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Abstract

With cyber incidents and data breaches becoming increasingly common, being able
to predict a cyberattack has never been more crucial. The ability of Network Anomaly
Detection Systems (NADS) to identify unusual behavior makes them useful in predicting
such attacks. However, NADS often suffer from high false positive rates. In this paper,
we introduce a novel framework called Honeyboost that enhances the performance of
honeypot aided NADS. Using data from the LAN Security Monitoring Project, Hon-
eyboost identifies most anomalous nodes before they access the honeypot aiding early
detection and prediction. Furthermore, using extreme value theory, we achieve the highly
desirable low false positive rates.
Honeyboost is an unsupervised method comprising two approaches: horizontal and

vertical. The horizontal approach constructs a time series from the communications of
each node, with node-level features encapsulating their behavior over time. The vertical
approach finds anomalies in each protocol space. Using a window-based model, which
is typically used in online scenarios, the horizontal and vertical approaches are combined
to identify anomalies and gain useful insights. Experimental results indicate the efficacy
of our framework in identifying suspicious activities of nodes.

Key words— network anomaly detection, honeypots, extreme value theory, false positives,
cyber security, time series

∗Email:sevvandi.kandanaarachchi@rmit.edu.au, Affiliation:School of Science (Mathematical Sciences), RMIT University, Melbourne
VIC 3000, Australia.

†Email:ochiai@elab.ic.i.u-tokyo.ac.jp, Affiliation:Graduate School of Information Science and Technology, The University of Tokyo,
Tokyo, Japan

‡Email:asha.rao@rmit.edu.au, Affiliation:School of Science (Mathematical Sciences), RMIT University, Melbourne VIC 3000, Aus-
tralia.

ar
X

iv
:2

10
5.

02
52

6v
2 

 [
cs

.C
R

] 
 8

 S
ep

 2
02

1



1 Introduction
Increasing cyber attacks and data breaches require new ways of predicting attacks, especially previously

unseen ones. A very popular tool for prediction, is a honeypot (Barak 2020) that aims to lure attackers and
learn their tactics. While honeypots have known advantages such as ease of installation and low resource usage
(Campbell et al. 2015), there exist drawbacks, such as limited vision, discovery and fingerprinting, that increase
the risk of takeover (Mokube &Adams 2007). Thus, honeypots are often deployed in conjunction with Network
Anomaly Detection Systems (NADS) (Baykara & Das 2018, Kondra et al. 2016).
NADS are capable of detecting new attacks, a key requirement in cyber security. However, they suffer

from high false positive rates. Furthermore, honeypot aided NADS are generally deployed in public domain
networks. The use of honeypots in Local Area Networks (LANs) has not been widely explored. In this paper,
we propose a novel framework,Honeyboost, that enhances LAN honeypot performance with Network Anomaly
Detection (NAD), while giving low false positive rates. Honeyboost identifies most anomalous nodes in the
LAN, before they even access the honeypot, enabling better prediction of cyber attacks.
While many researchers have studied honeypots and anomaly detection, most place these detection tools in

the public/global IP domain or in Internet gateway routers. This results in efficient detection of global cyber-
attack behaviors such as global-scans, Distributed Denial of Service (DDoS) attacks, or botnet constructions.
However, such placing is inadequate for detecting local or LAN internal cyber-attack behaviors such as malware
propagation, insider attacks, or data stealing through direct communications in the same network segment
without passing through routers. This may happen when (1) a malware is pre-installed in a mobile device that
connects to a WiFi, or (2) a malware is delivered to a computer through a phishing e-mail or Social Network
Sites (SNS).
This paper focuses on honeypot traffic in a local area network, where the behavior of the address resolution

protocol (ARP) can be observed. ARP requests are normally broadcast in the local network segment in order to
find the media access control (MAC) address of the target IP address before forwarding an IP packet to the host.
The sequences of ARP requests, along with other protocol data are used as input for anomaly detection. This
allows suspicious behavior, such as multiple attempts to access many IP addresses in the local area network, to
be detected as anomalous. This LAN based honeypot research is unique as it allows us to predict anomalous
nodes, something that cannot happen in a global setting as the nodes wouldn’t be known.
We recognize that not all anomalies – nodes that access the honeypot – are malicious. In general, anomalies

are mainly caused by 1. malware trying to intrude into other hosts or steal data from the network data stor-
age/camera, 2. security software equipped with features of basic vulnerability testing, and 3. network operators
intentionally accessing computers in the LAN to check their status.
Honeyboost treats the output traffic of each node/host in a LAN as a time series, and computes node-level

features describing the behavior of nodes over time. To the best of our knowledge, this is the first study that
computes node-level features by treating the output traffic of each node as a time series, in honeypot aided
NADS. We use an unsupervised anomaly detection (AD) method called Lookout that uses extreme value theory
to detect anomalies and effective in minimizing false positives. Thus, the performance of the honeypot is
enhanced by using a node-level formulation in conjunction with an AD method with low false positives.
Identifying anomalous nodes in a network can be formulated as a time series problem as nodes transmit

network packets using multiple protocols at different time points (Figure 1). Thus, identifying anomalous time
series would yield the nodes that behave quite differently from the rest.

1.1 Challenges
Formulating Network Anomaly Detection (NAD) as a time series problem, whether it is honeypot aided or

not, presents several challenges:

1



Figure 1: An example of the output of a single node, which can be treated as a time
series. As each protocol gives rise to a different number of features, this is a varying-
dimensional time series.

1. Varying dimensional time series: Univariate and multivariate time series are widely studied in the
literature from many inter-disciplinary contexts. A univariate time series is a sequence of real valued
numbers indexed in time, denoted by {𝑢1, 𝑢2, . . . , 𝑢𝑡 , . . .}, where 𝑢𝑡 ∈ R for all 𝑡. A multivariate time
series is a sequence of vectors indexed in time denoted by {𝒖1, 𝒖2, . . . , 𝒖𝑡 , . . .}, where 𝒖𝑡 ∈ R𝑝 for all 𝑡.
However, here we have a different situation. As the same node emits packets using different protocols, we
have a time series {𝒖𝑡1 , 𝒗𝑡2 , 𝒘𝑡3 , . . . , 𝒖𝑡𝑖 , 𝒗𝑡 𝑗 , 𝒘𝑡𝑘 , . . .}, where 𝒖𝑡𝑖 ∈ R𝑝, 𝒗𝑡 𝑗 ∈ R𝑞 and 𝒘𝑡𝑘 ∈ R𝑚 for different
values of 𝑝, 𝑞, 𝑚 and different times 𝑡𝑖, 𝑡 𝑗 and 𝑡𝑘 . We call such a time series varying-dimensional (VD).
There has not been much research conducted on VD time series. A literature search has not indicated any
study of anomaly detection using VD time series.

2. Irregularity: Unevenly spaced time series are referred to as irregular time series. The traditional time
series theory is applicable to regular, evenly spaced time series, that is, a series {𝑢1, 𝑢2, . . . , 𝑢𝑡 , . . .}, where
the time between successive entries 𝑢𝑖 and 𝑢𝑖+1 is constant. Here we have an irregular varying-dimensional
time series as the nodes communicate with each other at different time points. As such, when we consider
the VD time series {𝒖𝑡1 , 𝒗𝑡2 , 𝒘𝑡3 , . . . , 𝒖𝑡𝑛 , . . .}, in general 𝑡𝑛+1 − 𝑡𝑛 ≠ 𝑡𝑛 − 𝑡𝑛−1.

3. Sparse literature: The literature on NADS mostly considers a packet based feature approach. We see this
in most publicly available datasets. For example popular datasets such as KDD Cup 99 and Kyoto dataset
contain packet level observations without source details. While we appreciate that source addresses may
compromise privacy, without even a dummy identifier it is not possible to construct a time series at the
node level. As such, we observe that while these datasets have been instrumental for the research growth
in NADS, they have also steered the progress towards a packet based feature approach.

