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Abstract

A new methodology to predict one-day-ahead hourly solar global radiation is proposed in
this paper. This information is very useful to address many real problems; for instance,
energy-market decision making is one of the contexts where that information is essential to
ensure the correct integration of grid-connected photovoltaic solar systems. The developed
methodology is based on the contribution of different experts to obtain improved data-driven
models when included in the data mining process. The modelling phase, when models are
induced and new patterns can be identified, is the one that most benefits from that expert
knowledge. In this case, it is achieved by combining clustering, regression and classification
methods that exploit meteorological data (directly measured or predicted by weather ser-
vices). The developed models have been embedded in a prediction system that offers reliable
forecasts on next-day hourly global solar radiation. As a result of the automatic learning
process including the knowledge of different experts, 14 different types of day were identified
based on the shape of hourly solar radiation throughout a day. The conventional definitions
of types of days, that usually consider 4 options, are updated with this new proposal. The
next-day prediction of hourly global radiation is obtained in two phases: in the first one, the
next-day type is obtained from among the 14 possible types of day; in the second one, values
of hourly global radiation are obtained using the centroid of the predicted type of day and
extraterrestrial solar radiation. The relative root mean square error of the prediction model
is less than 20 %, meaning a significant reduction compared to previous models. Moreover,
the proposed models can be recognized in the context of eXplainable Artificial Intelligence.
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1. Introduction

Data mining techniques have proven to be very useful in the search for solutions to
complex problems involving many variables and large datasets. These types of problems
are difficult to tackle with traditional data analysis techniques, and, for this reason, there is
currently a great demand for intelligent systems.

Nowadays, data sources are more frequent, more comprehensive and more accessible.
This is both an opportunity and a challenge for those seeking to extract knowledge from
different domains. It is an opportunity as such an amount of information has never before
been available, but it is also a challenge given the heterogeneity and huge amount of data.

Data are the core of any data mining process, and business understanding is present
in different methodologies defined to guide such mining processes (Ponsard et al., 2017).
Specifically, business (and data) understanding are in the early stages of the procedure.
This reveals the importance of incorporating the knowledge of experts right from the start in
order to discover new useful knowledge and to deploy high quality products. Experts provide
their proficiency to start the data mining process and they can confirm the correctness
of discovered patterns at an intermediate point, when models are generated (if they are
explainable). Furthermore, they can discover new useful knowledge that would be very
difficult, or impossible, to obtain given the great amount of data being handled. Finally,
all that knowledge, if positively evaluated, could be used in real systems (to predict, to
simulate, to assess in decision making, etc.).

The use of data mining techniques is therefore extending to different areas of application.
Moreover, hybrid models have appeared in recent years, which combine the use of different
techniques for the same problem, and which require the close collaboration of researchers
from different fields for their correct development and implementation. The integration of
the knowledge of different experts in phases of the data mining process can result in improved
results compared to those obtained automatically.

1.1. Importance of predicting solar radiation
One of the areas in which these techniques are being successfully used is in the prediction

of different meteorological parameters. Among these, the short-term prediction of solar
global radiation is a key issue being approached with these models. This type of data is
required to predict and evaluate the performance of solar energy system using solar radiation
as the resource. Specifically, the prediction horizon of 24 hours ahead is required for decision
making on the energy market in order to integrate grid-connected large photovoltaic (PV)
solar systems, as PV power estimation is relevant for distribution System Operators, energy
traders and aggregators (Pierro et al., 2017). It is also important for PV self-consumption
facilities, as knowing their production in advance can help to achieve an optimization of
self-consumption (energy that is generated by the PV system and directly consumed in the
house) (Ayala-Gilardón et al., 2018). In both cases, this prediction can help to improve their
profitability and integration in the power grid. The production of such facilities depends on
the configuration of the PV system (peak power, orientation and technology) and on the
temperature and solar radiation received. Therefore, knowing in advance the solar radiation
received is fundamental to be able to predict their production.
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1.2. Previous approaches to predict solar radiation

Different approaches have been proposed for predicting solar global radiation: data min-
ing models, cloud motion tracking, numerical weather predictions and hybrid models. The
input variables required and the complexity of these approaches are also very different.
Moreover, it is also important to consider the forecast horizon for which these models have
been developed. Most of the models for predicting hourly solar global radiation predict for
next hour, that is, the forecast horizon is equal to one hour (Blaga et al., 2019). In these
cases, errors are lower than those errors achieved for longer forecast horizons such as for
next-day.

As regards previous research into the use of data mining models to predict solar radiation,
special mention can be made of the following using different techniques: artificial neural
networks or hybrid models proposed in (Ozgoren et al., 2012; Jiménez-Pérez and Mora-
López, 2016; Gairaa et al., 2016; Krakovsky and Luzgin, 2018); support vector machines
proposed in (Bektas, 2014; Deo et al., 2016); and fuzzy models, as in (Kisi, 2014). Some of
these studies face the problem of predicting for one-step-ahead (next hour) while others are
focused on predicting values in advance, where the forecast horizon can range from several
hours to one or more days.

As expected, prediction errors are greater as the forecast time horizon increases (Blaga
et al., 2019). While the mean rRMSE is 23.8 % for one-hour horizon, the mean rRMSE is
42.22 % for one-day ahead horizon for all the models reported in (Blaga et al., 2019). If
only data mining models are considered, the mean values of rRMSE are approximately 22
% and 40 % for one-hour and one-day horizon, respectively.

Regarding the methods that predict hourly values of solar global radiation for next day
(one-day horizon), this type of prediction is little discussed in the literature, as is pointed
out in (Blaga et al., 2019). Among the models that induce ANNs, in (Mellit and Pavan,
2010) an MLP (multilayer perceptron) using values of the mean daily solar irradiance and air
temperature as input is proposed; the model is trained with data from Trieste (Italy) and the
rRMSE reported is 67 %. ANN models are also used in (Marquez and Coimbra, 2011); up to
eleven predicted meteorological variables, obtained from the US National Weather Services
forecasting database, are used as input, together with two geometric/temporal variables;
rRMSE values for one-day ahead predictions range between 20% and 23 % (these data were
obtained from figure 4.a in that paper, since the exact values are not in the text). In (Voyant
et al., 2013), authors report a rRMSE for MLP (multilayer perceptron) equal to 27.8 % using
endogenous variables and 27.3 % when exogenous variables are also used (hourly pressure
and cloudiness of the last day and daily average nebulosity of the two previous days); they
used data from 5 French cities.

