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ABSTRACT 

 

The relation between Pearson’s correlation coefficient and Salton’s cosine measure is 

revealed based on the different possible values of the division of the -norm and the -

norm of a vector. These different values yield a sheaf of increasingly straight lines which 

form together a cloud of points, being the investigated relation. The theoretical results are 

tested against the author co-citation relations among 24 informetricians for whom two 

matrices can be constructed, based on co-citations: the asymmetric occurrence matrix and the 

symmetric co-citation matrix. Both examples completely confirm the theoretical results. The 

results enable us to specify an algorithm which provides a threshold value for the cosine 

above which none of the corresponding Pearson correlations would be negative. Using this 

threshold value can be expected to optimize the visualization of the vector space. 
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1.  Introduction 

 

Ahlgren, Jarneving & Rousseau (2003) questioned the use of Pearson’s correlation coefficient 

as a similarity measure in Author Cocitation Analysis (ACA) on the grounds that this measure 

is sensitive to zeros. Analytically, the addition of zeros to two variables should add to their 

similarity, but these authors demonstrated with empirical examples that this addition can 

depress the correlation coefficient between variables. Salton’s cosine is suggested as a 

possible alternative because this similarity measure is insensitive to the addition of zeros 

(Salton & McGill, 1983). In general, the Pearson coefficient only measures the degree of a 

linear dependency. One can expect statistical correlation to be different from the one 

suggested by Pearson coefficients if a relationship is nonlinear (Frandsen, 2004). However, 

the cosine does not offer a statistics. 

 

In a reaction White (2003) defended the use of the Pearson correlation hitherto in ACA with 

the pragmatic argument that the differences resulting from the use of different similarity 

measures can be neglected in research practice. He illustrated this with dendrograms and 

mappings using Ahlgren, Jarneving & Rousseau’s (2003) own data. Leydesdorff & Zaal 

(1988) had already found marginal differences between results using these two criteria for the 

similarity. Bensman (2004) contributed a letter to the discussion in which he argued for the 

use of Pearson’s r for more fundamental reasons. Unlike the cosine, Pearson’s r is embedded 

in multivariate statistics, and because of the normalization implied, this measure allows for 

negative values.  

 

Jones & Furnas (1987) explained the difference between Salton’s cosine and Pearson’s 

correlation coefficient in geometrical terms, and compared both measures with a number of 

other similarity criteria (Jaccard, Dice, etc.). The Pearson correlation normalizes the values of 

the vectors to their arithmetic mean. In geometrical terms, this means that the origin of the 

vector space is located in the middle of the set, while the cosine constructs the vector space 

from an origin where all vectors have a value of zero (Figure 1).  
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Figure 1: The difference between Pearson’s r and Salton’s cosine is geometrically equivalent 

to a translation of the origin to the arithmetic mean values of the vectors. 
 

Consequently, the Pearson correlation can vary from –1 to + 1,2 while the cosine varies only 

from zero to one in a single quadrant. In the visualization—using methods based on energy 

optimization of a system of springs (Kamada & Kawai, 1989) or multidimensional scaling 

(MDS; see: Kruskal & Wish, 1973; Brandes & Pich, 2007)—this variation in the Pearson 

correlation is convenient because one can distinguish between positive and negative 

correlations. Leydesdorff (1986; cf. Leydesdorff & Cozzens, 1993), for example, used this 

technique to illustrate factor-analytical results of aggregated journal-journal citations matrices 

with MDS-based journal maps.  

 

Although in many practical cases, the differences between using Pearson’s correlation 

coefficient and Salton’s cosine may be negligible, one cannot estimate the significance of this 

difference in advance. Given the fundamental nature of Ahlgren, Jarneving & Rousseau’s 

(2003, 2004) critique, in our opinion, the cosine is preferable for the analysis and visualization 

of similarities. Of course, a visualization can be further informed on the basis of multivariate 

statistics which may very well have to begin with the construction of a Pearson correlation 

matrix (as in the case of factor analysis). In practice, therefore, one would like to have 

theoretically informed guidance about choosing the threshold value for the cosine values to be 

included or not. However, because of the different metrics involved there is no one-to-one 

correspondence between a cut-off level of r = 0 and a value of the cosine similarity. 