While a node-based VD time series approach to NAD has challenges, it takes a more holistic view on NAD. As
such, we expect to gain deeper insights about network anomalies by using this modeling paradigm.

1.2 Our contribution
In this paper, we investigate the problem of honeypot aided NAD as a time series analysis problem and

presentHoneyboost – a hybrid framework to find anomalous nodes. As shown in Figure 2, Honeyboost includes
the following approaches:

1. Horizontal approach: We treat the data from each node as a VD time series and find anomalous time
series using a feature based approach, where features are computed from the node-based VD time series.

2. Vertical approach: We focus on each protocol and find anomalous nodes with respect to each protocol
using features relevant to that protocol. We then amalgamate the results enabling visual interpretation.
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Our results demonstrate the following benefits:

1. We identify most anomalous nodes before they access the honeypot.

2. We compare Honeyboost results obtained by the AD method Lookout with a One Class Support Vector
Machine (OCSVM) and find the false positive rate of Lookout is much lower compared to the OCSVM.

3. We rank anomalies, thus enabling prioritization.

4. We gain deeper insights about the anomalous nodes.

5. We identify anomalous nodes with suspicious behavior that do not access the honeypot.

Figure 2: Honeyboost framework comprising horizontal and vertical approaches. The
horizontal approach considers node-level VD time series and identifies anomalous
nodes. The vertical approach considers each protocol separately and finds anomalies in
each protocol space.

The remainder of the paper is organized as follows; In Section 2 we give a brief introduction to current
research in honeypots, anomaly detection and extreme value theory. The datasets for this study, discussed in
Section 3 are obtained from the Lan-Security Monitoring Project (Ochiai 2020). The window-based approach,
and the horizontal and vertical methodologies are discussed in Section 4. We present the early detection results,
false positive rates and amalgamation of horizontal and vertical anomalies in Section 5. We glean insights from
these results in Section 6. Finally, we present our conclusions in Section 7.

2 Background
In this section we provide the current research related to Honeyboost, including Honeypots, Anomaly

detection and Extreme Value Theory (EVT). We start with honeypot research.

2.1 Honeypots
Honeypot-based cyber security research can be categorized into two broad areas: 1. honeypot architecture

design (Fan et al. 2019, Sadasivam & Hota 2015) and 2. threat detection and prevention. These two topics
are not mutually exclusive, with some studies encompassing both topics. For example Jasek et al. (2013) use
Honeyfarms, a centralized collection of honeypots and analysis tools, to analyze and detect advanced persistent
threats. In this section we explore some of the work done on threat detection and prevention using honeypots.
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Zhan et al. (2013) characterize honeypot captured cyber attacks using a statistical framework. They show
that these cyber attacks exhibit long-range dependence, i.e. the rate of autocorrelation decay is slower than
exponential decay. They use statistical techniques to predict the attack rate, i.e. the number of attacks per
time unit. Almohannadi et al. (2018) use honeypot log data to evaluate a new threat intelligence technique and
find attack patterns. They admit that the large amount of data produced by honeypots is difficult to analyze
using general purpose techniques, and instead, use an open search analytics engine called elastisearch. La
et al. (2016) present a game-theoretic model of deception comprising attackers and defenders, using Bayesian
techniques, and verifying their model using simulated data. As part of the game play, defenders have access
to the honeypots. Moore & Al-Nemrat (2015) review production honeypots and analyze data collected from
honeypots over a period of time. They explore geographical locations of attacks, IP addresses and ports in
this data. Shrivastava et al. (2019) use honeypots to capture attacks on IoT devices and classify them using
supervised machine learning algorithms.
Honeypots are also used to combat targeted attacks. Denial of Service (DoS) attacks can cripple entire

networks without finding loopholes in security. Anirudh et al. (2017) discuss a honeypot model for mitigating
DoS attacks for an Internet of Things (IoT) network. Tiruvakadu & Pallapa (2018) discuss wormhole attacks
in the context of mobile, ad-hoc networks and propose a honeypot based solution to confirm these attacks. A
wormhole attack consists of two or more attackers strategically placing themselves in a network and creating
a tunnel between them. This reduces the shortest path between certain nodes, inducing legitimate traffic to go
through the attacker’s tunnel. They argue the necessity of an attack confirmation system and use a honeypot
to confirm the attacks using a wormhole attack tree. Zhang et al. (2021) use honeypots to validate their
adversary detection model in an IoT network. Cybereason, a cyber security technology company, launched a
network honeypot in early 2020 to learn the tactics, techniques and procedures of cyber criminals. Barak (2020)
discusses the lessons learnt from this experiment and the role of honeypots in critical infrastructure system
security. Handa et al. (2021) discuss the use of honeypots as a tool to obtain standard cyber defense for small
and medium scale businesses. In their book, they describe different cyber security solutions accessible to small
enterprises.
Several recent reviews on honeypots are testament to their rising popularity. Razali et al. (2019) discuss the

importance and history of honeypots in information security and review their use in IoT networks. Seungjin
et al. (2020) survey honeypot based botnet detection and Matin & Rahardjo (2020) review malware detection
using honeypots.

2.2 Anomaly detection
As per Hawkins (1980) “an anomaly/outlier is an observation which deviates so much from other obser-

vations as to arouse suspicion it was generated by a different mechanism”. Motivated by this well accepted
definition we consider anomalies to be rare observations different from the rest of the points in some feature
space.
Anomaly detection (AD) is an extensively researched topic in many inter-disciplinary research fields. In

computer networks and security research, AD enables detection of unusual patterns in data that may signify
new attacks. While signature based intrusion detection methods reduce the number of false positives, they are
ineffective in capturing new attacks. AD methods are commonly used to fill this gap.
Based on the learning paradigm, anomaly detection methodologies can be broadly categorized into three

groups (Goldstein & Uchida 2016):

1. Supervised anomaly detection: A model is trained on labeled data, which includes anomalies, and then
tested on new data.

2. Semi-supervised anomaly detection: Two different definitions exist for semi-supervised anomaly detec-
tion. (a) A model is trained on data including both labeled and unlabeled instances (Ruff et al. 2020).
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Usually the number of labeled data points is much less than the unlabeled ones. (b) A model is trained on
data that does not include anomalies (Goldstein & Uchida 2016). In both scenarios, the resulting model
is tested on new data.

3. Unsupervised anomaly detection: These techniques do not use a separate set of labeled data to train the
model.

In this study, we focus on unsupervised anomaly detection, as unsupervised methods are better suited to identify
new attacks.
In addition, anomaly detectionmethods are also categorized as static or dynamic, depending on whether they

evolve with streaming data. The AD literature encompasses a diverse set of methodologies including density
estimation and probabilistic models, distance-based models, one class classification models, reconstruction and
deep learning models, and cluster-based and graph-based models. For a general survey of AD methodology,
see Wang et al. (2019) and for a review of deep learning methodologies refer to Ruff et al. (2020).

2.2.1 Anomaly detection in computer networks

Figure 3 shows the generic architecture of an NADS (Ahmed et al. 2016), which includes pre-processing,
anomaly detection, output and evaluation modules. The preprocessing module performs feature extraction and
feature selection at a packet level (Moustafa et al. 2019). Using either the packet header information alone or
packet header along with payload information, a variety of features are computed, then used by the Anomaly
Detection (AD) module. The output of the AD module can be real-valued anomaly scores or binary labels
signifying whether a data point is an anomaly or not. The evaluation module is the pre-action phase, where
decisions are made based on the anomaly scores/labels. Each module can have several sub-modules feeding
into other modules.