In a similar way, there are several works that predict energy generated by PV systems.
For instance, several data mining models are evaluated to predict power forecasting in (Rana
and Rahman, 2020). The forecast skill they obtain range between 0.23 and 0.30; values are
estimated from 5 minutes to 3 hours ahead. In (Chen et al., 2011), the rMAE (%) obtained
when predicting PV power range from 6.31 to 37.23 depending on the type of day (sunny,
cloudy and rainy).
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The idea of using clearness index for solar radiation clustering and to use the obtained
clusters as a method to obtain different type of days has been previously used in (Jiménez-
Pérez and Mora-López, 2016; Monjoly et al., 2019). In both papers, only 4 different types of
day were used; these 4 types of day were estimated without using expert knowledge. On the
other hand, (Muselli et al., 2000) proposes using 3 typical meteorological days classes, which
is valid for representing the long-term performance of sky. Nevertheless, as it is explained
later in this paper, the variability of observations in each cluster is so high that it results in
great differences in the estimated values of hourly global radiation.

Some shortcomings can be observed in the previous approaches. For example, the models
accuracy could be improved, the knowledge of different types of day is insufficient, the
range of forecasting usually does not cover one-day-ahead and the applicability to different
scenarios is limited.

1.3. Contributions and organization of the paper

In this paper, we present the advances achieved by combining the expert knowledge
inside a data mining process with the objective of obtaining one-day-ahead prediction of
hourly global solar radiation. Contributions can be perceived from different perspectives,
but the most relevant are the following:

• Description of 14 different types of day, according to the shape of the hourly clear-
ness index values. They have been identified using clustering methods and considering
knowledge provided by experts. Therefore, the conventional definitions of types of
days, that usually consider 3 or 4 options, are updated with this new proposal. Ex-
perimental results and expert advice suggest that it is a valid approximation.

• A methodology that can learn the type of day for the next day using meteorological
and atmospheric data from the present day. By knowing the type of day, the one-
day-ahead hourly global solar radiation can be predicted. This methodology has been
tested with data from 10 different locations collected during 11 years, so it can be
used in general case, but it could be adjusted with new data if the context differs
considerably (or changes in the future).

• New data-driven models to predict one-day-ahead hourly solar radiation. These models
have a double value:

– Classification model itself reveals relations that are interesting for experts. It is
represented with one model from which it is possible to extract understandable
patterns. Thus, experts detect the importance of daily clearness index, humidity
or cloudiness and how they are related.

– Embedding these models in a prediction system can offer reliable forecasts for
next-day hourly global solar radiation. This is very useful as described in Sub-
section 1.1.
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The rest of the paper is organized as follows. Background knowledge used in this work is
described in Section 2. It includes both the description and expressions to estimate one of the
variables used (clearness index), the description of clustering and classification techniques
used and the metrics and statistical validation proposed for evaluating the model. The
proposed methodology is explained in Section 3. The experimental design is described in
Section 4, including the description of the dataset, the software and the different algorithms
used. Section 5 presents the results of each phase and the results for the whole proposed
methodology. It also includes a comparison with the results obtained in previous works.
Finally, Section 6 summarizes the main conclusions of the work.

2. Background and Preliminaries

This section provides an overview of the background knowledge used in the proposal.
First, we describe the atmospheric parameters characterising hourly solar radiation. We then
describe different methods for unsupervised and supervised learning, that are fundamental in
the data mining process that we have conducted. Additionally, some measures and statistics
to validate the quality of the models are enumerated.

2.1. Atmospheric parameters

We propose to use the hourly clearness index (kh) in the analysed models as it allows
us to remove the seasonal and daily trends observed in hourly solar global radiation. This
variable is estimated using the hourly global solar radiation (Gh) and the extraterrestrial
hourly solar radiation (G0,h) according to the following expression:

kh =
Gh

G0,h

G0,h is obtained using the expression:

G0,h = IscE0 sinα = IscE0(sin δ sinϕ+ cos δ cosϕ cosωh)(Whm−2),

where Isc is the solar constant, E0 is the eccentricity factor, α is the solar elevation, δ is the
declination angle, ϕ is the latitude, ωs is the hour angle centred at (ωh − π/24, ωh + π/24).
The definition of G0,h and the expressions to estimate E0, δ and ωh can be found in (Iqbal,
1983).

Considering that every day registers consecutive values of hourly radiation (namely,
hourly clearness index), a set of curves can be built (one for every day and location). Ac-
cording to the shape and height of those curves, it is possible to compute new characteristics
that allows the different types of day to be compared and fixed . That can be done by calcu-
lating the Area Under the Curve (AUC (2019)) computed by the trapezoidal rule as follows:

AUC =
1

2

n−1∑
i=1

(xi+1 − xi)(yi+1 + yi − 2B)

where xi is the value on horizontal axis, yi is the value on vertical axis, n is the number of
elements and B is the baseline value on the vertical axis.
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2.2. Clustering methods

Clustering is one of the most important solutions when we need to discover relations in
datasets that do not include knowledge about the classes. This type of learning is known as
unsupervised learning. The goal is to form groups of examples sharing similar characteristics,
but not with other groups.

A key aspect in this kind of learning is the definition of similarity functions (when
working with qualitative attributes) or distance functions (when working with quantitative
attributes). The most conventional distance functions are the Euclidean distance or the
Pearson correlation distance in our domain, which consider numerical attributes (Xu and
Tian, 2015).

There is a wide variety of conventional proposals that are based on different approaches
(Xu and Tian, 2015): partitional (k-means, PAM, CLARA), hierarchical (BIRCH, CURE),
fuzzy theory (FCM,FCS), density (DBSCAN), etc. One of the most important parameters
to be configured is the number of clusters (or groups) to be considered in the process. Some
may obviate this parameter but it is not a trivial decision.

In case of complex scenarios, like time-series, shape-based approaches consider the in-
formation in the whole time-series as individual objects and new distance functions (such
as DTW (Sakoe and Chiba, 1978)) try to determine how different (or similar) they are
(Aghabozorgi et al., 2015).

Other clustering algorithms that can work with the shape of time-series are those based
in kernels (like TGA kernels (Cuturi, 2011)). They make it easier to find groups in a high
dimensional feature space and can work with arbitrary shapes, or separate overlapping
clusters (Xu and Tian, 2015) .

2.3. Classification methods

Classification is an essential process in supervised learning. Its goal is to discover relations
(like a mapping function) between the input data and the output data. The input data can
be nominal (with discrete values) or numerical (with continuous values) while the output
data are defined as a finite set of discrete values. That special output is called class (Liu
and Wu, 2012). Regression methods are used when the class attribute is a numerical rather
than nominal attribute.

There are multiple families of models and algorithms to induce those models. Some of
them can even work with nominal and numerical classes. This subsection seeks to describe
very well-known algorithms for most relevant types of models, focusing on classification.

However, it will be useful to describe two baseline methods before moving on to describe
those algorithms. Selecting the most frequent class (or mode) in the dataset as predicted
output is a straightforward way of ensuring a lower bound for the quality that should be
surpassed by more advanced models. In the context of forecasting, the persistence method is
another baseline (Perez-Ortiz et al., 2018). It supposes the prediction for a specific example
is the class observed for the previous example.

