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Abstract   

Recent studies have demonstrated the effectiveness of the combination of machine 

learning and logical reasoning, including data-driven logical reasoning, knowledge 

driven machine learning and abductive learning, in inventing advanced technologies 

for different artificial intelligence applications. One-step abductive multi-target 

learning (OSAMTL), an approach inspired by abductive learning, via simply 

combining machine learning and logical reasoning in a one-step balanced multi-target 

learning way, has as well shown its effectiveness in handling complex noisy labels of 

a single noisy sample in medical histopathology whole slide image analysis 

(MHWSIA). However, OSAMTL is not suitable for the situation where diverse noisy 

samples (DiNS) are provided for a learning task. In this paper, giving definition of 

DiNS, we propose one-step abductive multi-target learning with DiNS (OSAMTL-

DiNS) to expand the original OSAMTL to handle complex noisy labels of DiNS. 

Applying OSAMTL-DiNS to tumour segmentation for breast cancer in MHWSIA, we 

show that OSAMTL-DiNS is able to enable various state-of-the-art approaches for 

learning from noisy labels to achieve more rational predictions. We released a model 

pre-trained with OSAMTL-DiNS for tumour segmentation in HE-stained pre-treatment 

biopsy images in breast cancer, which has been successfully applied as a pre-processing 

tool to extract tumour-associated stroma compartment for predicting the pathological 

complete response to neoadjuvant chemotherapy in breast cancer. 
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1 Introduction 

Perception and cognition, two instincts of human beings for information processing 

in problem-solving, can be respectively realized by machine learning (Wichmann et al., 

2005) and logical reasoning (Rips, 1983). Usually, the paradigm for information 

processing of machine learning is data-driven, i.e., machine learning constructs the flow 

of information processing based on collected data. Whereas, the paradigm for 

information processing of logical reasoning is knowledge-driven, i.e., logical reasoning 

constructs the flow of information processing based on accumulated knowledge. In 

most history of artificial intelligence research, machine learning and logical reasoning 

have been separately developed (Zhou, 2019), due to their significant differences in the 

representation for the flow of information processing. In recent years, however, with 

the argument that human beings perform information processing in problem-solving 

based on the leverage of both perception and cognition, researchers have shown that 

more effective flows of information processing can be constructed via the combination 

of machine learning and logical reasoning (D’Amato et al., 2012; D. Li et al., 2020; 

Zhou, 2019). Existing efforts of combining machine learning and logical reasoning for 

advanced  artificial intelligence technologies can be summarized as in data-driven 



logical reasoning (DDLR) (D’Amato et al., 2012), knowledge-driven machine learning 

(KDML) (D. Li et al., 2020) and abductive learning (ABL) (Zhou, 2019).  

DDLR maintains logical reasoning as the dominant paradigm for information 

processing, in which some data-driven flows constructed by machine learning serves as 

intermediate components. KDML maintains machine learning as the dominant 

paradigm for information processing, in which some knowledge-driven flows 

constructed by logical reasoning serves as intermediate components. DDLR prioritizes 

logical reasoning over machine learning while KDML prioritizes machine learning over 

logical reasoning. As a result, machine learning and logical reasoning are not fully 

exploited in DDLR and KDML. To overcome this problem, ABL unifies machine 

learning and logic reasoning in a balanced way and targets at achieving mutual benefit 

between machine learning and logical reasoning in an iterative strategy. 

Apart from the fact that the original paradigm of ABL has been demonstrated to be 

effective in some real-world applications (Dai et al., 2019; Y. X. Huang et al., 2020), 

recent studies (Yang et al., 2020, 2024) show approach that simply exploits the concept 

of unifying machine learning and logical reasoning in a balanced way from ABL is as 

well fairly effective in specific application. This approach is so called one-step 

abductive multi-target learning (OSAMTL) (Yang et al., 2024), since it only combines 

machine learning and logical reasoning in a one-step balanced way without targeting at 

a mutual benefit in an iterative strategy. OSAMTL targets at alleviating the situation 

where it is often difficult for experts to manually achieve the accurate ground-truth 

labels, which leads to labels with complex noisy for a learning task (aka, learning from 

noisy labels (Frénay & Verleysen, 2014; Karimi et al., 2020; Song et al., 2022)). Based 

on the concept of unifying machine learning and logical reasoning in a balanced way 

from ABL, OSAMTL exploits multiple inaccurate targets abduced from a single noisy 

sample via logical reasoning to achieve more reasonable predictions via multi-target 

learning. On a H. pylori segmentation task in medical histopathology whole slide 

images  (Hanna et al., 2020) analysis (MHWSIA) (Yang et al., 2020, 2024), for the first 

time, OSAMTL has been reported to possess potentials in handling complex noisy 

labels in MHWSIA. More details about existing approaches in combination of machine 

learning and logical reasoning can be found in section 2.1. 

Since it is based on a single noisy sample, OSAMTL is naturally not suitable for 

the situation where diverse noisy samples (DiNS) are provided for a learning task. DiNS 

contain at least two types of noisy samples, where diversity exists between any two 

non-repeating noisy samples. Due to this property, DiNS can constitute a noisy data 

that have very complex noise. In this paper, formally giving definition of DiNS, we 

propose one-step abductive multi-target learning with DiNS (OSAMTL-DiNS) and 

provide analyses of OSAMTL-DiNS compared with the original OSAMTL. Being able 

to handle DiNS, OSAMTL-DiNS only require very inaccurately labelled (complex 

noisy) samples to produce a predictive model. This property forms the major advantage 

of OSAMTL-DiNS, since the data preparation can be much less labour-tensive though 

at least two types of noisy samples are needed. Thus, OSAMTL-DiNS is suitable to 

address some tasks in the field of medical analysis where the problem of low 

consistency always exists. Low consistency, here in the context of DiNS, can refer to 



that large is the difference between the noisy distributions of two different noisy 

samples prepared by experts for a same medical analysis task, which usually results in 

more complex noisy in data annotations. More details about DiNS and the proposed 

OSAMTL-DiNS can be found in section 2.2. 

Quantitative evaluation of tumour in breast cancer can provide clues important to 

subsequent therapy of breast cancer (Pu et al., 2020; Yau et al., 2022). The key point is 

to achieve tumour segmentation for breast cancer (TSfBC), which is a fundamental key 

technique that can be leveraged to calculate the tumour-stroma ratio which has been 

proven to be a prognostic factor in breast cancer (de Kruijf et al., 2011). Existing deep 

learning (LeCun et al., 2015) enhanced approaches that can be leveraged to achieve 

TSfBC can be classified into two schemes: learning with noisy-free/accurate labels 

(Bhattacharjee et al., 2022; Priego-Torres et al., 2020, 2022) and learning with 

noisy/inaccurate labels (Diao et al., 2022; G. Xu et al., 2019; Y. Xu et al., 2014). The 

first type of scheme adopts the supervised learning paradigm. However, due to the 

difficulty in accurately labelling the tumour in breast cancer on whole slide images, 

very limited noisy-free data is often available, which will inevitably limit the 

generalization of the prediction model. The second type of scheme adopts the weakly 

supervised learning paradigm, which avoids the problem of the difficulty in obtaining 

noisy-free data faced by the first type of scheme. However, the popular strategy of using 

image patch-level labels to achieve pixel-level segmentation (Diao et al., 2022; G. Xu 

et al., 2019; Y. Xu et al., 2014) has the drawbacks in MHWSIA that the work load of 

image patch-level labelling can still be very massive due to the large size of whole slide 

images and the prediction results can be very coarse at high resolution. 

To alleviate this situation, in this paper, we applied the proposed OSAMTL-DiNS 

to TSfBC in MHWSIA. As OSAMTL-DiNS only requires very inaccurately labelled 

(complex noisy) samples, the difficulty in pixel-level labelling for the task of TSfBC in 

MHWSIA is considerably reduced. Referring to the proposed OSAMTL-DiNS, we 

implemented an OSAMTL-DiNS-based image semantic segmentation solution for 

TSfBC in MHWSIA and conducted extensive experiments to demonstrate the 

potentials of OSAMTL-DiNS in MHWSIA. More details about the application of 

OSAMTL-DiNS to TSfBC and corresponding strategies for experimental conduction 

can be found in section 2.3 and section 2.4. 

Experiment results show that OSAMTL-DiNS is able to enable various existing 

approaches for learning from noisy labels (Algan & Ulusoy, 2021; Frénay & Verleysen, 

2014; Sukhbaatar & Fergus, 2014), including naively learning from noisy labels, 

Forward, Backward (Patrini et al., 2017), Boost-Hard, Boost-Soft (Arazo et al., 2019; 

Reed et al., 2015), D2L (Ma et al., 2018), SCE (Wang et al., 2019), Peer (Liu & Guo, 

2020), DT-Forward (Yao et al., 2020), and NCE-SCE (Ma et al., 2020), to achieve more 

rational predictions. We also released a predictive model pre-trained with OSAMTL-

DiNS for tumour segmentation in HE-stained pre-treatment biopsy images in breast 

cancer, which has been successfully applied as a pre-processing tool to extract tumour-

associated stroma compartment for predicting the pathological complete response to 

neoadjuvant chemotherapy in breast cancer (F. Li et al., 2022).  

In summary, the contributions of this work are as follows: 



⚫ One-step abductive multi-target learning with diverse noisy samples 

(OSAMTL-DiNS) is proposed, which only require very inaccurately labelled 

(complex noisy) samples to produce a predictive model. 

⚫ The proposed OSAMTL-DiNS is applied to address the task of tumour 

segmentation for breast cancer (TSfBC) in medical histopathology whole slide 

image analysis (MHWSIA). 

⚫ Extensive experiments show that the proposed OSAMTL-DiNS is able to 

enable various existing approaches for learning from noisy labels to achieve 

more rational predictions in the task of TSfBC in MHWSIA, which reflects the 

potential effectiveness of OSAMTL-DiNS in handling complex noisy labels in 

MHWSIA. 

⚫ A predictive model pre-trained with OSAMTL-DiNS for tumour segmentation 

in HE-stained pre-treatment biopsy images in breast cancer is released and has 

been successfully applied as a pre-processing tool to extract tumour-associated 

stroma compartment for predicting the pathological complete response to 

neoadjuvant chemotherapy in breast cancer, which reflects the potentials of 

using OSAMTL-DiNS to help building basic tools for MHWSIA. 

 

2 Material and Methods 

This section is structured as follows. In section 2.1, we briefly formalize existing 

methodologies for combining machine learning and logical reasoning and summarize 

their differences. In section 2.2, we present the methodology of the proposed 

OSAMTL-DiNS and corresponding summaries about its properties. In section 2.3, we 

apply the proposed OSAMTL-DiNS to tumour segmentation for breast cancer (TSfBC) 

in MHWSIA. In section 2.4, on the basis of the implemented application of OSAMTL-

DiNS to TSfBC, we present the experimental strategies for conducting extensive 

experiments to investigate the contributions of OSAMTL-DiNS in handling complex 

noisy labels.  

2.1 Combination of machine learning and logical reasoning 

In this subsection, we briefly formalize the methodologies for combining of 

machine learning and logical reasoning and summarize their differences. Firstly, in 

section 2.1.1, we give the preliminary formalizations about machine learning and 

logical reasoning. Secondly, we formalize existing methodologies of combining 

machine learning and logical reasoning respective in sections 2.1.2-5. Finally, in 

section 2.1.6, we summarize the differences of existing methodologies based on their 

formalizations. 

2.1.1 Preliminary 

Machine learning Commonly for a machine learning task in artificial intelligence 

research, a collected dataset containing certain instances (𝑥) and corresponding labels 

(𝑦) for the task is provided. The objective of the task here is to estimate a predictive 

function 𝑓 parameterized by 𝜃 (𝑓(𝜃)) that can map  𝑥 to corresponding predictions 

(𝑓(𝑥; 𝜃)) which are as correct as possible compared with 𝑦. Formally, the objective of 

a machine learning task can be expressed as 



𝑓(�̃�) = arg𝑚𝑖𝑛
𝑓∈Θ𝑓,𝜃∈Θ𝜃

||𝑓(𝑥; 𝜃) − 𝑦||, 

where Θ𝑓 is the function space of 𝑓, Θ𝜃 is the parameter space of 𝜃 corresponding to 

𝑓 and ||𝑓(𝑥; 𝜃) − 𝑦|| denotes the error between 𝑓(𝑥; 𝜃) and 𝑦. 

Logical reasoning Commonly for a logical reasoning task in artificial intelligence 

research, a collected dataset containing certain instances (𝑥) and corresponding labels 

(𝑦 ) for the task and a collected knowledge base (𝑘𝑏 ) containing various prior 

knowledge or facts about the task are both provided. The objective of the task here is 

to search a reasoning path 𝑟 that can from 𝑥 and 𝑦 draw conclusions (𝑟(< 𝑥, 𝑦 >)) 

consistent with some knowledge or facts in 𝑘𝑏. Formally, the objective of a logical 

reasoning task can be expressed as 

�̃� = arg 𝑠𝑒𝑎𝑟𝑐ℎ
𝑟∈Θ𝑟

 𝑟(< 𝑥, 𝑦 >) ≅ 𝑘𝑏, 

where Θ𝑟 is the reasoning path space of 𝑟 and 𝑟(< 𝑥, 𝑦 >) ≅ 𝑘𝑏 denotes  𝑟(< 𝑥, 𝑦 >) 

is consistent with 𝑘𝑏.  

2.1.2 Data-driven logical reasoning  

Data-driven logical reasoning (DDLR) (D’Amato et al., 2012) adapts machine 

learning to logical reasoning. Formally, the objective of a DDLR task can be expressed 

as 

�̃� = arg 𝑠𝑒𝑎𝑟𝑐ℎ
𝑟∈Θ𝑟

 𝑟(< 𝑥, 𝑓(𝑥; �̃�) >) ≅ 𝑘𝑏,                           (1) 

where 𝑓(�̃�) = arg𝑚𝑖𝑛
𝑓∈Θ𝑓,𝜃∈Θ𝜃

||𝑓(𝑥; 𝜃) − 𝑦||. 

2.1.3 Knowledge-driven machine learning 

Knowledge-driven machine learning (KDML) (D. Li et al., 2020) adapts logical 

reasoning to machine learning. Formally, the objective of a task can be expressed as 

𝑓(�̃�) = arg𝑚𝑖𝑛
𝑓∈Θ𝑓,𝜃∈Θ𝜃

||𝑓(�̃�(< 𝑥, 𝑦 >); 𝜃) − 𝑦||,                      (2) 

where �̃� = arg 𝑠𝑒𝑎𝑟𝑐ℎ
𝑟∈Θ𝑟

𝑟(< 𝑥, 𝑦 >) ≅ 𝑘𝑏. 

2.1.4 Abductive learning 

Abductive learning (ABL) (Zhou, 2019) has two important concepts: 1) unifying 

machine learning and logic reasoning in a balanced way, and 2) targeting at achieving 

a mutual benefit between machine learning and logical reasoning in an iterative strategy. 

Formally, the objective of a ABL task can be expressed as 

{

�̃�𝑘 = arg 𝑠𝑒𝑎𝑟𝑐ℎ
𝑟∈Θ𝑟

 𝑟(< 𝑥, �̃�𝑚𝑙,𝑘 >) ≅ 𝑘𝑏 , �̃�𝑚𝑙,𝑘 = 𝑓𝑘−1(𝑥; �̃�𝑘−1)

𝑓𝑘(�̃�) = arg𝑚𝑖𝑛
𝑓∈Θ𝑓,𝜃∈Θ𝜃

||𝑓(𝑥; 𝜃) − �̃�𝑙𝑟,𝑘|| , �̃�𝑙𝑟,𝑘 = �̃�𝑘(< 𝑥, �̃�𝑚𝑙,𝑘 >) 
,      (3) 

where 𝑘 = 1,⋯ ,𝑁 and 𝑓0(�̃�0) can be a pre-trained machine learning model. 

2.1.5 One-step abductive multi-target learning 

One-step abductive multi-target learning (OSAMTL) (Yang et al., 2024) only 

combines machine learning and logical reasoning in a one-step balanced multi-target 

learning way. Formally, the objective of a OSAMTL task can be expressed as 



{

�̃� = arg 𝑠𝑒𝑎𝑟𝑐ℎ
𝑟∈Θ𝑟

 𝑟(< 𝑥, 𝑦 >) ≅ 𝑘𝑏                                                               

𝑓(�̃�) = arg𝑚𝑖𝑛
𝑓∈Θ𝑓,𝜃∈Θ𝜃

||𝑓(𝑥; 𝜃) − �̃�𝑙𝑟|| , �̃�𝑙𝑟 = �̃�(< 𝑥, 𝑦 >) = {𝑡1, ⋯ , 𝑡𝑛} 
,       (4) 

where 𝑦 can be rough labels provided by experts or predictions of a pre-trained machine 

learning model, and �̃�𝑙𝑟 is a set of multiple inaccurate targets which can be expressed 

as {𝑡1, ⋯ , 𝑡𝑛}. 

2.1.6 Summary 

From formula (1), we can note that DDLR prioritizes logical reasoning over 

machine learning by maintaining logical reasoning as the dominant paradigm for 

information processing, in which the results produced by machine learning serves as 

some inputs. From formula (2), we can note that KDML prioritizes machine learning 

over logical reasoning by maintaining machine learning as the dominant paradigm for 

information processing, in which the results produced by logical reasoning serves as 

some inputs. In the paradigms of both DDLR and KDML, machine learning and logical 

reasoning are not fully exploited by adapting one to the other.  

From formula (3), we can note that the results produced by machine learning serve 

as some inputs of logical reasoning and the results produced by logical reasoning serve 

as the target of machine learning. This indicates that machine learning and logical 

reasoning are placed in equal positions in the objective of a ABL task. Iteratively, let 

𝑘 = 1,⋯ ,𝑁 , ABL is able to fully exploit machine learning and logical reasoning, 

which cannot be fulfilled by DDLR or KDML. 

From formula (4), we can note that it can be regarded as a special case of formula 

(3) when 𝑘 = 1. In formula (4), the objective of logical reasoning is independent of the 

objective of machine learning and the results produced by logical reasoning serve as a 

set of multiple targets of machine learning. These two indicate, being a special case of 

ABL, OSAMTL only combines machine learning and logical reasoning in a one-step 

balanced way without targeting at a mutual benefit in an iterative strategy.  

Overall speaking, the differences of DDLR, KDML, ABL and OSAMTL for the 

combination of machine learning and logical reasoning can be summarized as Fig. 1. 

2.2 Proposed OSAMTL-DiNS 

In this subsection, we propose one-step abductive multi-target learning with 

diverse noisy samples (OSAMTL-DiNS) to expand the original OSAMTL to handle 

complex noisy labels of diverse noisy samples. The outline for the methodology of 

OSAMTL-DiNS is shown as Fig. 2. Specifically, section 2.2.1 gives the definition for 

DiNS; section 2.2.2 presents the formalizations for the proposed OSAMTL-DiNS; and 

section 2.2.3 summarizes some properties of the proposed OSAMTL-DiNS.  



 

 

 
Figure. 1. Summarization for differences of DDLR, KDML, ABL and OSAMTL for the combination of machine learning and logical reasoning. 
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2.2.1 Definition of diverse noisy samples 

A noisy sample (𝑁𝑆∗) consists of an instance sample (𝐼𝑆∗) and a noisy label sample 

(𝑁𝐿𝑆∗). An instance sample contains a number of instances (𝐼) and a noisy label sample 

contains a number of noisy labels ( 𝑁𝐿 ). The instances of 𝐼𝑆∗  are one-to-one 

corresponding to the noisy labels of 𝑁𝐿𝑆∗. Formally, a noisy sample can be denoted by  

𝑁𝑆∗ = {𝐼𝑆∗, 𝑁𝐿𝑆∗} = {{𝐼∗,1, ⋯ , 𝐼∗,𝑛∗}, {𝑁𝐿∗,1,⋯ , 𝑁𝐿∗,𝑛∗} }

= {(𝐼∗,1, 𝑁𝐿∗,1),⋯ (𝐼∗,𝑛∗ , 𝑁𝐿∗,𝑛∗)}, 

where 𝑛∗ is the number for instances or noisy labels of 𝑁𝑆∗. 

The diversity of two noisy samples (𝐷𝑖𝑣𝑎,𝑏) can be evaluated by the differences 

between their instances and corresponding noisy labels. Formally, the diversity of two 

noisy samples can be denoted by  

𝐷𝑖𝑣𝑎,𝑏 = 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑖𝑎𝑡𝑒 (𝑁𝑆𝑎, 𝑁𝑆𝑏) 

= 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑖𝑎𝑡𝑒(𝐼𝑆𝑎, 𝐼𝑆𝑏) ∗ 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑖𝑎𝑡𝑒(𝑁𝐿𝑆𝑎, 𝑁𝐿𝑆𝑏). 

For simplicity, we define 𝐷𝑖𝑣𝑎,𝑏 ∈ [0,1], where 1 signifies diversity exists between 

𝑁𝑆𝑎 and 𝑁𝑆𝑏 while 0 indicates the opposite.  

Diverse noisy samples (DiNS) have at least two noisy samples, where diversity 

exists between any two non-repeating noisy samples. Due to this property, DiNS can 

constitute a noisy data that have very complex noise. Formally, diverse noisy samples 

can be defined as 

𝐷𝑖𝑁𝑆 = {𝑁𝑆1, ⋯ , 𝑁𝑆𝑑} = {{𝐼𝑆1, 𝑁𝐿𝑆1},⋯ , {𝐼𝑆𝑑, 𝑁𝐿𝑆𝑑}} 

= {{{𝐼1,1,⋯ , 𝐼1,𝑛1}, {𝑁𝐿1,1,⋯ , 𝑁𝐿1,𝑛1}} ,⋯ , {{𝐼𝑑,1, ⋯ , 𝐼𝑑,𝑛𝑑}, {𝑁𝐿𝑑,1, ⋯ , 𝑁𝐿𝑑,𝑛𝑑}}} 

= {{(𝐼1,1, 𝑁𝐿1,1),⋯ (𝐼1,𝑛1 , 𝑁𝐿1,𝑛1)},⋯ , {(𝐼𝑑,1, 𝑁𝐿𝑑,1),⋯ (𝐼𝑑,𝑛𝑑 , 𝑁𝐿𝑑,𝑛𝑑)}} 

𝑠. 𝑡.     ∀𝑎, ∀𝑏 ∈ {1,⋯ , 𝑑} 𝑎𝑛𝑑 𝑎 ≠ 𝑏, ∃ 𝐷𝑖𝑣𝑎,𝑏 = 1. 

2.2.2 One-step abductive multi-target learning with DiNS 

With the given definition of DiNS, we propose one-step abductive multi-target 

learning with diverse noisy samples (OSAMTL-DiNS). OSAMTL-DiNS constitutes of 

four components, including input materials, one-step logical reasoning, target 

rearrangement and multi-target learning. 

Input materials The input materials of OSAMTL-DiNS include some given 

diverse noisy samples (𝐷𝑖𝑁𝑆) and a knowledge base (𝐾𝐵) containing a list of domain 

knowledge about the true target of a specific task. Referring to the formulations of 𝐷𝑁𝑆 

presented in Section 3.1, the input materials of OSAMTL can be more specifically 

denoted as follows 

𝐷𝑖𝑁𝑆 = {𝑁𝑆1, ⋯ , 𝑁𝑆𝑑}, 

𝐾𝐵 = {𝐾1, ⋯ , 𝐾𝑏}. 

 

One-step abductive logical reasoning with DiNS With the given 𝐷𝑖𝑁𝑆 and 𝐾𝐵, 

the one-step logical reasoning procedure of OSAMTL-DiNS, which consists of four 

substeps, abduces multiple targets containing information consistent with the domain 

knowledge about the true target of a specific task.  



 

 
Figure. 2. The outline for the methodology of OSAMTL-DiNS. For simplicity of elaborating the methodology of OSAMTL-DiNS, we assume that each instance sample (𝐼𝑆∗) 
and each noisy sample (𝑁𝐿𝑆∗) of the given diverse noisy samples (𝐷𝑁𝑆) only have one instance and one noisy label respectively. This simplified elaboration can be deduced 

to the situation where each instance sample (𝐼𝑆∗) and each noisy sample (𝑁𝐿𝑆∗) of the given diverse noisy samples (𝐷𝑁𝑆) have a set of instances and a set of noisy labels 

respectively. 
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The substep one extracts a list of groundings from the given set of noisy label 

samples that can describe the logical facts contained in the given diverse noisy samples. 

Formally, this grounding extract (𝐺𝐸) step can be expressed as 

𝐺 = 𝐺𝐸(𝐷𝑖𝑁𝑆; 𝑝𝐺𝐸) = {𝐺𝐸(𝑁𝑆1; 𝑝
𝐺𝐸1),⋯ , 𝐺𝐸(𝑁𝑆𝑑; 𝑝

𝐺𝐸𝑑)} 

= {𝐺1 = {𝐺1,1,⋯ , 𝐺1,𝑟1},⋯ , 𝐺𝑑 = {𝐺𝑑,1, ⋯ , 𝐺𝑑,𝑟𝑑}}.                            (5) 

Via logical reasoning, the substep two estimates the inconsistencies between the 

extracted groundings 𝐺  and the domain knowledge in the knowledge base 𝐾𝐵 . 