Figure 3: The generic architecture of a NADS as depicted in Ahmed et al. (2016).

Researchers have used anomaly detection methods to identify attacks and intrusions in computer networks
for more than 30 years (Maxion 1990). Furthermore, new anomaly detection methods aimed at specific threats
and technologies such as IoT networks are continuously being developed (Naveed & Wu 2020). A number of
comprehensive reviews on network anomaly detection are available (Baddar et al. 2014, Ahmed et al. 2016,
Fernandes et al. 2019, Moustafa et al. 2019). We briefly discuss the review by Moustafa et al. (2019) and touch
upon some latest developments in the area.
Moustafa et al. (2019) emphasizes that unlike signature-based methods, anomaly detection is better suited

to capture new attacks. NADS operate by creating a normal profile and identifying deviations from it. In the
pre-processing stage, features are extracted from the raw data, then reduced in number by discarding noisy,
unimportant features, leaving a smaller set of meaningful features. Next, categorical features are converted to
numerical and normalized to enable each feature to contribute equally to anomaly detection. The pre-processing
stage is followed by a decision engine, whichmay have a training phase and a validation and test phase. There are
many AD methodologies in NAD, including classification-based methods such as support vector machines and
neural networks, clustering-based methods, deep-learning methods (Sohn 2021), knowledge-based methods,
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combination-based and statistical methods such as kernel density estimates and particle filters. The authors
discuss these approaches and the available datasets.
More recent work includes a variety of methods ranging from ensemble methods to fuzzy logic. Zhou

et al. (2020) propose an ensemble technique using a modified adaptive boosting method called M-AdaBoost-
A to detect intrusions. They extend AdaBoost-A, which can handle class imbalanced data to multi-class
classification, and evaluate two variants of the algorithm. Imrana et al. (2021) propose a deep learning approach
– a bi-directional LSTM (long short-term memory) – for intrusion detection. They evaluate their method using
the NSL-KDD dataset. Hamamoto et al. (2018) propose a method using genetic algorithms and fuzzy logic
for network anomalous event detection. Their approach consists of two phases: the genetic algorithm is used
to create a digital signature of the network segment and fuzzy logic is used to identify anomalies. Khan et al.
(2021) propose a deep learning method for network anomaly detection using network spectrogram images
generated from Fourier transforms. They train a deep convolutional neural network to identify the anomalies.
Liu et al. (2021) introduce a NADS using computer log sequences. They discuss the challenges of vectorizing
unstructured log messages while preserving semantics in an efficient way.

2.3 Extreme Value Theory
Extreme Value Theory (EVT) is a branch of statistics used to model rare, extremal events such as 100-year

floods and catastrophic financial losses (R.D. Reiss & M.Thomas 2001). Intuitively, EVT focuses on maxima
or minima and represents them using probability distributions. EVT is a powerful, yet flexible technique to
model different types of extremal behavior. From a statistical point of view, extremes are found in the tail of a
distribution. If the tail exhibits exponential decay, that is, if the tail behavior can be written as 𝜆𝑒−𝑘𝑥 for 𝜆, 𝑘 > 0
where 𝑥 is the random variable, then that is good news because many methods can be used to model the tail
behavior and hence we have a handle on the extremes. For example, the normal distribution has an exponentially
decaying tail. The problem arises when we have heavy or fat tails, that is, when the tail behavior exhibits a
power law relationship or decays polynomially. When this is the case, the tail behavior can be expressed as 𝜆𝑥−𝑘
with 𝜆, 𝑘 > 0. Power law decay is more challenging than exponential decay because it is difficult to control
or predict the extremes, meaning there is high probability of getting extreme values. In particular, network
traffic is known to have heavy tails (Hernández-Campos et al. 2004, Ramaswami et al. 2014). Therefore, it is
important to use methodologies such as EVT capable of handling heavy tailed distributions.
Recent years have seen increasing interest in EVT basedmethods for anomaly detection (Kandanaarachchi &

Hyndman 2021, Talagala et al. 2020). We use Lookout (Kandanaarachchi &Hyndman 2021), an EVT based AD
method to detect anomalies in honeypot aided computer networks. Lookout has two main characteristics that
are advantageous in a computer network security context: 1. low false positives and a guarantee on false positive
probability and 2. flexibility to model data without an assumption on the underlying probability distribution.
A low number of false positives is a fundamental characteristic of EVT based AD methods attributed to

its theoretical framework. In addition, Lookout gives a guarantee or an upper bound on the false positive
probability, which can be set by the user. Furthermore, Lookout is not limited by any distributional assumptions
on the original data. EVT can handle truncated tails, exponentially decaying tails, polynomially decaying tails or
other types of tail distributions. Depending on the tail of the original distribution, EVT characterizes extremal
distributions into 3 types; Gumbel, Frechet and Weibull. These 3 distributions fully describe the space of
extreme value distributions, i.e. all extremes fall into one of the above three categories. A generalized extreme
value distribution incorporates these 3 distributions into 1 distribution using an additional shape parameter 𝜉.
Lookout estimates this shape parameter using the data, thus choosing the appropriate distribution to model
extremes. Therefore, if the data exhibits polynomial decay written as 𝜆𝑥−𝑘 , then Lookout estimates 𝑘 from the
data, which is then used to model extremes and identify anomalies.
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3 Datasets

Figure 4: The monitoring device map for the LAN-Security Monitoring Project. The
nodes are overlaid on amap taken from theMicrosoft security intelligence report (Kelley
2019) showing average monthly malware encounter rate of regions.

The LAN-Security Monitoring Project (Ochiai 2020) is a research collaboration between 12 ASEAN and
SAARC countries led by Japan. The project was deployed in November 2018, and aims to boost cyber-readiness
and cyber-resilience among partners through research collaboration especially focusing on the security of local-
area networks (LAN). Malware or worms can easily intrude into LANs through phishing-emails or WiFi, even
if the network is protected by a firewall or operated under a network address translation (NAT) unit. This
project deploys local monitoring devices, honeypots, in LANs because LAN-internal events, such as direct
communications between the devices inside the LAN are not visible by the global Internet observatories.
Monitoring devices are installed in severe malware-infected countries as shown in Figure 4.
The datasets we obtained pertained to a single LANwith a honeypot for the time period starting from January

11 2019 until November 15 2020. The honeypot was quiet and did not make any intentional announcements
(e.g., advertisements or discovery requests) to the network. However, a suspicious node on the same network
segment sometimes directly sends TCP or UDP packets targeting the IP address of the honeypot. Such a node is
considered anomalous as there is no legitimate reason to send a TCP/UDP packet to the honeypot. This activity
is captured by the software as the packets are directly exchanged with the honeypot. In addition, all broadcast or
multicast Ethernet frames including ARP requests, DHCP, NBNS, mDNS, LLMNR packets originating from
individual hosts connected to a LAN are also captured by the software. The raw data is then preprocessed to
generate features by protocol, which are given in Table 1.
Asmentioned above, the datasets we received from the LAN-SecurityMonitoring Project comprised features

by protocol for a specific LAN. As listed in Table 1, in addition to TCP/UDP data, ARP data was collected at
5s, 60s and 600s time intervals. For each time interval, the node address, count and degree are provided in the
dataset.
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Table 1: Dataset description – features by protocol

Protocol Feature Description

ARP timestamp The start of the 𝑛 second time interval for 𝑛 ∈ {5, 60, 600}.
node address The MAC address of the source node.
count The number of (broadcast) ARP requests made by the node
degree The number of IP addresses the node tried to resolve in the time interval

of the ARP broadcast request.