 

                                                 
2 If one wishes to use only positive values, one can linearly transform the values of the correlation using 

 (Ahlgren et al., 2003, at p. 552; Leydesdorff and Vaughan, 2006, at p.1617). (r 1) / 2+
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Since negative correlations also lead to positive cosine values, the cut-off level is no longer 

given naturally in the case of the cosine, and, therefore, the choice of a threshold remains 

somewhat arbitrary (Leydesdorff, 2007a). Yet, variation of the threshold can lead to different 

visualizations (Leydesdorff & Hellsten, 2006). Using common practice in social network 

analysis, one could consider using the mean of the lower triangle of the similarity matrix as a 

threshold for the display (Wasserman & Faust, 1994, at pp. 407f.), but this solution often fails 

to satisfy the criterion of generating correspondence between, for example, the factor-

analytically informed clustering and the clusters visible on the screen.  

 

2. Data 

 

Ahlgren, Jarneving & Rousseau (2003 at p. 554) downloaded from the Web of Science 430 

bibliographic descriptions of articles published in Scientometrics and 483 such descriptions 

published in the Journal of the American Society for Information Science and Technology 

(JASIST) for the period 1996-2000. From the 913 bibliographic references in these articles 

they composed a co-citation matrix for 12 authors in the field of information retrieval and 12 

authors doing bibliometric-scientometric research. They provide both the co-occurrence 

matrix and the Pearson correlation table in their paper (at p. 555 and 556, respectively).  

 

Leydesdorff & Vaughan (2006) repeated the analysis in order to obtain the original 

(asymmetrical) data matrix. Using precisely the same searches, these authors found 469 

articles in Scientometrics and 494 in JASIST on 18 November 2004. The somewhat higher 

numbers are consistent with the practice of Thomson Scientific (ISI) to reallocate papers 

sometimes at a later date to a previous year. Thus, these differences can be disregarded.  

 

First, we will use the asymmetric occurrence data containing only 0s and 1s: 279 papers 

contained at least one co-citation to two or more authors on the list of 24 authors under study 

(Leydesdorff & Vaughan, 2006, p.1620). In this case of an asymmetrical occurrence matrix, 

an author receives a 1 on a coordinate (representing one of these papers) if he /she is cited in 

this paper and a score 0 if not. This table is not included here or in Leydesdorff (2008) since it 

is long (but it can be obtained from the authors upon request).  

 

As a second example, we use the symmetric co-citation data as provided by Leydesdorff 

(2008, p. 78), Table 1 (as described above). On the basis of this data, Leydesdorff (2008, at p. 
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78) added the values on the main diagonal to Ahlgren, Jarneving & Rousseau’s (2003) Table 

7 which provided the author co-citation data (p. 555). The data allows us to compare the 

various similarity matrices using both the symmetrical co-occurrence data and the 

asymmetrical occurrence data (Leydesdorff & Vaughan, 2006; Waltman & van Eck, 2007; 

Leydesdorff, 2007b). This data will be further analyzed after we have established our 

mathematical model on the relation between Pearson’s correlation coefficient r and Salton’s 

cosine measure . Cos

 

3. Formalization of the problem 

 

In a recent contribution, Leydesdorff (2008) suggested that in the case of a symmetrical co-

occurrence matrix, Small’s (1973) proposal to normalize co-citation data using the Jaccard 

index (Jaccard, 1901; Tanimoto, 1957) has conceptual advantages over the use of the cosine. 

On the basis of Figure 3 of Leydesdorff (2008, at p. 82), Egghe (2008) was able to show using 

the same data that all these similarity criteria can functionally be related to one another. The 

results in Egghe (2008) can be outlined as follows. 