Formally, this reasoning (𝑅) step can be expressed as 

𝐼𝐶 = 𝑅(𝐺, 𝐾𝐵; 𝑝𝑅) = {𝑅(𝐺1, 𝐾𝐵; 𝑝
𝑅1),⋯ , 𝑅(𝐺𝑑, 𝐾𝐵; 𝑝

𝑅𝑑)} 

= {𝐼𝐶1 = {𝐼𝐶1,1, ⋯ , 𝐼𝐶1,𝑖1},⋯ , 𝐼𝐶𝑑 = {𝐼𝐶𝑑,1, ⋯ , 𝐼𝐶𝑑,𝑖𝑑}}.                          (6) 

The substep three revises the groundings of the given set of noisy label samples by 

logical abduction based on reducing the estimated inconsistency 𝐼𝐶 . Formally, this 

logical abduction (𝐿𝐴) step can be expressed as  

𝑅𝐺 = 𝐿𝐴(𝐼𝐶; 𝑝𝐿𝐴) = {𝐿𝐴(𝐼𝐶1; 𝑝
𝐿𝐴1),⋯ , 𝐿𝐴(𝐼𝐶𝑑; 𝑝

𝐿𝐴𝑑)} 

= {{𝐺𝑅1,1,⋯ , 𝐺𝑅1,𝑧1},⋯ , {𝐺𝑅𝑑,1, ⋯ , 𝐺𝑅𝑑,𝑧𝑑}} 

= {𝑅𝐺1(𝐺𝑅1,1),⋯ , 𝑅𝐺𝑠(𝐺𝑅𝑑,𝑧𝑑)}         𝑠. 𝑡.     𝑠 = ∑ 𝑧𝑖
𝑑
𝑖=1 .                        (7) 

Finally, the substep four leverages the revised groundings 𝑅𝐺 to abduce multiple 

targets containing information consistent with our domain knowledge about the true 

target for the instance sample of the given noisy smaples. Formally, this target abduce 

(𝑇𝐴) step can be expressed as 

𝑇 = 𝑇𝐴({𝑅𝐺}; 𝑝𝑇𝐴) 

= {
𝑇𝐴({𝑅𝐺1,1,⋯ , 𝑅𝐺1,𝑒1}; 𝑝

𝑇𝐴1),⋯ ,

𝑇𝐴({𝑅𝐺𝑚,1,⋯ , 𝑅𝐺𝑚,𝑒𝑚}; 𝑝
𝑇𝐴𝑚)

} 

= {𝑇1, ⋯ , 𝑇𝑚}       𝑠. 𝑡.  {𝑅𝐺∗,1,⋯ , 𝑅𝐺∗,𝑒∗} ∈ 𝑅𝐺.                               (8) 

In the four formulas (1)-(4), each 𝑝∗ denotes the hyper-parameters corresponding 

to the implementation of respective expression. 

Target rearrangement The target rearrangement procedure of OSAMTL-DiNS 

rearranges the multiple targets abduced by the one-step logical reasoning with DiNS 

into ordered multiple targets that are corresponding to each instance sample of the given 

diverse noisy samples. Formally, the target rearrangement ( 𝑇𝑅 ) procedure of 

OSAMTL-DiNS can be expressed as 

𝑡�̃� = 𝑇𝑅(𝑇, 𝑝𝑇𝑅) 

= {𝑇𝑅({𝑇𝑖|𝑖 ∈ [1,𝑚], 𝑇𝑖 ∈ 𝑇}, 𝑝𝑇𝑅1),⋯ , 𝑇𝑅({𝑇𝑖|𝑖 ∈ [1,𝑚], 𝑇𝑖 ∈ 𝑇}, 𝑝𝑇𝑅𝑑)} 

= {𝑡�̃�1 = {𝑡�̃�1,1, ⋯ , 𝑡�̃�1,𝑟1},⋯ , 𝑡�̃�𝑑 = {𝑡�̃�𝑑,1, ⋯ , 𝑡�̃�𝑑,𝑟𝑑}}    𝑠. 𝑡.   𝑡�̃�∗ ∈ 𝑇 𝑎𝑛𝑑 𝑟∗ > 1.  

(9)   

Here, 𝑝𝑇𝑅  denotes the hyper-parameters corresponding to the implementation of a 

target rearrangement procedure.  

The formula (5) reflects that each instance sample of the given diverse noisy 

samples (𝐼𝑆∗) has corresponding 𝑟 number of targets (�̃�∗ = {{�̃�∗,1,⋯ , �̃�∗,𝑟∗}}) abduced by 



the one-step logical reasoning. Referring to the situation where each instance sample of 

the given diverse noisy samples only has one instance, the formular (5) can be deduced 

to imply that each instance contained in an instance sample of the given diverse noisy 

samples has corresponding multiple targets abduced by one-step logical reasoning. 

With this implication, we can rewrite the rearranged targets for an instance sample of 

the given diverse noisy samples as 

𝑡�̃�∗ = {𝑡�̃�∗,1, ⋯ , 𝑡�̃�∗,𝑟∗} = {{�̃�(∗,1),1, ⋯ , �̃�(∗,1),𝑟∗},⋯ , {�̃�(∗,𝑛∗),1,⋯ , �̃�(∗,𝑛∗),𝑟∗}}.          (10) 

As a result, the instances (𝐼) contained in the given diverse noisy samples and 

corresponding rearranged multiple targets (�̃�) can be denoted as  

𝐼 = {𝐼𝑆1 ∪⋯∪ 𝐼𝑆𝑑} = {{𝐼1,1,⋯ , 𝐼1,𝑛1} ∪ ⋯∪ {𝐼𝑑,1, ⋯ , 𝐼𝑑,𝑛𝑑}} = {𝐼1, ⋯ , 𝐼𝑛}, 

�̃� = {𝑡�̃�1 ∪⋯∪ 𝑡�̃�𝑑} = {
{{�̃�(1,1),1, ⋯ , �̃�(1,1),𝑟1},⋯ , {�̃�(1,𝑛1),1,⋯ , �̃�(1,𝑛1),𝑟1}} ∪ ⋯∪

{{�̃�(𝑑,1),1, ⋯ , �̃�(𝑑,1),𝑟𝑑},⋯ , {�̃�(𝑑,𝑛𝑑),1,⋯ , �̃�(𝑑,𝑛𝑑),𝑟𝑑}}
} 

= {�̃�1 = {�̃�1,1,⋯ , �̃�1,𝑟1},⋯ , �̃�𝑛 = {�̃�𝑛,1, ⋯ , �̃�𝑛,𝑟𝑛}},    𝑠. 𝑡.     𝑛 = ∑ 𝑛𝑖
𝑑
𝑖=1 .            (11) 

Multi-target learning The multi-target learning procedure of OSAMTL-DiNS is 

carried out on the basis of a specifically constructed learning model that maps input 

instances (𝐼) into its corresponding target prediction (𝑡), which can be expressed as  

𝑡 = 𝐿𝑀(𝐼, 𝜔) = {𝑡1, ⋯ , 𝑡𝑛}.                                          (12) 

Here, 𝐿𝑀  is short for learning model, and 𝜔  denotes the hyper-parameters 

corresponding to the construction of a specific learning model. 

The multi-target learning procedure of OSAMTL-DiNS, which constitutes of a 

joint loss construction and optimization, imposes the rearranged multiple targets (�̃�) 

upon machine learning to constrain the prediction of the learning model (𝑡). The joint 

loss is constructed by estimating the error between 𝑡∗ and �̃�∗, which can be expressed 

as  

ℒ(𝑡, �̃�; ℓ) =
1

𝑛
∑ ∑ 𝛼𝑖ℓ(𝑡𝑗, �̃�𝑗,𝑖)

𝑟𝑗
𝑖=1

𝑛
𝑗=1   𝑠. 𝑡.  ∑ 𝛼𝑖

𝑟𝑗
𝑖=1

= 1.                  (13) 

Here, ℓ denotes the hyper-parameters corresponding to the construction of the basic 

loss function, and 𝛼𝑖 is the weight for estimating the loss between 𝑡𝑗 and an abduced 

target (�̃�𝑗,𝑖) contained in �̃�𝑗. Then, the objective can be expressed as  

𝑚𝑖𝑛
𝑡
(ℒ(𝑡, �̃�; ℓ); 𝜆).                                               (14) 

Here, 𝜆  denotes the hyper-parameters corresponding to the implementation of an 

optimization approach. 

2.2.3 Summary 

OSAMTL-DiNS inherits properties from OSAMTL (Yang et al., 2024), including 

the difference of OSAMTL from abductive learning (ABL) (Zhou, 2019) and the 

distinctiveness of OSAMTL from various state-of-the-art approaches that are based on 

pre-assumptions about noisy-labelled instances (Arazo et al., 2019; Liu & Guo, 2020; 

Ma et al., 2018, 2020; Reed et al., 2015; Wang et al., 2019; Yao et al., 2020) or need 

premised requirements (Acuna et al., 2019; Li, J., Socher, R., & Hoi, 2020; Xiao et al., 

2015) to be carried out to handle noisy labels. OSAMTL-DiNS also inherits the essence 

of the multi-target learning procedure of OSAMTL, which is that the multi-garget 



learning procedure can enable the learning model to learn from a weighted 

summarization of multiple targets that contain information consistent to our prior 

knowledge about the true target of a specific task. For more details of these properties 

of OSAMTL-DiNS inherited from OSAMTL, readers can refer to (Yang et al., 2024). 

OSAMTL-DiNS improves OSAMTL. The one-step logical reasoning procedure of 

OSAMTL-DiNS abduces multiple targets using given diverse noisy samples and 

knowledge base, while the logical reasoning procedure of OSAMTL abduces multiple 

targets using given one noisy sample and knowledge base. OSAMTL-DiNS is suitable 

to address tasks where a knowledge base and multiple noisy samples are available and 

each noisy sample has a different noisy distribution in labels. From this side, OSAMTL 

can only handle a subset of the tasks for which OSAMTL-DiNS are suitable, since it 

can only handle the situation where the available noisy sample has one noisy 

distribution in labels. Thus OSAMTL-DiNS expands the generalization of original 

OSAMTL to a wider range of tasks.  

Besides, OSAMTL-DiNS possesses an extra target rearrangement procedure that 

rearranges the multiple targets abduced by the one-step logical reasoning with DiNS 

into ordered multiple targets corresponding to the instances contained in the given 

diverse noisy samples. As a result, the instances contained in the given diverse noisy 

samples and corresponding rearranged multiple targets can be conveniently employed 

by the multi-target learning procedure of OSAMTL-DiNS. 

As OSAMTL-DiNS is proposed to handle DiNS, it can produce a predictive model 

based on very inaccurately labelled (complex noisy) samples. This property forms the 

major advantage of OSAMTL-DiNS, since the data preparation can be much less 

expensive and less labour-tensive though at least two types of noisy samples are needed. 

Being able to handle DiNS, OSAMTL-DiNS is suitable to address some tasks in the 

field of medical analysis where the problem of low consistency always exists. Low 

consistency, here in the context of DiNS, can refer to that large is the difference between 

the noisy distributions of two different noisy samples prepared by experts for a same 

medical analysis task, which usually results in more complex noisy in data annotations. 

Notably, OSAMTL-DiNS is independent from the machine learning architectures, 

which is the same as the original OSAMTL. This property of OSAMTL-DiNS makes 

it possible to be combined with various state-of-the-art deep learning architectures 

chosen for specific tasks, such as deep convolutional neural networks, transformers or 

very large models. 

2.3 OSAMTL-DiNS applied on tumour segmentation for breast cancer 

In this section, we apply OSAMTL-DiNS on tumour segmentation for breast 

cancer (TSfBC) in medical histopathology whole slide image analysis (MHWSIA). 

Firstly, in section 2.3.1 we introduce the background of TSfBC, and in section 2.3.2 we 

give application settings of applying OSAMTL-DiNS on TSfBC. Secondly, in sections 

2.3.3-6, we implement the OSAMTL-DiNS based solution for TSfBC. Finally, in 

section 2.3.7 we summarize the outline of the implementation of the OSAMTL-DiNS 

based solution for TSfBC. 

2.3.1 Tumour segmentation for breast cancer 



Fig. 2 shows the illustrations for two tasks of TSfBC. The two tasks include a task 

that aims to segment tumour in HE-stained pre-treatment biopsy images and a task that 

aims to segment residual tumour in HE-stained post-treatment surgical resection images. 

From the illustrations presented in Fig. 3.A and Fig. 3.B, we can note that it is indeed 

difficulty to accurately annotate the true targets for both segmentation tasks. Referring 

to these illustrations and additional suggestions from pathology experts, we here claim 

that the tumour segmentation task in HE-stained post-treatment surgical resection 

images is more difficult than the tumour segmentation task in HE-stained pre-treatment 

biopsy images.  

Existing deep learning (LeCun et al., 2015) enhanced approaches that can be 

leveraged to achieve TSfBC can be classified into two schemes: learning with noisy-

free/accurate labels (Bhattacharjee et al., 2022; Priego-Torres et al., 2020, 2022) and 

learning with noisy/inaccurate labels (Diao et al., 2022; G. Xu et al., 2019; Y. Xu et al., 

2014). The first type of scheme adopts the supervised learning paradigm. However, due 

to the difficulty in accurately labelling the tumour in breast cancer on whole slide 

images (Hanna et al., 2020), very limited noisy-free data is often available, which will 

inevitably limit the generalization of the prediction model. The second type of scheme 

adopts the weakly supervised learning paradigm, which avoids the problem of the 

difficulty in obtaining noisy-free data faced by the first type of scheme. However, the 

popular strategy of using image patch-level labels to achieve pixel-level segmentation 

(Diao et al., 2022; G. Xu et al., 2019; Y. Xu et al., 2014) has the drawback in MHWSIA 

that the work load of image patch-level labelling can still be very massive due to the 

large size of whole slide images. To alleviate this situation, we apply the proposed 

OSAMTL-DiNS to TSfBC. 

2.3.2 Application setting 

On one hand, due to the difficulty to visually annotate the true target for TSfBC on 

HE-stained images, we asked two pathology experts to provide weak annotations: one 

pathology expert only aims to as accurate as possible exclude the non-true target on one 

data set; and another pathology expert only aims to as accurate as possible include the 

target on another dataset. As a result, two diverse noisy samples (DiNS) are provided 

for TSfBC from the vision perspective. On the other hand, existing knowledge of 

pathology can semantically give clear descriptions, that is a list of semantic sentences 

from pathological knowledge can present what is the true target for TSfBC. As a result, 

we also asked the two pathology experts to provide a knowledge base (KB) about the 

true target for TSfBC from the semantic perspective.  

The noisy labels contained in visual DiNS are inaccurate but can be easily 

transformed into learnable target, meanwhile, the sentences contained in semantic KB 

are clear but cannot be easily transformed into learnable target. It is desirable to take 

the advantages of both visual DiNS and semantic KB into machine learning to achieve 

more reasonable predictions. Fortunately, the proposed OSAMTL-DiNS framework 

can take advantages of both visual DiNS and semantic KB by transforming visual DiNS 

into multiple learnable inaccurate targets containing information consistent with the 

knowledge of semantic KB for the true target via one-step abductive logical reasoning. 

Thus, on the basis of the provided visual DiNS and semantic KB, we employ 



OSAMTL-DiNS to address tumour segmentation in HE-stained pre-treatment biopsy 

images and tumour segmentation in HE-stained post-treatment surgical resection 

images.   

 

 
Figure. 3. Illustrations for two tumour segmentation tasks for breast cancer. A: tumour segmentation in 

HE-stained pre-treatment biopsy images. B: tumour segmentation in HE-stained post-treatment surgical 

resection images. A-Left: A 1×  magnification shown medical histopathology whole slide image 

digitalized from a HE-stained pre-treatment biopsy slide; A-Right: A 10×magnification shown image 

patch cropped from the left whole slide image at the boxed area. B-Left: A 0.5×magnification shown 

medical histopathology whole slide image digitalized from a HE-stained post-treatment surgical 

resection slide; B-Right: A 10×magnification shown image patch cropped from the left whole slide 

image at the boxed area. Red boxes in A-Right image or B-Right image: areas that confidently contain 

tumour. Blue boxes in A-Right image or B-Right image: areas that possibly (not sure) contain tumour. 

Rest of A-Right image or B-Right image: areas that confidently do not contain tumour. Pathology experts 

annotated these boxes shown in A-Right image and B-Right image. 
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Figure. 4. Examples of diverse noisy samples provided for the two tumour segmentation tasks for breast 

cancer. A: diverse noisy samples for tumour segmentation in HE-stained pre-treatment biopsy images. 

B: diverse noisy samples for tumour segmentation in HE-stained post-treatment surgical resection images. 

 

2.3.3 Input materials 

Diverse noisy samples The diverse noisy samples (DiNS) provided for the two 

tumour segmentation tasks for breast cancer are denoted as follows.  

𝐷𝑁𝑆 = {𝑁𝑆1, 𝑁𝑆2} = {{𝐼𝑆1, 𝑁𝐿𝑆1}, {𝐼𝑆2, 𝑁𝐿𝑆2}} 

= {{{𝐼1,1,⋯ , 𝐼1,𝑛1}, {𝑁𝐿1,1, ⋯ , 𝑁𝐿1,𝑛1}} , {{𝐼2,1, ⋯ , 𝐼2,𝑛2}, {𝑁𝐿2,1, ⋯ , 𝑁𝐿2,𝑛2}}} 

= {{(𝐼1,1, 𝑁𝐿1,1),⋯ (𝐼1,𝑛1 , 𝑁𝐿1,𝑛1)}, {(𝐼2,1, 𝑁𝐿2,1),⋯ (𝐼2,𝑛2 , 𝑁𝐿2,𝑛2)}}. 

Some examples of the provided DiNS for the two tasks are shown as Fig. 4. The 

noisy labels contained in the provided DiNS can significantly alleviate the mission for 

accurate ground-truth labels, however, these noisy labels also suffer from severe 

inaccuracy compared with the true target for TSfBC. From Fig. 4, we can observe that 

many non-tumour areas are included as tumour by the labels of 𝑁𝑆1 while many tumour 

areas are excluded as non-tumour by the labels of 𝑁𝑆2.  
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Knowledge base Regarding to existing knowledge of pathology, the knowledge 

base (KB) provided for the two tumour segmentation tasks for breast cancer are shown 

as Table 1. 

𝐾𝐵 = {𝐾1, 𝐾2, 𝐾3, 𝐾4, 𝐾5, 𝐾6}. 

 

Table 1. Knowledge provided for tumour segmentation for breast cancer 

 

2.3.4 One-step abductive logical reasoning with DiNS 

Grounding Extract The Grounding Extract step takes the provided 𝐷𝑁𝑆 (shown 

in Fig. 2) as input and produces a list of groundings that describe the logical facts of the 

provided DiNS. Referring to Eq. (5), we use the semantics contained in the provided 

𝐷𝑁𝑆 as 𝑝𝐺𝐸 to implement the Grounding Extract step, which can produce groundings 

as follows 

𝐺 = 𝐺𝐸(𝐷𝑁𝑆; {𝑠𝑒𝑚𝑎𝑛𝑡𝑖𝑐𝑠 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑑 𝑖𝑛 𝐷𝑁𝑆}) 

=

{
 
 

 
 𝐺𝐸 (

𝑁𝑆1 = {𝐼𝑆1, 𝑁𝐿𝑆1};
{𝑠𝑒𝑚𝑎𝑛𝑡𝑖𝑐𝑠 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑑 𝑖𝑛 𝑁𝐿𝑆1 𝑓𝑜𝑟 𝑙𝑎𝑏𝑒𝑙𝑖𝑛𝑔 𝐼𝑆1}

) ,

𝐺𝐸 (
𝑁𝑆2 = {{𝐼𝑆2, 𝑁𝐿𝑆2}};

{𝑠𝑒𝑚𝑎𝑛𝑡𝑖𝑐𝑠 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑑 𝑖𝑛 𝑁𝐿𝑆2 𝑓𝑜𝑟 𝑙𝑎𝑏𝑒𝑙𝑖𝑛𝑔 𝐼𝑆2}
)
}
 
 

 
 

, 

= {
𝐺1 = {𝐺1,1, 𝐺1,2},

𝐺2 = {𝐺2,1, 𝐺2,2}
}. 

Details of the extracted groundings are provided in Table 2. 

 

Table 2. Details of the extracted groundings 

 

Reasoning The Reasoning step takes the 𝐺 extracted by the Grounding Extract 

step and the provided 𝐾𝐵 as inputs and produces a list of inconsistencies that describe 

the gap between the extracted groundings 𝐺  and the provided 𝐾𝐵  from various 

perspectives. On the basis of the extracted groundings 𝐺  and the provided 𝐾𝐵, we 

derive two reasonings (Reasoning 1 and Reasoning 2). The validity of the two derived 

Knowledge Base 

𝐾1: Tumour is composed of tumour cells. 

𝐾2: Tumour cells may be arranged in cords, clusters, and trabeculae. 

𝐾3: Some tumours are characterized by predominantly solid or syncytial infiltrative pattern 

with little associated stroma. 

𝐾4: Cytoplasm of tumour cell is eosinophilic and vacuolated. 

𝐾5: Nuclei of tumour cell is enlarged and chromatin of tumour cell is vacuolated. 

𝐾6: Nuclei of tumour cell is degenerated. 

Extracted Groundings 

𝐺1,1: pixels of 𝐼𝑆1 outside the polygons of 𝑁𝐿𝑆1 are tumour negatives 

𝐺1,2: pixels of 𝐼𝑆1 inside the polygons of 𝑁𝐿𝑆1 are tumour positives 

𝐺2,1: pixels of 𝐼𝑆2 inside the polygons of 𝑁𝐿𝑆2 are tumour positives 

𝐺2,2: pixels of 𝐼𝑆2 outside the polygons of 𝑁𝐿𝑆2 are tumour negatives 



reasonings are respectively proved by Proof-R1 and Proof-R2 which are provided in 

Supplementary 1. 

Reasoning 1. If 𝐺1 is given and 𝐾𝐵 is given, then inconsistency between the false 

tumour negatives covered by 𝐺1,1 and the false tumour negatives covered by 𝐾𝐵 is low, 

inconsistency between the false tumour positives covered by 𝐺1,2 and the false tumour 

positives covered by 𝐾𝐵  is high, inconsistency between the true tumour positives 

covered by 𝐺1,2 and the true tumour positives covered by 𝐾𝐵 is low, and inconsistency 

between the true tumour negatives covered by 𝐺1,1  and the true tumour negatives 

covered by 𝐾𝐵 is high. 

Reasoning 2. If 𝐺2 is given and 𝐾𝐵 is given, then inconsistency between the false 

tumour positives covered by 𝐺2,1 and the false tumour positives covered by 𝐾𝐵 is low, 

inconsistency between the false tumour negatives covered by 𝐺2,2 and the false tumour 

negatives covered by 𝐾𝐵  is high, inconsistency between the true tumour negatives 

covered by 𝐺2,2 and the true tumour negatives covered by 𝐾𝐵 is low, and inconsistency 

between the true tumour positives covered by 𝐺1,1  and the true tumour positives 

covered by 𝐾𝐵 is high. 

Referring to Eq. (6), we use Reasoning 1 and Reasoning 2 as 𝑝𝑅 to implement the 

Reasoning step, which can produce estimated inconsistencies between the extracted 

groundings 𝐺 and the provided 𝐾𝐵 as follows 

𝐼𝐶 = 𝑅(𝐺, 𝐾𝐵; {𝑅𝑒𝑎𝑠𝑜𝑛𝑖𝑛𝑔 1, 𝑅𝑒𝑎𝑠𝑜𝑛𝑖𝑛𝑔 2}) 

= {𝑅(𝐺1, 𝐾𝐵; 𝑅𝑒𝑎𝑠𝑜𝑛𝑖𝑛𝑔 1), 𝑅(𝐺2, 𝐾𝐵; 𝑅𝑒𝑎𝑠𝑜𝑛𝑖𝑛𝑔 2)} 

= {
𝐼𝐶1 = {𝐼𝐶1,1, 𝐼𝐶1,2, 𝐼𝐶1,3, 𝐼𝐶1,4},

𝐼𝐶2 = {𝐼𝐶2,1, 𝐼𝐶2,2, 𝐼𝐶2,3, 𝐼𝐶2,4}
} 

Details of the estimated inconsistencies are provided in Table 3. 

 

Table 3. Details of the estimated inconsistencies 

Estimated Inconsistencies 

𝐼𝐶1,1: inconsistency between the false tumour negatives covered by 𝐺1,1 and the false tumour 

negatives covered by 𝐾𝐵 is low 

𝐼𝐶1,2: inconsistency between the false tumour positives covered by 𝐺1,2 and the false tumour 

positives covered by 𝐾𝐵 is high 

𝐼𝐶1,3: inconsistency between the true tumour positives covered by 𝐺1,2 and the true tumour 

positives covered by 𝐾𝐵 is low 

𝐼𝐶1,4: inconsistency between the true tumour negatives covered by 𝐺1,1 and the true tumour 

negatives covered by 𝐾𝐵 is high 

𝐼𝐶2,1: inconsistency between the false tumour positives covered by 𝐺2,1 and the false tumour 

positives covered by 𝐾𝐵 is low 

𝐼𝐶2,2: inconsistency between the false tumour negatives covered by 𝐺2,2 and the false tumour 

negatives covered by 𝐾𝐵 is high 

𝐼𝐶2,3: inconsistency between the true tumour negatives covered by 𝐺2,2 and the true tumour 

negatives covered by 𝐾𝐵 is low 

𝐼𝐶2,4: inconsistency between the true tumour positives covered by 𝐺2,1 and the true tumour 

positives covered by 𝐾𝐵 is high 



 

Abduction The Abduction step takes the 𝐼𝐶 estimated by Reasoning step and the 

𝐺  extracted by the Grounding Extract step as inputs and produces a list of revised 

groundings that reduce the inconsistencies in 𝐼𝐶. On the basis of the estimated 𝐼𝐶 and 

the extracted 𝐺, we derive two reasonings (Reasoning 3 and Reasoning 4). The validity 

of the two derived reasonings are respectively proved by Proof-R3 and Proof-R4 which 

are provided in Supplementary 1. 