TCP timestamp The start of the 5 second time interval.
node address The MAC address of the source node.
num_ports The number of ports specified by the TCP packets from this node within

the given time interval.
count The number of TCP packets the monitoring unit observed from this

node.
avg_len The average length of IP packets that deliver the concerned TCP packets
count_fin The number of TCP packets with raised fin_flag.
count_syn The number of TCP packets with raised syn_flag.
count_rst The number of TCP packets with raised rst_flag.
count_psh The number of TCP packets with raised psh_flag.
count_ack The number of TCP packets with raised ack_flag.
count_urg The number of TCP packets with raised urg_flag.
count_ece The number of TCP packets with raised ece_flag.
count_cwr The number of TCP packets with raised cwr_flag.

UDP timestamp The start of the 5 second time interval.
node address The MAC address of the node.
num_ports The number of ports specified by the UDP packets from this node within

the given time interval.
count The number of UDP packets the monitoring unit observed from this

node.
avg_len The average length of IP packets that deliver the concernedUDP packets.

4 Methodology
To consider appropriate methodology, we take into account that the datasets span 22 months. Using all the

data in one batch and detecting anomalous nodes would amount to detecting anomalies at the end of the 22
month period. Instead, we use a more continuous approach to detect anomalies using a window-based model.
A window-based approach uses the data in the time window to detect anomalies. That is, it does not see data
outside the window. Both horizontal and vertical approaches use window-based models for anomaly detection.
We combine the anomalies found in the amalgamation stage.

4.1 Sliding and expanding time window models
Figure 5 shows the different window models used for horizontal and vertical approaches. For the horizontal

approach, we use a sliding window model for all three protocols. We denote the window width by Δ𝑇 and the
step size by Δ𝑡. Suppose the 𝑖th time window starts at 𝑡𝑠𝑖 and ends at 𝑡𝑒𝑖 . Then 𝑡𝑒𝑖 = 𝑡𝑠𝑖 + Δ𝑇 . The (𝑖 + 1)st time
window would start at 𝑡𝑠𝑖+1 = 𝑡𝑠𝑖 + Δ𝑡 and ends at 𝑡𝑒𝑖+1 = 𝑡𝑠𝑖+1 + Δ𝑇 = 𝑡𝑒𝑖 + Δ𝑡. This is illustrated in Figure 5(a).
Thus, the horizontal approach considers data in the time window

[
𝑡𝑠𝑖 , 𝑡𝑒𝑖

]
for each window 𝑖.

The vertical approach is somewhat different because it considers each protocol separately to detect anomalies.
We use two different window models for the vertical approach, based on the protocol. For ARP, we use the
same sliding windows as in the horizontal approach. For TCP and UDP we use an expanding window model
shown in Figure 5(b). The honeypot captures all the broadcast ARP requests, but only captures TCP or UDP
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𝑡𝑒𝑖𝑡𝑠𝑖

Δ𝑇

𝑡𝑒𝑖+1𝑡𝑠𝑖+1

Δ𝑡 Δ𝑡
Window 𝑖

Window (𝑖 + 1)

(a)

𝑡𝑒𝑖

𝑡𝑒𝑖+1

Δ𝑡

(b)

Window 𝑖

Window (𝑖 + 1)

Figure 5: Sliding and expanding windows: (a) The sliding window model. This is used
in the horizontal approach and in the vertical approach for ARP. (b) The expanding
window model. This is only used for TCP and UDP in the vertical approach.

packets directed at it. Consequently, the number of TCP and UDP packets, compared to ARP packets, are low.
Thus, a sliding window model is not suitable for TCP and UDP separately, for the vertical approach. Thus, for
each ARP window ending at time 𝑡𝑒𝑖 , we use TCP and UDP data for 𝑡 ≤ 𝑡𝑒𝑖 .
While there is no definitive guide to choosing the window size Δ𝑇 or the step size Δ𝑡, often application

specific considerations and trial and error are used in selecting these parameters. For each window 𝑖, that is,
at every 𝑡𝑒𝑖 , Honeyboost outputs a list of anomalous nodes identified from the data in that window. As such,
the step size Δ𝑡 is the frequency of Honeyboost output, which can selected according to requirement. We have
used Δ𝑡 = 60× 60 seconds in this experimental study, i.e., we have configured Honeyboost to output anomalous
nodes every hour.
In contrast, the window size Δ𝑇 determines the amount of data the algorithm looks at to detect outliers.

Smaller window sizes give rise to higher fluctuations. For example, using a window size of 1 hour results in
the volume of data being high at peak activity hours and much lower at 4 am in the morning. This is known
as seasonality of the data. Often with network traffic data, there could be multiple seasonal patterns ranging
from hourly patterns to daily patterns. Similar to the hourly fluctuations, there is lower traffic on some days
of the week compared to other days. Therefore, it is important to choose a window size not affected by such
seasonal patterns. In addition, the higher fluctuations in data volume from smaller window sizes give rise
to higher false positives. Here, to mitigate seasonal fluctuations and to keep the false positives low, we use
Δ𝑇 = 1week = 7 × 24 × 60 × 60 seconds, and configure Honeyboost to predict anomalous nodes every hour
from one week’s worth of data ending at that hour.

4.2 Horizontal approach
Using the sliding window model, the pre-processed features for all three protocols, by node, are sorted

by time, resulting in, for each time window and each node, a set of varying dimensional (VD) time series as
depicted in Figure 1. Figure 6 illustrates the processes involved in this approach, and the input and the output
data type for each process.
Firstly, the VD time series is reshaped to a multivariate time series using homogenization (see Table 2).

This essential step results in transporting the research problem to a space where we can use existing time series
analysis methodology. However, finding anomalous time series from a collection of multivariate time series is a
challenging task. Hence, we transform each multivariate time series to a point in high dimensional space using
metamorphosis (Figure 7), a feature-based time series approach popular in time series forecasting. This step
transforms the problem of finding anomalous multivariate time series to finding anomalous points in Euclidean
space, an easier problem. However, anomaly detection in high dimensional data is prone to error due to the
curse of dimensionality. Therefore, the dimensions of this data are reduced using Principal Component Analysis
(PCA) and only the first 2 PC scores are kept. Anomalies are then detected in this 2-dimensional PC space
using Lookout and a One Class Support Vector Machine (OCSVM). Lookout is an Extreme Value Theory based
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Figure 6: The input and output data type of each process in the horizontal approach.

anomaly detection method and achieves lower false positives compared to the OCSVM. These processes are
detailed below.

4.2.1 Homogenization: constructing a multivariate time series from a VD time series

Amultivariate time series is constructed using the VD time series for each node. This transformation, called
homogenization, is shown in Table 2 via an example. The resulting multivariate time series contains 6 numeric
features characterizing important aspects of each protocol along with the node address, timestamp and protocol
name.
As seen in Table 1 the dataset from each protocol contains the node address, the timestamp and some other

numerical features for each observation. These numerical features are depicted in parenthesis in the example
VD time series given in Table 2. In order to give each protocol the same importance, we represent the numeric
features of each protocol by two key features. The two numeric features of ARP (see Table 1) namely degree
and count are included as part of the 6 features in the multivariate time series.
TCP, on the other hand, has 11 numeric attributes per node at each timestamp (see Table 1). We reduce the

dimension of this 11-dimensional feature space to 2, by using Principal Component Analysis (PCA). The first
2 principal component scores PC1 and PC2 for TCP then become part of the 6 features in the multivariate time
series. Similarly UDP has 3 numeric attributes at each timestamp; PCA is performed for the UDP space and
the first 2 PC scores used.
Thus, each node is homogenized to have the following 8 features: 1. timestamp; 2. protocol name; 3. ARP

degree; 4. ARP count; 5. TCP PC1; 6. TCP PC2; 7. UDP PC1; and 8. UDP PC2. Thus a VD time series
for a given node with observations at 𝑘 different time points is transformed into a 𝑘 × 8 matrix denoting an 8
dimensional time series with 𝑘 time points. The node address is a grouping attribute that does not participate
in the statistical analysis. That is, once the anomalous points are identified, the node address is only used to
recognize the responsible node.