The Näıve Bayes algorithm estimates the posterior probability of each class given an
example (P (class|example)) from the dataset. When predicting, it selects the most likely
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class (Domingos and Pazzani, 1997). This algorithm performs very well even when the
attributes are not conditionally independent.

Decision trees constitute a very common mode of representing the induced knowledge.
The variety of methods to induce them is great and there are alternatives that can consider
many different problems (nominal and numerical attributes, missing values, pre-pruned and
post-pruned, etc.). One of the main characteristics of decision trees is their understandably.
Every branch in the tree corresponds to a rule, and they are expressed in form of conditional
statements that can be interpreted even by non-experts. C4.5 (Quinlan and Ross, 1993) is
one of the best-known algorithms. It uses information gain to select the most convenient
attribute for every decision to be taken in the expansion of the tree.

Classifying via regression is one alternative that allows the usage of methods in supervised
learning that were not initially proposed for discrete classes, but rather numerical classes.
There is an easy way to use regression with discrete classes: creating as many numeric
indicators (new classes) as values defining the original class. Then, separate regression
learners are trained to model the membership for every new numeric indicator. Model trees
are thus proposed (Frank et al., 1998). They include regression functions at the leaves of
the decision tree to solve a classification problem. If linear regression functions are replaced
by logistic regression functions, we are talking about another method called logistic model
trees (LMT) (Landwehr et al., 2005).

Artificial Neural Networks (ANNs) constitute another alternative to deal with classifica-
tion problems. A neural network is defined by connecting different elements (called neurons
or nodes) in a concrete way (input, internal layers and outputs), and then modifying the
connection between those neurons (called weights) in order to model the relation between
inputs and outputs. Neurons use activation functions that rule how they must behave de-
pending on the input. A multilayer perceptron (MLP) is a feedforward artificial neural
network (Popescu et al., 2009) that uses non-linear activation functions. It is characterized
by several layers of nodes connected as a directed graph between the input and output layers.

Support Vector Machines (SVMs) form another group of methods to be used for clas-
sification. They use linear classifiers to determine the hyperplane that separates data in
different categories, taking advantage of a previous transformation performed by generating
a higher dimensional space. There are algorithms, such as SMO (Platt, 1998), that divide
large problems in a sequence of smaller ones that are solved analytically, while allowing that
SMO can be used to learn from larger training sets.

Multiple classifier systems, which can combine isolated base classifiers such as those
mentioned above, benefit from the idea of using an ensemble of models to perform that
classification task. They achieve highly accurate results, they are robust to noise and outliers
and they do not overfit However, the results are more difficult to explain, because they
are a combination of single models. Random forest is one ensemble method that achieves
remarkable results (Wyner et al., 2017). It induces decision trees and uses a subset of
attributes in every ”new” model . Random forest, when using regression trees, can work on
regression scenarios.
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2.4. Error metrics for estimating hourly global solar radiation

The metric used for evaluating accuracy in classification models was estimated as the
ratio of the number of misclassified instances, n, and the total number of instances, m
according to the following expression:

Accuracy =
n

m
· 100 (%)

The metrics used for evaluating the performance of the proposed methodology in the
estimation of hourly solar global radiation had been previously described in (Shcherbakov
et al., 2013).

Let m be a set of values observed for the variable X. Let Xt (t = 1, . . . ,m) represent
each of those real values, X̄ the mean of these values, and let X̂t (t = 1, . . . ,m), represent
the corresponding estimations. The expressions used are as follows:

• The mean absolute error (MAE) and the relative mean absolute error, (rMAE), are
estimated using the expressions:

MAE =

∑m
t=1 |Xt − X̂t|

m
and rMAE =

MAE

X̄
· 100 (%)

• The root mean square error, RMSE, and the relative (or normalized) root mean
square error, rRMSE estimated from the expressions:

RMSE =

√∑m
t=1(Xt − X̂t)2

m
and rRMSE =

RMSE

X̄
· 100 (%)

• The forecast skill over 24 hours persistence forecasts, s, estimated as follows (Coimbra
et al., 2013):

s =

(
1− RMSEmodel

RMSEpersistencemodel

)
· 100 (%)

2.5. Statistical validation

In the search for the most suitable model to discover relations between input data and
output data (class), it is important to estimate the average error that is produced by every
considered option. Two tools -cross-validation and non-parametric statistical tests - can be
used to obtain that estimation with statistical confidence.

Cross-validation is one of the most widely used methods to estimate prediction errors
(Hastie et al., 2009), while avoiding optimistic overestimations. This method divides the
dataset in k folds (or bins) and repeats k times a training-test process with k different
training and test datasets. Every execution of the process uses one of the k folds of the
original dataset as the test datasets, while the corresponding training datasets is formed
with the rest of k− 1 folds. Thus, k executions are conducted and one average value can be
estimated.
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Statistical tests are used to statistically verify significant differences in results, in order
to avoid spurious results and confirm that results are really different. There are parametric
and non-parametric tests. The first tests assume that data follow a specific distribution
while second ones do not consider that assumption. A non-parametric test, the Wilcoxon
signed-ranks test, also known as paired samples Wilcoxon test, is proposed because of its
simplicity and safeness when comparing two classifiers (Demšar, 2006).

3. Proposed methodology

This section presents the methodology used to predict hourly global solar radiation one-
day ahead. This methodology is based on two hypotheses:

• It is possible to establish a limited number of type of days taking into account the
shape of hourly clearness index.

• The type of next day can be estimated using meteorological parameters for present
day and predictions of meteorological parameters for next day.

According to these two hypotheses, the methodology consists of two phases.

• The first phase determines the different types of days (number and shapes), according
to the hourly clearness index (kh). This task involves an unsupervised learning process,
because there is no prior information about the classes (types of days). Data used in
this phase are exclusively related to atmospheric parameters (radiation received before
entering in the atmosphere G0,h, radiation received in Earth’s surface Gh and its ratio
kh).

• The second phase induces models that learn the type of day (shape) for next day,
according to the meteorological and radiation information available for the present
day. This is a supervised learning task because the types of days are known after the
first phase and every example is labelled with its corresponding type of day.

Figure 1 represents the division of methodology in two different phases and how they are
combined to induce the models that capture the knowledge about next day hourly global
solar radiation.

3.1. First phase (clustering)

Different pre-processing transformations and clustering methods have been tested in this
phase. However, what is really important is the relevance of the knowledge of different
experts that has steered the selection, as a wide automatically exploration does not conduct
to results of sufficient quality, as will be discussed in Section 5. Figure 2 is a schematic
diagram of the process in this phase.