Reasoning 3. If  𝐼𝐶1 is given, then 𝐺1,1 should not be revised to remain 𝐼𝐶1,1,  𝐺1,2 

should not be revised to remain  𝐼𝐶1,3,  𝐺1,1 should be revised to reduce 𝐼𝐶1,4, and 𝐺1,2 

should be revised to reduce 𝐼𝐶1,2. 

Reasoning 4. If  𝐼𝐶2 is given, then 𝐺2,1 should not be revised to remain 𝐼𝐶2,1, then 

𝐺2,2 should not be revised to remain 𝐼𝐶2,3, 𝐺2,1 should be revised to reduce 𝐼𝐶2,2, and 

𝐺2,2 should be revised to reduce 𝐼𝐶2,4. 

Referring to Eq. (7), we use Reasoning 3 and Reasoning 4 as 𝑝𝐿𝐴 to implement the 

Abduction step, which can produce revised groundings as follows 

𝑅𝐺 = 𝐿𝐴({𝐼𝐶}; {𝑅𝑒𝑎𝑠𝑜𝑛𝑖𝑛𝑔 3, 𝑅𝑒𝑎𝑠𝑜𝑛𝑖𝑛𝑔4}) 

= {
𝐿𝐴({𝐼𝐶1}; 𝑅𝑒𝑎𝑠𝑜𝑛𝑖𝑛𝑔 3),

𝐿𝐴({𝐼𝐶2}; 𝑅𝑒𝑎𝑠𝑜𝑛𝑖𝑛𝑔 4)
} 

= {
{𝐺𝑅1,1, 𝐺𝑅1,2, 𝐺𝑅1,3, 𝐺𝑅1,4},

{𝐺𝑅2,1, 𝐺𝑅2,2, 𝐺𝑅2,3, 𝐺𝑅2,4}
} 

= {
𝑅𝐺1(𝐺𝑅1,1), 𝑅𝐺2(𝐺𝑅1,2), 𝑅𝐺3(𝐺𝑅1,3), 𝑅𝐺4(𝐺𝑅1,4),

𝑅𝐺5(𝐺𝑅2,1), 𝑅𝐺6(𝐺𝑅2,2), 𝑅𝐺7(𝐺𝑅2,3), 𝑅𝐺8(𝐺𝑅2,4)
} 

 

Details of the grounding revisions and the revised groundings are respectively 

provided in Table 4 and Table 5. 

 

Table 4. Details of the grounding revisions 

 

Table 5. Details of the revised groundings 

Grounding Revisions 

𝐺𝑅1,1: 𝐺1,1 should not be revised to remain 𝐼𝐶1,1 

𝐺𝑅1,2: 𝐺1,2 should not be revised to remain 𝐼𝐶1,3 

𝐺𝑅1,3: 𝐺1,1 should be revised to reduce 𝐼𝐶1,4 

𝐺𝑅1,4: 𝐺1,2 should be revised to reduce 𝐼𝐶1,2 

𝐺𝑅2,1: 𝐺2,1 should not be revised to remain 𝐼𝐶2,1 

𝐺𝑅2,2: 𝐺2,2 should not be revised to remain 𝐼𝐶2,3 

𝐺𝑅2,3: 𝐺2,1 should be revised to reduce 𝐼𝐶2,4 

𝐺𝑅2,4: 𝐺2,2 should be revised to reduce 𝐼𝐶2,2 

Revised Groundings 

𝑅𝐺1(𝐺𝑅1,1): = 𝐺1,1, pixels of 𝐼𝑆1 outside the polygons of 𝑁𝐿𝑆1 are tumour negatives 

𝑅𝐺2(𝐺𝑅1,2): = 𝐺1,2, pixels of 𝐼𝑆1 inside the polygons of 𝑁𝐿𝑆1 are tumour positives 



 

Target Abduce The target abduce step takes the 𝑅𝐺 produced by the Abduction 

step as input and abduces a list of multiple targets to more appropriately represent the 

true target of tumour for breast cancer. On the basis of the input  𝑅𝐺, we derive four 

reasonings (Reasoning 5, Reasoning 6, Reasoning 7 and Reasoning 8). The validity of 

the four derived reasonings are respectively proved by Proof-R5-9 which are provided 

in Supplementary 1. 

Reasoning 5. If  𝑅𝐺1 is given and 𝑅𝐺2 is given, then a target (𝑇1) can be abduced 

from the union of 𝑅𝐺1 and 𝑅𝐺2, and 𝑇1 has a high recall of true tumour positives and 

a high precision of true tumour negatives. 

Reasoning 6. If  𝑅𝐺5 is given and 𝑅𝐺6 is given, then a target (𝑇2) can be abduced 

from the union of 𝑅𝐺5 and 𝑅𝐺6, and 𝑇2 has a high precision of true tumour positives 

and a high recall of true tumour negatives. 

Reasoning 7. If the target (𝑇1) abduced from the union of 𝑅𝐺1 and 𝑅𝐺2 is given, 

𝑅𝐺3 is given and 𝑅𝐺4 is given, then 𝑇1 has a low precision of true tumour positives and 

a low recall of true tumour negatives. 

Reasoning 8. If the target (𝑇2) abduced from the union of 𝑅𝐺5 and 𝑅𝐺6 is given, 

𝑅𝐺7 is given and 𝑅𝐺8 is given, then 𝑇2 has a low recall of true tumour positives and a 

low precision of true tumour negatives. 

Reasoning 9. If the target (𝑇1) abduced from the union of 𝑅𝐺1 and 𝑅𝐺2 is given 

and the target (𝑇2) abduced from the union of 𝑅𝐺5 and 𝑅𝐺6 is given, then a target (𝑇3) 

can be abduced by improving 𝑇1 with 𝑇2, a target (𝑇4) can be abduced by improving 𝑇2 

with 𝑇1, 𝑇3 can have a relatively higher precision of true tumour positives than 𝑇1 and 

a relatively higher recall of true tumour negatives than 𝑇1, and 𝑇4 can have a relatively 

higher recall of true tumour positives than 𝑇2 and a relatively higher precision of true 

tumour negatives than 𝑇2. 

Referring to Eq. (8), we use Reasoning 5-9 as 𝑝𝑇𝐴 to implement the Target Abduce 

step, which can be denoted as follows 

𝑇 = 𝑇𝐴(𝑅𝐺; {𝑅𝑒𝑎𝑠𝑜𝑛𝑖𝑛𝑔 5,⋯ , 𝑅𝑒𝑎𝑠𝑜𝑛𝑖𝑛𝑔 9}) 

=

{
 
 

 
 
𝑇𝐴({𝑅𝐺1, 𝑅𝐺2}; 𝑅𝑒𝑎𝑠𝑜𝑛𝑖𝑛𝑔 5), 𝑇𝐴({𝑅𝐺4, 𝑅𝐺5}; 𝑅𝑒𝑎𝑠𝑜𝑛𝑖𝑛𝑔 6),

𝑇𝐴 (
{𝑅𝐺1, 𝑅𝐺2, 𝑅𝐺3, 𝑅𝐺4, 𝑅𝐺5, 𝑅𝐺6};

{𝑅𝑒𝑎𝑠𝑜𝑛𝑖𝑛𝑔 5, 𝑅𝑒𝑎𝑠𝑜𝑛𝑖𝑛𝑔 7, 𝑅𝑒𝑎𝑠𝑜𝑛𝑖𝑛𝑔 9}
) ,

𝑇𝐴 (
{𝑅𝐺4, 𝑅𝐺5, 𝑅𝐺6, 𝑅𝐺7, 𝑅𝐺1, 𝑅𝐺2};

{𝑅𝑒𝑎𝑠𝑜𝑛𝑖𝑛𝑔 6, 𝑅𝑒𝑎𝑠𝑜𝑛𝑖𝑛𝑔 8, 𝑅𝑒𝑎𝑠𝑜𝑛𝑖𝑛𝑔 9}
)

}
 
 

 
 

 

= {𝑇1, 𝑇2, 𝑇3, 𝑇4}. 

𝑅𝐺3(𝐺𝑅1,3) : pixels of 𝐼𝑆1  outside the polygons of 𝑁𝐿𝑆1  are not exactly true tumour 

negatives 

𝑅𝐺4(𝐺𝑅1,4): pixels of 𝐼𝑆1 inside the polygons of 𝑁𝐿𝑆1 are not exactly true tumour positives 

𝑅𝐺5(𝐺𝑅2,1): = 𝐺2,1, pixels of 𝐼𝑆2 inside the polygons of 𝑁𝐿𝑆2 are tumour positives 

𝑅𝐺6(𝐺𝑅2,2): = 𝐺2,2, pixels of 𝐼𝑆2 outside the polygons of 𝑁𝐿𝑆2 are tumour negatives 

𝑅𝐺7(𝐺𝑅2,3): pixels of 𝐼𝑆2 inside the polygons of 𝑁𝐿𝑆2 are not exactly true tumour positives 

𝑅𝐺8(𝐺𝑅2,4) : pixels of 𝐼𝑆2  outside the polygons of 𝑁𝐿𝑆2  are not exactly true tumour 

negatives 



With Reasoning 5, we generate the target 𝑇1 by the union of 𝑅𝐺1 and 𝑅𝐺2 to keep 

a high recall of true tumour positives and a high precision of true tumour negatives. 

With Reasoning 6, we generate the target 𝑇2 by the union of 𝑅𝐺4 and 𝑅𝐺5 to keep high 

precision of true tumour positives and a high recall of true tumour negatives. With 

Reasoning 5-9, we generate the target 𝑇3 to keep a relatively higher precision of true 

tumour positives than 𝑇1 and a relatively higher recall of true tumour negatives than 𝑇1. 

Specifically, we first employed 𝑁𝐿𝑆1 to train an image semantic segmentation model 

and then tested it on the instance images of 𝑁𝐿𝑆2 to produce 𝑇3. With Reasoning 6-9, 

we generate the target 𝑇4 to keep a relatively higher recall of true tumour positives than 

𝑇2 and a relatively higher precision of true tumour negatives than 𝑇2. Specifically, we 

first employed 𝑁𝐿𝑆2 to train an image semantic segmentation model and then tested it 

on the instance images of 𝑁𝐿𝑆1 to produce 𝑇4. Some examples of the abduced multiple 

targets for the two tumour segmentation tasks for breast cancer illustrated in Fig. 2 are 

provided in Supplementary 2. 

2.3.5 Target rearrangement 

The target rearrangement step takes the 𝑇 produced by the Target Abduce step as 

input and produce ordered multiple targets that are corresponding to each of the two 

given diverse noisy samples. On the basis of the input 𝑇, we derive two reasonings 

(Reasoning 10 and Reasoning 11). The validity of the two derived reasonings are 

respectively proved by Proof-R10 and Proof-R11 which are provided in Supplementary 

1. 

Reasoning 10. If 𝑇1 is given and 𝑇3 is given, then 𝑇1 and 𝑇3 can be combined to 

approximate the true target for 𝑁𝑆1. 

Reasoning 11. If 𝑇2 is given and 𝑇4 is given, then 𝑇2 and 𝑇4 can be combined to 

approximate the true target for 𝑁𝑆2. 

Referring to Eq. (9), we use Reasoning 10 and Reasoning 11 as 𝑝𝑇𝑅 to implement 

the Target Rearrangement step, which can produce rearranged targets as follows 

𝑡�̃� = 𝑇𝑅(𝑇, {𝑅𝑒𝑎𝑠𝑜𝑛𝑖𝑛𝑔10, 𝑅𝑒𝑎𝑠𝑜𝑛𝑖𝑛𝑔11}) 

= {
𝑇𝑅({𝑇1, 𝑇3}, 𝑅𝑒𝑎𝑠𝑜𝑛𝑖𝑛𝑔10),

𝑇𝑅({𝑇2, 𝑇4}, 𝑅𝑒𝑎𝑠𝑜𝑛𝑖𝑛𝑔11)
} 

= {𝑡�̃�1 = {𝑡�̃�1,1, 𝑡�̃�1,2} = {𝑇1, 𝑇3}, 𝑡�̃�2 = {𝑡�̃�2,1, 𝑡�̃�2,2} = {𝑇4, 𝑇2}}. 

On the basis of the rearranged 𝑡�̃� and referring to Eq. (10)-(11), the instances (𝐼) 

contained in the given 𝐷𝑁𝑆 and their corresponding rearranged multiple targets are 

denoted as follows. 

𝐼 = {𝐼1, ⋯ , 𝐼𝑛},    �̃� = {�̃�1 = {�̃�1,1, �̃�1,2},⋯ , �̃�𝑛 = {�̃�𝑛,1, �̃�𝑛,2}} ,    𝑠. 𝑡.  𝑛 = 𝑛1 + 𝑛2. 

Some examples of the rearranged multiple targets are provided in Supplementary 

2. 

2.3.6 Multi-target learning 

Referring to Eq. (12), we employ deep convolutional neural network (DCNN) to 

implement the learning model (𝐿𝑀) that maps input instances (𝐼) into its corresponding 

target predictions (𝑡) by  

𝑡 = 𝐿𝑀(𝐼, 𝐷𝐶𝑁𝑁) = {𝑡1, ⋯ , 𝑡𝑛}. 



The DCNN employed for the learning model of tumour segmentation here is a 

symmetric image semantic segmentation architecture that we constructed in (Yang et 

al., 2024) by referring to the commonly used FCN (Shelhamer et al., 2017), which is 

the representative for the fully convolutional networks based solutions and has inspired 

various other solutions (Badrinarayanan et al., 2017; Chen et al., 2018; Falk et al., 2019; 

Fu et al., 2019; Zhao et al., 2017) achieving state-of-the-art performances in image 

semantic segmentation. 

On the basis of the rearranged targets �̃� and the target prediction of implemented 

learning model and referring to Eq. (13), we employ cross entropy (CE) to implement 

the multi-target learning procedure by 

ℒ(𝑡, �̃�; 𝐶𝐸) =
1

𝑛
∑ (𝛼1𝐶𝐸(𝑡𝑗 , �̃�𝑗,1) + 𝛼2𝐶𝐸(𝑡𝑗 , �̃�𝑗,2))
𝑛
𝑗=1   𝑠. 𝑡.  𝛼1 + 𝛼2 = 1. 

Referring to Eq. (14), we employ stochastic gradient descent (SGD) to implement 

the objective by  

𝑚𝑖𝑛
𝑡
(ℒ(𝑡, �̃�; 𝐶𝐸); 𝑆𝐺𝐷). 

2.3.7 Summary 

Referring to the contents of sections 2.3.3-6, the outline of the OSAMTL-DiNS 

solution implemented for the TSfBC in HE-stained pre-treatment biopsy images is 

shown as Fig. 5 and Fig. 6. On the basis of Fig. 5 and Fig. 6, the simplified outline of 

the OSAMTL-DiNS solution implemented for residual TSfBC in HE-stained post-

treatment surgical resection images is simplistically shown as Fig. 7. 

2.4 Experimental strategies 

On the basis of the OSAMTL-DiNS solutions implemented for the two tumour 

segmentation tasks for breast cancer, we conduct extensive experiments to demonstrate 

the contributions of OSAMTL-DiNS in handling complex noisy labels. In this 

subsection, we give descriptions about the overall design, data preparation, evaluation 

metrics and experimental details for conducting the experiments. In section 2.4.1, we 

give the overall design for the conducted experiments. The details about the data 

preparation for the conducted experiments are provided in section 2.4.2. The section 

2.4.3 gives the metrics used to evaluation the results of the conducted experiments. 

Finally, in section 2.4.4, we describe the experimental details for the conducted 

experiments.  

2.4.1 Overall design 

Due to the fact that accurate/noisy-free ground-truth labels for the two tumour 

segmentation tasks for breast cancer illustrated in Fig. 2 (tumour segmentation task in 

HE-stained pre-treatment biopsy images and tumour segmentation task in HE-stained 

post-treatment surgical resection images) are quite difficult to collect, we prepare a 

small noisy-free dataset for each of the two tumour segmentation tasks for usual 

evaluations with accurate ground truth labels (AGTLs). The prepared AGTLs can be 

regarded as golden standards for performance evaluation. 



 

 
Figure. 5. The outline for the input materials and one-step abductive logical reasoning with DiNS for the OSAMTL-DiNS solution implemented for the TSfBC in HE-stained 

pre-treatment biopsy images.  

 

𝐾1: Tumour is composed of tumour cells.
𝐾2: Tumour cells may be arranged in
cords, clusters, and trabeculae.
𝐾3: Some tumours are characterized by
predominantly solid or syncytial infiltrati
ve pattern with little associated stroma.

𝐺1,1 pixels of 𝐼𝑆1 outside the polygons of 𝑁𝐿𝑆1 are tumour negatives

𝐺1,2 pixels of 𝐼𝑆1 inside the polygons of 𝑁𝐿𝑆1 are tumour positives
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𝐼𝐶1,1:inconsistency between the false tumour negatives covered by

𝐺1,1 and the false tumour negatives covered by 𝐾𝐵 is low

𝐼𝐶1,2:inconsistency between the false tumour positives covered by 𝐺1,2
and the false tumour positives covered by 𝐾𝐵 is high
𝐼𝐶1,3:inconsistency between the true tumour positives covered by 𝐺1,2
and the true tumour positives covered by 𝐾𝐵 is low
𝐼𝐶1,4:inconsistency between the true tumour negatives covered by 𝐺1,1
and the true tumour negatives covered by 𝐾𝐵 is high

𝐺2,1 pixels of 𝐼𝑆2 inside the polygons of 𝑁𝐿𝑆2 are tumour positives

𝐺2,2 pixels of 𝐼𝑆2 outside the polygons of 𝑁𝐿𝑆2 are tumour negatives

𝐼𝐶2,1 inconsistency between the false tumour positives covered by 𝐺2,1
and the false tumour positives covered by 𝐾𝐵 is low
𝐼𝐶2,2:inconsistency between the false tumour negatives covered by

𝐺2,2 and the false tumour negatives covered by 𝐾𝐵 is high

𝐼𝐶2,3:inconsistency between the true tumour negatives covered by

𝐺2,2 and the true tumour negatives covered by 𝐾𝐵 is low

𝐼𝐶2,4:inconsistency between the true tumour positives covered by 𝐺2,1
and the true tumour positives covered by 𝐾𝐵 is high

𝐺𝑅2,1: 𝐺2,1 should not be revised to remain 𝐼𝐶2,1; 𝐺𝑅2,2: 𝐺2,2 sho

uld not be revised to remain 𝐼𝐶2,3; 𝐺𝑅2,3: 𝐺2,1 should be revised 

to reduce 𝐼𝐶2,4; 𝐺𝑅2,4: 𝐺2,2 should be revised to reduce 𝐼𝐶2,2

inconsistency(1)

grounding revisions(2)

revised groundings

𝑅𝐺1 𝐺𝑅1,1 : = 𝐺1,1 pixels of 𝐼𝑆1 outside the polygons of 𝑁𝐿𝑆1
are tumour negatives

𝑅𝐺2 𝐺𝑅1,2 : = 𝐺1,2 pixels of 𝐼𝑆1 inside the polygons of 𝑁𝐿𝑆1 ar

e tumour positives

𝑅𝐺3 𝐺𝑅1,3 : pixels of 𝐼𝑆1 outside the polygons of 𝑁𝐿𝑆1 are not

exactly true tumour negatives

𝑅𝐺4 𝐺𝑅1,4 : pixels of 𝐼𝑆1 inside the polygons of 𝑁𝐿𝑆1 are not e

xactly true tumour positives

𝑅𝐺5 𝐺𝑅2,1 : = 𝐺2,1 pixels of 𝐼𝑆2 inside the polygons of 𝑁𝐿𝑆2 ar

e tumour positives

𝑅𝐺6 𝐺𝑅2,2 : = 𝐺2,2:pixels of 𝐼𝑆2 outside the polygons of 𝑁𝐿𝑆2
are tumour negatives

𝑅𝐺7 𝐺𝑅2,3 : pixels of 𝐼𝑆2 inside the polygons of 𝑁𝐿𝑆2 are not e

xactly true tumour positives

𝑅𝐺8 𝐺𝑅2,4 : pixels of 𝐼𝑆2 outside the polygons of 𝑁𝐿𝑆2 are not

exactly true tumour negatives
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ould not be revised to remain 𝐼𝐶1,3; 𝐺𝑅1,3: 𝐺1,1 should be revise
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Figure. 6. The outline for the target rearrangement and multi-target learning for the OSAMTL-DiNS solution implemented for the TSfBC in HE-stained pre-treatment biopsy 

images. 
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Figure. 7. The simplified outline for the OSAMTL-DiNS solution implemented for residual TSfBC in 

HE-stained post-treatment surgical resection images referring to Fig. 5 and Fig. 6. 

 

We first respectively conducted experiments of various existing solutions that learn 

from complex noisy labels and experiments of various existing solutions that introduce 

OSAMTL-DiNS for enhancement in handling complex noisy labels. Then, we compare 

the results of these two series of approaches to show the contributions of OSAMTL-

DiNS in handling complex noisy labels. In addition, we also provide some qualitative 

example results as visualized proofs to show the contributions of OSAMTL-DiNS in 

handling complex noisy labels.  

For all experiments, we first use a training dataset to learn segmentation models, 

then we use a validation dataset to select the model for testing. The experimental results 

of segmentation models are averaged on corresponding dataset. The preparation for the 

training, validation and testing is described in section 2.4.2. 

2.4.2 Dataset preparation 
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For the tumour segmentation task in HE-stained pre-treatment biopsy images, we 

collected a total amount of 144 WSIs. Among the collected WSIs, 105 WSIs were used 

by pathology expert to produce noisy sample one (𝑁𝑆1 shown in the first row of Fig. 

3.A), 20 WSIs were used by pathology expert to produce noisy sample two (𝑁𝑆2 shown 

in the second row of Fig. 3.A), and the rest 19 WSIs were used by pathology expert to 

produce a relatively noisy-free sample (𝑅𝑁𝐹𝑆). Both 𝑁𝑆1and 𝑁𝑆2 were prepared for 

training without AGTLs, and 𝑅𝑁𝐹𝑆  was prepared for validation and testing with 

AGTLs. 𝑁𝑆1 contains 992 pairs of images and corresponding noisy labels for training 

without AGTLs. 𝑁𝑆2 contains 142 pairs of images and corresponding noisy labels for 

training without AGTLs. 𝑅𝑁𝐹𝑆  contains 158 pairs of images and corresponding 

accurate labels, among which 79 pairs are for validation and 79 pairs are for testing 

with AGTLs.  

Similarly, for the tumour segmentation task in HE-stained post-treatment surgical 

resection images, we collected a total amount of 126 WSIs. Among the collected WSIs, 

94 WSIs were used by pathology expert to produce noisy sample one (𝑁𝑆1 shown in 

the first row of Fig. 3.B), 20 WSIs were used by pathology expert to produce noisy 

sample two (𝑁𝑆2 shown in the second row of Fig. 3.B), and the rest 12 WSIs were used 

by pathology expert to produce a relatively noisy-free sample (𝑅𝑁𝐹𝑆). Both 𝑁𝑆1and 

𝑁𝑆2 were prepared for training without AGTLs. 𝑁𝑆1 contains 2944 pairs of images and 

corresponding noisy labels for training without AGTLs. 𝑁𝑆2 contains 1431 pairs of 

images and corresponding noisy labels for training without AGTLs. 𝑅𝑁𝐹𝑆 contains 

242 pairs of images and corresponding accurate labels, among which 121 pairs are for 

validation and 121 pairs are for testing with AGTLs. 

The image patches prepared for experiments were cropped at 10× magnification 

of the given WSIs and the size of each cropped image patch was at 256 × 256 pixels 

(width × height) to remain distinguishable morphologies of tumour.  

2.4.3 Evaluation metrics 

We employed usual metrics for image semantic segmentation evaluation. Let TP 

(true positive) be the number of pixels correctly predicted to belong to the H. pylori 

class, FP (false positive) be the number of pixels incorrectly predicted to belong to the 

H. pylori class, and FN (false negative) be the number of missing pixels predicted to 

belong to the background class. These metrics are tightly related to the foreground class 

which we are interested the most. Based on TP, FP and FN, we further employed 

precision, recall, f1 and foreground intersection over union (fIoU) for evaluation of the 

performance for image segmentation. These evaluation metrics were chosen for 

evaluation because they are most commonly used for evaluating image segmentation.  