4.2.2 Metamorphosis: Mapping a time series to a point in high-dimensional space

For each time window 𝑖, where 𝑡 ∈
(
𝑡𝑠𝑖 , 𝑡𝑒𝑖

)
, and each node, we consider a multivariate time series. This

gives us 𝑚 multivariate time series if there is traffic from 𝑚 nodes present in that time window. We then
compute features and transform this time series into a point in a high-dimensional space. As a time series
gets transformed into a point, we call this process metamorphosis. Figure 7 illustrates this process. There is
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Table 2: Homogenization: An example VD time series (left) reshaped to a multivariate
time series (right)
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Figure 7: A simpler version of metamorphosis: The figure on the left shows a univariate
time series, which gets mapped to a point in R3 on the right. In reality, we consider a
multivariate time series for each node, and map it to a point in R17.

a bĳective mapping between the nodes and the points in the high-dimensional space, wherein each node is
uniquely identified by a point in the high dimensional space and each point in the high-dimensional space
denotes the behavior of a specific node in that time window.

The features
For any given node 𝑁 𝑗 the following features are computed from the multivariate time series associated with
𝑁 𝑗 :

1. The maximum time difference for the time series max 𝑡 −min 𝑡 for 𝑡 ∈
(
𝑡𝑠𝑖 , 𝑡𝑒𝑖

)
for node 𝑁 𝑗

2. The number of protocols used by 𝑁 𝑗 .

3. The number of TCP calls made by 𝑁 𝑗 .

4. The number of UDP calls made by 𝑁 𝑗 .

5. The total length of the line segments in R6 using the 6 protocol features, ARP count, ARP degree,
TCP PC1, TCP PC2, UDP PC1 and UDP PC2: Suppose {𝒙𝑡𝑘 }ℓ𝑘=1 denotes the time series for 𝑁 𝑗 in
R6. The standard Euclidean norm gives the length of the line segments, viz.,

∑ℓ−1
𝑘=1‖𝒙𝑡𝑘+1 − 𝒙𝑡𝑘 ‖. In

the example given in Table 2 the total length of the line segment in 𝑅6 would be ‖(10, 12, 0, 0, 0, 0) −
(0, 0, 2.1, 1.7, 0, 0)‖ + ‖(0, 0, 2.1, 1.7, 0, 0) − (0, 0, 0, 0, 3.6, 0.4)‖.

6. The total length of the line segments in the ARP space spanned by ARP count and ARP degree: While
similar to the previous feature this only takes the length of the line segments using the ARP count and
ARP degree. Figure 8(a) illustrates this ARP space for a hypothetical node. At times 𝑡1, 𝑡2, 𝑡3, 𝑡4, 𝑡5, 𝑡6
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and 𝑡8 this node has made ARP calls. The total length of the line segments is given by
∑

𝑡,𝑡 ′∈𝑆‖𝒙𝑡 ′ − 𝒙𝑡 ‖,
where 𝑆 = {𝑡1, 𝑡2, 𝑡3, 𝑡4, 𝑡5, 𝑡6, 𝑡8} and 𝑡 and 𝑡′ denote successive time points in 𝑆.

7. Next we fit a line to the points in the ARP space using linear regression. We denote the points in the ARP
space by {𝒙𝑡𝑘 }ℓ𝑘=1 where 𝒙𝑡𝑘 = (𝑥𝑘𝑐, 𝑥𝑘𝑑) where 𝑥𝑘𝑐 denotes the count and 𝑥𝑘𝑑 denotes the degree at time
𝑡𝑘 . Then the line of best fit is given by the equation

𝑥𝑘𝑑 = 𝑚𝑥𝑘𝑐 + 𝑐 ,

where 𝑚 and 𝑐 denotes the slope and intercept, which are given by

𝑚 =
ℓ
∑

𝑘 𝑥𝑘𝑐𝑥𝑘𝑑 −
∑

𝑘 𝑥𝑘𝑐
∑

𝑘 𝑥𝑘𝑑

ℓ
∑

𝑘 𝑥
2
𝑘𝑐

− (∑𝑘 𝑥𝑘𝑐)2
,

and 𝑐 =
1
ℓ

(∑︁
𝑘

𝑥𝑘𝑑 − 𝑚
∑︁
𝑘

𝑥𝑘𝑐

)
.

The quantity 𝑥𝑘𝑑 is the predicted ARP degree by this linear model. The sum of squares errors is given by

SSE =
∑︁
𝑘

(𝑥𝑘𝑑 − 𝑥𝑘𝑑)2 ,

that is the squared difference between the actual and the predicted degree values summed over the number
of ARP calls. A low value of SSE indicates that the line is a better fit for the data compared to a high SSE
value. These three features, slope, intercept and SSE, are added to the feature pool. An example line of
best fit is shown in Figure 8(c).

8. The equivalent of features 6 and 7 are computed for TCP. This gives the total length of the line segments
in the TCP PC1, PC2 space along with the slope, intercept and sum of errors squares of the line of best
fit (see Figure8(b)).

9. Similarly, the length of the line segments in the UDP PC1, PC2 space and the slope, intercept and SSE of
the line of best fit are computed.

We now have 17 features describing the multivariate time series for each node, thus transforming each time
series to a point in R17. Therefore, a time window containing data from 𝑚 distinct nodes gives rise to 𝑚 time
series, which get transformed to 𝑚 points in R17, with each point denoting the behavior of a node in that time
window.

4.2.3 Dimension reduction and anomaly detection: Identifying anomalies after dimension reduction

In higher dimensions it is hard to differentiate anomalies from non-anomalies because points are far away
from each other. Therefore, we reduce dimensions using PCA and use the first 2 dimensions in the PC space
for anomaly detection. We use the algorithm Lookout (Kandanaarachchi & Hyndman 2021) and an OCSVM
to identify anomalies in this two dimensional space. Lookout uses Extreme Value Theory (EVT) (Coles 2001)
and leave-one-out kernel density estimates to identify anomalies. We briefly describe the algorithm Lookout
next.

1. To compute kernel density estimates, a bandwidth parameter is required. However, the bandwidth suited
for representing the data in general is not suitable for anomaly detection. Using persistent homology
(Ghrist 2008), a methodology in topological data analysis, Lookout chooses a bandwidth appropriate for
anomaly detection.
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Figure 8: (a) The ARP degree and count for a hypothetical node at different time points,
with successive time points connected by line segments. The total length of these line
segments is a feature. (b) The TCP PC1 and PC2 coordinates for the same node, some of
which occur at different time points; the total length of these line segments is calculated.
(c) The line of best fit for points in the ARP space. The slope, intercept and the sum of
squares errors are calculated using this line of best fit.

2. Using this bandwidth, kernel density estimates (kde) and leave-one-out kernel density estimates are
computed for the data.

3. As anomalies are rare, they lie in low density regions in a feature space. The bandwidth selected in step
2 results in anomalies having low kde and leave-one-out kde values. However, we want to identify the
anomalies, not just give an anomaly score for all the data points. A threshold is needed so that anomalies
with kde values lower than this threshold are declared anomalous. We set a threshold by computing the
probabilities of the points using EVT. Specifically, by using Generalized Pareto Distributions.