The only information used to estimate the types of days are the values of hourly clear-
ness index (kh). Radiation values such as (G0,h and Gh) are used to test the validity of the
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Figure 1: Two phases defined to induce models that capture the knowledge about next day hourly global
solar radiation.

proposed solution. Taking values of kh into consideration, in the first step, clustering meth-
ods grouped examples in clusters showing similarities inside the same cluster and separation
from others. Each cluster corresponds to a type of day. In the second step, the centroids for
each cluster are calculated to be the representative pattern of that type of day (k′

h). The
calculation is performed by averaging the values of all examples in each cluster.

Finally, as the last step in this phase, the solution needs to be evaluated and errors are
therefore measured. As the values of G0,h and Gh are known, the deviations in estimated
values (k′

h) will be detected by error metrics (rMAE and rRMSE).
Once the experts have validated the separation of days in different types, from a compre-

hensive point of view and supported by quality results in the measuring step, those centroids
(types of days) are used to label the class attribute of the dataset. The augmented dataset
then passes to the next phase.

3.2. Second phase (classification)

The second phase seeks to predict the hourly global solar radiation for next day with
information available until the current day: meteorological (observed during present day
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Figure 2: First phase. Unsupervised learning with clustering methods. The first step determines the clusters
(types of days), second step calculates the representative element for every cluster (centroids) and the third
step evaluates the solution.

and prediction for next day) and atmospherics (radiation Gd and kd observed during present
day). Furthermore, the next day prediction itself (real centroid) that has been calculated in
the first phase is now available in the training set. Figure 3 shows a schematic diagram of
the process in this phase.

Experts highlight the relevance of including the daily clearness index for next day (kd+1).
Some experiments using real data reveal that performance improves. However, the value of
that variable for next day is not available during the present day and should be estimated
(k′

d+1). Therefore, regression model (based on random forest) is trained with data enumer-
ated above to calculate that estimation. The importance of including it is also revealed in
the models induced by machine learning algorithms (see Subsection 5.2).

Yet again, different algorithms generate several models and the final system will be
configured using the best generalizing model. Accuracy metrics can be measured to identify
that model, but most important in this case is the final error observed (rMAE and rRMSE)
in the prediction of hourly solar radiation. That error is calculated using metrics in the
same way as in the first phase.

3.3. Predictive System

The final system, which is ready to predict, will store the set of centroids calculated in
Phase 1 (one for each type of day) and will incorporate the model that better generalises
(and produces lower level of errors) data determined in Phase 2. When the meteorological
and atmospherics data, available at the present day, are entered in the system, it will then
respond with the type of day (centroid) estimated for next day. The hourly global solar
radiation estimation (G′

h) can then be calculated using the centroid and the values of hourly
extraterrestrial radiation. Figure 4 represents this process graphically.
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important criteria).

4. Experimental design

This section describes both the data and the algorithms and software used.

4.1. Dataset

A dataset with meteorological parameters and predictions of meteorological variables
was used. Data were recorded from January 2005 to December 2015 at 10 Spanish locations
under different weather conditions. According to (Husein and Chung, 2019) the evaluation
of solar irradiance forecasting methods with several locations leads to greater confidence in
the results.

Data were recorded by the Spanish Meteorological Agency (Agencia Estatal de Meteo-
roloǵıa, AEMET). Forecasts were also obtained from the AEMET. Table 1 summarizes the
description of these locations and the main meteorological parameters.

Data was prepared (pre-processed) in order to remove missing or incorrect values. Ac-
cording to (Zhang et al., 2003), data preparation is important because real-world data may
be incomplete, noisy and inconsistent. In order to solve this problem, we included in the
preparation process:

• Elimination of observations with missing values in one or more attributes.
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Figure 4: Prediction phase. When meteorological and atmospherics data for present day are available,
classifier can predict the type of next day and, therefore, the hourly clearness index for next day. The
hourly global solar radiation (G′

h) is then estimated with that predicted hourly clearness index (k′h) and the
known extraterrestrial hourly solar radiation (G0,h).

Location Lat/Long Ḡd (kWh/m2) T̄d (º) H̄d (%)
Albacete 38.95/-1.86 4.86 15.4 64
Alicante 38.37/-0.49 4.80 18.1 62
Barcelona 41.39/2.20 4.40 17.5 69
Bilbao 43.30/-2.04 3.45 14.8 73
Madrid 40.45/-3.72 4.75 15.0 57
Málaga 36.72/-4.48 5.11 19.2 67
Murcia 37.79/-0.80 4.97 18.8 62
San Sebastián 43.31/-2.91 3.48 13.5 80
Santander 43.49/-3.80 3.67 14.7 79
Toledo 39.88/-4.05 4.93 16.0 57

Table 1: Geographical coordinates and daily mean values of meteorological parameters for the locations
used, 2005-2015.

• Detection and elimination of noise and inconsistent values. We here followed the
recommendations of the World Meteorological Organization (WMO) (Zahumensky,
2004). When an inconsistent value for an attribute was detected, the observation was
removed from the data. That is, these data were not replaced or filled by any imputed
value as the data set was large enough.

After cleaning missing, noise and inconsistent values, data preparation continued by selecting
relevant data and by estimating new data from the original ones.

Instead of using hourly or daily values of global radiation (Gh, Gd), clearness index values
were obtained (kh, kd). As has been explained in Section 2.1, the use of this index allows
the daily and seasonal trend observed in solar global radiation series to be removed.

Two different data sets were then prepared as input for the analysed models. The
first one only included the following exogenous measured variables: daily temperature and
precipitation; in the case of humidity and temperature, the data set also included one value
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for periods from 9:00 to 12:00 and from 12:00 to 15:00; and the following predictions for
the same 3-hours periods: temperature, humidity and cloudiness. The second dataset also
included the daily clearness index estimated for next day (k′

d+1) as experts suggested.
For the first phase of the process, described in Section 3.1, a total of 33k data were used

while in the second phase of the process, described in Section 3.2, a total of 26k were used;
this is due to the availability of meteorological parameters predictions.

4.2. Algorithms and Software

A wide variety of strategies to perform clustering and classification tasks were tested
when selecting the algorithms that best perform in the proposed two-phases schema. Many
options, presented in section 2, were used. Different quality results were produced and they
are discussed in Section 5.

The pre-processing steps, the induction of models (supervised or unsupervised), the
calculation of metrics and other computational tasks were executed mainly by using R (R
Core Team, 2019), some of its packages (Sarda-Espinosa, 2019; Hornik et al., 2009), and
Weka (Witten et al., 2016).

In the first phase (clustering), we considered clustering approaches such as partitional
(k-means, PAM, CLARA), hierarchical, fuzzy, density-based and kernel-based. The number
of clusters considered was between 2 and 15. Some distance functions calculated were Eu-
clidean, Pearson and DTW. We validate the quality of the generated clusters using internal
measures such as silhouette width or the Dunn index. Taking into account all the possible
combinations, we can argue that it is not affordable in a simple way and the knowledge of
experts was decisive to guide the search. Their expertise was even more important because
the type of days (centroids) needed to make sense and almost every non-guided proposal
introduced some disturbing aspects.

