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Abstract

In the modern transportation industry, accurate prediction of travelers’
next destinations brings multiple benefits to companies, such as customer
satisfaction and targeted marketing. This study focuses on developing a pre-
cise model that captures the sequential patterns and dependencies in travel
data, enabling accurate predictions of individual travelers’ future destina-
tions. To achieve this, a novel model architecture with a sliding window
approach based on Long Short-Term Memory (LSTM) is proposed for des-
tination prediction in the transportation industry. The experimental results
highlight satisfactory performance and high scores achieved by the proposed
model across different data sizes and performance metrics. This research con-
tributes to advancing destination prediction methods, empowering companies
to deliver personalized recommendations and optimize customer experiences
in the dynamic travel landscape.

Keywords: next destination prediction, LSTM, deep learning

1. Introduction

Within the global economic framework, the travel industry plays a pivotal
role in promoting economic growth in addition to facilitating the movement
of people and goods both domestically and internationally. The aviation in-
dustry is one of the major players in this field. In this dynamic industry, the
problem of next destination prediction is of utmost importance. Predicting
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a person’s next destination using their past travel behavior is a big chal-
lenge. Precise predictions of destinations enable the delivery of customized
services and focused marketing, which result in a more individualized and
pertinent consumer experience. Moreover, it enhances the effectiveness of
travel logistics. Consequently, this predictive strategy is vital in refining op-
erational productivity and boosting overall consumer satisfaction within the
travel industry.

Next destination prediction is challenging because it requires capturing
the complex patterns and dependencies in the previous travel history of the
individual. Traditional machine learning techniques, such as decision trees
and logistic regression, have limited ability to capture the temporal depen-
dencies and nonlinear patterns in the trajectory data. On the other hand,
deep learning methods have demonstrated promising results in the next des-
tination prediction. Recurrent Neural Networks (RNNs) and their variants
such as Long Short-Term Memory (LSTM) are among the most effective
methods, which can capture long-term dependencies and deal with more
complex problems (Yu et al., 2019). However, they are not without limi-
tations. For instance, LSTMs, while effective in handling long-term depen-
dencies, can be computationally intensive and may struggle with extremely
large datasets or when integrating diverse contextual features like time of
day, weather conditions, and traffic congestion. These challenges highlight
the need for further refinement and development of more efficient models
that can leverage the strengths of LSTM while addressing its shortcomings.

The primary objective of this study is to examine and develop an ef-
ficient prediction model and methodology to address the next destination
prediction problem. This research assesses the performance of the proposed
prediction model and measures its effectiveness in terms of accuracy and
scalability. The proposed method in this study utilizes a unique real-world
airline dataset with limited features, and its applicability extends beyond the
airline industry to other transportation industries as well. The task at hand
involves solving a multiclass classification problem, where the target variable
comprises the cities served by the airline company.

This study makes a valuable contribution to the existing literature by
examining the proposed approach’s strengths and weaknesses and shedding
light on its effectiveness in addressing the prediction problem. One notable
contribution lies in the uniqueness of the dataset employed. It is worth em-
phasizing that the dataset used in this study differs from those previously
investigated in the literature. Additionally, depending on the dataset’s char-
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acteristics, various feature engineering techniques are employed to tailor the
methods accordingly. Multiple factors are considered to capture and model
customer behavior effectively. Importantly, these methods are applicable not
only to the airline industry but also to diverse sectors within the transporta-
tion industry.

2. Related Work

This review synthesizes recent developments in next destination predic-
tion, emphasizing the use of RNNs and their subclasses, particularly LSTM
networks. RNNs, known for their sequential data processing capabilities,
have been applied in various contexts, including word embedding for sen-
tence modeling (Mikolov et al., 2010, 2011a,b), sequential click prediction
(Zhang et al., 2014).

Spatial Temporal-RNNs (Liu et al., 2016) and RNNs with suprisal-driven
zoneout (Zhang et al., 2018) illustrate advancements in handling spatial-
temporal contexts and enhancing robustness and training efficiency. Rossi
et al. (2019) demonstrate an effective RNN approach for taxi journey predic-
tions using Location-Based Social Networks data, highlighting the method’s
suitability in geographically diverse cities.

LSTM models, overcoming the vanishing gradient problem of traditional
RNNs, are increasingly used for sequence modeling tasks, including desti-
nation prediction. Their ability to manage long-term dependencies and se-
lectively retain information makes them ideal for modeling sequential data.
While studies by Ishihara et al. (2021), Lu et al. (2019), and Kim et al.
(2017) have demonstrated significant advancements in the application of
various LSTM models for predicting destinations and movement trajecto-
ries, there remains room for enhancement. This potential for advancement is
particularly relevant in addressing specific challenges such as handling larger
datasets, integrating more complex contextual features, and improving com-
putational efficiency. Recognizing these opportunities for improvement, this
study aims to advance LSTM-based methodologies to achieve even more ac-
curate and efficient next destination predictions.