2.4.4 Experimental details 

All of our experiments were performed on an Intel core Xeon E5–2630 v4s with a 

memory capacity of 128GB and eight NVIDIA GTX 1080Ti GPUs. Our developing 

environment is based on Tensorflow 1.10.1 and Python 3.5.  

We started the training procedures of the employed DCNN for the learning model 

of tumour segmentation with the same initialization and hyperparameters including 

Adam (Kingma & Ba, 2015) selected as the optimizer, batch size set to 32, learning rate 



set to 0.0001, and online augmentations involving vertical and horizontal flips and 

random brightness. These hyperparameters were chosen because they have been the 

default setting in many opensource developing libraries of deep learning. 

Various existing approaches for learning from noisy labels (LfNLs) (Frénay & 

Verleysen, 2014; Karimi et al., 2020; Song et al., 2022), including naively learning 

from noisy labels (BaseLine), Forward, Backward (Patrini et al., 2017), Boost-Hard, 

Boost-Soft (Arazo et al., 2019; Reed et al., 2015), D2L (Ma et al., 2018), SCE (Wang 

et al., 2019), Peer (Liu & Guo, 2020), DT-Forward (Yao et al., 2020), and NCE-SCE 

(Ma et al., 2020), were chosen for experimental investigations. These approaches were 

chosen due to their flexibility to be applied to the situation where no clean dataset is 

available, the targeted object cannot be clearly defined, and any of the given labels 

cannot be confidently regarded as clean. We respectively set the hyper parameters of 

these approaches as suggested by corresponding papers.  

In default, we set the weights for the multi-task learning procedure of OSAMTL-

DiNS to fifty-fifty in this TSfBC case, considering that both targets are equally 

important. When calculating the evaluation metrics, we used 0.5 to thresh the logits of 

the optimized DCNN for segmentation, as it is a default value to separate the predictions 

into target and non-target which can balance the bias and variance of the optimized 

DCNN. 

 

3. Results 

We show the results of various existing methods for learning from noisy labels 

(LfNLs) and the results of various existing methods with OSAMTL-DiNS introduced 

for LfNLs respectively on the two tumour segmentation tasks for breast cancer, 

respectively in sections 3.1 and 3.2. Based on the results presented in sections 3.1 and 

3.2, we further show the contributions of OSAMTL-DiNS in handling complex noisy 

labels in section 3.3. On the basis of the contents indicated in section 3.3, we show the 

generalization contributions of OSAMTL-DiNS from validation to testing in section 

3.4. In section 3.5, we give some qualitative testing results to show the contributions of 

OSAMTL-DiNS. Finally in section 3.6, we give information of a released predictive 

model pre-trained with OSAMTL-DiNS for tumour segmentation in HE-stained pre-

treatment biopsy images in breast cancer and its application as a pre-processing tool to 

extract tumour-associated stroma compartment for predicting the pathological complete 

response to neoadjuvant chemotherapy in breast cancer (F. Li et al., 2022). 

3.1 Results of various existing methods for LfNLs 

For simplicity, we denote Task1 as the tumour segmentation task in HE-stained 

pre-treatment biopsy images and Task2 as the tumour segmentation task in HE-stained 

post-treatment surgical resection images. In this subsection, we respectively show the 

experimental evaluations of various existing approaches for LfNLs mentioned in 

section 5.1.3 on Task1 and Task2. 

3.1.1 Evaluations on Task1 with AGTLs 



We evaluate the results of employing various existing methods for LfNLs on Task1 

using usual evaluations with AGTLs. Experimental statistics for validation and testing 

are respectively shown as Table 6 and Table 7.  

 

Table 6. Evaluations of various existing method for validation on Task1 

 

Table 7. Evaluations of various existing method for testing on Task1 

 

3.1.2 Evaluations on Task2 with AGTLs 

We evaluate the results of employing various existing methods for LfNLs on Task2 

using usual evaluations with AGTLs. Experimental statistics for validation and testing 

are respectively shown as Table 8 and Table 9. 

 

Table 8. Evaluations of various existing method for validation on Task2 

Solution TP FP FN precision recall f1 fIoU 

BaseLine 19278 15955 2807 54.72 87.29 67.27 50.68 

Forward 20243 16860 1843 54.56 91.66 68.40 51.98 

Backward 19069 14239 3016 57.25 86.34 68.85 52.50 

Boost-Hard 18806 14959 3279 55.70 85.15 67.34 50.77 

Boost-Soft 20138 17912 1948 52.93 91.18 66.97 50.35 

D2l 19676 17020 2410 53.62 89.09 66.95 50.31 

SCE 19500 15153 2585 56.27 88.30 68.74 52.37 

Peer 19775 14660 2310 57.43 89.54 69.98 53.82 

DT-Forward 19806 16229 2280 54.96 89.68 68.15 51.69 

NCE-SCE 20015 16580 2071 54.69 90.62 68.22 51.76 

Solution TP FP FN precision recall f1 fIoU 

BaseLine 22707 13298 3249 63.07 87.48 73.29 57.85 

Forward 23494 15160 2462 60.78 90.51 72.73 57.14 

Backward 21858 13453 4098 61.90 84.21 71.35 55.46 

Boost-Hard 22184 12652 3771 63.68 85.47 72.98 57.46 

Boost-Soft 23724 15849 2231 59.95 91.40 72.41 56.75 

D2l 23068 14632 2888 61.19 88.87 72.48 56.83 

SCE 22753 13499 3203 62.76 87.66 73.15 57.67 

Peer 22658 12704 3298 64.07 87.29 73.90 58.61 

DT-Forward 23280 14239 2676 62.05 89.69 73.35 57.92 

NCE-SCE 23395 14452 2561 61.81 90.13 73.34 57.90 

Solution TP FP FN precision recall f1 fIoU 

BaseLine 18507 12766 11120 59.18 62.47 60.78 43.66 

Forward 18176 11995 11451 60.24 61.35 60.79 43.67 

Backward 19632 14650 9995 57.27 66.26 61.44 44.34 

Boost-Hard 20238 14820 9389 57.73 68.31 62.57 45.53 

Boost-Soft 23277 17557 6351 57.00 78.56 66.07 49.33 

D2l 19617 12892 10010 60.34 66.21 63.14 46.13 

SCE 18807 12118 10821 60.81 63.48 62.12 45.05 

Peer 21279 18131 8349 53.99 71.82 61.64 44.55 

DT-Forward 18509 13330 11119 58.13 62.47 60.22 43.09 

NCE-SCE 19801 14619 9826 57.53 66.83 61.83 44.75 



 

Table 9. Evaluations of various existing method for testing on Task2 

 

3.2 Results of various existing methods with OSAMTL-DiNS introduced for 

LfNLs 

In this subsection, we respectively give experimental evaluations of OSAMTL-

DiNS introduced to various existing approaches for LfNLs mentioned in section 5.1.3 

on Task1 and Task2. 

3.2.1 Evaluations on Task1 

We evaluate the results of employing various existing methods with OSAMTL-

DiNS introduced for LfNLs on Task1 using usual evaluations with AGTLs. 

Experimental statistics for validation and testing are respectively shown as Table 10 

and Table 11.  

 

Table 10. Evaluations of various existing method with OSAMTL-DiNS introduced for 

validation on Task1 

 

Table 11. Evaluations of various existing method with OSAMTL-DiNS introduced for testing 

on Task1 

Solution TP FP FN precision recall f1 fIoU 

BaseLine 15446 13831 8467 52.76 64.59 58.08 40.92 

Forward 15129 13409 8783 53.01 63.27 57.69 40.54 

Backward 16373 17083 7540 48.94 68.47 57.08 39.94 

Boost-Hard 16599 15904 7313 51.07 69.42 58.85 41.69 

Boost-Soft 19000 18353 4912 50.87 79.46 62.03 44.95 

D2l 16331 14876 7581 52.33 68.30 59.26 42.10 

SCE 15604 13286 8309 54.01 65.25 59.10 41.95 

Peer 17366 19348 6546 47.30 72.62 57.29 40.14 

DT-Forward 15374 15525 8538 49.76 64.29 56.10 38.98 

NCE-SCE 16356 16574 7556 49.67 68.40 57.55 40.40 

Solution TP FP FN precision recall f1 fIoU 

BaseLine 18026 8651 4059 67.57 81.62 73.93 58.65 

Forward 17266 7505 4819 69.70 78.18 73.70 58.35 

Backward 17814 8371 4272 68.03 80.66 73.81 58.49 

Boost-Hard 17348 7606 4738 69.52 78.55 73.76 58.43 

Boost-Soft 17855 8059 4231 68.90 80.84 74.40 59.23 

D2l 17597 8128 4489 68.40 79.67 73.61 58.24 

SCE 16774 7302 5311 69.67 75.95 72.68 57.08 

Peer 17681 8557 4404 67.39 80.06 73.18 57.70 

DT-Forward 17218 7393 4868 69.96 77.96 73.74 58.41 

NCE-SCE 16305 6562 5781 71.30 73.83 72.54 56.91 

Solution TP FP FN precision recall f1 fIoU 

BaseLine 21010 6381 4946 76.70 80.94 78.77 64.97 

Forward 20215 5579 5740 78.37 77.88 78.13 64.11 

Backward 20818 6124 5137 77.27 80.21 78.71 64.90 

Boost-Hard 20230 5732 5725 77.92 77.94 77.93 63.84 



 

3.2.2 Evaluations on Task2 

We evaluate the results of various existing methods with OSAMTL-DiNS 

introduced for LfNLs on Task2 using usual evaluations with AGTLs. Experimental 

statistics for validation and testing are respectively shown as Table 12 and Table 13. 

 

Table 12. Evaluations of various existing method with OSAMTL-DiNS introduced for 

validation on Task2 

 

Table 13. Evaluations of various existing method with OSAMTL-DiNS introduced for testing 

on Task2 

 

3.3 Contributions of OSAMTL-DiNS in handling complex noisy labels 

In this subsection, we show the contributions of OSAMTL-DiNS in handling 

complex noisy labels on Task1 and Task2.  

3.3.1 Contributions of OSAMTL-DiNS on Task1 

We reflect the contributions of OSAMTL-DiNS on Task1 by the differences 

between Table 6 and Table 10 for validation and the differences between Table 7 and 

Table 11 for testing, which are respectively shown as Fig. 8 and Fig. 9. More 

Boost-Soft 20657 5936 5298 77.68 79.59 78.62 64.77 

D2l 20348 5981 5608 77.28 78.39 77.83 63.71 

SCE 19719 5651 6236 77.73 75.97 76.84 62.39 

Peer 20379 6634 5577 75.44 78.51 76.95 62.53 

DT-Forward 19958 5347 5998 78.87 76.89 77.87 63.76 

NCE-SCE 18712 4594 7244 80.29 72.09 75.97 61.25 

Solution TP FP FN precision recall f1 fIoU 

BaseLine 19291 4878 10337 79.82 65.11 71.72 55.91 

Forward 18257 3530 11370 83.80 61.62 71.02 55.06 

Backward 18966 4648 10661 80.32 64.02 71.25 55.33 

Boost-Hard 18990 3964 10637 82.73 64.10 72.23 56.53 

Boost-Soft 18850 5732 10777 76.68 63.62 69.55 53.31 

D2l 18438 3154 11190 85.39 62.23 71.99 56.24 

SCE 18449 5022 11178 78.60 62.27 69.49 53.24 

Peer 20269 6413 9358 75.97 68.41 71.99 56.24 

DT-Forward 18371 4117 11256 81.69 62.01 70.50 54.44 

NCE-SCE 16177 2620 13451 86.06 54.60 66.81 50.16 

Solution TP FP FN precision recall f1 fIoU 

BaseLine 16000 5649 7912 73.91 66.91 70.24 54.13 

Forward 14825 3948 9088 78.97 62.00 69.46 53.21 

Backward 15441 5648 8471 73.22 65.57 68.62 52.24 

Boost-Hard 15713 4611 8200 77.31 65.71 71.04 55.09 

Boost-Soft 15799 6017 8114 72.42 66.07 69.10 52.79 

D2l 15109 3599 8803 80.76 63.18 70.90 54.92 

SCE 15168 5151 8744 74.65 63.43 68.59 52.19 

Peer 16954 7478 6958 69.39 70.90 70.14 54.01 

DT-Forward 15175 4483 8737 77.20 63.46 69.66 53.44 

NCE-SCE 13101 2749 10811 82.66 54.79 65.90 49.14 



specifically, the contributions of OSAMTL-DiNS on Task1 are quantitatively evaluated 

by statistics of Table 10 minus statistics of Table 6 for validation and statistics of Table 

11 minus statistics of Table 7 for testing, which are respectively shown as Table 14 and 

Table 15. And the confident intervals for the contributions of OSAMTL-DiNS on Task1 

are shown in Table 16. 

 

Table 14. Contributions of OSAMTL-DiNS to various existing method for validation on Task1 

 

 

 
Fig. 8. Differences between Table 6 and Table 10 for validation of Task1. 

 

 

     
     
     
     
     
     
     
     
     
     

  

    

    
    

     

     

     
     

     

     
  

    

    

    

    

    

    

  

  

  

  

  

  

           

  

  

  

  

  

  
      

  

  

  

  

  

    

  

  

  

  

  

  

  
    

                                   

Solution TP FP FN precision recall f1 fIoU 

BaseLine -1252 -7304 1252 12.85 -5.67 6.66 7.97 

Forward -2977 -9355 2976 15.14 -13.48 5.3 6.37 

Backward -1255 -5868 1256 10.78 -5.68 4.96 5.99 

Boost-Hard -1458 -7353 1459 13.82 -6.6 6.42 7.66 

Boost-Soft -2283 -9853 2283 15.97 -10.34 7.43 8.88 

D2l -2079 -8892 2079 14.78 -9.42 6.66 7.93 

SCE -2726 -7851 2726 13.4 -12.35 3.94 4.71 

Peer -2094 -6103 2094 9.96 -9.48 3.2 3.88 

DT-Forward -2588 -8836 2588 15 -11.72 5.59 6.72 

NCE-SCE -3710 -10018 3710 16.61 -16.79 4.32 5.15 



Table 15. Contributions of OSAMTL-DiNS to various existing method for testing on Task1 

 

 
Fig. 9. Differences between Table 7 and Table 11 for testing of Task1. 

 

Table 16. Confident intervals for contributions of OSAMTL-DiNS to various existing method 

on Task1 

     

     

     

     

     

     

     

       

    

    

    

     

     

     

     

       

    

    

    

    

    

    

    

  

  

  

  

  

  

  

  
         

  

  

  

  

  

        

  

  

  

  

  

    

  

  

  

  

  

  

  

  

    

                                   

Solution TP FP FN precision recall f1 fIoU 

BaseLine -1697 -6917 1697 13.63 -6.54 5.48 7.12 

Forward -3279 -9581 3278 17.59 -12.63 5.4 6.97 

Backward -1040 -7329 1039 15.37 -4 7.36 9.44 

Boost-Hard -1954 -6920 1954 14.24 -7.53 4.95 6.38 

Boost-Soft -3067 -9913 3067 17.73 -11.81 6.21 8.02 

D2l -2720 -8651 2720 16.09 -10.48 5.35 6.88 

SCE -3034 -7848 3033 14.97 -11.69 3.69 4.72 

Peer -2279 -6070 2279 11.37 -8.78 3.05 3.92 

DT-Forward -3322 -8892 3322 16.82 -12.8 4.52 5.84 

NCE-SCE -4683 -9858 4683 18.48 -18.04 2.63 3.35 

Dataset TP FP FN precision recall f1 fIoU 

Validation 

lower limit -2810 -9202 1675 12.29 -12.72 4.47 5.37 

mean -2242 -8143 2242 13.83 -10.15 5.45 6.53 

upper limit -1674 -7085 2810 15.37 -7.58 6.42 7.68 

Testing 
lower limit -3099 -9027 1876 13.74 -11.94 4.13 5.32 

mean -2488 -8013 2488 15.31 -9.58 5.11 6.59 



 

3.3.2 Contributions of OSAMTL-DiNS on Task2 

Similarly, we reflect the contributions of OSAMTL-DiNS on Task2 by the 

differences between Table 8 and Table 12 for validation and the differences between 

Table 9 and Table 13 for testing, which are respectively shown as Fig. 10 and Fig. 11. 

More specifically, the contributions of OSAMTL-DiNS on Task1 are quantitatively 

evaluated by statistics of Table 12 minus statistics of Table 8 for validation and statistics 

of Table 13 minus statistics of Table 9 for testing, which are respectively shown as 

Table 17 and Table 18. And the confident intervals for the contributions of OSAMTL-

DiNS on Task2 are shown in Table 19. 

 

 
Fig. 10. Differences between Table 8 and Table 12 for validation of Task2. 

 

Table 17. Contributions of OSAMTL-DiNS to various existing method for validation on Task2 

     
     
     
     
     
     
     
     
     
     

  

    
    
    
    
    
     
     
     
     
     

  

    
    
    

    

    

     

     
     

     

  

     

     

     

     

     

     

     

     

     
         

     

     

     

     

     

     

     
      

     

     

     

     

     

     

     
     

     
  

     

     

     

     

     
    

                                   

upper limit -1877 -7000 3099 16.89 -7.23 6.10 7.86 

Solution TP FP FN precision recall f1 fIoU 

BaseLine 784 -7888 -783 20.64 2.64 10.94 12.25 

Forward 81 -8465 -81 23.56 0.27 10.23 11.39 

Backward -666 -10002 666 23.05 -2.24 9.81 10.99 

Boost-Hard -1248 -10856 1248 25.00 -4.21 9.66 11.00 

Boost-Soft -4427 -11825 4426 19.68 -14.94 3.48 3.98 

D2l -1179 -9738 1180 25.05 -3.98 8.85 10.11 



 

 

 
Fig. 11. Differences between Table 9 and Table 13 for testing of Task2. 

 

Table 18. Contributions of OSAMTL-DiNS to various existing method for testing on Task2 

 

 

     

     

     

     

     

     

     

     
  

    

    

     

     

     
  

    

    

    

    

    

    

     

  

     
     
     

     
     
     
     

     
     

         

     

     

     

     

     

     

     
      

     

     

     

     

     
  

     

     

     

     

     

     
    

                                   

SCE -358 -7096 357 17.79 -1.21 7.37 8.19 

Peer -1010 -11718 1009 21.98 -3.41 10.35 11.69 

DT-Forward -138 -9213 137 23.56 -0.46 10.28 11.35 

NCE-SCE -3624 -11999 3625 28.53 -12.23 4.98 5.41 

Solution TP FP FN precision recall f1 fIoU 

BaseLine 554 -8182 -555 21.15 2.32 12.16 13.21 

Forward -304 -9461 305 25.96 -1.27 11.77 12.67 

Backward -932 -11435 931 24.28 -2.90 11.54 12.30 

Boost-Hard -886 -11293 887 26.24 -3.71 12.19 13.40 

Boost-Soft -3201 -12336 3202 21.55 -13.39 7.07 7.84 

D2l -1222 -11277 1222 28.43 -5.12 11.64 12.82 

SCE -436 -8135 435 20.64 -1.82 9.49 10.24 

Peer -412 -11870 412 22.09 -1.72 12.85 13.87 

DT-Forward -199 -11042 199 27.44 -0.83 13.56 14.46 

NCE-SCE -3255 -13825 3255 32.99 -13.61 8.35 8.74 



Table 19. Confident intervals for contributions of OSAMTL-DiNS to various existing method 

on Task2 

 

 

3.4 Generalization contributions of OSAMTL-DiNS from validation to testing 

In this subsection, we show the generalization contributions of OSAMTL-DiNS by 

statistics between the contributions of OSAMTL-DiNS on validation and the 

contributions of OSAMTL-DiNS on testing. The results for Task1 and Task2 are 

respectively shown as Table 20 and Table 21. 

 

 

Table 20. Statistics between the contributions of OSAMTL-DiNS on validation and the 

contributions of OSAMTL-DiNS on testing for Task 1 

 

 

Table 21. Statistics between the contributions of OSAMTL-DiNS on validation and the 

contributions of OSAMTL-DiNS on testing for Task 2 

 

 

3.5 Qualitative testing results 

Some typical testing results of various state-of-the-art approaches (respectively 

without OSAMTL-DiNS introduced and with OSAMTL-DiNS introduced) for 

handling complex noisy labels on Task1 and Task2 are respectively shown as Fig. 12 

and Fig. 13. More testing results are provided in Supplementary 3. 

Dataset TP FP FN precision recall f1 fIoU 

Validation 

lower limit -2347 -11115 10 20.70 -7.92 6.79 7.60 

mean -1179 -9880 1178 22.88 -3.98 8.60 9.64 

upper limit -10 -8645 2347 25.07 -0.03 10.40 11.67 

Testing 

lower limit -1928 -12176 131 22.27 -7.98 9.58 10.35 

mean -1029 -10886 1029 25.08 -4.21 11.06 11.96 

upper limit -131 -9596 1928 27.89 -0.43 12.55 13.56 

Statistics TP FP FN precision recall f1 fIoU 

Mean 
validation -2242 -8143 2242 13.83 -10.15 5.45 6.53 

testing -2708 -8198 2707 15.63 -10.43 4.86 6.26 

P-value 0.270 0.933 0.271 0.080 0.871 0.364 0.741 

Similarity 0.960 0.932 0.960 0.862 0.960 0.628 0.645 

Statistics TP FP FN precision recall f1 fIoU 

Mean 
validation -1179 -9880 1178 22.88 -3.98 8.60 9.64 

testing -1029 -10886 1029 25.08 -4.21 11.06 11.96 

P-value 0.821 0.219 0.822 0.180 0.926 0.028 0.058 

Similarity 0.976 0.936 0.976 0.944 0.979 0.957 0.957 



 
Figure. 12. Typical testing results of various state-of-the-art approaches (respectively without OSAMTL-DiNS introduced and with OSAMTL-DiNS introduced) for handling 

complex noisy labels on Task1. Top row: testing results of various state-of-the-art approaches without OSAMTL-DiNS introduced. Bottom row: testing results of state-of-the-

art approaches with OSAMTL-DiNS introduced. The green solid polygons are the relatively accurately labelled tumour areas provided by pathology experts and the green 

transparent masks are the tumour areas predicted by image semantic segmentation models.  

 

 
Fig. 13. Typical testing results of various state-of-the-art approaches (respectively without OSAMTL-DiNS introduced and with OSAMTL-DiNS introduced) for handling 

complex noisy labels on Task2. Top row: testing results of various state-of-the-art approaches without OSAMTL-DiNS introduced. Bottom row: testing results of state-of-the-

art approaches with OSAMTL-DiNS introduced. The green solid polygons are the relatively accurately labelled tumour areas provided by pathology experts and the green 

transparent masks are the tumour areas predicted by image semantic segmentation models.  
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3.6 Released predictive model 

We released a predictive model pre-trained with OSAMTL-DiNS for tumour 

segmentation in HE-stained pre-treatment biopsy images in breast cancer. The released 

model was based on the BaseLine solution with OSAMTL-DiNS introduced, since it 

showed the best generalization performance for Task 1. The release model has also 

been successfully applied as a pre-processing tool to extract tumour-associated stroma 

compartment for predicting the pathological complete response to neoadjuvant 

chemotherapy in breast cancer. For more details about how the released predictive 

model was utilized, readers can refer to our paper (F. Li et al., 2022). The released 

model is available at  https://github.com/YongQuanYang/TS-Score. 

 

4 Discussion  

In the application of the proposed OSAMTL-DiNS to the TSfBC, we primarily 

conducted two series of experiments: 1) simply using various state-of-the-art 

approaches for handling complex noisy labels to produce predictive models for TSfBC; 

2) introducing OSAMTL-DiNS to various state-of-the-art approaches for handling 

complex noisy labels to produce predictive models for TSfBC. We compared the 

respective results of these two series of predictive models, which were obtained from 

the testing dataset with AGTLs provided by pathological experts. As the compared 

results of experiments are obtained from AGTLs which can be regarded as golden 

standards, the comparison between the two series of experiments can be effective to 

investigate the effectiveness of the proposed OSAMTL-DiNS in handling complex 

noisy labels for TSfBC. Further, the investigation of the effectiveness of OSAMTL-

DiNS applied to TSfBC can also reflect the potentials of applying OSAMTL-DiNS to 

address specific challenges like TSfBC in MHWSIA, since the situation, where it is 

often difficult for experts to manually achieve the accurate ground-truth labels, is quite 

normal in MHWSIA. 

Specifically, OSAMTL-DiNS was able to enable various state-of-the-art 

approaches for handling complex noisy labels to achieve significantly more rational 

predictions for Task1 of TSfBC on both validation and testing, by appropriately 

increasing the precision performance while reducing the recall performance (see 

respective metrics in Fig. 8, Fig. 9, Table 14 and Table 15). For the Task1 of TSfBC, 

the achieved mean improvements in overall performances of f1 and fIoU on validation 

were respectively 5.45%(4.47%, 6.42%) and from 6.53% (5.37%, 7.68%), while the 

achieved mean improvements in overall performances of f1 and fIoU on testing were 

respectively 5.11%(4.13%, 6.10%) and 6.59%(5.32%, 7.86%) (see statistics in Table 

16). Identically, OSAMTL-DiNS was also able to enable various state-of-the-art 

approaches for handling complex noisy labels to achieve significantly more rational 

predictions for Task2 of TSfBC on both validation and testing, by appropriately 

increasing the precision performance while reducing the recall performance (see 

respective metrics in Fig. 10, Fig. 11, Table 17 and Table 18). For the Task2 of TSfBC, 

the achieved mean improvements in overall performances of f1 and fIoU on validation 

were respectively 8.60%(6.79%, 10.40%) and from 9.64% (7.60%, 11.67%), while the 

achieved mean improvements in overall performances of f1 and fIoU on testing were 

https://github.com/YongQuanYang/TS-Score


respectively 11.06%(9.58%, 12.55%) and 11.96%(10.35%, 13.56%) (see statistics in 

Table 19). As the experimental results were obtained from dataset with AGTLs 

provided by pathological experts, these contributions of OSAMTL-DiNS to various 

state-of-the-art approaches for handling complex noisy labels imply that OSAMTL-

DiNS can help to improve the accuracy and consistency of the predictive model for 

TSfBC regarding to the results of pathological experts. 