In the second phase (classification), we used one well-known algorithm for each kind of
methods described in Subsection 2.3. They are available in Weka and they were executed
with the default configuration. Specifically, the algorithms used were: ZeroR (majority
class as a baseline method), NaiveBayes, J48 (decision tree), LMT (logistic model tree),
MLP (multilayer perceptron), SMO (support vector machine) and RandomForest (multiple
classifier system). Furthermore, we included the persistence method, using the current class
to predict the next one (without any learning process), as a baseline option.

5. Results

This section sets out the main results using the methodology explained in Section 3. One
of the most important contributions is the characterization of types of days as this result
can be useful in a broad variety of situations, beyond the prediction task considered in this
paper. We also explain some patterns and relations discovered when exploring the models
induced by different algorithms. This knowledge is useful for experts, it allows them to shed
new light to current knowledge and to continue to advance in their research. The results
are then validated with two objectives: to determine an appropriate configuration of the
system, and to compare this new proposal with previous models. It will be shown that final

14



configuration achieves highly accurate results. Finally, we enumerate some material made
public to emphasize the reproducibility of these results.

5.1. Types of days

The most crucial problem in this research may be to determine the different types of
days that should be considered in the process. That definition has implications on the
understanding of the problem itself and on the successive decisions.

There is no consensus in the literature about the number of types of days and their
election is usually determined by the specific location in the study. In our case, by using
data from different climatic conditions obtained from 10 different locations, we aimed to
increase the variety of data and to obtain more general results that can be applied in a wide
assortment of cases.

Performing an intensive computation of every alternative is not deemed convenient, given
the huge amount of data (examples and attributes) and possible methods to perform the
clustering task ( apart from the multiple parameters that can be tuned). That search must
be guided by in-depth knowledge of the problem and the available data. We explored a
small subset of combinations and analysed the results, but even with that reduced subset of
alternatives, we can conclude there is no homogeneity regarding the number of clusters to
be used. That parameter is decisive in the methodology, as it is possible to continue once
the number of clusters have been determined.

In view of the difficulty, expert knowledge becomes fundamental in the search for the
number of types of days: focusing on the hourly clearness index (kh) data and dividing the
problem into smaller ones, thus alleviating the problems detected when the whole dataset
is considered. Therefore, a division into 3 categories of days is proposed: days with high,
medium and low global radiation. The areas under the curves (AUC) defined by the 8 values
of hourly clearness index (kh) are estimated (using equation 2.1) to determine that global
radiation. Once the AUC values have been calculated for every example, the minimum,
average and maximum values are 0.42, 4.00 and 6.26, respectively. The theoretical minimum
and maximum would be 0.0 and 7.0, so there always exists a level of global radiation and
there is no example that starts and ends the day with maximum radiation, as expected.
Figure 5a shows how the most common days are those with highest AUC values.

The separation of days into three categories, taking in consideration that there is only
one dimension (the AUC value), is performed with k-means and with Jenk’s natural break
optimization (Jenks, 1977). Both methods provide the same solution: using two breaks in
2.59 and 4.28. Thus, three separate intervals are created: [0.42, 2.59), [2.59, 4.28) and [4.28,
6.26]. Figure 5b shows the frequency of these three categories of days. The subset with
highest AUC values comprises half of the examples. Once three categories of days have been
identified, it is easier to conduct clustering identification in each interval.

Some other decisions help to focus the efforts to find a solution. For example, considering
the type of data to be clustered (eight consecutive values of hourly clearness index kh), the
distance measure that best fits in the clustering methods is those based on shape, such as
DTW. Specifically, in this context, TGA kernels (Cuturi, 2011) achieve high quality results.
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Figure 5: (a) Histogram for AUC values and (b) histogram after dividing original data in three separate
intervals.

Additionally, expert knowledge advises that a relatively small number of clusters for each
category of day should be considered.

The final configuration that is proposed defines two clusters in the interval of highest
AUC values and six clusters in the intervals of medium and lowest AUC values. Therefore,
14 types of days are being considered. In Figure 6, the three upper plots represent those
types of days (centroids) grouped by category of day.

Some important characteristics for the experts’ decision to validate the result are: curves
are symmetrical (in insolation or by pairs of two curves), they cover all the space, and they
are sufficiently different from each other. For example, both curves with highest AUC values
are symmetrical, they increase in the first half of the day and decrease in the second half of
the day. In the case of the lowest AUC values, the centroids that obtain the highest values
(lines green and red in upper chart on the left in Figure 6) are symmetrical respectively: one
(green line) starts at a high value and decrease while the other (red line) starts at a low value
(similar to the end of the first one) and increase to a high value (similar to the starting of the
first one). The error from summarizing all the examples by their corresponding centroids is
low. Specifically, the rMAE is 10.7% and the rRMSE is 15.9%. This is another outstanding
aspect that reveals that the selection seems to be appropriate.

Once the number of clusters were determined using expert advice (with 3 categories
of days), we re-executed the clustering algorithm to search for the best 14 types of days
(without any previous categorization). This experiment can be considered to be a semi-
automatic search for the clusters as it only uses partial knowledge from the previous step
(the number of clusters) but it does not need any other help from the experts. Errors
calculated for this semi-automatic approach are similar to those from the previous result:
the rMAE is 10.1% and the rRMSE is 15.2%. The three lower plots of Figure 6 show the
centroids for the clusters. The separation in categories (low, medium and high) is not real
and is performed for an easy comparison with the option that actually uses those categories.
Matching centroids determined by both criteria was visually performed by the experts in
an easy process. It can be seen that the shapes are similar, although the centroids are

16



Low AUC values Medium AUC values High AUC values

E
x
p
er
ts
’
3
-s
u
b
ty
p
es

d
iv
is
io
n

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

9h 10h11h12h13h14h15h16h

k h

c09
c10

c11
c12

c13
c14

(a)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

9h 10h11h12h13h14h15h16h

k h
c03
c04

c05
c06

c07
c08

(b)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

9h 10h11h12h13h14h15h16h

k h

c01 c02

(c)

S
em

i-
a
u
to
m
a
ti
c

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

9h 10h11h12h13h14h15h16h

k h

c09
c10

c11
c12

c13
c14

(d)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

9h 10h11h12h13h14h15h16h

k h

c03
c04

c05
c06

c07
c08

(e)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

9h 10h11h12h13h14h15h16h

k h
c01 c02

(f)

Figure 6: Types of days. 14 types of days have been identified. The clustering in the upper row follows the
experts’ advice (using three categories for the day). In the lower row, the clustering uses a semi-automatic
approach (there are no categories and graphical separation is made for better comparison).

slightly more overlapped in the semi-automatic version. That lower level of differentiation
between centroids (clusters) can be responsible of a poorer performance in the second phase
(classification) as we explain in Subsection 5.2.