4. If the probability of a point is below a predefined threshold 𝛼, it is declared anomalous.

For this work we set the threshold as 𝛼 = 0.1, i.e., if the probability 𝑝 of a point being present using the
Generalized Pareto Distribution is less than 0.1, we identify it as an anomaly. Using this probability 𝑝 the
anomaly score is given by

𝑠 = (0.1 − 𝑝) × 100 ,
resulting in the anomaly scores lying between 0 and 10with data points with zero probability having an anomaly
score of 10. See Kandanaarachchi & Hyndman (2021) for more details on Lookout.
Detecting a stream of false anomalies decreases confidence in the NAD systemmaking a technique with low

false positives attractive in this domain. EVT related methods only identify extremes as anomalies. As such,
we expect Lookout to have a low false positive rate. One-class SVMs (OCSVM) are often used for anomaly
detection in an unsupervised setting. Given the challenges posed by high false positives in NAD, we compare
the performance of Lookout with an OCSVM.
As the sliding time windows overlap, some nodes are identified as anomalies in multiple time windows,

while others appear as anomalous only in one time window. If a node is identified as anomalous in multiple
time windows, it is a persistent anomaly, and provides grounds for investigation.

4.3 Vertical Approach
The horizontal approach investigates the activity of each node as a time series and finds anomalous time

series. In contrast, the vertical approach focuses on each protocol to find anomalous activity. All observations
in a single protocol have the same number of attributes, and thus the same dimension, making the vertical
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approach much simpler as it does not face the challenge of assembling varying dimensional data into a single
construct. The vertical approach comprises the following steps:

1. The numerical feature space for each protocol has different dimensions, with ARP being 2-dimensional
feature space, TCP 11-dimensional and UDP 3-dimensional (see Table 1). Identifying anomalies in high
dimensions is difficult, and we consider a 2-dimensional space for each protocol. For ARP we take the
count and the degree. For TCP and UDP we perform PCA and take the first two PC scores.

2. Lookout and an OCSVM are used to find anomalies in each protocol’s 2D space.

3. The anomalies are combined by node and time window to gain better insights.

For the vertical approach, each point in a protocol 2D space represents a single communication from a node
using that protocol. Nodes communicating multiple times in a time window are represented by multiple points
in the vertical approach. Thus, if a node 𝑁 communicates using ARP, TCP and UDP 𝑚1, 𝑚2 and 𝑚3 times
respectively, it will result in 𝑚1 points in the ARP space, 𝑚2 points in the TCP space and 𝑚3 points in the UDP
space.
Finally, the anomalies identified from the horizontal and vertical approaches for each time window are

amalgamated to get a better understanding of the behavior of the nodes. A node identified as anomalous by
both horizontal and vertical approaches gains higher priority for further inspection than a node identified by a
single approach.

5 Results
This section details the results found from using Honeyboost to identify anomalous nodes. We start with

comparing the two AD methods used in Honeyboost with regards to early detection of anomalous nodes.

5.1 Early detection
The two ADmethods in Honeyboost – Lookout and OCSVM – perform similarly and identify most nodes as

anomalous before they access the honeypot. Table 3 shows the anomalous nodes, the earliest time they access
the honeypot and the results of the 2 AD methods. The Table gives the earliest time each AD method identifies
a node as anomalous. If this detection happens before the node accesses the honeypot, it is labeled as early
detection, denoted by Early under the heading Status. The table also indicates the time each node is identified
as anomalous under the heading Time Differencewith positive values indicating early detection. As the window
step size is 3600 seconds, any time difference in the interval [−3600, 0) indicates the anomaly was identified in
the same time window.
Of the 15 nodes that access the honeypot, Lookout identifies 13 nodes before they access the honeypot and

2 nodes (N220 and N225) in the same time window that they access the honeypot. The OCSVM identifies all
nodes before they access the honeypot.
Given that Honeyboost identifies anomalies before they access the honeypot, it is important to consider the

number of false positives it generates. Note that if a node is tagged as anomalous the first time it communicates
with another node, Honeyboost would detect all anomalies early. However, such a strategy would create a
barrage of false positives, greatly reducing the confidence in the system. For example, a home security system
that constantly trips the alarm. Therefore, it is imperative to consider the false positive rate, i.e., early detection
is valuable only if the false positive rate is low.
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Table 3: Early detection of honeypot anomalies - amalgamated results using the hori-
zontal and vertical approaches (Early = Early Detection, SW = Same Window)

Node
Earliest
Honeypot
Time

Lookout Results OCSVM Results

Earliest Anomaly
Detection Time

Status Time Difference
(Positive = Early)

Earliest Anomaly
Detection Time

Status Time Difference
(Positive = Early)

N021 1598842055 1550034180 Early 48807875 1547269200 Early 51572855
N039 1553585825 1553585820 Early 5 1547449140 Early 6136685
N046 1553751195 1549530120 Early 4221075 1547521980 Early 6229215
N132 1566462345 1561276560 Early 5185785 1554347700 Early 12114645
N135 1554351595 1554351540 Early 55 1554351540 Early 55
N153 1563528080 1555997940 Early 7530140 1554803160 Early 8724920
N155 1565313000 1557801000 Early 7512000 1554952440 Early 10360560
N158 1555312055 1555311960 Early 95 1555311900 Early 155
N159 1555313055 1555312740 Early 315 1555312740 Early 315
N163 1567236235 1558260780 Early 8975455 1557228000 Early 10008235
N171 1565059350 1563260880 Early 1798470 1558065360 Early 6993990
N219 1564535840 1564535760 Early 80 1564535760 Early 80
N220 1565758430 1565758435 SW -5 1564552620 Early 1205810
N225 1565758055 1565758080 SW -25 1565695320 Early 62735
N239 1575507740 1572234480 Early 3273260 1568005320 Early 7502420

Figure 9: False positives using Lookout and the OCSVM for all time windows. Figures
(a) and (c) give the number of false positives for the vertical and horizontal approaches.
Figures (b) and (d) give the false positive rates for the two approaches.

15



5.2 False positives
We investigate the number of false positives and the false positive rate, defined as the ratio of the number

of false positives to the total number of negatives for both the horizontal and the vertical approaches. Figure 9
shows the false positives and the false positive rates for both Lookout and OCSVM for both approaches. Figures
9(a) and (c) show boxplots of the number of false positives for each time window. The false positive rate is
given in Figures 9(b) and (d).
Lookout achieves a low false positive rate compared to the OCSVM for both approaches. In the vertical

approach, the OCSVM identifies many nodes as anomalies in each window with a median of 20 false positives.
In some windows the OCSVM outputs 80 false positives. This large number of false positives causes the false
positive rate to have a median of 37% and an upper quartile of 87%. The highest false positive rate for the
OCSVM for the vertical approach is close to 1.
It is interesting to note that the vertical approach produces more false positives for the OCSVM compared to

the horizontal approach. This is due to the number of data points in a time window for each approach. Suppose
a given time window has 𝑁 ARP calls belonging to 𝑛 nodes with 𝑁 >> 𝑛. Generally 𝑁 is orders of magnitude
higher than 𝑛. The horizontal approach constructs a data point for each node in each window giving rise to 𝑛
data points. In contrast, the vertical approach has 𝑁 data points. Thus, it is clear the OCSVM identifies more
nodes as anomalous when there are a large number of data points.
Given that Lookout identifies anomalies early and still has a low false positive rate, we focus on the results

produced by Lookout for the remainder of the paper.

5.3 Amalgamating horizontal and vertical anomalies
For each window, the anomalies detected by the horizontal and vertical approaches are amalgamated.

Table 4 shows the anomalies identified and amalgamated for the vertical and horizontal approaches for each
of 4 windows, using Lookout. In window 2270, 2 anomalies were identified: N046 is identified by both the
horizontal and vertical approaches, while N157 is identified only by the vertical approach. Window 5080 also
produces 2 anomalies: N220 and N225, both of which are identified only by the horizontal approach. Windows
7700 and 14240 identify nodes N239 and N021 respectively.

Table 4: Amalgamation of horizontal and vertical anomalies for 4 windows.