 

Let  and  be two vectors where all the coordinates are 

positive. The Jaccard index of these two vectors (measuring the “similarity” of these vectors) 

is defined as 

( )1 2 nX x , x ,..., x=
ur

( 1 2 nY y , y ,..., y=
ur

)

 2 2

2 2

X YJ
X Y X

⋅
=

Y+ − ⋅

ur ur

ur ur ur ur  (1) 

 

n

i i
i 1

n n n
2 2
i i i

i 1 i 1 i 1

x y
J

x y x

=

= = =

=
+ −

∑

∑ ∑ ∑ iy
 (2) 

where  is the inproduct of the vectors 
n

i i
i 1

X Y x y
=

⋅ = ∑
ur ur

X
ur

 and Y
ur

 and where 
n

2
i2 i 1

X x
=

= ∑
ur

 and 

n
2
i2 i 1

Y
=

= ∑
ur

y  are the Euclidean norms of X
ur

 and Y
ur

 (also called the -norms). Salton’s 

cosine measure is defined as 

2L
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2 2

X YCos
X Y

⋅
=

ur ur

ur ur  (3) 

 

n

i i
i 1

n n
2 2
i i

i 1 i 1

x y
Cos

x y

=

= =

=
∑

∑ ∑
 (4) 

in the same notation as above. Among other results we could prove that, if 
2 2

X Y=
ur ur

, then 

 CosJ
2 Cos

=
−

 (5) 

a simple relation, agreeing completely with the experimental findings. 

 

For Dice’s measure E: 

 2

2 2

2X YE
X Y

⋅
=

+
2

ur ur

ur ur  (6) 

 

n

i i
i 1

n n
2 2
i i

i 1 i 1

2 x y
E

x y

=

= =

=
+

∑

∑ ∑
 (7) 

we could even prove that, if 
2 2

X Y=
ur ur

, we have E Cos= . The same could be shown for 

several other similarity measures (Egghe, 2008). We refer the reader to some classical 

monographs which define and apply several of these measures in information science: Boyce, 

Meadow & Kraft (1995); Tague-Sutcliffe (1995); Grossman & Frieder (1998); Losee (1998); 

Salton & McGill (1987) and Van Rijsbergen (1979); see also Egghe & Michel (2002, 2003). 

 

Egghe (2008) mentioned the problem of relating Pearson’s correlation coefficient with the 

other measures. The definition of r  is: 

 

n n n

i i i i
i 1 i 1 i 1

2 2n n n n
2 2
i i i i

i 1 i 1 i 1 i 1

n x y x y
r

n x x n y y

= = =

= = = =

⎛ ⎞⎛ ⎞− ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠=

⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ ∑ ∑

∑ ∑ ∑ ∑
 (8) 

 

In this study, we address this remaining question about the relation between Pearson’s 

correlation coefficient and Salton’s cosine.  
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The problem lies in the simultaneous occurrence of the -norms of the vectors 

 and  and the -norms of these vectors in the definition of the 

Pearson correlation coefficient. The -norms are defined as follows: 

2L

( )1 nX x ,..., x=
ur

( 1Y y ,..., y=
ur

)n
1L

1L

 
n

i1 i 1

X
=

= x∑
ur

 (9) 

 
n

i1 i 1

Y
=

= y∑
ur

 (10) 

These -norms are the basis for the so-called “city-block metric” (cf. Egghe & Rousseau, 

1990). The -norms were not occurring in the other measures defined above, and therefore 

not in Egghe (2008). This makes r a special measure in this context. In Ahlgren, Jarneving & 

Rousseau (2003) argued that r lacks some properties that similarity measures should have. Of 

course, Pearson’s r remains a very important measure of the degree to which a regression line 

fits an experimental two-dimensional cloud of points. (See Egghe & Rousseau (2001) for 

many examples in library and information science.) 