Figure 7 shows the confusion matrix of clusters determined by using the knowledge of ex-
perts (14 clusters from 3 categories of days) versus the clusters calculated semi-automatically
(14 clusters directly). The heat map shows that most of the differences are between the as-
signment between clusters c01 and c02 (the two clusters with highest AUC values). However,
those differences are not significant as both centroids are quite alike and have similar shapes.

The different types of days obtained with clustering, Fig.6, correspond to different situa-
tions of the atmosphere according to the knowledge of experts; that is, the obtained clusters
have a relationship with the observed real days. Thus, the shapes of days included in Fig. 6a
correspond to days with low daily and, therefore hourly, clearness index; the ones included
in Fig.6b correspond to days with medium daily clearness index and Fig.6c corresponds to
days with high daily and hourly clearness indexes. The two first, low and medium daily
clearness index, include six different shapes that correspond to the different hours at which
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Figure 7: Heatmap to represent the confusion matrix of clusters assigned using expert knowledge versus the
clusters calculated semi-automatically.

hourly clearness indexes are low, that is, to the different moments when there can be clouds
(as they are the most important radiation attenuation factor). There are different patterns
that represent different types of day:

• Days with lower hourly clearness indexes in the morning, that correspond to situations
in which there are clouds in the morning. These type of days are in red and green
in Fig.6a (c10 and c12) and in Fig. 6b (c06 and c08). The lower values of hourly
clearness index (green line) can be explained by the presence of a type of clouds that
absorb more radiation.

• Days with lower hourly clearness indexes in the evening. The explanation of experts
is similar to the previous type. In this case, these type of days are in blue and orange
in Fig.6a (c11 and c13) and in Fig.6b (c03 and c07).

• Days that always have very low values of hourly clearness index. This corresponds to
completely overcast day, shown in brown in Fig.6a (c14).

• Days with low values of clearness index specially in the morning and evening. This
correspond to days in black in Fig.6a (c09) and in Fig. 6b (c04).

• Days with low clearness index values at noon, such the day in brown in Fig.6b (c05).

• Days with high clearness values for the whole day, as days in Fig.6c. Among these,
there are two types, one that corresponds to days with a clean atmosphere and high
incidence angle of solar radiation (black line – c01 –) and another that corresponds to
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days without clouds but with more attenuation of solar radiation due to the composi-
tion of the atmosphere (red line – c02 –).

The clusters obtained in a semi-automatic way (Fig.6d, 6e and 6f) are similar to the
types of days described above.

5.2. Classification

The core of the second phase in the proposed methodology is the classification task. It
takes the information of the type of days (centroids of the clusters) included in the original
dataset and tries to learn which type of day will be next day (one-day ahead forecast) for
different situations.

There are different approaches to carry out the classification task, as set out in Subsection
2.3. We selected very well-known algorithms for every approach in order to get accurate
results, but, at the same time, some could provide understandable information. Models such
as decision trees or logistic regression can be easily interpreted (Carvalho et al., 2019). They
can be recognized as common alternatives in the context of eXplainable Artificial Intelligence
(XAI).

The most accurate model in the classification phase and the one that minimizes errors
(as presented in 5.2.2) is built by LMT (Logistic Model Trees) algorithm (Landwehr et al.,
2005) when using the dataset that includes the daily clearness index estimated for the next
day (k′

d+1). Their results are marked in italics in the tables with the results. However, the
simplicity of the induced model is more interesting than the good quality achieved. The tree
expands only once, the attribute selected at the root is the daily clearness index estimated
for the next day creating two branches (k′

d+1 ≤ 0.56 and k′
d+1 > 0.56). Other relevant

attributes present in the logistic models at the leaf nodes are the prediction of humidity
and cloudiness forecast. The importance of the daily clearness index estimated for next day
(k′

d+1) is also detected in the tree induced by the J48 algorithm (attribute in root node and
subsequent nodes). Therefore, the importance of including that estimation suggested by the
experts is notable.

In addition to describing the most relevant patterns, the results regarding the accuracy
of models with some level of confidence need to be given. Validation is needed in order
to avoid optimistic results suffering from overfitting. The most common procedure in the
literature related to analysing solar radiation is the division of the dataset into two subsets
(Gutierrez-Corea et al., 2016; Zhang et al., 2017). Thus, the traditional validation, presented
in 5.2.1, uses 70% of the dataset to train, and the remaining 30% for testing. On the other
hand, from the field of machine learning, it is more usual to conduct a different procedure
based on the repetition of 10-fold cross validations (James et al., 2013), which results are
presented in 5.2.2.

5.2.1. Traditional validation

The first evaluation of the proposed model has been performed using the metrics de-
scribed in section 2.4 and dividing the dataset into two different subsets, one for training
(70%) and one for testing (30%). The performance of the different analysed models is shown
in Table 2.

19



Accuracy (%) rMAE (%) rRMSE (%)
Autom. Experts Autom. Experts Autom. Experts

ZeroR 23.54 36.45 30.07 28.69 46.45 44.87
Persist. – – 27.44 27.44 42.16 42.16
NB 39.65 48.51 15.45 15.65 23.89 24.17
J48 49.43 59.34 13.97 13.95 21.62 21.38
LMT 57.22 66.11 12.71 12.86 19.81 19.82
MLP 56.54 65.81 12.67 12.92 19.74 19.85
SMO 54.69 63.78 12.78 13.07 20.09 20.28
RF 56.15 65.44 12.94 13.09 20.24 20.20

Table 2: Accuracy, relative Mean Absolute Error (rMAE) and relative Root Mean square error (rRMSE)
achieved for different methods considering the dataset with global radiation information (so daily clearness
index for the next day – k′d+1– can be estimated). Best results are highlighted in bold. This evaluation
considers a traditional validation, so models have been trained by using 70% of dataset and values given in
this table are the result of testing with the remaining 30%.

In the results, only the second data set (the one that includes k′
d+1) has been showed

because the results are better, as revealed by the comparison between the two data sets
performed in Section 5.2.2. To forecast the next-day label , the classification accuracy of
the models using expert knowledge clearly outperforms in terms of the correctly classified
days that ranges from 9 to 10 % compared to the models not using expert knowledge (semi-
automatic).

The baselines models such as Persistence and ZeroR, represent the lowest accuracy while
the LMT model achieves the maximum accuracy that is equal to 66.11 % in the expert
experiment compared to 57.22 % for semi-automatic one, which is not so far from that of
MLP, SMO and RF models.

The next step is based on the classification results, where the centroid matching with
the predicted day is used to calculate a prediction of one day ahead hourly global radiation
(G′

h). This prediction is compared to the measured data (Gh). The rMAE and rRMSE are
also presented in Table 2.