Window Node Horizontal
Anomaly

Vertical
Anomaly

Horizontal
Anomaly
Score

Vertical
Anomaly
Score

Anomaly History (previous windows)

2270 N046 X X 10 19.9 2269, 2268, 2267, . . .
N157 – X – 11.8 2269, 2268, 2267, . . .

5080 N220 X – 10 – 5079, 5078, 5077, . . .
N225 X – 10 – 5079, 5078, 5077, . . .

7700 N239 – X – 10 7610, 7586, 7585, . . .
14240 N021 X X 9.97 9.93 14239, 14238, 14237, . . .

From Table 4, given Lookout’s low false positive rates, it is clear that every anomalous node identified,
even by a single approach, horizontal or vertical, should be further investigated. We do this by comparing the
results of Table 4 with that of Table 3. Of the anomalies identified in window 2270, for example, N046 is a real
anomalies – we regard it as suspicious because it accesses the honeypot. N157 is a false positive as it does not
access the honeypot. Similarly, in window 5080, both N220 and N225 are real anomalies, as is the case with
N239 and N021.
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6 Insights and Discussion
Lookout is the preferred anomaly detection method employed in Honeyboost. As shown in Figure 2, Hon-

eyboost encompasses the complete framework, starting from the pre-processing and ending with amalgamating
the anomalies that are found by vertical and horizontal approaches.

6.1 Tracking anomalies as they develop over time
The amalgamation of the horizontal and vertical approaches lets us observe the anomalies as they develop

in different spaces. For example, a node may be identified as anomalous by the horizontal approach and later
identified as anomalous by both approaches. The vertical approach identifies anomalies in each of the ARP, TCP
and UDP spaces separately and then combines them. In contrast, the horizontal approach identifies anomalies
in the combined feature space.

Figure 10: Anomalies detected by the vertical and horizontal approaches in windows
1921, 1922, 2089, 2090, 2091, 2109, 2110, 4149, 4150, 4371, 4372, 4651, 4652, 4653,
5186 and 5187. As the vertical approach consists of each of the ARP, UDP and TCP
spaces, anomalies identified separately in these spaces are included. The vertical axis
shows the anomalous nodes and the horizontal axis gives the windows and anomaly
types. For example 1921_H denotes horizontal anomalies identified in window 1921
and 1921_V_A denotes the vertical anomalies identified in the ARP space in window
1921. The colors indicate the logarithm of anomaly scores with darker shades denoting
larger scores.

Figure 10 shows the windows 1921, 1922, 2089, 2090, 2091, 2109, 2110, 4149, 4150, 4371, 4372, 4651,
4652, 4653, 5186 and 5187 and all anomalies identified in these windows by Lookout. The 𝑌 axis shows all
nodes labeled as anomalous in these windows. The 𝑋 axis gives the different anomaly types sorted by windows.
The anomalies identified in the horizontal and vertical approaches are differentiated with an _H and _V label,
respectively. The vertical approach anomalies are further classified as ARP, TCP and UDP space anomalies.
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Thus, if an anomaly is identified by the vertical approach in the ARP space it is tagged with _V_A. Similarly,
vertical TCP and UDP anomalies are tagged with _V_T and _V_U, respectively. The 𝑋 axis labels start with the
window number followed by the anomaly type. Thus, 1921_H denotes horizontal anomalies in window 1921.
Similarly 1921_V_A, 1921_V_T and 1921_V_U denotes vertical ARP, TCP and UDP anomalies in window
1921. The color of the cells denote the logarithm of the anomaly scores with darker shades denoting larger
scores. The windows are separated by dashed lines.
We look at an example of a developing anomaly. In window 1921, N135 is the only node identified as

anomalous, and is identified as such by the horizontal as well as the vertical approach, though only in the ARP
space in the latter case. It is then identified in the vertical UDP space, in window 1922, with a relatively high
anomaly score as seen from the darker color. It is further identified in window 2089, in the horizontal, as well
as vertical ARP and UDP spaces. Again, in later time windows (4150, 4371), it is identified as anomalous in
the horizontal, and vertical ARP and UDP spaces.
Nodes N158 and N159 are two further examples. They are identified as anomalous in window 2090

by the horizontal approach, as well as in the vertical UDP space. These two nodes continue to increase in
anomalousness in subsequent windows as seen by the darker shades of red. In window 2109, both nodes are
identified by the vertical approach in the ARP, UDP and TCP spaces, with high anomaly scores.
Other examples of developing anomalies in these set of windows are N218 and N219. Thus, the

amalgamation of the horizontal and vertical approaches enables us to see the anomalies develop, assisting in
the decision making process. Furthermore, Figure 10 shows all anomalies identified by the two approaches in
this set of windows. The maximum number of anomalies identified by Lookout in this set of windows is 4,
occurring in windows 2090 and 4149. In comparison, the OCSVM identifies an average of 32.7 anomalies
per window for this set of windows, with a minimum of 3 and a maximum of 58 nodes. Having a smaller
number of anomalies increases clarity and helps focus on the important aspects. This is another advantage of
identifying anomalies sparingly.

6.2 Tracking a node’s anomalous nature
Next, we focus on individual nodes instead of looking at all anomalies identified in a given window.

Figures 11 and 12 show the behavior of nodes N046, N132, N153 and N239 over a range of windows along with
their anomaly scores. From Figure 12 we see that these nodes are identified as anomalous either by a single
approach or by both approaches in sets of consecutive windows. For example, N046 is identified as anomalous
in windows 628 to 650, 1656 to 1822 and in windows 2090 to 2277. We see a similar behavior by each of the
other nodes.
This observation is further validated in Figure 12, in which we explore the ARP, UDP and TCP anomaly

spaces for the vertical approach in addition to the horizontal approach. We only show a subset of windows in
Figure 12 due to space constraints. Node N046 is first identified by the vertical approach in the ARP space
in window 628. Later, in window 1656 it is identified as anomalous by the horizontal approach as well. This
behavior continues for a while and in window 2118 it is identified by the horizontal approach and the vertical
approach in the ARP and TCP spaces. It continues to be identified in multiple vertical approach spaces until
window 2277.
We see a similar pattern for node N132. Initially it is identified by the vertical approach in the ARP space

in window 3791. In window 5187 it gets identified by the horizontal approach, and the vertical approach in
the ARP, UDP and the TCP spaces. This continues for many windows and then it slowly dies down. Nodes
N153 and N239 also display a similar pattern where they are identified by a single approach and then by both
approaches in multiple spaces with higher anomaly scores.
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Figure 11: The horizontal and vertical anomaly scores for nodes N046, N132, N153
and N239 over all time windows. The 𝑋 axis of each graph displays the range of time
windows for which these nodes are identified as anomalous starting from the window
they were first found as anomalous, to the last window. For example, N132 does not get
identified before window 3791. As such, windows before 3791 are not included in the
graph for N132.

6.3 Insights into anomalous behavior
We now combine the results found thus far to gain insights into anomalous behavior. Table 5 lists the total

anomaly score, the number of windows reporting the node as anomalous, and the average anomaly score per
window, of the nodes accessing the honeypot. The total anomaly score for each node is the sum of the horizontal
and vertical anomaly scores for the full time period. Figure 13 shows the vertical and horizontal anomaly scores
for the top 6 anomalous nodes from this table. We investigate these anomalies to gain better understanding.

1. N135: This node suddenly makes a large number of ARP broadcasts (count 757, degree 257) and accesses
the honeypot using UDP and TCP. The total length of the UDP packets per 5s time interval are unusually
high for N135. The median value of the total length of the UDP packets, taking into account all nodes
accessing the honeypot, is 28. For N135 the total UDP packet length ranges from 28 to 1047, with a
median of 927. N135 has the highest total anomaly score because it is identified in 1351 windows. From
Figure 13 we see that it displays a lot of activity for a long period of time.