1L
1L

 

Basic for determining the relation between r and  will be, evidently, the relation between 

the - and the -norms of the vectors 

Cos
1L 2L X

ur
 and Y

ur
. In the next section we show that every 

fixed value of 1

2

X
a

X
=

ur

ur  and of 1

2

Y
b

Y
=

ur

ur  yields a linear relation between r and Co .  s

 

4.  The mathematical model for the relation between r and Cos 

 

Let  and  the two vectors of length . Denote ( )1 2 nX x , x ,..., x=
ur

( 1 2 nY y , y ,..., y=
ur

) n

 1

2

X
a

X
=

ur

ur  (11) 

and 

 1

2

Y
b

Y
=

ur

ur  (12) 
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(notation as in the previous section). Note that, trivially,  and a 1≥ b 1≥ . We also have that 

a < n  and b n< . Indeed, by the inequality of Cauchy-Schwarz (e.g. Hardy, Littlewood & 

Pólya, 1988) we have 

 
n n

i i1 i 1 i 1
X x 1

= =

= = ⋅x∑ ∑
ur

 

 

1 1
n n2 2

2
i

i 1 i 1

2

1 x

n X
= =

⎛ ⎞ ⎛ ⎞
≤ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

=

∑ ∑
ur

 

Hence 

 1

2

X
a n

X
= ≤

ur

ur  

But, if we suppose that  is not the constant vector, we have that X
ur

a ≠ n , hence, by the 

above, a < n . The same argument goes for Y
ur

, yielding b n< . We have the following 

result. 

 

Proposition II.1:  

The following relation is generally valid, given (11) and (12) and if X
ur

 nor  are constant 

vectors 

Y
ur

 
2 2

nr C
nn a n b

⎛= ⎜
⎝ ⎠− −

abos ⎞− ⎟  (13) 

Note that, by the above, the numbers under the roots are positive (and strictly positive neither 

 nor Y  is constant). X
ur ur

Proof: 

Define the “Pseudo Cosine” measure  PCos

 

n

i i
i 1

n n

i i
i 1 i 1

x y
PCos

x y

=

= =

=
⎛ ⎞⎛
⎜ ⎟⎜
⎝ ⎠⎝

∑
⎞
⎟
⎠

∑ ∑
 (14) 

One can find earlier definitions in Jones & Furnas (1987). The measure is called “Pseudo 

Cosine” since, in formula (3) (the real Cosine of the angle between the vectors  and , X
ur

Y
ur
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which is well-known), one replaces 
2

X
ur

 and 
2

Y
ur

 by 
1

X
ur

 and 
1

Y
ur

, respectively. Hence, as 

follows from (4) and (14) we have 

 

n n

i i
i 1 i 1

n n
2 2
i i

i 1 i 1

x y
Cos

PCos
x y

= =

= =

⎛ ⎞⎛
⎜ ⎟⎜
⎝ ⎠⎝=

⎞
⎟
⎠

∑ ∑

∑ ∑
 

 1 1

2 2

X YCos ab
PCos X Y

= =

ur ur

ur ur , (15) 

using (11) and (12). Now we have, since neither X
ur

 nor Y
ur

 is constant (avoiding 0
0

 in the next 

expression). 

 

n n

i i
i 1 i 1

n

i i
i 1
2 2n n

i i
i 1 i 1

n n
2 2
i i

i 1 i 1

x y
n

x y
r

Cos
x y

n n
x y

= =

=

= =

= =

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠−

=
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠− −

∑ ∑

∑

∑ ∑

∑ ∑

 

 
2 2

1nr PCos
Cos n a n b

−
=

− −
 

by (11), (12) and (14). By (15) we now have 

 
2 2

abnr Cos
Cos n a n b

−
=

− −
 

from which  can be resolved: Cos

 
2 2n a n b r abCos

n
− − +

=  (16) 

Since we want the inverse of (16) we have, from (16), that (13) is correct. 

 

Note that (13) is a linear relation between r and , but dependent on the parameters a  and Cos

b  (note that  is constant, being the length of the vectors Xn
ur

 and Y
ur

).  

Note that Co  if and only if s 0=
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2 2

abr
n a n b

= − <
− −

0  (17) 

and that r = 0 if and only if 

 abCos 0
n

= >  (18) 

Both formulae vary with variable  and a b , but (17) is always negative and (18) is always 

positive. Hence, for varying a  and b , we have obtained a sheaf of increasingly straight lines. 