The baseline models (Persistence and ZeroR) obtain the highest levels of errors as ex-
pected. However, it is noticeable that the algorithms with the greatest accuracy do not
necessarily lead to the same algorithms in terms of the error metrics to estimate hourly
global radiation. For example, NB and J48 versus MLP model. This is due to the difference
in level of the height of the irradiance distribution between the predicted and real data in
the misclassified part. For the rest of the models, we can also note that many results are
similar, where the best rMAE and rMSE (shared between LMT, MLP, SMO and RF) are
around 12 % and 20 % respectively, keeping in mind that the models that incorporate the
expert knowledge about the type of days show a similar performance to those that selected
semi-automatically those type of days.

However, it is not possible to confirm whether the similarities observed are casual or
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due to the specific division that has been made between the test and training set. A sta-
tistical validation is performed in the next subsection to confirm that the simulation is well
established and it is independent of the specific results of the division of the data.

5.2.2. Statistical validation

We have two different datasets (with or without daily clearness index estimation for the
next day –k′

d+1–) labelled with the type of day (learnt in the clustering phase) considering
two different criteria (using three categories of day – based on experts knowledge – or not
using it – semi-automatic–).

We repeated 10 times a 10-fold cross validation to validate the results and obtain an
estimation of the generalization capacity of the induced models. That means that 100 ex-
periments were executed for every combination. The Wilcoxon’s statistical test was then
used to find differences between every algorithm with respect to the selected model, LMT.
That information is represented in the tables with the ⊕ and ⊖ symbols. This statistical
validation is useful when values between alternatives are slightly different, because it de-
termines with a confidence level (in this case δ = 0.05) whether they can be considered as
different.

Knowing how the cluster assignment in the first phase is learned is of interest before
moving on to evaluate the second phase. This can be measured by using the accuracy.
Table 3 presents the accuracy values (mean and standard deviation) for the two datasets
considered using semi-automatic and experts-based approaches. It can be seen that including
information about k′

d+1 produces a preeminent improvement in the prediction of next day
type of day. That information is very important, as revealed in the pattern used by the
explainable models (LMT or J48). There is another improvement in the accuracy when
using the types of days divided in 3 categories (experts’ proposal) versus the semi-automatic
approach (with none categorization). It can be motivated by a greater degree of overlapping
between centroids.

Accuracy is not decisive to identify the best configuration for the second phase, because
the most important measure is the error in the estimated radiation at the terrestrial surface
(G′

h − Gh). That error is similar when using 3 categories for the type of day (experts-
based approach) and when they are not used (semi-automatic approach), despite the better
performance in the classification of the experts-based approach. In the following tables (see
Tables 4 and 5) only the results for the experts-based approach are presented. Two datasets
(with or without k′

d+1) are used, and once again, the best results are observed in the dataset
with daily clearness index estimation for next day (k′

d+1). The results achieved when it is not
used (and only meteorological data are available) are comparable to some previous works
(see 5.3). However, a very interesting point is that the methodology proposed to generate
the model is very simple and it only uses data that can be obtained from Meteorological
Agencies. Additionally, if the user has access to the global radiation (radiation Gd and kd
observed during present day), the prediction will be much more precise, because the daily
clearness index for next day is estimated (k′

d+1) and it is available for the most accurate
system.

Majority class (ZeroR) and persistence models are selected as baseline classifiers. Every
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Acc. (%) without k′
d+1 with k′

d+1

Semi-autom. Experts Semi-autom. Experts

ZeroR 23.54 ±0.02 36.46 ±0.02 23.54 ±0.02 36.46 ±0.02

NB 29.66 ±0.72 39.35 ±0.69 39.52 ±0.84 49.64 ±0.69

J48 26.39 ±0.81 36.11 ±0.76 50.76 ±0.82 60.88 ±0.77

LMT 32.56 ±0.62 43.35 ±0.71 58.26 ±0.82 67.10 ±0.74

MLP 34.19 ±0.81 43.85 ±0.86 57.39 ±0.98 66.70 ±0.83

SMO 32.24 ±0.65 42.87 ±0.49 57.19 ±0.77 66.10 ±0.63

RF 34.47±0.74 44.04±0.61 58.00 ±0.70 67.12 ±0.64

Table 3: Accuracy achieved in classification with two different data sets using two different definitions of
types of day. Datasets include (or not) global radiation information (to estimate daily clearness index for the
next day – k′d+1–). Definition of types of days consider two different criteria (using three categories of day –
based on experts knowledge – or not using it – semi-automatic–). Mean and standard deviations values are
given (calculated on a 10x10-fold cross validation). Best results are highlighted in bold. Reference model
(LMT) is highlighted in italics.

classifier outperforms those baseline models, so there is information in the dataset that is
being used to improve the classification. In fact, the improvement, measured by s index is
close to 50% when global radiation information is considered (and k′

d+1 is estimated). We
argue that, besides global radiation, there are some other attributes that are usually present
in the patterns discovered, such as humidity or cloudiness predictions for next day.

Given the results in Table 5, we can see that there are significant differences from the
statistical point of view. However, differences between those results are close: less than
3% in rMAE and less than 5% in rRMSE. It seems that the selection of the classification
algorithm is not as important as the definition of the methodology. With this two-phases
proposal, accurate results are reached in the second phase thanks to the simple methodology
and the information generated in the first phase.

Although different classification algorithms get close results, we have selected LMT as
the reference model, because of its better performance and its explainability. In addition,
this system will be very fast during the prediction phase as it only needs to calculate 14
logistic regressions. Thus, its complexity for prediction is constant too, regardless of the
observations.

5.3. Validation versus previous models in the literature

We have checked the results of the proposed methodology against several previously
proposed models. One of the main problems when comparing results is that they do not all
use the same metrics. On the one hand, we compare our results with those that use relative
RMSE and MAE and, on the other hand, we compare our results with those that use RMSE
and MAE. The main problem of this last comparison is that it depends on the total radiation
for an hour, but those data are not available in the results presented in previous papers.

Regarding methods using relative metrics, (Ghimire et al., 2019) propose the use of an
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without k′
d+1

rMAE rRMSE s

ZeroR 28.66 ±0.22 44.78 ±0.4 -6.2 ±1.37 ⊖
Persist. 27.44 ±0.41 42.15 ±0.58

NB 20.88 ±0.28 32.66 ±0.45 22.5 ±1.56 ⊕
J48 22.41 ±0.34 34.25 ±0.5 18.7 ±1.72 ⊖
LMT 20.29 ±0.29 32.83 ±0.51 22.1 ±1.59

MLP 20.02 ±0.37 32.35 ±0.67 23.3 ±1.9 ⊕
SMO 20.82 ±0.26 33.88 ±0.48 19.6 ±1.37 ⊖
RF 19.77±0.23 31.94±0.4 24.2±1.45 ⊕

Table 4: Relative Mean Absolute Error (rMAE), relative Root Mean square error (rRMSE) and forecast skill
over 24 h persistence forecast (s) achieved for different methods considering the dataset without information
about global radiation (so k′d+1 is not estimated). Mean and standard deviation values are given(calculated
on a 10x10-fold cross validation). Best results are highlighted in bold. Reference model (LMT) is highlighted
in italics. Symbol ⊕ (or ⊖) shows that such model is statistically better (or worse) than reference model
(LMT) based on paired samples Wilcoxon test with δ = 0.05.

