical reasoning listed in Table 2 as follows.

~(anb)—-g
6) aAb Hypothesis
7 a 6); A —
8) b 6); A —
9) ¢ 1),6); MP
10) d 2),7); MP
11)e 3),8); MP
12)d e 10),11); A +
13) f 4),12); MP
14 fAc 13),9); A +
15) g 5),14); MP
16)(anb) > g 6)-15); Conditional Proof

Since the hypothesis a A b of the 6) step can be fulfilled by the Target Abduce step,
Reasoning 10 is proved to be valid.

Proof of Reasoning 11

Reasoning 11. If T, is given and T, is given, then T, and T, can be combined to
approximate the true target for NS,.

Proof-R11. Firstly, with T, and T,, we have following derived preconditions for
Reasoning 11.

1. If T, is given and T, is given, then T, and T, are both corresponding to IS,.



2.

If T, is given, then T, has a high precision of true tumour positives and a high
recall of true tumour negatives and T, has a low recall of true tumour positives
and a low precision of true tumour negatives. (Reasoning 6 and Reasoning 8)
If T, is given, then T, can have a relatively higher recall of true tumour
positives than T, and a relatively higher precision of true tumour negatives than
T,. (Reasoning 9)

If T, has a high precision of true tumour positives and a high recall of true
tumour negatives and T, has a low recall of true tumour positives and a low
precision of true tumour negatives, and T, can have a relatively higher recall of
true tumour positives than T, and a relatively higher precision of true tumour
negatives than T,, then T, and T, can be combined to possess a high precision
of true tumour positives and a high recall of true tumour negatives while having
a relatively higher recall of true tumour positives and a relatively higher
precision of true tumour negatives.

If T, and T, can be combined to possess a high precision of true tumour
positives and a high recall of true tumour negatives while having a relatively
higher recall of true tumour positives and a relatively higher precision of true
tumour negatives, and T, and T, are both corresponding to IS,, then T, and T,
can be combined to approximate the true target for IS,.

Secondly, we give the propositional symbols for the above preconditions 1-5 for
Reasoning 11, which are shown in Table 13.

Table 13. Propositional symbols of preconditions for Reasoning 11

Symbol Meaning
a T,is given
b T,is given
c T, and T, are both corresponding to IS,
d T, has a high precision of true tumour positives and a high recall of true tumour

g

negatives and T, has a low recall of true tumour positives and a low precision of true
tumour negatives

T, can have a relatively higher recall of true tumour positives than T, and a relatively
higher precision of true tumour negatives than T,

T, and T, can be combined to possess a high precision of true tumour positives and a
high recall of true tumour negatives while having a relatively higher recall of true
tumour positives and a relatively higher precision of true tumour negatives

T, and T, can be combined to approximate the true target for IS,

Thirdly, referring to Table 13, we signify the propositional formalizations of the
preconditions 1-5 for Reasoning 11 and Reasoning 11 via the propositional connectives
listed in Table 1 as follows.

1) (anb)—>c Precondition
2) a—-d Precondition
3) b—-e Precondition
4) (dne) - f Precondition
5 (fAc)—-g Precondition

(anb)—>g Reasoning 10



Fourthly, we show the validity of Reasoning 11 via the rules for proof of

propositional logical reasoning listed in Table 2 as follows.
~(anb)-> g
6) aAnb
7) a
8) b
9) ¢
10) d
11)e
12)d e

13) f
14) f Ac

15) g
16) (aAb) > g

Hypothesis
6); A —

6); A —
1),6); MP
2),7); MP
3),8); MP
10),11); A +
4),12); MP
13),9); A +
5),14); MP
6)-15); Conditional Proof

Since the hypothesis a A b of the 6) step can be fulfilled by the Target Abduce step,

Reasoning 11 is proved to be valid.



Supplementary 2

Multiple Targets Abduced from DiNS

Fig. 1. Examples of multiple targets abduced from the diverse noisy samples provided for
tumour segmentation in HE-stained pre-treatment biopsy images.




i

Fig. 2. Examples of multiple targets abduced from the diverse noisy samples provided for
tumour segmentation in HE-stained post-treatment surgical resection images.



Rearranged Multiple Targets

tn1+nz—1,1

tn1+nz,2

Fig. 3. Examples of rearranged multiple targets corresponding to Fig. 1.



tn1+n2—1,1

thi+12 th+2,2 thi+np-12

Fig. 4. Examples of rearranged multiple targets corresponding to Fig. 2.



Supplementary 3

More typical testing results of various state-of-the-art approaches (respectively without OSAMTL-DINS introduced and with OSAMTL-DINS introduced) for handling
complex noisy labels on Task:

NCE-SCE DT-Forward Peer SCE D2L Boost-Soft Boost-Hard Backward Forward Baseline

without OSAMTL-DiNS

with OSAMTL-DiNS

NCE-SCE DT-Forward Peer SCE D2L Boost-Soft Boost-Hard Backward Forward Baseline

without OSAMTL-DiNS

with OSAMTL-DiNS




NCE-SCE DT-Forward Peer

R . . .
e . . .

Boost-Soft Boost-Hard Backward Forward Baseline

NCE-SCE DT-Forward Peer SCE D2L Boost-Soft Boost-Hard Backward Forward Baseline

with OSAMTL-DiNS




More typical testing results of various state-of-the-art approaches (respectively without OSAMTL-DINS introduced and with OSAMTL-DINS introduced) for handling
complex noisy labels on Task2:

Forward Baseline

without OSAMTL-DiNS &

with OSAMTL-DiNS

without OSAMTL-DiNS

with OSAMTL-DiNS



NCE-SCE DT-Forward Peer SCE D2L Boost-Soft  Boost-Hard Backward Forward BaseLme

without OSAMTL-DINS

with OSAMTL-DiNS

NCE-SCE DT-Forward Peer Boost-Soft Boost-Hard Backward Forward Baseline

e . . . . .. . . . .
B . . . . .. . . . .