Since, in practice,  and a b  will certainly vary (i.e. the numbers 1

2

X

X

ur

ur  will not be the same for 

all vectors) we have proved here that the relation between r and  is not a functional 

relation (as was the case between all other measures, as discussed in the previous section) but 

a relation as an increasing cloud of points. Furthermore, one can expect the cloud of points to 

occupy a range of points, for , below the zero ordinate while, for r = 0, the cloud of 

points will occupy a range of points with positive abscissa values (this is obvious since 

 while all vector coordinates are positive). Note also that (17) (its absolute value) and 

(18) decrease with , the length of the vector (for fixed  and 

Cos

Cos 0=

Cos 0≥

n a b ). This is also the case for 

the slope of (13), going, for large n , to 1, as is readily seen (for fixed  and a b ).  

 

All these findings will be confirmed in the next section where exact numbers will be 

calculated and compared with the experimental graphs. 

 

5. One example and two applications 

 

As noted, we re-use the reconstructed data set of Ahlgren, Jarneving & Rousseau (2003) 

which was also used in Leydesdorff (2008). This data deals with the co-citation features of 24 

informetricians. We distinguish two types of matrices (yielding the different vectors 

representing the 24 authors). 

 

First, we use the binary asymmetric occurrence matrix: a matrix of size 279 x 24 as described 

in section 2. Then, we use the symmetric co-citation matrix of size 24 x 24 where the main 

diagonal gives the number of papers in which an author is cited – see Table 1 in Leydesdorff 

(2008, at p. 78). Although these matrices are constructed from the same data set, it will be 

clear that the corresponding vectors are very different: in the first case all vectors have binary 
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values and length ; in the second case the vectors are not binary and have length 

. So these two examples will also reveal the n-dependence of our model, as described 

above. 

n 279=

n 24=

 

5.1  The case of the binary asymmetric occurrence matrix 

 

Here . Hence the model (13) (and its consequences such as (17) and (18)) are known 

as soon as we have the values  and 

n 279=

a b  as in (11) and (12), i.e., we have to know the values 

1

2

X

X

ur

ur  for every author, represented by X
ur

. Since all vectors are binary we have, for every 

vector :  X
ur

 1

2

X sum of the 1s (ones) in X
X sum of the 1s (ones) in X

=

ur ur

ur ur  

 1

2

X
sum of the 1s (ones) in X

X
=

ur
ur

ur  (19) 

We have the data as in Table 1. They are nothing other than the square roots of the main 

diagonal elements in Table 1 in Leydesdorff (2008). 

 

Table 1. 1

2

X

X

ur

ur  for the 24 authors 

Author 1

2

X

X

ur

ur  (  or a b  in (13)) 

Braun 50  
Schubert 60  
Glänzel 53  
Moed 55  
Nederhof 31  
Narin 64  
Tyssen 22  
van Raan 50  
Leydesdorff 46  
Price 54  
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Callon 26  
Cronin 24  
Cooper 30  
Van Rijsbergen 30  
Croft 18  
Robertson 36  
Blair 18  
Harman 31  
Belkin 36  
Spink 21  
Fidel 23  
Marchionini 24  
Kuhltau 26  
Dervin 20  

 

For (13) we do not need the a- and b -values of all authors: to see the range of the -values, 

given a -value we only calculate (13) for the two smallest and largest values for  and 

r

Cos a b .  

1. Smallest values: a 18= , b 20=  

yielding ab 360 18.973666= =  

2. Largest values: a 64= , b 60=  

yielding ab 3,840 61.967734= =  

This is a rather rough argument: not all a- and b-values occur at every fixed -value so that 

better approximations are possible, but for the sake of simplicity we will use the larger 

margins above: if we can approximate the experimental graphical relation between  and  

in a satisfactory way, the model is approved. 

Cos

r Cos

 

Using (13), (17) or (18) we obtain, in each case, the range in which we expect the practical 

( ) points to occur. For Co  we have r between Cos, r s 0= 0.0729762−  and  (by 

(17)). For  we have by (18), between  and . Further, by (13), 

for  we have r between 0.0  and 

0.2869153−

r 0= Cos 0.068006 0.2221066

Cos 0.1= 343323 0.15− . For Cos 0.2=  we have r between 

 and . For 0.1416408 0.028424− Cos 0.3=  we have r between  and 0.1 . 