The statistics for the comparison between the contributions of OSAMTL-DiNS 

respective on validation and testing show that OSAMTL-DiNS can robustly improve 

the accuracy and consistency of the predictive model for TSfBC (see statistics in Table 

20 and Table 21). The P-values of the statistics indicate that there are no significant 

differences between the contributions of OSAMTL-DiNS respectively on validation 

and testing, as all P-values are greater than 0.01 and most P-values are greater than 0.05. 

The similarity-values of the statistic indicate that the contributions of OSAMTL-DiNS 

respectively on validation and testing are quite analogical, as all similarity-values are 

greater than 0.62 and most similarity-values are greater than 0.95. As a result, the 

contributions of OSAMTL-DiNS on validation can be well generalized to testing, 

which implies the robustness of OSAMTL-DiNS in improving the accuracy and 

consistency of the predictive model for TSfBC. 

The visualized testing results for the two series of experiments show that, the 

testing results of predictive models produced with OSAMTL-DiNS introduced, are 

much more accurate than the results of the predictive models simply produced with 

various state-of-the-art approaches as the former results have much more clean 

predictions compared with the labels provided by pathological experts (see Fig. 12 and 

Fig. 13).  This visual comparison indicates that OSAMTL-DiNS can be helpful to 

produce predictive model that can achieve predictions visually more consistent with 

AGTLs provided by pathology experts for TSfBC. 

In addition to the contributions of OSAMTL-DiNS to TSfBC, which reflect the 

potentials of OSAMTL-DiNS to address specific challenges like TSfBC in MHWSIA, 

the usage of the released model pre-trained with OSAMTL-DiNS as a pre-processing 

tool to extract tumour-associated stroma compartment for predicting the pathological 

complete response to neoadjuvant chemotherapy in breast cancer (F. Li et al., 2022) 

further proves that the proposed OSAMTL-DiNS has the potentials to facilitate medical 

image analytics in MHWSIA.  

Although the results of the proposed OSAMTL-DiNS applied on TSfBC have 

shown favourable advantages, it is foreseeable the released predictive model pre-

trained with OSAMTL-DiNS for tumour segmentation in HE-stained pre-treatment 

biopsy images in breast cancer will have limited generalization to some unseen testing 

HE-stained pre-treatment biopsy images in breast cancer. This is because only a very 

small amount of inaccurately labelled data was prepared and the machine learning 

architecture selected to produce the released predictive model was a relatively shallow 

deep learning architecture. 

Notably, recently proposed large models (Kirillov et al., 2023) (mostly based on 

the machine learning architectures of transformers (Khan et al., 2022)) have appeared 

to be very effective for achieving the general purpose of image segmentation. However, 



recent reports have demonstrated that these large models for the general purpose of 

image segmentation have limited generalization to data of specific fields, such as 

medical images (Y. Huang et al., 2024) and images of concealed scenes (Ji et al., 2023). 

This situation proves that it is still worthwhile to produce relatively small models that 

are appropriate for particular image segmentation tasks in specific fields, though they 

definitely will be not as strong as large models to segment anything.  

 

5 Conclusions and Future Work 

In this paper, we proposed one-step abductive multi-target learning (OSAMTL) 

with diverse noisy samples (DiNS) (OSAMTL-DiNS) to expand the original OSAMTL 

to handle complex noisy labels of DiNS. We applied OSAMTL-DiNS to tumour 

segmentation for breast cancer (TSfBC) in medical histopathology whole slide image 

analysis (MHWSIA). Results of extensive experiments showed that OSAMTL-DiNS 

is able to enable various state-of-the-art approaches for learning from noisy labels to 

achieve more rational predictions for TSfBC. We also released a model pre-trained with 

OSAMTL-DiNS for tumour segmentation in HE-stained pre-treatment biopsy images 

in breast cancer.  

In this paper, giving definition of diverse noisy samples (DiNS), we proposed one-

step abductive multi-target learning with DiNS (OSAMTL-DiNS) that expands the 

original OSAMTL to handle complex noisy labels of DiNS. The major advantage of 

OSAMTL-DiNS is that it can produce a predictive model based on a chosen machine 

learning architecture simply using very inaccurately labelled (complex noisy) data, 

which makes OSAMTL-DiNS suitable to address some tasks in the field of medical 

analysis where the problem of complex noisy in data always exists.  

Based on the proposed OSAMTL-DiNS, we implemented solutions for tumour 

segmentation for breast cancer in medical histopathology whole slide image analysis 

(MHWSIA) and conducted extensive experiments. Experiment results for contributions 

of OSAMTL-DiNS in handling complex noisy labels show that introducing OSAMTL-

DiNS to existing various methods for learning from noisy labels can significantly 

enhance the abilities of these methods in handling complex noisy labels. At the 

meantime, experiment results for the generalization of OSAMTL-DiNS show that the 

contributions of OSAMTL-DiNS in handling complex noisy labels can be well 

generalized form validation to testing. Additionally, visualized qualitative results as 

well show that, with OSAMTL-DiNS introduced, various methods for learning from 

noisy labels can achieve predictions that are more consistent with the relatively accurate 

labels provided by experts. These results reflect the potential effectiveness of the 

proposed OSAMTL-DiNS in handling complex noisy labels in MHWSIA. 

Based on the conducted experiments, we also chose to release a model pre-trained 

with OSAMTL-DiNS for tumour segmentation in HE-stained pre-treatment biopsy 

images in breast cancer. The released model has been successfully applied as a pre-

processing tool to extract tumour-associated stroma compartment for predicting the 

pathological complete response to neoadjuvant chemotherapy in breast cancer, which 



further reflects the potentials of using OSAMTL-DiNS to build basic tools to facilitate 

medical image analytics in MHWSIA.. 

Although the application of OSAMTL-DiNS on TSfBC has reflected the potentials 

of the proposed OSAMTL-DiNS in handling complex noisy labels in MHWSIA, the 

more rational predictions of OSAMTL-DiNS in TSfBC was achieved by appropriately 

increase the precision performance while reducing the recall performance to obtain a 

better overall performance in fIoU, compared with various state-of-the-art approaches 

for handling complex noisy labels. As the recall performance for a target is very 

important to medical evaluations, in future works, we will continue, with limited 

annotations, to improve the solution for tumour segmentation of breast cancer to fulfil 

the goal that increases the recall performance while being able to promote or at least 

maintain the fIoU performance.  

As the proposed OSAMTL-DiNS is independent from the machine learning 

architectures chosen for specific tasks and recently proposed large models have shown 

limited generalization to some tasks of specific fields, it is also interesting to combine 

OSAMTL-DiNS with very large models to enhance their generalization to particular 

tasks. In fact, a recent work, which employed weaker learners to supervise a pre-trained 

strong learner to enhance its generalization ability (Burns et al., 2023), has shown the 

promise of this idea. Intrinsically, the essence of the proposed OSAMTL-DiNS and the 

strategy of weak-to-strong generalization is identical, since the multiple inaccurate 

targets abduced from DiNS in this paper can be regarded as predictions of multiple 

weaker learners (see the details of how the multiple inaccurate targets are generated in 

the last paragraph of the section 2.3.4). The main difference is that we are focusing 

more on revealing the science behind the weak-to-strong generalization strategy, 

instead of chasing the state-of-the-art results. Our focus is to prove whether we can use 

multiple weak labels to validate a predictive model reasonably (Yang, 2024a), because 

if we can validate a predictive model with multiple weak labels then we can also use 

them to train a predictive model. We will continue this focus, as we believe it can 

scientifically contribute to part of the artificial intelligence alignment problem (Yang, 

2023), especially when the state-of-the-art deep neural network of machine learning for 

building predictive model has been becoming standardized and reaching its limits in 

some specific AI applications (Yang, 2024b). 
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Supplementary 1 
 

Preliminary of Logical Reasoning 

We introduce some propositional connectives and rules for proof of propositional 

logical reasoning, which are respectively shown as Table 1 and Table 2, for the logical 

reasonings conducted in this paper. 

 

Table 1. Propositional connectives 

Connective Meaning 

∧ conjunction 
→ implication 

 

Table 2. Rules for proof of propositional logical reasoning,├ denotes ‘bring out’ 

Rule Meaning 

∧ − reductive law of conjunction: A ∧ B,├ A or B.  
∧ + additional law of conjunction: A, B,├ A ∧ B.  
MP modus ponens: A → B, A,├ B.  
HS hypothetical syllogism: A → B, B → C,├ A → C. 

 

 

Proof of Reasoning 1 

Reasoning 1. If 𝐺1 is given and 𝐾𝐵 is given, then inconsistency between the false 

tumour negatives covered by 𝐺1,1 and the false tumour negatives covered by 𝐾𝐵 is low, 

inconsistency between the false tumour positives covered by 𝐺1,2 and the false tumour 

positives covered by 𝐾𝐵  is high, inconsistency between the true tumour positives 

covered by 𝐺1,2 and the true tumour positives covered by 𝐾𝐵 is low, and inconsistency 

between the true tumour negatives covered by 𝐺1,1  and the true tumour negatives 

covered by 𝐾𝐵 is high. 

Proof-R1. Firstly, with 𝐺1 and 𝐾𝐵, we have following derived preconditions for 

Reasoning 1. 

1. If 𝐺1  is given, then 𝑁𝑆1 = {𝐼𝑆1, 𝑁𝐿𝑆1} exists. (𝐺1  is associated with 𝑁𝑆1  in 

Grounding Extract) 

2. If 𝑁𝑆1 = {𝐼𝑆1, 𝑁𝐿𝑆1} exists, then 𝑁𝐿𝑆1 can exclude tumour negatives of 𝐼𝑆1 as 

accurate as possible, and 𝑁𝐿𝑆1 can include many tumour negatives of 𝐼𝑆1 as 

tumour positives. (facts contained in the existing 𝑁𝑆1) 

3. If 𝐺1 is given, then 𝐺1,1: pixels of 𝐼𝑆1 outside the polygons of 𝑁𝐿𝑆1 are tumour 

negatives is given, and 𝐺1,2 : pixels of 𝐼𝑆1  inside the polygons of 𝑁𝐿𝑆1  are 

tumour positives is given. (groundings extracted from 𝑁𝑆1  by Grounding 

Extract) 

4. If 𝐺1,1 : pixels of 𝐼𝑆1  outside the polygons of 𝑁𝐿𝑆1  are tumour negatives is 

given, and 𝐺1,2: pixels of 𝐼𝑆1 inside the polygons of 𝑁𝐿𝑆1 are tumour positives 

is given, then 𝐺1,1 and 𝐺1,2 are complementary to each other. 



5. If 𝑁𝐿𝑆1 can exclude tumour negatives of 𝐼𝑆1 as accurate as possible, and 𝐺1,1: 

pixels of 𝐼𝑆1 outside the polygons of 𝑁𝐿𝑆1 are tumour negatives is given, then 

false tumour negatives covered by 𝐺1,1 are rare.  

6. If 𝑁𝐿𝑆1 can include many tumour negatives of 𝐼𝑆1 as tumour positives, and 

𝐺1,2: pixels of 𝐼𝑆1 inside the polygons of 𝑁𝐿𝑆1 are tumour positives is given, 

then false tumour positives covered by 𝐺1,2 are many. 

7. If false tumour negatives covered by 𝐺1,1  are rare, and 𝐺1,1  and 𝐺1,2  are 

complementary to each other, then 𝐺1,2 covers almost all true tumour positives. 

8. If false tumour positives covered by 𝐺1,2  are many, and 𝐺1,1  and 𝐺1,2  are 

complementary to each other, then 𝐺1,1  covers only a part of true tumour 

negatives. 

9. If 𝐾𝐵 is given, then the information of 𝐾𝐵 can clearly describe what are the 

true tumour positives, and the opposite information of 𝐾𝐵 can clearly describe 

what are the true tumour negatives. (facts contained in the given 𝐾𝐵) 

10. If the information of 𝐾𝐵 can clearly describe what are the true tumour positives, 

then true tumour positives covered by 𝐾𝐵  are all-sided, and false tumour 

negatives covered by 𝐾𝐵 are none. 

11. If the opposite information of 𝐾𝐵 can clearly describe what are the true tumour 

negatives, then true tumour negatives covered by 𝐾𝐵 are all-sided, and false 

tumour positives covered by 𝐾𝐵 are none. 

12. If false tumour negatives covered by 𝐺1,1 are rare, and false tumour negatives 

covered by 𝐾𝐵  are none, then inconsistency between the false tumour 

negatives covered by 𝐺1,1 and the false tumour negatives covered by 𝐾𝐵 is low. 

13. If false tumour positives covered by 𝐺1,2 are many, and false tumour positives 

covered by 𝐾𝐵 are none, then inconsistency between false tumour positives 

covered by 𝐺1,2 and the false tumour positives covered by 𝐾𝐵 is high. 

14. If  𝐺1,2  covers almost all true tumour positives, and true tumour positives 

covered by 𝐾𝐵  are all-sided, then inconsistency between the true tumour 

positives covered by 𝐺1,2 and the true tumour positives covered by 𝐾𝐵 is low. 

15. If 𝐺1,1 covers only a part of true tumour negatives, and true tumour negatives 

covered by 𝐾𝐵 are all-sided, then inconsistency between true tumour negatives 

covered by 𝐺1,1 and the true tumour negatives covered by 𝐾𝐵 is high. 

Secondly, we give the propositional symbols for the above preconditions 1-15 for 

Reasoning 1, which are shown in Table 3. 

 

Table 3. Propositional symbols of preconditions for Reasoning 1 

Symbol Meaning 

𝑎 𝐺1 is given 

𝑏 𝑁𝑆1 = {𝐼𝑆1, 𝑁𝐿𝑆1} exists 

𝑐 𝑁𝐿𝑆1 can exclude tumour negatives of 𝐼𝑆1 as accurate as possible 

𝑑 𝑁𝐿𝑆1 can include many tumour negatives of 𝐼𝑆1 as tumour positives 

𝑒 𝐺1,1: pixels of 𝐼𝑆1 outside the polygons of 𝑁𝐿𝑆1 are tumour negatives is given 

𝑓 𝐺1,2: pixels of 𝐼𝑆1 inside the polygons of 𝑁𝐿𝑆1 are tumour positives is given 



𝑔 𝐺1,1 and 𝐺1,2 are complementary to each other 

ℎ false tumour negatives covered by 𝐺1,1 are rare 

𝑖 false tumour positives covered by 𝐺1,2 are many 

𝑗 𝐺1,2 covers almost all true tumour positives 

𝑘 𝐺1,1 covers only a part of true tumour negatives 

𝑙 𝐾𝐵 is given 

𝑚 the information of 𝐾𝐵 can clearly describe what are the true tumour positives 

𝑛 the opposite information of 𝐾𝐵 can clearly describe what are the true tumour negatives 

𝑜 true tumour positives covered by 𝐾𝐵 are all-sided 

𝑝 false tumour negatives covered by 𝐾𝐵 are none 

𝑞 true tumour negatives covered by 𝐾𝐵 are all-sided 

𝑟 false tumour positives covered by 𝐾𝐵 are none 

𝑠 inconsistency between the false tumour negatives covered by 𝐺1,1 and the false tumour 

negatives covered by 𝐾𝐵 is low 

𝑡 inconsistency between false tumour positives covered by 𝐺1,2  and the false tumour 

positives covered by 𝐾𝐵 is high 

𝑢 inconsistency between the true tumour positives covered by 𝐺1,2 and the true tumour 

positives covered by 𝐾𝐵 is low 

𝑣 inconsistency between true tumour negatives covered by 𝐺1,1  and the true tumour 

negatives covered by 𝐾𝐵 is high 

 

Thirdly, referring to Table 3, we signify the propositional formalizations of the 

preconditions 1-15 for Reasoning 1 and Reasoning 1 via the propositional connectives 

listed in Table 1 as follows. 

1) 𝑎 → 𝑏       Precondition 

2) 𝑏 → (𝑐 ∧ 𝑑)      Precondition 

3) 𝑎 → (𝑒 ∧ 𝑓)      Precondition 

4) (𝑒 ∧ 𝑓) → 𝑔      Precondition 

5) (𝑐 ∧ 𝑒) → ℎ      Precondition 

6) (𝑑 ∧ 𝑓) → 𝑖      Precondition 

7) (ℎ ∧ 𝑔) → 𝑗      Precondition 

8) (𝑖 ∧ 𝑔) → 𝑘      Precondition 

9) 𝑙 → (𝑚 ∧ 𝑛)      Precondition 

10) 𝑚 → (𝑜 ∧ 𝑝)      Precondition 

11) 𝑛 → (𝑞 ∧ 𝑟)      Precondition 

12) (ℎ ∧ 𝑝) → 𝑠      Precondition 

13) (𝑖 ∧ 𝑟) → 𝑡      Precondition 

14) (𝑗 ∧ 𝑜) → 𝑢      Precondition 

15) (𝑘 ∧ 𝑞) → 𝑣      Precondition 

(𝑎 ∧ 𝑙) → (𝑠 ∧ 𝑡 ∧ 𝑢 ∧ 𝑣)     Reasoning 1 

Fourthly, we show the validity of Reasoning 1 via the rules for proof of 

propositional logical reasoning listed in Table 3 as follows. 

∴ (𝒂 ∧ 𝒍) → (𝒔 ∧ 𝒕 ∧ 𝒖 ∧ 𝒗) 

16) 𝑎 ∧ 𝑙      Hypothesis 

17) 𝑎       16); ∧ − 

18) 𝑙        16); ∧ − 

19) 𝑎 → (𝑐 ∧ 𝑑)     1),2); HS 



20) 𝑐 ∧ 𝑑      19),17); MP 

21) 𝑒 ∧ 𝑓      3),17); MP 

22) 𝑐       20); ∧ − 

23) 𝑑       20); ∧ − 

24) 𝑒       21); ∧ − 

25) 𝑓       21); ∧ − 

26) 𝑐 ∧ 𝑒      22),24); ∧ + 

27) 𝑑 ∧ 𝑓      23),25); ∧ + 

28) ℎ       5),26); MP 

29) 𝑖       6),27); MP 

30) 𝑎 → 𝑔      3),4); HS 

31) 𝑔       30),17); MP 

32) ℎ ∧ 𝑔      28),31); ∧ + 

33) 𝑖 ∧ 𝑔      29),31); ∧ + 

34) 𝑗       7),32); MP 

35) 𝑘       8),33); MP 

36) 𝑚 ∧ 𝑛      9),18); MP 

37) 𝑚       36); ∧ − 

38) 𝑛       36); ∧ − 

39) 𝑜 ∧ 𝑝      10),37); MP 

40) 𝑞 ∧ 𝑟      11),38); MP 

41) 𝑜       39); ∧ − 

42) 𝑝       39); ∧ − 

43) 𝑞       40); ∧ − 

44) 𝑟       40); ∧ − 

45) ℎ ∧ 𝑝      28),42); ∧ + 

46) 𝑖 ∧ 𝑟      29),44); ∧ + 

47) 𝑗 ∧ 𝑜      34),41); ∧ + 

48) 𝑘 ∧ 𝑞      35),43); ∧ + 

49) 𝑠       12),45); MP 

50) 𝑡       13),46); MP 

51) 𝑢       14),47); MP 

52) 𝑣       15),48); MP 

53) 𝑠 ∧ 𝑡 ∧ 𝑢 ∧ 𝑣     49),50),51),52); ∧ + 

54) (𝑎 ∧ 𝑙) → (𝑠 ∧ 𝑡 ∧ 𝑢 ∧ 𝑣)    16)-53); Conditional Proof 

Since the hypothesis 𝑎 ∧ 𝑙 of the 16) step can be fulfilled by the input materials of 

OSAMTL-DiNS applied on tumour segmentation for breast cancer and Grounding 

Extract, Reasoning 1 is proved to be valid.  

 

Proof of Reasoning 2 

Reasoning 2. If 𝐺2 is given and 𝐾𝐵 is given, then inconsistency between the false 

tumour positives covered by 𝐺2,1 and the false tumour positives covered by 𝐾𝐵 is low, 

inconsistency between the false tumour negatives covered by 𝐺2,2 and the false tumour 



negatives covered by 𝐾𝐵  is high, inconsistency between the true tumour negatives 

covered by 𝐺2,2 and the true tumour negatives covered by 𝐾𝐵 is low, and inconsistency 

between the true tumour positives covered by 𝐺1,1  and the true tumour positives 

covered by 𝐾𝐵 is high. 

Proof-R2. Firstly, with 𝐺2 and 𝐾𝐵, we have following derived preconditions for 

Reasoning 2. 

1. If 𝐺2  is given, then 𝑁𝑆2 = {𝐼𝑆2, 𝑁𝐿𝑆2} exists. (𝐺2  is associated with 𝑁𝑆2  in 

Grounding Extract) 

2. If 𝑁𝑆2 = {𝐼𝑆2, 𝑁𝐿𝑆2} exists, then 𝑁𝐿𝑆2 can include tumour negatives of 𝐼𝑆2 as 

accurate as possible, and 𝑁𝐿𝑆2 can exclude many tumour positives of 𝐼𝑆2 as 

tumour negatives. (facts contained in the existing 𝑁𝑆2) 

3. If 𝐺2 is given, then 𝐺2,1: pixels of 𝐼𝑆2 inside the polygons of 𝑁𝐿𝑆2 are tumour 

positives is given, and 𝐺2,2: pixels of 𝐼𝑆2  outside the polygons of 𝑁𝐿𝑆2  are 

tumour negatives is given. (groundings extracted from 𝑁𝑆2  by Grounding 

Extract) 

4. If 𝐺2,1: pixels of 𝐼𝑆2 inside the polygons of 𝑁𝐿𝑆2 are tumour positives is given, 

and 𝐺2,2: pixels of 𝐼𝑆2 outside the polygons of 𝑁𝐿𝑆2 are tumour negatives is 

given, then 𝐺2,1 and 𝐺2,2 are complementary to each other. 

5. If 𝑁𝐿𝑆2 can include tumour negatives of 𝐼𝑆2 as accurate as possible, and 𝐺2,1: 

pixels of 𝐼𝑆2 inside the polygons of 𝑁𝐿𝑆2 are tumour positives is given, then 

false tumour positives covered by 𝐺2,1 are rare.  

6. If 𝑁𝐿𝑆2 can exclude many tumour positives of 𝐼𝑆2 as tumour negatives, and 

𝐺2,2: pixels of 𝐼𝑆2 outside the polygons of 𝑁𝐿𝑆2 are tumour negatives is given, 

then false tumour negatives covered by 𝐺2,2 are many. 

7. If false tumour positives covered by 𝐺2,1  are rare, and 𝐺2,1  and 𝐺2,2  are 

complementary to each other, then 𝐺2,2 covers almost all true tumour negatives. 

8. If false tumour negatives covered by 𝐺2,2  are many, and 𝐺2,1  and 𝐺2,2  are 

complementary to each other, then 𝐺2,1  covers only a part of true tumour 

positives. 

9. If 𝐾𝐵 is given, then the information of 𝐾𝐵 can clearly describe what are the 

true tumour positives, and the opposite information of 𝐾𝐵 can clearly describe 

what are the true tumour negatives. (facts contained in the given 𝐾𝐵) 

10. If the information of 𝐾𝐵 can clearly describe what are the true tumour positives, 

then true tumour positives covered by 𝐾𝐵  are all-sided, and false tumour 

negatives covered by 𝐾𝐵 are none. 

11. If the opposite information of 𝐾𝐵 can clearly describe what are the true tumour 

negatives, then true tumour negatives covered by 𝐾𝐵 are all-sided, and false 

tumour positives covered by 𝐾𝐵 are none. 

12. If false tumour positives covered by 𝐺2,1 are rare, and false tumour positives 

covered by 𝐾𝐵 are none, then inconsistency between the false tumour positives 

covered by 𝐺2,1 and the false tumour positives covered by 𝐾𝐵 is low. 



13. If false tumour negatives covered by 𝐺2,2 are many, and false tumour negatives 

covered by 𝐾𝐵 are none, then inconsistency between false tumour negatives 

covered by 𝐺2,2 and the false tumour negatives covered by 𝐾𝐵 is high. 

14. If  𝐺2,2  covers almost all true tumour negatives, and true tumour negatives 

covered by 𝐾𝐵  are all-sided, then inconsistency between the true tumour 

negatives covered by 𝐺2,2 and the true tumour negatives covered by 𝐾𝐵 is low. 

15. If 𝐺2,1 covers only a part of true tumour positives, and true tumour positives 

covered by 𝐾𝐵 are all-sided, then inconsistency between true tumour positives 

covered by 𝐺2,1 and the true tumour positives covered by 𝐾𝐵 is high. 

