Mathematics > Combinatorics
[Submitted on 12 Oct 2010]
Title:Rainbow Connection Number and Connected Dominating Sets
View PDFAbstract:Rainbow connection number rc(G) of a connected graph G is the minimum number of colours needed to colour the edges of G, so that every pair of vertices is connected by at least one path in which no two edges are coloured the same. In this paper we show that for every connected graph G, with minimum degree at least 2, the rainbow connection number is upper bounded by {\gamma}_c(G) + 2, where {\gamma}_c(G) is the connected domination number of G. Bounds of the form diameter(G) \leq rc(G) \leq diameter(G) + c, 1 \leq c \leq 4, for many special graph classes follow as easy corollaries from this result. This includes interval graphs, AT-free graphs, circular arc graphs, threshold graphs, and chain graphs all with minimum degree at least 2 and connected. We also show that every bridge-less chordal graph G has rc(G) \leq this http URL(G). In most of these cases, we also demonstrate the tightness of the bounds. An extension of this idea to two-step dominating sets is used to show that for every connected graph on n vertices with minimum degree {\delta}, the rainbow connection number is upper bounded by 3n/({\delta} + 1) + 3. This solves an open problem of Schiermeyer (2009), improving the previously best known bound of 20n/{\delta} by Krivelevich and Yuster (2010). Moreover, this bound is seen to be tight up to additive factors by a construction of Caro et al. (2008).
Submission history
From: Deepak Rajendraprasad [view email][v1] Tue, 12 Oct 2010 04:44:21 UTC (13 KB)
Current browse context:
math.CO
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.