Finally for  we have r between 0.3562  and  and for  we 

have r between 0.4  and . We do not go further due to the scarcity of the 

data points. 

0.2489421 001529

Cos 0.4= 577 0.2287298 Cos 0.5=

635662 0.3573067
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The experimental ( Cos, ) cloud of points and the limiting ranges of the model are shown 

together in Fig. 2, so that the comparison is easy. 

r

 

 
Figure 2: Data points ( Co ) for the binary asymmetric occurrence matrix and ranges of the model. s, r

 

For reasons of visualization we have connected the calculated ranges. Figure 2 speaks for 

itself. The indicated straight lines are the upper and lower lines of the sheaf of straight lines 

composing the cloud of points. The higher the straight line, the smaller its slope. The r-range 

(thickness) of the cloud decreases as  increases. We also see that the negative r-values, 

e.g. at , are explained, although the lowest fitted point on Co

Cos

Cos 0= s 0=  is a bit too low due 

to the fact that we use the total  range while, on Coa,b s 0= , not all a- and b-values occur. 

 

We can say that the model (13) explains the obtained ( ) cloud of points. We will now 

do the same for the other matrix. We will then be able to compare both clouds of points and 

both models. 

Cos, r

 

5.2   The case of the symmetric co-citation matrix 
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Here . Based on Table 1 in Leydesdorff (2008), we have the values of n 24= 1

2

X

X

ur

ur . For 

example, for “Braun” in the first column of this table, 
n

i1 i 1
X x 168

=

= =∑
ur

 and 

n
2
i2 i 1

X x 4,504 67.1118469
=

= = =∑
ur

. In this case, 1

2

X
168 / 67.1118469 2.5032838

X
= =

ur

ur . 

The values of 1

2

X

X

ur

ur  for all 24 authors, represented by their respective vector , are provided 

in Table 2. 

X
ur

Table 2: 1

2

X

X

ur

ur  for the 24 authors 

Author 1

2

X

X

ur

ur  (  or a b  in (13)) 

Braun 2.5032838 
Schubert 2.4795703 
Glänzel 2.729457 
Moed 2.7337391 
Nederhof 2.8221626 
Narin 2.8986697 
Tyssen 3.0789273 
van Raan 2.4077981 
Leydesdorff 2.8747094 
Price 2.7635278 
Callon 2.8295923 
Cronin 2.556743 
Cooper 2.3184046 
Van Rijsbergen 2.4469432 
Croft 3.0858543 
Robertson 2.920658 
Blair 2.517544 
Harman 2.5919129 
Belkin 2.8555919 
Spink 3.0331502 
Fidel 2.6927563 
Marchionini 2.4845716 
Kuhltau 2.4693658 
Dervin 2.5086617 

 

As in the previous example, we only use the two smallest and largest values for  and a b . 
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1. Smallest values: a , 2.3184046= b 2.4077981=  

yielding  ab 5.5822502=

2. Largest values: , a 3.0858543= b 3.0789273=  

yielding  ab 9.501121=

 

As in the first example, the obtained ranges will probably be a bit too large, since not all a- 

and b-values occur at every -value. We will now investigate the quality of the model in 

this case. 

Cos

 

If  then, by (17) we have that r is between Cos 0= 0.3031765−  and 0.6553024− . If r = 0 we 

have that  is between  and , using (18). For CoCos 0.2325928 0.39588 s 0.1=  we have that r 

is between  and . For 0.1728293− 0.4897716− Cos 0.2= , r is between 0.0424834−  and 

.  implies that r is between  and . Co  

implies that r is between  and 0.  and finally, for  we have that r 

is between  and 0.6 . 

0.3242411− Cos 0.4= 0.2182085 0.0068199 s 0.6=

0.4789003 3378808 Cos 0.8=

0.7395922 689418

 

The experimental (C  cloud of points and the limiting ranges of the model in this case are 

shown together in Figure 3.  

os, r)

 

 
Figure 3: Data points  for the symmetric co-citation matrix and ranges of the model. (Cos, r)
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The same properties are found here as in the previous case, although the data are completely 

different. Again the lower and upper straight lines, delimiting the cloud of points, are clear. 