with k′
d+1

rMAE rRMSE s

ZeroR 28.66 ±0.22 44.78 ±0.40 -6.2 ±1.37 ⊖
Persist. 27.44 ±0.41 42.15 ±0.58

NB 15.39 ±0.16 23.67 ±0.29 43.8 ±0.91 ⊖
J48 13.73 ±0.15 21.04 ±0.26 50.1 ±0.93 ⊖
LMT 12.81 ±0.15 19.64 ±0.27 53.4 ±0.98

MLP 12.89 ±0.19 19.77 ±0.37 53.1 ±1.10 ⊖
SMO 12.81 ±0.13 19.71 ±0.25 53.2 ±0.92 ⊖
RF 12.88 ±0.13 19.77 ±0.25 53.1 ±0.78 ⊖

Table 5: Relative Mean Absolute Error (rMAE), relative Root Mean square error (rRMSE) and forecast skill
over 24 h persistence forecast (s) achieved for different methods considering the dataset with information
about global radiation (so k′d+1 is estimated). Mean and standard deviation values are given (calculated on
a 10x10-fold cross validation). Best results are highlighted in bold. Reference model (LMT) is highlighted
in italics. Symbol ⊕ (or ⊖) shows that such model is statistically better (or worse) than reference model
(LMT) based on paired samples Wilcoxon test with δ = 0.05.
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half-hourly time-step predictive model (CLSTM) which integrates deep learning Convolu-
tional Neural Network (CNN) with Long Short-Term Memory Network (LSTM). The model
has been checked for one location in Australia. The reported rRMSE is 18.01% for 1-day
ahead.

Regarding methods that use RMSE and MAE, (Qing and Niu, 2018) propose the use
of long short-term memory (LSTM) networks and weather forecasting data for hourly day-
ahead prediction (11 hours a day). The model was trained and checked with a dataset of
island of Santiago, Cape Verde. The RMSE obtained is 122.7W/m2. (Husein and Chung,
2019) propose the use of a deep long short-term memory recurrent neural network (LSTM)
and compare their results with those obtained when a feedforward neural network (FFNN)
is used, as this last method has proven to be useful in solar irradiance forecasting. Both
models are used for data from 6 different locations.

Table 6 shows a comparative of the results obtained from different methods including
the explained in Subsection 1.2.

Model N RMSE/rRMSE MAE/rMAE s

(Wh/m2/%) (%)

LSTM(1) 6 60.31-108.52/- 36.90-64.36/- 44.24-68.89

FFNN(1) 6 84.54-108.08/- 49.79-70.54/- 24.67-49.54

LSTM(2) 1 122.7/- - 30.67(*)

BPNN(2) 1 150.3/- - 17.84(*)

ANN(3) 1 -/20.0-23.0 (*) -/- -

MLP(4) 5 -/27.3 - 27.8 -/- -

RF (without k′d+1) 10 157.3/31.9 97.3/19.8 24.2

RF (with k′d+1) 10 97.4/19.8 63.4/12.9 53.1

LMT (without k′d+1) 10 161.7/32.8 99.9/29.3 22.1

LMT (with k′d+1) 10 96.7/19.6 63.1/12.8 53.4

Table 6: Results obtained from different approaches. Values marked with (*) are estimated with the data
of the paper. N: number of locations. Sources: LSTM(1) and FFNN(1) from (Husein and Chung, 2019),
LSTM(2) and BPNN(2) from (Qing and Niu, 2018) (test sets), ANN(3) from (Marquez and Coimbra, 2011),
and MLP(4) from (Voyant et al., 2013).

5.4. Reproducibility and Released Software

To contribute to the reuse of the results presented in this contribution, we provide some
data and code that implements several aspects of the methodology. In https://github.

com/ursusdm, in the repository called predictingHourlySolarRadiation, we distribute: a) de-
scription (values) of the 14 centroids used to characterized 14 types of days, b) demo training
dataset and code to conduct the first and second phases of the methodology, and c) code to
perform the prediction phase, configured with the best models determined in Subsections
5.1 and 5.2.2.
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6. Conclusions

A simple methodology to perform one-day-ahead predictions of hourly global solar ra-
diation is proposed. It includes the knowledge of experts that has been fundamental to
develop the methodology. The knowledge generated in the process, mainly in the explain-
able models induced in the classification phase, could be very useful for experts to gain
additional knowledge in their domain of expertise. The obtained predictions are necessary,
among other applications, for decision making in the energy market in order to ensure the
correct integration of grid-connected photovoltaic solar systems in power grid.

A highly appreciated contribution in the context of short-term prediction for solar radia-
tion domain is the establishment of a categorization of types of days. There is no consensus
about the characteristics (attributes) that should be used, nor the number of alternatives,
nor the criteria to be considered. This proposal is based on a first identification of the type
of days, and the good performance achieved let us deduce that it is a promising possibility.

The proposed methodology is simpler than previous alternatives. It uses only two phases:
a first one that is able to capture some features and create new information (using clustering)
and a second one that uses that new information to induce models (classification) based on
the relationship between meteorological and radiation data (input) and the 1-day ahead
global solar prediction (output). The extensive variety of days used to set up the model
(11 years from 10 locations with different types of weather) is another positive aspect that
has led to an accurate prediction system. Information about global radiation in the present
day is needed in order to obtain best results, but even without that information, the results
are comparable to more sophisticated alternatives that effectively need such global radiation
information. Moreover, the proposed models can be recognized as common alternatives in
the context of eXplainable Artificial Intelligence.

Regarding the errors, the relative root mean square error of the prediction model is less
than 20%, which means a significant reduction on previous proposed models.

New products and services can be developed using the advances presented in this paper.
For example, it will be easy to assess about the characteristics of new facilities of photovoltaic
systems depending on the location or climate.

From the perspective of the methodology itself and the models induced in the classifica-
tion phase, we seek to study the effect that fuzzy approaches could have. Consecutive binary
divisions made to numerical attributes to create intervals could be compressed, which would
allow us increase the comprehensibility of models, while improving accuracy.

One of the limitations of the proposed models is that they have been estimated and
checked for locations whose latitudes range from 36oN and 44oN , and mean global daily
radiation range from 3.5 and 5.1 kWh/m2. The data used are for locations with continental
and Mediterranean climate. As future research, in order to generalize the proposed models,
it would be desirable to check if these models are also valid for greater or lower latitudes
where the distribution of type of days is different. One possible extension of the work could
be to use the proposed methodology but refitting the models for regions with very different
meteorological conditions.
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