Secondly, we give the propositional symbols for the above preconditions 1-15 for 

Reasoning 2, which are shown in Table 3. 

 

Table 3. Propositional symbols of preconditions for Reasoning 2 

Symbol Meaning 

𝑎 𝐺2 is given 

𝑏 𝑁𝑆2 = {𝐼𝑆2, 𝑁𝐿𝑆2} exists 

𝑐 𝑁𝐿𝑆2 can include tumour negatives of 𝐼𝑆2 as accurate as possible 

𝑑 𝑁𝐿𝑆2 can exclude many tumour positives of 𝐼𝑆2 as tumour negatives 

𝑒 𝐺2,1: pixels of 𝐼𝑆2 inside the polygons of 𝑁𝐿𝑆2 are tumour positives is given 

𝑓 𝐺2,2: pixels of 𝐼𝑆2 outside the polygons of 𝑁𝐿𝑆2 are tumour negatives is given 

𝑔 𝐺2,1 and 𝐺2,2 are complementary to each other 

ℎ false tumour positives covered by 𝐺2,1 are rare 

𝑖 false tumour negatives covered by 𝐺2,2 are many 

𝑗 𝐺2,2 covers almost all true tumour negatives 

𝑘 𝐺2,1 covers only a part of true tumour positives 

𝑙 𝐾𝐵 is given 

𝑚 the information of 𝐾𝐵 can clearly describe what are the true tumour positives 

𝑛 the opposite information of 𝐾𝐵 can clearly describe what are the true tumour negatives 

𝑜 true tumour positives covered by 𝐾𝐵 are all-sided 

𝑝 false tumour negatives covered by 𝐾𝐵 are none 

𝑞 true tumour negatives covered by 𝐾𝐵 are all-sided 

𝑟 false tumour positives covered by 𝐾𝐵 are none 

𝑠 inconsistency between the false tumour positives covered by 𝐺2,1 and the false tumour 

positives covered by 𝐾𝐵 is low 

𝑡 inconsistency between false tumour negatives covered by 𝐺2,2 and the false tumour 

negatives covered by 𝐾𝐵 is high 

𝑢 inconsistency between the true tumour negatives covered by 𝐺2,2 and the true tumour 

negatives covered by 𝐾𝐵 is low 

𝑣 inconsistency between true tumour positives covered by 𝐺2,1  and the true tumour 

positives covered by 𝐾𝐵 is high 

 

Thirdly, referring to Table 3, we signify the propositional formalizations of the 

preconditions 1-15 for Reasoning 2 and Reasoning 2 via the propositional connectives 

listed in Table 1 as follows. 

1) 𝑎 → 𝑏       Precondition 

2) 𝑏 → (𝑐 ∧ 𝑑)      Precondition 

3) 𝑎 → (𝑒 ∧ 𝑓)      Precondition 

4) (𝑒 ∧ 𝑓) → 𝑔      Precondition 



5) (𝑐 ∧ 𝑒) → ℎ      Precondition 

6) (𝑑 ∧ 𝑓) → 𝑖      Precondition 

7) (ℎ ∧ 𝑔) → 𝑗      Precondition 

8) (𝑖 ∧ 𝑔) → 𝑘      Precondition 

9) 𝑙 → (𝑚 ∧ 𝑛)      Precondition 

10) 𝑚 → (𝑜 ∧ 𝑝)      Precondition 

11) 𝑛 → (𝑞 ∧ 𝑟)      Precondition 

12) (ℎ ∧ 𝑟) → 𝑠      Precondition 

13) (𝑖 ∧ 𝑝) → 𝑡      Precondition 

14) (𝑗 ∧ 𝑞) → 𝑢      Precondition 

15) (𝑘 ∧ 𝑜) → 𝑣      Precondition 

(𝑎 ∧ 𝑙) → (𝑠 ∧ 𝑡 ∧ 𝑢 ∧ 𝑣)     Reasoning 2 

Fourthly, we show the validity of Reasoning 1 via the rules for proof of 

propositional logical reasoning listed in Table 3 as follows. 

∴ (𝒂 ∧ 𝒍) → (𝒔 ∧ 𝒕 ∧ 𝒖 ∧ 𝒗) 

16) 𝑎 ∧ 𝑙      Hypothesis 

17) 𝑎       16); ∧ − 

18) 𝑙        16); ∧ − 

19) 𝑎 → (𝑐 ∧ 𝑑)     1),2); HS 

20) 𝑐 ∧ 𝑑      19),17); MP 

21) 𝑒 ∧ 𝑓      3),17); MP 

22) 𝑐       20); ∧ − 

23) 𝑑       20); ∧ − 

24) 𝑒       21); ∧ − 

25) 𝑓       21); ∧ − 

26) 𝑐 ∧ 𝑒      22),24); ∧ + 

27) 𝑑 ∧ 𝑓      23),25); ∧ + 

28) ℎ       5),26); MP 

29) 𝑖       6),27); MP 

30) 𝑎 → 𝑔      3),4); HS 

31) 𝑔       30),17); MP 

32) ℎ ∧ 𝑔      28),31); ∧ + 

33) 𝑖 ∧ 𝑔      29),31); ∧ + 

34) 𝑗       7),32); MP 

35) 𝑘       8),33); MP 

36) 𝑚 ∧ 𝑛      9),18); MP 

37) 𝑚       36); ∧ − 

38) 𝑛       36); ∧ − 

39) 𝑜 ∧ 𝑝      10),37); MP 

40) 𝑞 ∧ 𝑟      11),38); MP 

41) 𝑜       39); ∧ − 

42) 𝑝       39); ∧ − 

43) 𝑞       40); ∧ − 



44) 𝑟       40); ∧ − 

45) ℎ ∧ 𝑟      28),44); ∧ + 

46) 𝑖 ∧ 𝑝      29),42); ∧ + 

47) 𝑗 ∧ 𝑞      34),43); ∧ + 

48) 𝑘 ∧ 𝑜      35),41); ∧ + 

49) 𝑠       12),45); MP 

50) 𝑡       13),46); MP 

51) 𝑢       14),47); MP 

52) 𝑣       15),48); MP 

53) 𝑠 ∧ 𝑡 ∧ 𝑢 ∧ 𝑣     49),50),51),52); ∧ + 

54) (𝑎 ∧ 𝑙) → (𝑠 ∧ 𝑡 ∧ 𝑢 ∧ 𝑣)    16)-53); Conditional Proof 

Since the hypothesis 𝑎 ∧ 𝑙 of the 16) step can be fulfilled by the input materials of 

OSAMTL-DiNS applied on tumour segmentation for breast cancer and Grounding 

Extract, Reasoning 2 is proved to be valid. 

 

Proof of Reasoning 3 

Reasoning 3. If  𝐼𝐶1 is given, then 𝐺1,1 should not be revised to remain 𝐼𝐶1,1,  𝐺1,2 

should not be revised to remain  𝐼𝐶1,3,  𝐺1,1 should be revised to reduce 𝐼𝐶1,4, and 𝐺1,2 

should be revised to reduce 𝐼𝐶1,2. 

Proof-R3. Firstly, with 𝐼𝐶1 , we have following derived preconditions for 

Reasoning 3. 

1. If 𝐼𝐶1 is given, then 𝐺1 exists. (𝐼𝐶1 is associated with 𝐺1 in Reasoning)  

2. If 𝐼𝐶1  is given, then 𝐼𝐶1,1 is given, 𝐼𝐶1,2 is given, 𝐼𝐶1,3 is given, and 𝐼𝐶1,4  is 

given. 

3. If 𝐺1exists, then 𝐺1,1 exists, and 𝐺1,2 exists. 

4. If 𝐼𝐶1,1 is given, then inconsistency between the false tumour negatives covered 

by 𝐺1,1 and the false tumour negatives covered by 𝐾𝐵 is low. (inconsistency 

estimated by Reasoning) 

5. If 𝐺1,1 exists, and inconsistency between the false tumour negatives covered by 

𝐺1,1 and the false tumour negatives covered by 𝐾𝐵 is low, then 𝐺1,1 should not 

be revised to remain 𝐼𝐶1,1. 

6. If 𝐼𝐶1,3 is given, then inconsistency between the true tumour positives covered 

by 𝐺1,2 and the true tumour positives covered by 𝐾𝐵 is low. (inconsistency 

estimated by Reasoning) 

7. If 𝐺1,2 is given, and inconsistency between the true tumour positives covered 

by 𝐺1,2 and the true tumour positives covered by 𝐾𝐵 is low, then 𝐺1,2 should 

not be revised to remain 𝐼𝐶1,3. 

8. If 𝐼𝐶1,2 is given, then inconsistency between the false tumour positives covered 

by 𝐺1,2 and the false tumour positives covered by 𝐾𝐵 is high. (inconsistency 

estimated by Reasoning) 



9. If 𝐺1,2 exists, and inconsistency between the false tumour positives covered by 

𝐺1,2 and the false tumour positives covered by 𝐾𝐵 is high, then 𝐺1,2 should be 

revised to reduce 𝐼𝐶1,2. 

10. If 𝐼𝐶1,4 is given, then inconsistency between the true tumour negatives covered 

by 𝐺1,1 and the true tumour negatives covered by 𝐾𝐵 is high. (inconsistency 

estimated by Reasoning) 

11. If 𝐺1,1 exists, and inconsistency between the true tumour negatives covered by 

𝐺1,1 and the true tumour negatives covered by 𝐾𝐵 is high, then 𝐺1,1 should be 

revised to reduce 𝐼𝐶1,4. 

Secondly, we give the propositional symbols for the above preconditions 1-11 for 

Reasoning 3, which are shown in Table 5. 

 

Table 5. Propositional symbols of preconditions for Reasoning 3 

Symbol Meaning 

𝑎 𝐼𝐶1 is given 

𝑏 𝐺1 exists 

𝑐 𝐼𝐶1,1 is given 

𝑑 𝐼𝐶1,2 is given 

𝑒 𝐼𝐶1,3 is given 

𝑓 𝐼𝐶1,4 is given 

𝑔 𝐺1,1 exists 

ℎ 𝐺1,2 exists 

𝑖 inconsistency between the false tumour negatives covered by 𝐺1,1 and the false tumour 

negatives covered by 𝐾𝐵 is low 

𝑗 𝐺1,1 should not be revised to remain 𝐼𝐶1,1 

𝑘 inconsistency between the true tumour positives covered by 𝐺1,2 and the true tumour 

positives covered by 𝐾𝐵 is low 

𝑙 𝐺1,2 should not be revised to remain 𝐼𝐶1,3 

𝑚 inconsistency between the false tumour positives covered by 𝐺1,2 and the false tumour 

positives covered by 𝐾𝐵 is high 

𝑛 then 𝐺1,2 should be revised to reduce 𝐼𝐶1,2 

𝑜 inconsistency between the true tumour negatives covered by 𝐺1,1 and the true tumour 

negatives covered by 𝐾𝐵 is high 

𝑝 𝐺1,1 should be revised to reduce 𝐼𝐶1,4 

 

Thirdly, referring to Table 5, we signify the propositional formalizations of the 

preconditions 1-11 for Reasoning 3 and Reasoning 3 via the propositional connectives 

listed in Table 1 as follows. 

1) 𝑎 → 𝑏       Precondition 

2) 𝑎 → (𝑐 ∧ 𝑑 ∧ 𝑒 ∧ 𝑓)     Precondition 

3)  𝑏 → (𝑔 ∧ ℎ)      Precondition 

4)  𝑐 → 𝑖       Precondition 

5) (𝑔 ∧ 𝑖) → 𝑗      Precondition 

6) 𝑒 → 𝑘       Precondition 

7) (ℎ ∧ 𝑘) → 𝑙      Precondition 

8) 𝑑 → 𝑚      Precondition 



9) (ℎ ∧ 𝑚) → 𝑛      Precondition 

10) 𝑓 → 𝑜       Precondition 

11) (𝑔 ∧ 𝑜) → 𝑝      Precondition 

𝑎 → (𝑗 ∧ 𝑙 ∧ 𝑛 ∧ 𝑝)     Reasoning 3 

Fourthly, we show the validity of Reasoning 3 via the rules for proof of 

propositional logical reasoning listed in Table 2 as follows. 

∴ 𝒂 → (𝒋 ∧ 𝒍 ∧ 𝒏 ∧ 𝒑) 

12) 𝑎       Hypothesis 

13) 𝑎 → (𝑔 ∧ ℎ)     1),3); HS 

14) 𝑔 ∧ ℎ      13),12); MP 

15) 𝑔       14); ∧ − 

16) ℎ       14); ∧ − 

17) 𝑐 ∧ 𝑑 ∧ 𝑒 ∧ 𝑓     2),12); MP 

18) 𝑐       17); ∧ − 

19) 𝑑       17); ∧ − 

20) 𝑒       17); ∧ − 

21) 𝑓       17); ∧ − 

22) 𝑖       4),18); MP 

23) 𝑔 ∧ 𝑖      15),22); ∧ + 

24) 𝑗       5),23); MP 

25) 𝑘       6),20); MP 

26) ℎ ∧ 𝑘      16),25); ∧ + 

27) 𝑙       7),26); MP 

28) 𝑚       8),19); MP 

29) ℎ ∧ 𝑚      16),28); ∧ + 

30) 𝑛       9),29); MP 

31) 𝑜       10),21); MP 

32) 𝑔 ∧ 𝑜      15),31); ∧ + 

33) 𝑝       11),32); MP 

34) 𝑗 ∧ 𝑙 ∧ 𝑛 ∧ 𝑝     24),27),30),33); ∧ + 

35) 𝑎 → 𝑗 ∧ 𝑙 ∧ 𝑛 ∧ 𝑝     12)-34); Conditional Proof 

Since the hypothesis 𝑎  of the 17) step can be fulfilled by the Reasoning step, 

Reasoning 3 is proved to be valid. 

 

Proof of Reasoning 4 

Reasoning 4. If  𝐼𝐶2 is given, then 𝐺2,1 should not be revised to remain 𝐼𝐶2,1, then 

𝐺2,2 should not be revised to remain 𝐼𝐶2,3, 𝐺2,1 should be revised to reduce 𝐼𝐶2,2, and 

𝐺2,2 should be revised to reduce 𝐼𝐶2,4. 

Proof-R4. Firstly, with 𝐼𝐶2 , we have following derived preconditions for 

Reasoning 4. 

1. If 𝐼𝐶2 is given, then 𝐺2 exists. (𝐼𝐶2 is associated with 𝐺2 in Reasoning)  

2. If 𝐼𝐶2  is given, then 𝐼𝐶2,1 is given, 𝐼𝐶2,2 is given, 𝐼𝐶2,3 is given, and 𝐼𝐶2,4 is 

given. 



3. If 𝐺2exists, then 𝐺2,1 exists, and 𝐺2,2 exists. 

4. If 𝐼𝐶2,1 is given, then inconsistency between the false tumour positives covered 

by 𝐺2,1 and the false tumour positives covered by 𝐾𝐵 is low. (inconsistency 

estimated by Reasoning) 

5. If 𝐺2,1 exists, and inconsistency between the false tumour positives covered by 

𝐺2,1 and the false tumour positives covered by 𝐾𝐵 is low, then 𝐺2,1 should not 

be revised to remain 𝐼𝐶2,1. 

6. If 𝐼𝐶2,3 is given, then inconsistency between the true tumour negatives covered 

by 𝐺2,2 and the true tumour negatives covered by 𝐾𝐵 is low. (inconsistency 

estimated by Reasoning) 

7. If 𝐺2,2 is given, and inconsistency between the true tumour negatives covered 

by 𝐺2,2 and the true tumour negatives covered by 𝐾𝐵 is low, then 𝐺2,2 should 

not be revised to remain 𝐼𝐶2,3. 

8. If 𝐼𝐶2,2 is given, then inconsistency between the false tumour negatives covered 

by 𝐺2,2 and the false tumour negatives covered by 𝐾𝐵 is high. (inconsistency 

estimated by Reasoning) 

9. If 𝐺2,2 exists, and inconsistency between the false tumour negatives covered by 

𝐺2,2 and the false tumour negatives covered by 𝐾𝐵 is high, then 𝐺2,2 should be 

revised to reduce 𝐼𝐶2,2. 

10. If 𝐼𝐶2,4 is given, then inconsistency between the true tumour positives covered 

by 𝐺2,1 and the true tumour positives covered by 𝐾𝐵 is high. (inconsistency 

estimated by Reasoning) 

11. If 𝐺2,1 exists, and inconsistency between the true tumour positives covered by 

𝐺2,1 and the true tumour negatives covered by 𝐾𝐵 is high, then 𝐺2,1 should be 

revised to reduce 𝐼𝐶2,4. 

Secondly, we give the propositional symbols for the above preconditions 1-11 for 

Reasoning 4, which are shown in Table 6. 

 

Table 6. Propositional symbols of preconditions for Reasoning 4 

Symbol Meaning 

𝑎 𝐼𝐶2 is given 

𝑏 𝐺2 exists 

𝑐 𝐼𝐶2,1 is given 

𝑑 𝐼𝐶2,2 is given 

𝑒 𝐼𝐶2,3 is given 

𝑓 𝐼𝐶2,4 is given 

𝑔 𝐺2,1 exists 

ℎ 𝐺2,2 exists 

𝑖 inconsistency between the false tumour positives covered by 𝐺2,1 and the false tumour 

positives covered by 𝐾𝐵 is low 

𝑗 𝐺2,1 should not be revised to remain 𝐼𝐶2,1 

𝑘 inconsistency between the true tumour negatives covered by 𝐺2,2 and the true tumour 

negatives covered by 𝐾𝐵 is low 

𝑙 𝐺2,2 should not be revised to remain 𝐼𝐶2,3 



𝑚 inconsistency between the false tumour negatives covered by 𝐺2,2 and the false tumour 

negatives covered by 𝐾𝐵 is high 

𝑛 then 𝐺2,2 should be revised to reduce 𝐼𝐶2,2 

𝑜 inconsistency between the true tumour positives covered by 𝐺2,1 and the true tumour 

positives covered by 𝐾𝐵 is high 

𝑝 𝐺2,1 should be revised to reduce 𝐼𝐶2,4 

 

Thirdly, referring to Table 6, we signify the propositional formalizations of the 

preconditions 1-11 for Reasoning 4 and Reasoning 4 via the propositional connectives 

listed in Table 1 as follows. 

1) 𝑎 → 𝑏       Precondition 

2) 𝑎 → (𝑐 ∧ 𝑑 ∧ 𝑒 ∧ 𝑓)     Precondition 

3)  𝑏 → (𝑔 ∧ ℎ)      Precondition 

4)  𝑐 → 𝑖       Precondition 

5) (𝑔 ∧ 𝑖) → 𝑗      Precondition 

6) 𝑒 → 𝑘       Precondition 

7) (ℎ ∧ 𝑘) → 𝑙      Precondition 

8) 𝑑 → 𝑚      Precondition 

9) (ℎ ∧ 𝑚) → 𝑛      Precondition 

10) 𝑓 → 𝑜       Precondition 

11) (𝑔 ∧ 𝑜) → 𝑝      Precondition 

𝑎 → (𝑗 ∧ 𝑙 ∧ 𝑛 ∧ 𝑝)     Reasoning 3 

Fourthly, we show the validity of Reasoning 3 via the rules for proof of 

propositional logical reasoning listed in Table 2 as follows. 

∴ 𝒂 → (𝒋 ∧ 𝒍 ∧ 𝒏 ∧ 𝒑) 

12) 𝑎       Hypothesis 

13) 𝑎 → (𝑔 ∧ ℎ)     1),3); HS 

14) 𝑔 ∧ ℎ      13),12); MP 

15) 𝑔       14); ∧ − 

16) ℎ       14); ∧ − 

17) 𝑐 ∧ 𝑑 ∧ 𝑒 ∧ 𝑓     2),12); MP 

18) 𝑐       17); ∧ − 

19) 𝑑       17); ∧ − 

20) 𝑒       17); ∧ − 

21) 𝑓       17); ∧ − 

22) 𝑖       4),18); MP 

23) 𝑔 ∧ 𝑖      15),22); ∧ + 

24) 𝑗       5),23); MP 

25) 𝑘       6),20); MP 

26) ℎ ∧ 𝑘      16),25); ∧ + 

27) 𝑙       7),26); MP 

28) 𝑚       8),19); MP 

29) ℎ ∧ 𝑚      16),28); ∧ + 

30) 𝑛       9),29); MP 



31) 𝑜       10),21); MP 

32) 𝑔 ∧ 𝑜      15),31); ∧ + 

33) 𝑝       11),32); MP 

34) 𝑗 ∧ 𝑙 ∧ 𝑛 ∧ 𝑝     24),27),30),33); ∧ + 

35) 𝑎 → 𝑗 ∧ 𝑙 ∧ 𝑛 ∧ 𝑝     12)-34); Conditional Proof 

Since the hypothesis 𝑎  of the 17) step can be fulfilled by the Reasoning step, 

Reasoning 4 is proved to be valid. 

 

Proof of Reasoning 5 

Reasoning 5. If  𝑅𝐺1 is given and 𝑅𝐺2 is given, then a target (𝑇1) can be abduced 

from the union of 𝑅𝐺1 and 𝑅𝐺2, and 𝑇1 has a high recall of true tumour positives and 

a high precision of true tumour negatives. 

Proof-R5. Firstly, with 𝑅𝐺1 and 𝑅𝐺2, we have following derived preconditions for 

Reasoning 5. 

1. If 𝑅𝐺1  is given, then 𝑅𝐺1 is equivalent to 𝐺1,1 : pixels of 𝐼𝑆1  outside the 

polygons of 𝑁𝐿𝑆1 are tumour negatives. (revised grounding produced by 

Abduction) 

2. If 𝑅𝐺2  is given, then 𝑅𝐺2  is equivalent to 𝐺1,2 : pixels of 𝐼𝑆1  inside the 

polygons of 𝑁𝐿𝑆1  are tumour positives. (revised grounding produced by 

Abduction) 

3. If 𝑅𝐺1 is equivalent to 𝐺1,1 : pixels of 𝐼𝑆1  outside the polygons of 𝑁𝐿𝑆1 are 

tumour negatives and 𝑅𝐺2  is equivalent to 𝐺1,2 : pixels of 𝐼𝑆1  inside the 

polygons of 𝑁𝐿𝑆1 are tumour positives, then 𝑅𝐺1 indicates where are tumour 

negatives of 𝐼𝑆1 and 𝑅𝐺2 indicates where are tumour positives of 𝐼𝑆1. 

4. If 𝑅𝐺1 indicates where are tumour negatives of 𝐼𝑆1 and 𝑅𝐺2 indicates where 

are tumour positives of 𝐼𝑆1, then a target (𝑇1) can be abduced from the union 

of 𝑅𝐺1 and 𝑅𝐺2. 

5. If 𝑇1 can be abduced from the union of 𝑅𝐺1 and 𝑅𝐺2, 𝑅𝐺1is equivalent to 𝐺1,1: 

pixels of 𝐼𝑆1 outside the polygons of 𝑁𝐿𝑆1 are tumour negatives, and 𝑅𝐺2 is 

equivalent to 𝐺1,2  pixels of 𝐼𝑆1  inside the polygons of 𝑁𝐿𝑆1  are tumour 

positives, then the recall of 𝑇1for true tumour positives can be denoted by true 

tumour positives covered by 𝐺1,2 (TP(𝐺1,2)) dividing the sum of TP(𝐺1,2) and 

false tumour negatives covered by 𝐺1,1 (FN(𝐺1,1)), i.e., TP(𝐺1,2)/( TP(𝐺1,2)+ 

FN(𝐺1,1)); and the precision of 𝑇1 for true tumour negatives can be denoted by 

true tumor negatives covered by 𝐺1,1 (TN(𝐺1,1)) dividing the sum of TN(𝐺1,1) 

and FN(𝐺1,1), i.e., TN(𝐺1,1)/(TN(𝐺1,1)+ FN(𝐺1,1)). 

6. If 𝑅𝐺1  is given, then 𝐺1,1  should not be revised to remain 𝐼𝐶1,1 . (revised 

grounding produced by Abduction is only associated with corresponding 

grounding revision in Abduction) 

7. If 𝐺1,1 should not be revised to remain 𝐼𝐶1,1, then 𝐺1,1 should not be revised to 

remain the fact that inconsistency between FN(𝐺1,1) and false tumour negatives 

covered by 𝐾𝐵 (FN(𝐾𝐵)) is low. (fact contained in 𝐼𝐶1,1) 



8. If 𝐺1,1 is not revised to remain the fact that inconsistency between FN(𝐺1,1)  

and FN(𝐾𝐵) is low, then FN(𝐺1,1) can be regarded as close to FN(𝐾𝐵). 

9. If FN(𝐺1,1) can be regarded as close to FN(𝐾𝐵), then FN(𝐺1,1) can be regarded 

as close to 0.  

10. If FN(𝐺1,1) can be regarded as close to 0, then tumour negatives covered by 

𝐺1,1 can be regarded as true tumor negatives. 

11. If tumour negatives covered by 𝐺1,1 can be regarded as true tumor negatives, 

then TN(𝐺1,1) can be regarded as a constant positive integer. 