They also delimit the sheaf of straight lines, given by (13). Again, the higher the straight line, 

the smaller its slope. The r-range (thickness) of the cloud decreases as  increases. This 

effect is stronger in Fig. 3 than in Fig. 2. We again see that the negative values of r, e.g. at 

, are explained. 

Cos

Cos 0=

 

We conclude that the model (13) explains the obtained  cloud of points. (Cos, r)

 

6. The effects of the predicted threshold values on the visualization 

 

Figure 4 provides a visualization using the asymmetrical matrix (n = 279) and the Pearson 

correlation for the normalization.3 Negative values for the Pearson correlation are indicated 

with dashed edges.  

 

                                                 
3 We use the asymmetrical occurrence matrix for this demonstration because it can be debated whether co-
occurrence data should be normalized for the visualization (Leydesdorff & Vaughan, 2008; Waltman & Van 
Eck, 2008; Leydesdorff, 2007b).  
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Figure 4: Pearson correlation among citation patterns of 24 authors in the information 

sciences in 279 citing documents.  

 

Only positive correlations are indicated within each of the two groups with the single 

exception of a correlation (r = 0.031) between the citation patterns of “Croft” and “Tijssen.” 

This r = 0.031 accords with cosine = 0.101. In section 5.1, it was shown that given this matrix 

(n = 279), r = 0 ranges for the cosine between 0.068 and 0.222. Figure 2 (above) showed that 

several points are within this range. However, there are also negative values for r within each 

of the two main groups. For example, “Cronin” has positive correlations with only five of the 

twelve authors in the group on the lower right side: “Narin” (r = 0.11), “Van Raan” (r = 0.06), 

“Leydesdorff” (r = 0.21), “Callon” (r = 0.08), and “Price” (r = 0.14). All other correlations of 

“Cronin” are negative. 

 

If we use the lower limit for the threshold value of the cosine (0.068), we obtain Figure 5.  

 
Figure 5: Visualization of the same matrix based on cosine > 0.068. 
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The two groups are now separated, but connected by the one positive correlation between 

“Tijssen” and “Croft”. This is fortunate because this correlation is above the threshold value. 

In addition to relations to the five author names correlated positively to “Cronin”, however, 

“Cronin” is in this representation erroneously connected to “Moed” (r = − 0.02), “Nederhof” 

(r = − 0.03), and “Glanzel” (r = − 0.05). 

 

Figure 6 provides the visualization using the upper limit of the threshold value (0.222).  

 
Figure 6: Visualization of the same matrix based on cosine > 0.222.  

 

In this visualization, the two groups are no longer connected, and thus the correlation between 

“Croft” and “Tijssen” (r = 0.31) is not appreciated. Similarly, the correlation of “Cronin” with 

two other authors at a level of r < 0.1 (“Van Raan” and “Callon”) is no longer visualized. 

However, all correlations at the level of r > 0.1 are made visible. (Since these two graphs are 

independent, the optimization using Kamada & Kawai’s (1989) algorithm was repeated.) The 

graphs are additionally informative about the internal structures of these communities of 

authors. Using this upper limit of the threshold value, in summary, prevents the drawing of 
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edges which correspond with negative correlations, but is conservative. This is a property 

which one would like in most representations.  

 

 

Figure 7a and b: Eleven journals in the citation impact environment of Scientometrics in 

2007 with and without negative correlations in citation patterns.  

 

Figure 7 shows the use of the upper limit of the threshold value for the cosine (according with 

r = 0) in another application. On the left side (Figure 7a), the citation impact environment 

(“cited patterns”) of the eleven journals which cited Scientometrics in 2007 to the extent of 

more than 1% of its total number of citations in this year (n = 1515) is visualized using the 

Pearson correlation coefficients among the citation patterns. Negative values of r are depicted 

as dashed lines.  