2. N159: This node makes innocuous ARP broadcasts for the first 9 minutes of its communication. Then,
it suddenly makes a large number of ARP broadcasts (count 6760, degree 3384) and starts accessing the
honeypot immediately after that, using 32 UDP ports in a single 5 second interval. After a time lag of
1 hour, it accesses the honeypot using 999 TCP ports. From Figure 13 we see that the vertical anomaly
scores in certain windows are much higher for N159 compared to other nodes. Furthermore, it is only
found anomalous in 169 windows. Thus, N159 has the highest average anomaly score per window.

3. N153: This node is found anomalous in 848 windows. It has a long span of activity as seen from
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Figure 12: Selected windows for nodes N046, N132, N153 and N239. The anomaly
scores for the horizontal approach, and the vertical approach in the ARP, UDP and TCP
spaces, are shown for each node with dashed lines showing window boundaries. We
see the behavior of the nodes over time.

Figure 13. In terms of the ARP broadcasts, it has a higher count to degree ratio compared to most other
nodes.

4. N158: This node has very large ARP counts for a long period of time, with a maximum ARP count of
6536 and degree 3262 for a given time interval. After these ARP broadcasts it accesses the honeypot
using 32 UDP ports and 999 TCP ports.

5. N132: Again, we see extremely large ARP counts for multiple time intervals. The maximum ARP count
for N132 is 22558 with degree 4416. It then accesses the honeypot using TCP and UDP protocols. We
find that N132 has set the PSH (push) and the URG (urgent) flags in some TCP packets that access the
honeypot. The PSH flag informs the receiving node that the data should be pushed to the application
layer immediately, and the URG flag informs the receiver that the data should be prioritized.

6. N219: Similar to N132, this node sets the PSH and URG flags for some TCP packets and accesses the
honeypot using a large number of TCP ports.

Certain patterns emerge from this analysis. Some nodes such as N135 and N153 are identified as anomalous
in a large number of windows. These nodes access the honeypot over a long period of time. In contrast, other
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Table 5: Nodes accessing the honeypot sorted by the total anomaly score. The number
of windows reporting the node as anomalous as well as the average score per window
are also given.

Node Horizontal
Anomaly
Score Total

Vertical
Anomaly
Score Total

Total
Anomaly
Score

Number of
Anomalous
Windows

Average
Score Per
Window

N135 6998 62473 69471 1351 51.4
N159 1487 30180 31666 169 187.0
N153 959 23902 24862 848 29.3
N158 1517 22235 23752 172 138.0
N132 4119 9305 13424 551 24.4
N219 1793 7072 8865 194 45.7
N021 2615 5657 8272 766 10.8
N155 1420 6002 7421 427 17.4
N046 1965 3191 5157 360 14.3
N039 2092 2297 4389 210 20.9
N163 1060 2670 3730 152 24.5
N239 1333 1899 3232 334 9.68
N225 1070 1291 2361 247 9.56
N220 1240 0 1240 124 10.0
N171 940 18 958 98 9.78

Figure 13: The horizontal and vertical anomaly scores for the top 6 anomalous nodes
accessing the honeypot, as per Table 5.

nodes such as N219, access the honeypot over a small time interval and are identified as anomalous with high
anomaly scores.
Furthermore, we see different types of suspicious behavior: unusually high number of ARP broadcasts

by a node before accessing the honeypot followed by TCP or UDP packets targeted at the honeypot using a
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large number of ports; and nodes accessing the honeypot using specific TCP flags that requests urgent attention
and access to higher layers. Overall, it is clear that by combining the horizontal and vertical approaches,
Honeyboost, via Lookout, prioritizes the nodes that need more inspection.

6.4 False Positives vs identifying anomalies
Honeyboost identifies all nodes accessing the honeypot. In addition, it identifies most nodes before they

access the honeypot. Of the identified anomalies, all do not access the honeypot, i.e. some are false positives.
Table 6 shows the top 3 anomalous nodes, N001, N135, and N157, identified by Honeyboost and their anomaly
scores.

Table 6: Top 3 Honeyboost anomalies sorted by the total anomaly score. The number
of anomalous windows and average score per window are also given.

Node Horizontal
Anomaly
Score Total

Vertical
Anomaly
Score Total

Total
Anomaly
Score

Number of
Anomalous
Windows

Average
Score Per
Window

N157 230 585540 585770 86 6811
N001 72178 5744 77921 7445 10.5
N135 6998 62473 69471 1351 51.4

Of these 3 nodes, we discussed N135 in Section 6.3. The other 2 nodes, N157 and N001 do not access the
honeypot. However, it is worth discussing their behavior.
Figure 14 shows the anomaly scores, ARP count and degree values for N157 over time. From Figure 14(a),

we see that the vertical anomaly scores for N157 are extremely large. Many anomaly scores are greater than
5000, and some scores are over 40,000. In fact, from Figure 14(a) it is misleading to think that the horizontal
score is zero for all windows. For some windows the horizontal score is 10, the maximum score for the
horizontal approach, but this is dwarfed by the high values in the vertical axis. The vertical approach does not
have a maximum score as a node can make multiple calls using ARP, UDP and TCP protocols and if many of
them are identified anomalous the sum of the anomaly scores is considered for each window.
The reason for high anomaly scores from the vertical approach is the large number of ARP calls with high

count that are not balanced by high degree values as seen in Figures 14(b) and (c). Starting from timestamp
1555482240, for every 60s interval N157 makes over 110 ARP broadcasts over 6381 minutes continuously
as can be seen from the thick, black line in Figure 14(b). It is rather unusual for a node to make such ARP
broadcasts continuously for a long period of time. Especially, as it did not make such ARP broadcasts before
that time. Therefore, this node needs investigation.
Another node of interest is N001. Figure 15(a) shows a histogram of the number of windows each node is

found anomalous. N001 is found anomalous in 7445 windows and is the most frequently identified anomaly
surpassing the other nodes by a large margin. Figure 15(b) shows the anomaly scores for N001 for the horizontal
and vertical approaches. On investigating the feature space, we find that this node has a relatively large total
length of 73.4 in the ARP space (Section 4.2.2, feature 6). It turns out this node has made 4635 ARP broadcasts
at different time points in its first anomalous time window, all having count and degree values of 1, 2, or 3.
Over the full time period, it makes 445,100 ARP broadcasts. Therefore, N001 is unusual because it makes a
small number of ARP broadcasts extremely frequently over a long period of time. It might be a malfunctioning
node needing investigation. We also note that node N001 would not have been identified by simply tagging the
nodes making a large number of ARP broadcasts.
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Figure 14: Behavior of Node N157: (a) Anomaly scores. (b) The ARP count over time.
(c) The ARP degree over time.

Figure 15: Behavior of Node N001: (a) Histogram of the nodes identified as anomalies
in all time windows with N001 getting identified 7445 times. N001 is labeled in this
histogram. (b) The horizontal and vertical anomaly scores over all windows for N001.

7 Conclusion
In this paper, we presented Honeyboost, a novel, hybrid framework consisting of two complementary

approaches – horizontal and vertical – to enhance honeypot aided NAD. Both approaches use data fusion
techniques to integrate attributes from diverse protocols. Our methodology does not suffer from a high false
positive rate as we use an anomaly detection method called Lookout, which uses extreme value theory to identify
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anomalies. Furthermore, it operates totally unsupervised, alleviating the need for costly labeling procedures.
Using our framework, we successfully identified anomalous nodes before they accessed the honeypot. In
addition, we gained useful insights about the behavior of these nodes. Moreover, we identified some unusual
behavior by nodes that do not access the honeypot. As future work, we plan to investigate network science and
graph theory approaches to further boost early detection and classification of anomalies.
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