12. If 𝑅𝐺2  is given, then 𝐺1,2 should not be revised to remain 𝐼𝐶1,3 . (revised 

grounding produced by Abduction is only associated with corresponding 

grounding revision in Abduction) 

13. If 𝐺1,2 should not be revised to remain 𝐼𝐶1,3, then 𝐺1,2 should not be revised to 

remain the fact that inconsistency between TP(𝐺1,2) and true tumour positives 

covered by 𝐾𝐵 (TP(𝐾𝐵)) is low.  

14. If 𝐺1,2 should not be revised to remain the fact that inconsistency between 

TP(𝐺1,2) and TP(𝐾𝐵) is low, then TP(𝐺1,2) can be regarded as close to TP(𝐾𝐵). 

15. If TP(𝐺1,2) can be regarded as close to TP(𝐾𝐵), TP(𝐺1,2) can be regarded as a 

constant positive integer. 

16. If TP(𝐺1,2) can be regarded as a constant positive integer and FN(𝐺1,1) can be 

regarded as close to 0, and the recall of 𝑇1for true tumour positives can be 

denoted by TP(𝐺1,2)/( TP(𝐺1,2)+ FN(𝐺1,1)), then the recall of 𝑇1 for true tumour 

positives is close to 1. 

17. If TN(𝐺1,1) can be regarded as a constant positive integer, FN(𝐺1,1) can be 

regarded as close to 0, and the precision of 𝑇1 for true tumour negatives can be 

denoted by TN(𝐺1,1)/(TN(𝐺1,1)+ FN(𝐺1,1)), then the precision of 𝑇1 for true 

tumour negatives is close to 1. 

18. If the recall of 𝑇1 for true tumour positives is close to 1 and the precision of 𝑇1 

for true tumour negatives is close to 1, then  𝑇1 has a high recall of true tumour 

positives and a high precision of true tumour negatives. 

Secondly, we give the propositional symbols for the above preconditions 1-18 for 

Reasoning 5, which are shown in Table 7. 

 

Table 7. Propositional symbols of preconditions for Reasoning 5 

Symbol Meaning 

𝑎 𝑅𝐺1 is given 

𝑏 𝑅𝐺1 is euuivalent to 𝐺1,1 : pixels of 𝐼𝑆1  outside the polygons of 𝑁𝐿𝑆1  are tumour 

negatives 

𝑐 𝑅𝐺2 is given 

𝑑 𝑅𝐺2  is euuivalent to 𝐺1,2  pixels of 𝐼𝑆1  inside the polygons of 𝑁𝐿𝑆1  are tumour 

positives 

𝑒 𝑅𝐺1 indicates where are tumour negatives of 𝐼𝑆1 

𝑓 𝑅𝐺2 indicates where are tumour positives of 𝐼𝑆1 

𝑔 a target (𝑇1) can be abduced from the union of 𝑅𝐺1 and 𝑅𝐺2 



ℎ the recall of 𝑇1 for true tumour positives can be denoted by true tumour positives 

covered by 𝐺1,2 (TP(𝐺1,2)) dividing the sum of TP(𝐺1,2) and false tumour negatives 

covered by 𝐺1,1 (FN(𝐺1,1)), i.e., TP(𝐺1,2)/( TP(𝐺1,2)+ FN(𝐺1,1)) 

𝑖 the precision of 𝑇1 for true tumour negatives can be denoted by true tumor negatives 

covered by 𝐺1,1  (TN( 𝐺1,1 )) dividing the sum of TN( 𝐺1,1 ) and FN( 𝐺1,1 ), i.e., 

TN(𝐺1,1)/(TN(𝐺1,1)+ FN(𝐺1,1)) 

𝑗 𝐺1,1 should not be revised to remain 𝐼𝐶1,1 

𝑘 𝐺1,1 should not be revised to remain the fact that inconsistency between FN(𝐺1,1) and 

false tumour negatives covered by 𝐾𝐵 (FN(𝐾𝐵)) is low 

𝑙 FN(𝐺1,1) can be regarded as close to FN(𝐾𝐵) 

𝑚 FN(𝐺1,1) can be regarded as close to 0 

𝑛 tumour negatives covered by 𝐺1,1 can be regarded as true tumor negatives 

𝑜 TN(𝐺1,1) can be regarded as a constant positive integer 

𝑝 𝐺1,2 should not be revised to remain 𝐼𝐶1,3 

𝑞 𝐺1,2 should not be revised to remain the fact that inconsistency between TP(𝐺1,2) and 

true tumour positives covered by 𝐾𝐵 (TP(𝐾𝐵)) is low 

𝑟 TP(𝐺1,2) can be regarded as close to TP(𝐾𝐵) 

𝑠 TP(𝐺1,2) can be regarded as a constant positive integer 

𝑡 the recall of 𝑇1 (TP(𝐺1,2)/( TP(𝐺1,2)+ FN(𝐺1,1)))for true tumour positives is close to 1 

𝑢 the precision of 𝑇1 (TN(𝐺1,1)/(TN(𝐺1,1)+ FN(𝐺1,1))) for true tumour negatives is close 

to 1 

𝑣 𝑇1  has a high recall of true tumour positives and a high precision of true tumour 

negatives 

 

Thirdly, referring to Table 7, we signify the propositional formalizations of the 

preconditions 1-18 for Reasoning 5 and Reasoning 5 via the propositional connectives 

listed in Table 1 as follows. 

1) 𝑎 → 𝑏       Precondition 

2) 𝑐 → 𝑑       Precondition 

3) (𝑏 ∧ 𝑑) → (𝑒 ∧ 𝑓)     Precondition 

4) (𝑒 ∧ 𝑓) → 𝑔      Precondition 

5)  (𝑔 ∧ 𝑏 ∧ 𝑑) → (ℎ ∧ 𝑖)    Precondition 

6)  𝑎 → 𝑗       Precondition 

7)  𝑗 → 𝑘       Precondition 

8)  𝑘 → 𝑙       Precondition 

9)  𝑙 → 𝑚       Precondition 

10) 𝑚 → 𝑛      Precondition 

11) 𝑛 → 𝑜       Precondition 

12) 𝑏 → 𝑝       Precondition 

13) 𝑝 → 𝑞       Precondition 

14) 𝑞 → 𝑟       Precondition 

15) 𝑟 → 𝑠       Precondition 

16) (𝑠 ∧ 𝑚 ∧ ℎ) → 𝑡     Precondition 

17) (𝑜 ∧ 𝑚 ∧ 𝑖) → 𝑢     Precondition 

18) (𝑡 ∧ 𝑢) → 𝑣      Precondition 

(𝑎 ∧ 𝑐) → (𝑔 ∧ 𝑣)     Reasoning 5 



Fourthly, we show the validity of Reasoning 5 via the rules for proof of 

propositional logical reasoning listed in Table 2 as follows. 

∴ (𝒂 ∧ 𝒄) → (𝒈 ∧ 𝒗) 

19) 𝑎 ∧ 𝑐      Hypothesis 

20) 𝑎       19); ∧ − 

21) 𝑐       19); ∧ − 

22) 𝑏       1),20); MP 

23) 𝑑       2),21); MP 

24) 𝑏 ∧ 𝑑      22),23); ∧ + 

25) (𝑏 ∧ 𝑑) → 𝑔     3),24); HS 

26) 𝑔       25),24); MP 

27) 𝑔 ∧ 𝑏 ∧ 𝑑      26),24); ∧ + 

28) ℎ ∧ 𝑖      5),27); MP 

29) ℎ       28); ∧ − 

30) 𝑖       28); ∧ − 

31) 𝑎 → 𝑚      6),7),8),9); HS 

32) 𝑚       31),20); MP 

33) 𝑚 → 𝑜      10),11); HS 

34) 𝑜       33),32); MP 

35) 𝑏 → 𝑠      12),13),14),15); HS 

36) 𝑠       35),22); MP 

37) 𝑠 ∧ 𝑚 ∧ ℎ      36),32),29); ∧ + 

38) 𝑜 ∧ 𝑚 ∧ 𝑖      34),32),30); ∧ + 

39) 𝑡       16),37); MP 

40) 𝑢       17),38); MP 

41) 𝑡 ∧ 𝑢      39),40); ∧ + 

42) 𝑣       18),41); MP 

43) 𝑔 ∧ 𝑣      26),42); ∧ + 

48) (𝑎 ∧ 𝑐) → (𝑔 ∧ 𝑣)     19)-43); Conditional Proof 

Since the hypothesis 𝑎 ∧ 𝑐 of the 19) step can be fulfilled by the Abduction step, 

Reasoning 5 is proved to be valid. 

 

Proof of Reasoning 6 

Reasoning 6. If  𝑅𝐺5 is given and 𝑅𝐺6 is given, then a target (𝑇2) can be abduced 

from the union of 𝑅𝐺5 and 𝑅𝐺6, and 𝑇2 has a high precision of true tumour positives 

and a high recall of true tumour negatives. 

Proof-R6. Firstly, with 𝑅𝐺5 and 𝑅𝐺6, we have following derived preconditions for 

Reasoning 6. 

1. If 𝑅𝐺5 is given, then 𝑅𝐺5is equivalent to 𝐺2,1: pixels of 𝐼𝑆2 inside the polygons 

of 𝑁𝐿𝑆2 are tumour positives. (revised grounding produced by Abduction) 

2. If 𝑅𝐺6  is given, then 𝑅𝐺6  is equivalent to 𝐺2,2 : pixels of 𝐼𝑆2  outside the 

polygons of 𝑁𝐿𝑆2  are tumour negatives. (revised grounding produced by 

Abduction) 



3. If 𝑅𝐺5 is equivalent to 𝐺2,1 : pixels of 𝐼𝑆2  inside the polygons of 𝑁𝐿𝑆2 are 

tumour positives and 𝑅𝐺6  is equivalent to 𝐺2,2 : pixels of 𝐼𝑆2  outside the 

polygons of 𝑁𝐿𝑆2 are tumour negatives, then 𝑅𝐺5 indicates where are tumour 

positives of 𝐼𝑆2 and 𝑅𝐺6 indicates where are tumour negatives of 𝐼𝑆2. 

4. If 𝑅𝐺5 indicates where are tumour positives of 𝐼𝑆2 and 𝑅𝐺6 indicates where are 

tumour negatives of 𝐼𝑆2, then a target (𝑇2) can be abduced from the union of 

𝑅𝐺5 and 𝑅𝐺6. 

5. If 𝑇2 can be abduced from the union of 𝑅𝐺5 and 𝑅𝐺6, 𝑅𝐺5is equivalent to 𝐺2,1: 

pixels of 𝐼𝑆2  inside the polygons of 𝑁𝐿𝑆2 are tumour positives, and 𝑅𝐺6  is 

equivalent to 𝐺2,2  pixels of 𝐼𝑆2  outside the polygons of 𝑁𝐿𝑆2  are tumour 

negatives, then the precision of 𝑇2 for true tumour positives can be denoted by 

true tumour positives covered by 𝐺2,1 (TP(𝐺2,1)) dividing the sum of TP(𝐺2,1) 

and false tumour positives covered by 𝐺2,1  (FP( 𝐺2,1 )), i.e., 

TP(𝐺2,1)/( TP(𝐺2,1)+ FP(𝐺2,1)); and the recall of 𝑇2 for true tumour negatives 

can be denoted by true tumor negatives covered by 𝐺2,2 (TN(𝐺2,2)) dividing the 

sum of TN(𝐺2,2) and FP(𝐺2,1), i.e., TN(𝐺2,2)/(TN(𝐺2,2)+ FP(𝐺2,1)). 

6. If 𝑅𝐺5  is given, then 𝐺2,1  should not be revised to remain 𝐼𝐶2,1 . (revised 

grounding produced by Abduction is only associated with corresponding 

grounding revision in Abduction) 

7. If 𝐺2,1 should not be revised to remain 𝐼𝐶2,1, then 𝐺2,1 should not be revised to 

remain the fact that inconsistency between FP(𝐺2,1) and false tumour positives 

covered by 𝐾𝐵 (FP(𝐾𝐵)) is low. (fact contained in 𝐼𝐶2,1) 

8. If 𝐺2,1  should not be revised to remain the fact that inconsistency between 

FP(𝐺2,1) and FP(𝐾𝐵) is low, then FP(𝐺2,1) can be regarded as close to FP(𝐾𝐵). 

9. If FP(𝐺2,1) can be regarded as close to FP(𝐾𝐵), then FP(𝐺2,1) can be regarded 

as close to 0.  

10. If FP(𝐺2,1) can be regarded as close to 0, then tumour positives covered by 𝐺2,1 

can be regarded as true tumor positives. 

11. If tumour positives covered by 𝐺2,1 can be regarded as true tumor positives, 

then TP(𝐺2,1) can be regarded as a constant positive integer. 

12. If 𝑅𝐺6  is given, then 𝐺2,2 should not be revised to remain 𝐼𝐶2,3 . (revised 

grounding produced by Abduction is only associated with corresponding 

grounding revision in Abduction) 

13. If 𝐺2,2 should not be revised to remain 𝐼𝐶2,3, then 𝐺2,2 should not be revised to 

remain the fact that inconsistency between TN(𝐺2,2) and true tumour negatives 

covered by 𝐾𝐵 (TN(𝐾𝐵)) is low.  

14. If 𝐺2,2 should not be revised to remain the fact that inconsistency between 

TN(𝐺2,2 ) and TN(𝐾𝐵) is low, then TN(𝐺2,2) can be regarded as close to 

TN(𝐾𝐵). 

15. If TN(𝐺2,2) can be regarded as close to TN(𝐾𝐵), TN(𝐺2,2) can be regarded as 

a constant positive integer. 



16. If TP(𝐺2,1) can be regarded as a constant positive integer, FP(𝐺2,1) can be 

regarded as close to 0, and the precision of 𝑇2 for true tumour positives can be 

denoted by TP(𝐺2,1)/( TP(𝐺2,1)+ FP(𝐺2,1)), then the precision of 𝑇2 for true 

tumour positives is close to 1. 

17. If TN(𝐺2,2) can be regarded as a constant positive integer, FP(𝐺2,1) can be 

regarded as close to 0, and the recall of 𝑇2 for true tumour negatives can be 

denoted by TN(𝐺2,2)/(TN(𝐺2,2)+ FP(𝐺2,1)), then the recall of 𝑇2 for true tumour 

negatives is close to 1. 

18. If the precision of 𝑇2 for true tumour positives is close to 1 and the precision of 

𝑇2 for true tumour negatives is close to 1, then  𝑇2 has a high precision of true 

tumour positives and a high recall of true tumour negatives. 

Secondly, we give the propositional symbols for the above preconditions 1-18 for 

Reasoning 6, which are shown in Table 8. 

 

Table 8. Propositional symbols of preconditions for Reasoning 6 

Symbol Meaning 

𝑎 𝑅𝐺5 is given 

𝑏 𝑅𝐺5 is euuivalent to 𝐺2,1 : pixels of 𝐼𝑆2  inside the polygons of 𝑁𝐿𝑆2  are tumour 

positives 

𝑐 𝑅𝐺6 is given 

𝑑 𝑅𝐺6  is euuivalent to 𝐺2,2 : pixels of 𝐼𝑆2  outside the polygons of 𝑁𝐿𝑆2  are tumour 

negatives 

𝑒 𝑅𝐺5 indicates where are tumour positives of 𝐼𝑆2 

𝑓 𝑅𝐺6 indicates where are tumour negatives of 𝐼𝑆2 

𝑔 a target (𝑇2) can be abduced from the union of 𝑅𝐺5 and 𝑅𝐺6 

ℎ the precision of 𝑇2 for true tumour positives can be denoted by true tumour positives 

covered by 𝐺2,1 (TP(𝐺2,1)) dividing the sum of TP(𝐺2,1) and false tumour positives 

covered by 𝐺2,1 (FP(𝐺2,1)), i.e., TP(𝐺2,1)/( TP(𝐺2,1)+ FP(𝐺2,1)) 

𝑖 the recall of 𝑇2  for true tumour negatives can be denoted by true tumor negatives 

covered by 𝐺2,2  (TN( 𝐺2,2 )) dividing the sum of TN( 𝐺2,2 ) and FP( 𝐺2,1 ), i.e., 

TN(𝐺2,2)/(TN(𝐺2,2)+ FP(𝐺2,1)) 

𝑗 𝐺2,1 should not be revised to remain 𝐼𝐶2,1 

𝑘 𝐺2,1 should not be revised to remain the fact that inconsistency between FP(𝐺2,1) and 

false tumour positives covered by 𝐾𝐵 (FP(𝐾𝐵)) is low 

𝑙 FP(𝐺2,1) can be regarded as close to FP(𝐾𝐵) 

𝑚 FP(𝐺2,1) can be regarded as close to 0 

𝑛 tumour positives covered by 𝐺2,1 can be regarded as true tumor positives 

𝑜 TP(𝐺2,1) can be regarded as a constant positive integer 

𝑝 𝐺2,2 should not be revised to remain 𝐼𝐶2,3 

𝑞 𝐺2,2 should not be revised to remain the fact that inconsistency between TN(𝐺2,2) and 

true tumour negatives covered by 𝐾𝐵 (TN(𝐾𝐵)) is low 

𝑟 TN(𝐺2,2) can be regarded as close to TN(𝐾𝐵) 

𝑠 TN(𝐺2,2) can be regarded as a constant positive integer 

𝑡 the precision of 𝑇2 for true tumour positives is close to 1 

𝑢 the recall of 𝑇2 for true tumour negatives is close to 1 

𝑣 𝑇2  has a high precision of true tumour positives and a high recall of true tumour 

negatives 

 



Thirdly, referring to Table 8, we signify the propositional formalizations of the 

preconditions 1-18 for Reasoning 6 and Reasoning 6 via the propositional connectives 

listed in Table 1 as follows. 

1) 𝑎 → 𝑏       Precondition 

2) 𝑐 → 𝑑       Precondition 

3) (𝑏 ∧ 𝑑) → (𝑒 ∧ 𝑓)     Precondition 

4) (𝑒 ∧ 𝑓) → 𝑔      Precondition 

5)  (𝑔 ∧ 𝑏 ∧ 𝑑) → (ℎ ∧ 𝑖)    Precondition 

6)  𝑎 → 𝑗       Precondition 

7)  𝑗 → 𝑘       Precondition 

8)  𝑘 → 𝑙       Precondition 

9)  𝑙 → 𝑚       Precondition 

10) 𝑚 → 𝑛      Precondition 

11) 𝑛 → 𝑜       Precondition 

12) 𝑏 → 𝑝       Precondition 

13) 𝑝 → 𝑞       Precondition 

14) 𝑞 → 𝑟       Precondition 

15) 𝑟 → 𝑠       Precondition 

16) (𝑜 ∧ 𝑚 ∧ ℎ) → 𝑡     Precondition 

17) (𝑠 ∧ 𝑚 ∧ 𝑖) → 𝑢     Precondition 

18) (𝑡 ∧ 𝑢) → 𝑣      Precondition 

(𝑎 ∧ 𝑐) → (𝑔 ∧ 𝑣)     Reasoning 6 

Fourthly, we show the validity of Reasoning 6 via the rules for proof of 

propositional logical reasoning listed in Table 2 as follows. 

∴ (𝒂 ∧ 𝒄) → (𝒈 ∧ 𝒗) 

19) 𝑎 ∧ 𝑐      Hypothesis 

20) 𝑎       19); ∧ − 

21) 𝑐       19); ∧ − 

22) 𝑏       1),20); MP 

23) 𝑑       2),21); MP 

24) 𝑏 ∧ 𝑑      22),23); ∧ + 

25) (𝑏 ∧ 𝑑) → 𝑔     3),24); HS 

26) 𝑔       25),24); MP 

27) 𝑔 ∧ 𝑏 ∧ 𝑑      26),24); ∧ + 

28) ℎ ∧ 𝑖      5),27); MP 

29) ℎ       28); ∧ − 

30) 𝑖       28); ∧ − 

31) 𝑎 → 𝑚      6),7),8),9); HS 

32) 𝑚       31),20); MP 

33) 𝑚 → 𝑜      10),11); HS 

34) 𝑜       33),32); MP 

35) 𝑏 → 𝑠      12),13),14),15); HS 

36) 𝑠       35),22); MP 



37) 𝑜 ∧ 𝑚 ∧ ℎ      36),32),29); ∧ + 

38) 𝑠 ∧ 𝑚 ∧ 𝑖      34),32),30); ∧ + 

39) 𝑡       16),37); MP 

40) 𝑢       17),38); MP 

41) 𝑡 ∧ 𝑢      39),40); ∧ + 

42) 𝑣       18),41); MP 

43) 𝑔 ∧ 𝑣      26),42); ∧ + 

48) (𝑎 ∧ 𝑐) → (𝑔 ∧ 𝑣)     19)-43); Conditional Proof 

Since the hypothesis 𝑎 ∧ 𝑐 of the 19) step can be fulfilled by the Abduction step, 

Reasoning 6 is proved to be valid. 

 

Proof of Reasoning 7 

Reasoning 7. If the target (𝑇1) abduced from the union of 𝑅𝐺1 and 𝑅𝐺2 is given, 

𝑅𝐺3 is given and 𝑅𝐺4 is given, then 𝑇1 has a low precision of true tumour positives and 

a low recall of true tumour negatives. 

Proof-R7. Firstly, with 𝑇1, 𝑅𝐺3 and 𝑅𝐺4, we have following derived preconditions 

for Reasoning 7. 

1. If the target (𝑇1) abduced from the union of 𝑅𝐺1 and 𝑅𝐺2 is given, then 𝑇1 is 

abduced based on 𝐺1,1: pixels of 𝐼𝑆1 outside the polygons of 𝑁𝐿𝑆1 are tumour 

negatives and 𝐺1,2 : pixels of 𝐼𝑆1  inside the polygons of 𝑁𝐿𝑆1  are tumour 

positives. (revised grounding produced by Abduction) 

2. If the target (𝑇1) abduced from the union of 𝑅𝐺1 and 𝑅𝐺2 is given, then the fact 

that 𝑇1 has a high recall of true tumour positives and a high precision of true 

tumour negatives exists. (Reasoning 5) 

3. If 𝑅𝐺3 is given, then 𝑅𝐺3 is equivalent to the fact that pixels of 𝐼𝑆1 outside the 

polygons of 𝑁𝐿𝑆1 are not exactly true tumour negatives. (revised grounding 

produced by Abduction) 

4. If 𝑅𝐺4 is given, then 𝑅𝐺4 is equivalent to the fact that pixels of 𝐼𝑆1 inside the 

polygons of 𝑁𝐿𝑆1 are not exactly true tumour positives. (revised grounding 

produced by Abduction) 

5. If 𝑇1 is abduced based on 𝐺1,1: pixels of 𝐼𝑆1 outside the polygons of 𝑁𝐿𝑆1 are 

tumour negatives and 𝐺1,2 : pixels of 𝐼𝑆1  inside the polygons of 𝑁𝐿𝑆1  are 

tumour positives, the fact that 𝑇1 has a high recall of true tumour positives and 

a high precision of true tumour negatives exists, 𝑅𝐺3 is equivalent to the fact 

that pixels of 𝐼𝑆1 outside the polygons of 𝑁𝐿𝑆1 are not exactly true tumour 

negatives, and 𝑅𝐺4  is equivalent to the fact that pixels of 𝐼𝑆1  inside the 

polygons of 𝑁𝐿𝑆1 are not exactly true tumour positives, then many true tumour 

negatives are taken as as tumour positives by 𝐺1,2. 

6. If many true tumour negatives are taken as tumour positives by 𝐺1,2, then false 

tumour positives are covered by 𝐺1,2 (FP(𝐺1,2)) can be regarded as large. 

7. If FP(𝐺1,2) can be regarded as large, and then 𝑇1 has a low precision of true 

tumour positives and a low recall of true tumour negatives. 



Secondly, we give the propositional symbols for the above preconditions 1-7 for 

Reasoning 7, which are shown in Table 9. 

 

Table 9. Propositional symbols of preconditions for Reasoning 7 

Symbol Meaning 

𝑎 the target (𝑇1) abduced from the union of 𝑅𝐺1 and 𝑅𝐺2 is given 

𝑏 𝑅𝐺3 is given 

𝑐 𝑅𝐺4 is given 

𝑑 𝑇1  is abduced based on 𝐺1,1 : pixels of 𝐼𝑆1  outside the polygons of 𝑁𝐿𝑆1  are tumour 

negatives and 𝐺1,2: pixels of 𝐼𝑆1 inside the polygons of 𝑁𝐿𝑆1 are tumour positives 

𝑒 the fact that 𝑇1 has a high recall of true tumour positives and a high precision of true 

tumour negatives exists 

𝑓 𝑅𝐺3 is euuivalent to the fact that pixels of 𝐼𝑆1 outside the polygons of 𝑁𝐿𝑆1 are not 

exactly true tumour negatives 

𝑔 𝑅𝐺4  is euuivalent to the fact that pixels of 𝐼𝑆1  inside the polygons of 𝑁𝐿𝑆1  are not 

exactly true tumour positives 

ℎ many true tumour negatives are taken as as tumour positives by 𝐺1,2 

𝑖 false tumour positives are covered by 𝐺1,2 (FP(𝐺1,2)) can be regarded as large 

𝑣 𝑇1  has a low precision of true tumour positives and a low recall of true tumour 

negatives 

 

Thirdly, referring to Table 9, we signify the propositional formalizations of the 

preconditions 1-7 for Reasoning 7 and Reasoning 7 via the propositional connectives 

listed in Table 1 as follows. 