 

The right-hand figure can be generated by deleting these dashed edges. However, this Figure 

7b is based on using the upper limit of the cosine for r = 0, that is, cosine > 0.301. The use of 

the cosine enhances the edges between the journal Research Policy, on the one hand, and 

Research Evaluation and Scientometrics, on the other. These relations were depressed 

because of the zeros prevailing in the comparison with other journals in this set (Ahlgren et 

al., 2003). Thus, the use of the cosine improves on the visualizations, and the cosine value 

predicted by the model provides us with a useful threshold. 

 

In summary, the use of the upper limit of the cosine which corresponds to the value of r = 0 

can be considered conservative, but warrants focusing on the meaningful part of the network 
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when using the cosine as similarity criterion. In the meantime, this “Egghe-Leydesdorff” 

threshold has been implemented in the output of the various bibliometric programs available 

at http://www.leydesdorff.net/software.htm for users who wish to visualize the resulting 

cosine-normalized matrices. 

 

7. The relation between r and similarity measures other than Cos 

 

In the introduction we noted the functional relationships between  and other similarity 

measures such as Jaccard, Dice, etc. Based on -norm relations, e.g. 

Cos
2L

2 2
X Y=
ur ur

 (but 

generalizations are given in Egghe (2008)) we could prove in Egghe (2008) that (  = Jaccard) J

 CosJ
2 Cos

=
−

 (20) 

and that  ( E  = Dice), and the same holds for the other similarity measures discussed 

in Egghe (2008). It is then clear that the combination of these results with (13) yields the 

relations between r and these other measures. Under the above assumptions of -norm 

equality we see, since , that (13) is also valid for  replaced by . For J , using 

(13) and (20) one obtains: 

E Cos=

2L

E Cos= Cos E

 2JCos
J 1

=
+

 (21) 

and hence 

 
2 2

n 2Jr
J 1 nn a n b

⎛= ⎜ +⎝ ⎠− −

ab ⎞− ⎟  (22) 

which is a relation as depicted in Figure 8, for the first example (the asymmetric binary 

occurrence matrix case). 

 

http://www.leydesdorff.net/software.htm
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Figure 8: The relation between r and J for the binary asymmetric occurrence matrix  

 

The faster increase of this cloud of points, compared with the one in Figure 2 follows from the 

fact that (20) implies that J C  (since os< 0 Cos 1≤ ≤ ) if ] [Cos 0,1∈ : in fact  is convexly 

increasing in , below the first bissectrix: see Leydesdorff (2008) and Egghe (2008). 

J

Cos

 

As we showed in Egghe (2008), if 
2 2

X Y=
ur ur

 all the other similarity measures are equal to 

, so that we evidently have graphs as in Figures 2 and 3 of the relation between r and the 

other measures. 

Cos

 

8.  Conclusion  

 

In this paper we have presented a model for the relation between Pearson’s correlation 

coefficient r and Salton’s cosine measure. We have shown that this relation is not a pure 

function, but that the cloud of points  can be described by a sheaf of increasing 

straight lines whose slopes decrease, the higher the straight line is in the sheaf. The negative 

part of r is explained, and we have explained why the r-range (thickness) of the cloud 

decreases when  increases. All these theoretical findings are confirmed on two data sets 

from Ahlgren, Jarneving & Rousseau (2003) using co-citation data for 24 informetricians: 

vectors in the asymmetric occurrence matrix and the symmetric co-citation matrix. 

(Cos, r)

Cos
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The algorithm enables us to determine the threshold value for the cosine above which none of 

the corresponding Pearson correlation coefficients on the basis of the same data matrix will be 

lower than zero. In general, a cosine can never correspond with an r < 0, if one divides the 

product between the two largest values for a and b (that is, 

n

i
i 1

n
2
i

i 1

x

x

=

=

∑

∑
 for each vector) by the 

size of the vector n.  

 

In the case of Table 1, for example, the two largest sumtotals in the asymmetrical matrix were 

64 (for Narin) and 60 (for Schubert). Therefore, a was 64  and b was 60  and hence ab  

was . Since  in this case, the cosine should be chosen above 61.97/279 = 

 because above this threshold one expects no single Pearson correlation to be 

negative. This cosine threshold value is sample (that is, n-) specific. However, one can 

automate the calculation of this value for any dataset by using Equation 18.  

61.967734 n 279=

0.2221066
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