1) 𝑎 → 𝑑       Precondition 

2) 𝑎 → 𝑒       Precondition 

3) 𝑏 → 𝑓       Precondition 

4) 𝑐 → 𝑔       Precondition 

5)  (𝑑 ∧ 𝑒 ∧ 𝑓 ∧ 𝑔) → ℎ     Precondition 

6)  ℎ → 𝑖       Precondition 

7)  𝑖 → 𝑣       Precondition 

(𝑎 ∧ 𝑏 ∧ 𝑐) → 𝑣      Reasoning 7 

Fourthly, we show the validity of Reasoning 7 via the rules for proof of 

propositional logical reasoning listed in Table 2 as follows. 

∴ (𝒂 ∧ 𝒃 ∧ 𝒄) → 𝒗 

8)  𝑎 ∧ 𝑏 ∧ 𝑐      Hypothesis 

9)  𝑎       8); ∧ − 

10) 𝑏       8); ∧ − 

11) 𝑐       8); ∧ − 

12) 𝑑       1),9); MP 

13) 𝑒       2),9); MP 

14) 𝑓       3),10); MP 

15) 𝑔       4),11); MP 

16) 𝑑 ∧ 𝑒 ∧ 𝑓 ∧ 𝑔     12),13),14),15); ∧ + 

17) ℎ       5),16); MP 

18) ℎ → 𝑣      6),7); HS 



19) 𝑣       18),17); MP 

20) (𝑎 ∧ 𝑏 ∧ 𝑐) → 𝑣     8)-19); Conditional Proof 

Since the hypothesis 𝑎 ∧ 𝑏 ∧ 𝑐 of the 8) step can be fulfilled by Reasoning 5 and 

the Abduction step, Reasoning 7 is proved to be valid. 

 

Proof of Reasoning 8 

Reasoning 8. If the target (𝑇2) abduced from the union of 𝑅𝐺5 and 𝑅𝐺6 is given, 

𝑅𝐺7 is given and 𝑅𝐺8 is given, then 𝑇2 has a low recall of true tumour positives and a 

low precision of true tumour negatives. 

Proof-R8. Firstly, with 𝑇2, 𝑅𝐺7 and 𝑅𝐺8, we have following derived preconditions 

for Reasoning 8. 

1. If the target (𝑇2) abduced from the union of 𝑅𝐺5 and 𝑅𝐺6 is given, then 𝑇2 is 

abduced based on 𝐺2,1: pixels of 𝐼𝑆2 inside the polygons of 𝑁𝐿𝑆2 are tumour 

positives and 𝐺2,2 : pixels of 𝐼𝑆2  outside the polygons of 𝑁𝐿𝑆2  are tumour 

negatives. (revised grounding produced by Abduction) 

2. If the target (𝑇2) abduced from the union of 𝑅𝐺5 and 𝑅𝐺6 is given, then the fact 

that 𝑇2 has a high precision of true tumour positives and a high recall of true 

tumour negatives exists. (Reasoning 6) 

3. If 𝑅𝐺7 is given, then 𝑅𝐺7 is equivalent to the fact that pixels of 𝐼𝑆1 inside the 

polygons of 𝑁𝐿𝑆1 are not exactly true tumour positives. (revised grounding 

produced by Abduction) 

4. If 𝑅𝐺8 is given, then 𝑅𝐺8 is equivalent to the fact that pixels of 𝐼𝑆1 outside the 

polygons of 𝑁𝐿𝑆1 are not exactly true tumour negatives. (revised grounding 

produced by Abduction) 

5. If 𝑇2 is abduced based on 𝐺2,1: pixels of 𝐼𝑆2 inside the polygons of 𝑁𝐿𝑆2 are 

tumour positives and 𝐺2,2 : pixels of 𝐼𝑆2  outside the polygons of 𝑁𝐿𝑆2  are 

tumour negatives, the fact that 𝑇2 has a high precision of true tumour positives 

and a high recall of true tumour negatives exists, 𝑅𝐺7 is equivalent to the fact 

that pixels of 𝐼𝑆1  inside the polygons of 𝑁𝐿𝑆1 are not exactly true tumour 

positives, and 𝑅𝐺8  is equivalent to the fact that pixels of 𝐼𝑆1  outside the 

polygons of 𝑁𝐿𝑆1 are not exactly true tumour negatives, then many true tumour 

positives are taken as as tumour negatives by 𝐺2,2. 

6. If many true tumour positives are taken as as tumour negatives by 𝐺2,2, then 

false tumour negatives are covered by 𝐺2,2 (FN(𝐺2,2)) can be regarded as large. 

7. If FN(𝐺2,2) can be regarded as large, and then 𝑇2 has a low recall of true tumour 

positives and a low precision of true tumour negatives. 

Secondly, we give the propositional symbols for the above preconditions 1-7 for 

Reasoning 8, which are shown in Table 10. 

 

Table 10. Propositional symbols of preconditions for Reasoning 8 

Symbol Meaning 

𝑎 the target (𝑇2) abduced from the union of 𝑅𝐺5 and 𝑅𝐺6 is given 

𝑏 𝑅𝐺7 is given 



𝑐 𝑅𝐺8 is given 

𝑑 𝑇2  is abduced based on 𝐺2,1 : pixels of 𝐼𝑆2  inside the polygons of 𝑁𝐿𝑆2  are tumour 

positives and 𝐺2,2: pixels of 𝐼𝑆2 outside the polygons of 𝑁𝐿𝑆2 are tumour negatives 

𝑒 the fact that 𝑇2 has a high precision of true tumour positives and a high recall of true 

tumour negatives exists 

𝑓 𝑅𝐺7  is euuivalent to the fact that pixels of 𝐼𝑆1  inside the polygons of 𝑁𝐿𝑆1  are not 

exactly true tumour positives 

𝑔 If 𝑅𝐺8  is given, then 𝑅𝐺8  is euuivalent to the fact that pixels of 𝐼𝑆1  outside the 

polygons of 𝑁𝐿𝑆1 are not exactly true tumour negatives 

ℎ many true tumour positives are taken as as tumour negatives by 𝐺2,2 

𝑖 false tumour negatives are covered by 𝐺2,2 (FN(𝐺2,2)) can be regarded as large 

𝑗 𝑇2  has a low recall of true tumour positives and a low precision of true tumour 

negatives 

 

Thirdly, referring to Table 10, we signify the propositional formalizations of the 

preconditions 1-7 for Reasoning 8 and Reasoning 8 via the propositional connectives 

listed in Table 1 as follows. 

1) 𝑎 → 𝑑       Precondition 

2) 𝑎 → 𝑒       Precondition 

3) 𝑏 → 𝑓       Precondition 

4) 𝑐 → 𝑔       Precondition 

5)  (𝑑 ∧ 𝑒 ∧ 𝑓 ∧ 𝑔) → ℎ     Precondition 

6)  ℎ → 𝑖       Precondition 

7)  𝑖 → 𝑗       Precondition 

(𝑎 ∧ 𝑏 ∧ 𝑐) → 𝑗      Reasoning 8 

Fourthly, we show the validity of Reasoning 8 via the rules for proof of 

propositional logical reasoning listed in Table 2 as follows. 

∴ (𝒂 ∧ 𝒃 ∧ 𝒄) → 𝒋 

8)  𝑎 ∧ 𝑏 ∧ 𝑐      Hypothesis 

9)  𝑎       8); ∧ − 

10) 𝑏       8); ∧ − 

11) 𝑐       8); ∧ − 

12) 𝑑       1),9); MP 

13) 𝑒       2),9); MP 

14) 𝑓       3),10); MP 

15) 𝑔       4),11); MP 

16) 𝑑 ∧ 𝑒 ∧ 𝑓 ∧ 𝑔     12),13),14),15); ∧ + 

17) ℎ       5),16); MP 

18) ℎ → 𝑗      6),7); HS 

19) 𝑗       18),17); MP 

20) (𝑎 ∧ 𝑏 ∧ 𝑐) → 𝑗     8)-19); Conditional Proof 

Since the hypothesis 𝑎 ∧ 𝑏 ∧ 𝑐 of the 8) step can be fulfilled by Reasoning 5 and 

the Abduction step, Reasoning 8 is proved to be valid. 

 

Proof of Reasoning 9 



Reasoning 9. If the target (𝑇1) abduced from the union of 𝑅𝐺1 and 𝑅𝐺2 is given 

and the target (𝑇2) abduced from the union of 𝑅𝐺5 and 𝑅𝐺6 is given, then a target (𝑇3) 

can be abduced by improving 𝑇1 with 𝑇2, a target (𝑇4) can be abduced by improving 𝑇2 

with 𝑇1, 𝑇3 can have a relatively higher precision of true tumour positives than 𝑇1 and 

a relatively higher recall of true tumour negatives than 𝑇1, and 𝑇4 can have a relatively 

higher recall of true tumour positives than 𝑇2 and a relatively higher precision of true 

tumour negatives than 𝑇2. 

Proof-R9. Firstly, with 𝑇1 and 𝑇2, we have following derived preconditions for 

Reasoning 9. 

1. If the target (𝑇1) abduced from the union of 𝑅𝐺1 and 𝑅𝐺2 is given, then 𝑇1 has 

a high recall of true tumour positives and a high precision of true tumour 

negatives and 𝑇1 has a low precision of true tumour positives and a low recall 

of true tumour negatives. (Reasoning 5 and Reasoning 7) 

2. If the target (𝑇2) abduced from the union of 𝑅𝐺5 and 𝑅𝐺6 is given, 𝑇2 has a 

high precision of true tumour positives and a high recall of true tumour 

negatives and 𝑇2 has a low recall of true tumour positives and a low precision 

of true tumour negatives. (Reasoning 6 and Reasoning 8) 

3. If 𝑇1  has a low precision of true tumour positives and a low recall of true 

tumour negatives and 𝑇2 has a high precision of true tumour positives and a 

high recall of true tumour negatives, then 𝑇2  is complementary to 𝑇1  to 

represent the true target. 

4. If 𝑇2 is complementary to 𝑇1 to represent the true target, then a target (𝑇3) can 

be abduced by improving 𝑇1 with 𝑇2. 

5. If T3 can be abduced by improving 𝑇1 with 𝑇2,  𝑇2 has a high precision of true 

tumour positives and a high recall of true tumour negatives, and 𝑇1 has a low 

precision of true tumour positives and a low recall of true tumour negatives, 

then 𝑇3 can have a relatively higher precision of true tumour positives than 𝑇1 

and a relatively higher recall of true tumour negatives than 𝑇1. 

6. If 𝑇2  has a low recall of true tumour positives and a low precision of true 

tumour negatives and 𝑇1 has a high recall of true tumour positives and a high 

precision of true tumour negatives, then 𝑇1 is complementary to 𝑇2 to represent 

the true target. 

7. If 𝑇1 is complementary to 𝑇2 to represent the true target, then a target (𝑇4) can 

be abduced by improving 𝑇2 with 𝑇1. 

8. If 𝑇4  can be abduced by improving 𝑇2  with 𝑇1 , 𝑇1  has a high recall of true 

tumour positives and a high precision of true tumour negatives, and 𝑇2 has a 

low recall of true tumour positives and a low precision of true tumour negatives, 

then 𝑇4 can have a relatively higher recall of true tumour positives than 𝑇2 and 

a relatively higher precision of true tumour negatives than 𝑇2. 

Secondly, we give the propositional symbols for the above preconditions 1-8 for 

Reasoning 9, which are shown in Table 11. 

 

Table 11. Propositional symbols of preconditions for Reasoning 9 



Symbol Meaning 

𝑎 the target (𝑇1) abduced from the union of 𝑅𝐺1 and 𝑅𝐺2 is given 

𝑏 the target (𝑇2) abduced from the union of 𝑅𝐺5 and 𝑅𝐺6 is given 

𝑐 𝑇1  has a high recall of true tumour positives and a high precision of true tumour 

negatives 

𝑑 𝑇1  has a low precision of true tumour positives and a low recall of true tumour 

negatives 

𝑒 𝑇2  has a high precision of true tumour positives and a high recall of true tumour 

negatives 

𝑓 𝑇2  has a low recall of true tumour positives and a low precision of true tumour 

negatives 

𝑔 𝑇2 is complementary to 𝑇1 to represent the true target 

ℎ a target (𝑇3) can be abduced by improving 𝑇1 with 𝑇2 

𝑖 𝑇3  can have a relatively higher precision of true tumour positives than 𝑇1  and a 

relatively higher recall of true tumour negatives than 𝑇1 

𝑗 𝑇1 is complementary to 𝑇2 to represent the true target 

𝑘 a target (𝑇4) can be abduced by improving 𝑇2 with 𝑇1 

𝑙 𝑇4 can have a relatively higher recall of true tumour positives than 𝑇2 and a relatively 

higher precision of true tumour negatives than 𝑇2 

 

Thirdly, referring to Table 11, we signify the propositional formalizations of the 

preconditions 1-8 for Reasoning 9 and Reasoning 9 via the propositional connectives 

listed in Table 1 as follows. 

1) 𝑎 → (𝑐 ∧ 𝑑)      Precondition 

2) 𝑏 → (𝑒 ∧ 𝑓)      Precondition 

3) (𝑑 ∧ 𝑒) → 𝑔      Precondition 

4) 𝑔 → ℎ       Precondition 

5)  (𝑔 ∧ 𝑒 ∧ 𝑑) → 𝑖     Precondition 

6)  (𝑓 ∧ 𝑐) → 𝑗      Precondition 

7)  𝑗 → 𝑘       Precondition 

8) (𝑘 ∧ 𝑐 ∧ 𝑓) → 𝑙     Precondition 

(𝑎 ∧ 𝑏) → (ℎ ∧ 𝑘 ∧ 𝑖 ∧ 𝑙)     Reasoning 9 

Fourthly, we show the validity of Reasoning 9 via the rules for proof of 

propositional logical reasoning listed in Table 2 as follows. 

∴ (𝒂 ∧ 𝒃) → (𝒉 ∧ 𝒌 ∧ 𝒊 ∧ 𝒍) 

9)  𝑎 ∧ 𝑏      Hypothesis 

10) 𝑎       9); ∧ − 

11) 𝑏       9); ∧ − 

12) 𝑐 ∧ 𝑑      1),10); MP 

13) 𝑒 ∧ 𝑓      2),11); MP 

14) 𝑐       12); ∧ − 

15) 𝑑       12); ∧ − 

16) 𝑒       13); ∧ − 

17) 𝑓       13); ∧ − 

18) 𝑑 ∧ 𝑒      15),16); ∧ + 

19) 𝑔       3),18); MP 

20) ℎ       4),19); MP 



21) 𝑔 ∧ 𝑒 ∧ 𝑑      19),16),15); ∧ + 

22) 𝑖       21),5); MP 

23) 𝑓 ∧ 𝑐      17),14); ∧ + 

24) 𝑗       6),23); MP 

25) 𝑘       7),24); MP 

26) 𝑘 ∧ 𝑐 ∧ 𝑓      25),14),17); ∧ + 

27) 𝑙       8),26); MP 

28) ℎ ∧ 𝑘 ∧ 𝑖 ∧ 𝑙     20),25),22),27); ∧ + 

29) (𝑎 ∧ 𝑏) → (ℎ ∧ 𝑘 ∧ 𝑖 ∧ 𝑙)    9)-28); Conditional Proof 

Since the hypothesis 𝑎 ∧ 𝑏  of the 9) step can be fulfilled by Reasoning 5 and 

Reasoning 6, Reasoning 9 is proved to be valid. 

 

Proof of Reasoning 10 

Reasoning 10. If  𝑇1 is given and 𝑇3 is given, then 𝑇1 and 𝑇3 can be combined to 

approximate the true target for 𝐼𝑆1. 

Proof-R10. Firstly, with 𝑇1 and 𝑇3, we have following derived preconditions for 

Reasoning 10. 

1. If 𝑇1 is given and 𝑇3 is given, then 𝑇1 and 𝑇3 are both corresponding to 𝐼𝑆1.  

2. If 𝑇1 is given, then 𝑇1 has a high recall of true tumour positives and a high 

precision of true tumour negatives and 𝑇1 has a low precision of true tumour 

positives and a low recall of true tumour negatives. (Reasoning 5 and 

Reasoning 7) 

3. If 𝑇3 is given, then 𝑇3 can have a relatively higher precision of true tumour 

positives than 𝑇1 and a relatively higher recall of true tumour negatives than 𝑇1. 

(Reasoning 9) 

4. If 𝑇1 has a high recall of true tumour positives and a high precision of true 

tumour negatives and 𝑇3 can have a relatively higher precision of true tumour 

positives than 𝑇1 and a relatively higher recall of true tumour negatives than 𝑇1, 

then 𝑇1  and 𝑇3  can be combined to possess a high recall of true tumour 

positives and a high precision of true tumour negatives while having a relatively 

higher precision of true tumour positives and a relatively higher recall of true 

tumour negatives. 

5. If 𝑇1 and 𝑇3 can be combined to possess a high recall of true tumour positives 

and a high precision of true tumour negatives while having a relatively higher 

precision of true tumour positives and a relatively higher recall of true tumour 

negatives, and 𝑇1 and 𝑇3 are both corresponding to 𝐼𝑆1, then 𝑇1 and 𝑇3 can be 

combined to approximate the true target for 𝐼𝑆1. 

Secondly, we give the propositional symbols for the above preconditions 1-5 for 

Reasoning 10, which are shown in Table 12. 

 

Table 12. Propositional symbols of preconditions for Reasoning 10 

Symbol Meaning 

𝑎 𝑇1is given 



𝑏 𝑇3is given 

𝑐 𝑇1 and 𝑇3 are both corresponding to 𝐼𝑆1 

𝑑 𝑇1  has a high recall of true tumour positives and a high precision of true tumour 

negatives and 𝑇1 has a low precision of true tumour positives and a low recall of true 

tumour negatives 

𝑒 𝑇3  can have a relatively higher precision of true tumour positives than 𝑇1  and a 

relatively higher recall of true tumour negatives than 𝑇1 

𝑓 𝑇1 and 𝑇3 can be combined to possess a high recall of true tumour positives and a high 

precision of true tumour negatives while having a relatively higher precision of true 

tumour positives and a relatively higher recall of true tumour negatives 

𝑔 𝑇1 and 𝑇3 can be combined to approximate the true target for 𝐼𝑆1 

 

Thirdly, referring to Table 12, we signify the propositional formalizations of the 

preconditions 1-5 for Reasoning 10 and Reasoning 10 via the propositional connectives 

listed in Table 1 as follows. 

1) (𝑎 ∧ 𝑏) → 𝑐      Precondition 

2) 𝑎 → 𝑑       Precondition 

3) 𝑏 → 𝑒       Precondition 

4) (𝑑 ∧ 𝑒) → 𝑓      Precondition 

5)  (𝑓 ∧ 𝑐) → 𝑔      Precondition 

(𝑎 ∧ 𝑏) → 𝑔      Reasoning 10 

Fourthly, we show the validity of Reasoning 10 via the rules for proof of 

propositional logical reasoning listed in Table 2 as follows. 

∴ (𝒂 ∧ 𝒃) → 𝒈 

6)  𝑎 ∧ 𝑏      Hypothesis 

7)  𝑎       6); ∧ − 

8)  𝑏       6); ∧ − 

9)  𝑐       1),6); MP 

10) 𝑑       2),7); MP  

11) 𝑒       3),8); MP  

12) 𝑑 ∧ 𝑒      10),11); ∧ + 

13) 𝑓       4),12); MP 

14) 𝑓 ∧ 𝑐      13),9); ∧ + 

15) 𝑔       5),14); MP 

16) (𝑎 ∧ 𝑏) → 𝑔      6)-15); Conditional Proof 

Since the hypothesis 𝑎 ∧ 𝑏 of the 6) step can be fulfilled by the Target Abduce step, 

Reasoning 10 is proved to be valid. 

 

Proof of Reasoning 11 

Reasoning 11. If 𝑇2 is given and 𝑇4 is given, then 𝑇2 and 𝑇4 can be combined to 

approximate the true target for 𝑁𝑆2. 

Proof-R11. Firstly, with 𝑇2 and 𝑇4, we have following derived preconditions for 

Reasoning 11. 

1. If 𝑇2 is given and 𝑇4 is given, then 𝑇2 and 𝑇4 are both corresponding to 𝐼𝑆2.  



2. If 𝑇2 is given, then 𝑇2 has a high precision of true tumour positives and a high 

recall of true tumour negatives and 𝑇2 has a low recall of true tumour positives 

and a low precision of true tumour negatives. (Reasoning 6 and Reasoning 8) 

3. If 𝑇4  is given, then 𝑇4  can have a relatively higher recall of true tumour 

positives than 𝑇2 and a relatively higher precision of true tumour negatives than 

𝑇2. (Reasoning 9) 

4. If  𝑇2 has a high precision of true tumour positives and a high recall of true 

tumour negatives and 𝑇2 has a low recall of true tumour positives and a low 

precision of true tumour negatives, and 𝑇4 can have a relatively higher recall of 

true tumour positives than 𝑇2 and a relatively higher precision of true tumour 

negatives than 𝑇2, then 𝑇2 and 𝑇4 can be combined to possess a high precision 

of true tumour positives and a high recall of true tumour negatives while having 

a relatively higher recall of true tumour positives and a relatively higher 

precision of true tumour negatives. 

5. If 𝑇2  and 𝑇4  can be combined to possess a high precision of true tumour 

positives and a high recall of true tumour negatives while having a relatively 

higher recall of true tumour positives and a relatively higher precision of true 

tumour negatives, and 𝑇2 and 𝑇4 are both corresponding to 𝐼𝑆2, then 𝑇2 and 𝑇4 

can be combined to approximate the true target for 𝐼𝑆2. 

Secondly, we give the propositional symbols for the above preconditions 1-5 for 

Reasoning 11, which are shown in Table 13. 

 

Table 13. Propositional symbols of preconditions for Reasoning 11 

Symbol Meaning 

𝑎 𝑇2is given 

𝑏 𝑇4is given 

𝑐 𝑇2 and 𝑇4 are both corresponding to 𝐼𝑆2 

𝑑 𝑇2  has a high precision of true tumour positives and a high recall of true tumour 

negatives and 𝑇2 has a low recall of true tumour positives and a low precision of true 

tumour negatives 

𝑒 𝑇4 can have a relatively higher recall of true tumour positives than 𝑇2 and a relatively 

higher precision of true tumour negatives than 𝑇2 

𝑓 𝑇2 and 𝑇4 can be combined to possess a high precision of true tumour positives and a 

high recall of true tumour negatives while having a relatively higher recall of true 

tumour positives and a relatively higher precision of true tumour negatives 

𝑔 𝑇2 and 𝑇4 can be combined to approximate the true target for 𝐼𝑆2 

 

Thirdly, referring to Table 13, we signify the propositional formalizations of the 

preconditions 1-5 for Reasoning 11 and Reasoning 11 via the propositional connectives 

listed in Table 1 as follows. 

1) (𝑎 ∧ 𝑏) → 𝑐      Precondition 

2) 𝑎 → 𝑑       Precondition 

3) 𝑏 → 𝑒       Precondition 

4) (𝑑 ∧ 𝑒) → 𝑓      Precondition 

5)  (𝑓 ∧ 𝑐) → 𝑔      Precondition 

(𝑎 ∧ 𝑏) → 𝑔      Reasoning 10 



Fourthly, we show the validity of Reasoning 11 via the rules for proof of 

propositional logical reasoning listed in Table 2 as follows. 

∴ (𝒂 ∧ 𝒃) → 𝒈 

6)  𝑎 ∧ 𝑏      Hypothesis 

7)  𝑎       6); ∧ − 

8)  𝑏       6); ∧ − 

9)  𝑐       1),6); MP 

10) 𝑑       2),7); MP  

11) 𝑒       3),8); MP  

12) 𝑑 ∧ 𝑒      10),11); ∧ + 

13) 𝑓       4),12); MP 

14) 𝑓 ∧ 𝑐      13),9); ∧ + 

15) 𝑔       5),14); MP 

16) (𝑎 ∧ 𝑏) → 𝑔      6)-15); Conditional Proof 

Since the hypothesis 𝑎 ∧ 𝑏 of the 6) step can be fulfilled by the Target Abduce step, 

Reasoning 11 is proved to be valid. 

  



Supplementary 2 
 

Multiple Targets Abduced from DiNS 

 

 

 

 

 
Fig. 1. Examples of multiple targets abduced from the diverse noisy samples provided for 

tumour segmentation in HE-stained pre-treatment biopsy images. 
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Fig. 2. Examples of multiple targets abduced from the diverse noisy samples provided for 

tumour segmentation in HE-stained post-treatment surgical resection images. 
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Rearranged Multiple Targets 

 

 

 
Fig. 3. Examples of rearranged multiple targets corresponding to Fig. 1. 
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Fig. 4. Examples of rearranged multiple targets corresponding to Fig. 2. 
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Supplementary 3 
More typical testing results of various state-of-the-art approaches (respectively without OSAMTL-DiNS introduced and with OSAMTL-DiNS introduced) for handling 

complex noisy labels on Task1:  
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More typical testing results of various state-of-the-art approaches (respectively without OSAMTL-DiNS introduced and with OSAMTL-DiNS introduced) for handling 

complex noisy labels on Task2:  
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