In the realm of destination prediction, diverse methodologies have been
explored with varying degrees of success. For instance, Jiang et al. (2021)
develop a Bayesian personalized ranking model called DP-BPR, achieving
a 78% accuracy with the top 5 recommendations. This model innovatively
integrates user, time, and location embeddings to maximize the probability
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of predicting a user’s next destination. Similarly, Yang et al. (2015) introduce
the PROFILE method, utilizing taxis’ GPS trajectories in Beijing to predict
destinations with improved run time efficiency and accuracy compared to
the SubSynEA method. Their approach clusters trajectories based on key
features, demonstrating the utility of discriminative methods in destination
prediction.

Dai et al. (2018) adopt a cluster-based methodology using various ma-
chine learning algorithms for the Citi Bike system in New York City. Their
approach, which includes Station-level Clustering, Geographic Clustering,
and Compound Station Clustering, resulted in an average prediction accu-
racy of 39.3% using Random Forests with their Compound Station Clustering
method. This study underscores the potential of clustering methods in han-
dling large-scale urban mobility data.

Moreover, Mathew et al. (2012) employ Hidden Markov Models to predict
future positions based on historical location data, achieving a 26.4% accuracy
for the top-5 most probable locations. Their approach effectively captures
patterns in location histories but also reveals limitations in prediction accu-
racy.

Zong et al. (2019) develop a model using multi-day GPS data, applying
a combination of Markov chains and Multinomial logit models for pre-trip
and during-trip destination predictions. Their methodology, which considers
weekdays and weekends separately, showed high accuracies of up to 91.04%
for weekday predictions, but a notable decrease in accuracy during weekends.

While these studies represent significant advancements in destination pre-
diction, they also highlight the challenges of achieving high accuracy and con-
sistency under varying conditions and datasets. This emphasizes the need
for robust, flexible models that can handle complex real-world data.

The review also discusses route prediction techniques such as Bayes classi-
fiers, histogram matching, and probabilistic models, which are similar to des-
tination prediction even though they are different (Marmasse and Schmandt,
2002; Patterson et al., 2003; Krumm et al., 2013).

A wide range of approaches to next destination prediction have been
documented in the literature. One of these approaches is LSTM, which is a
successful model because of its sophisticated processing of sequential data and
long-term dependencies. This study contributes to this expanding field by
offering a novel LSTM-based model designed specifically for the requirements
of the travel industry.

4



3. Methodology

In this section, the proposed method for predicting the next destination
is provided. This problem is addressed by the introduction of a novel model
architecture that combines LSTM and a sliding window technique. This
novel method predicts customers’ next destinations with accuracy by taking
advantage of the sequential patterns and dependencies found in travel data.
It provides a comprehensive framework to enhance destination prediction
accuracy by accounting for the continuous flow of trips and capturing the
temporal relationships between destinations. The architecture, underlying
algorithms, and specifics of the proposed approach are covered in detail.

Consumers’ travel histories reveal unique patterns and trends that can
be used to gather useful information about their preferences and behaviors.
Researchers are able to predict customers’ next destinations with greater ac-
curacy when these patterns are accurately captured and analyzed. Relying
on past travel records, the problem is to predict the next destination, where
destination order matters. Travel data may be categorized as sequential data
since the itineraries of the trips are recorded in that order. That means a
customer’s previous trip sequence contains useful information that can be
used to forecast where they will travel to next. This task proves to be well
suited for LSTM because of its capacity to capture patterns and tempo-
ral dependencies within destination sequences. It enables comprehension of
the connections between several prior destinations and the current one by
modeling long-term dependencies effectively. To further accommodate cus-
tomers with varying travel histories, LSTM can also handle variable-length
sequences. LSTM is capable of personalizing predictions by adding context
and extra features like seasonality and user preferences.The primary objec-
tive of employing this model is to evaluate the efficacy of an advanced deep
learning architecture in accurately predicting the next destinations of cus-
tomers.

The authors suggest a sliding window approach as a key component of the
LSTM model to handle the next destination problem more successfully. This
method systematically uses sequential trip pairs within a dynamic window.
Overall, the proposed method makes a number of important advances. First,
it involves using the sliding window method in a customized way that is in-
tended for the prediction of the next destination. A thorough examination
of the sequential nature of the data is made possible by the sliding win-
dow, which is used by combining trip pairs to create windows. Secondly, the
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assumption of continuous trips and their sequential arrangement as chains
ensures the incorporation of temporal dependencies and patterns into the
model. Lastly, a novel model architecture is developed, integrating sliding
windows to effectively model both short-term and long-term dependencies
within the trip sequence. Collectively, these contributions enhance the un-
derstanding and accuracy of next destination prediction by leveraging the
advantages of the sliding window approach within the LSTM framework.

3.1. Problem Definition

The next destination prediction problem refers to the task of predicting
where an individual is likely to go or travel to next, based on available in-
formation about their previous movements, preferences, context, and other
relevant factors. Given a dataset consisting of m customers’ travel histories,
the objective is to predict the next destination a customer will likely visit in
their future travel. The prediction task involves assigning a single destination
label to each customer based on their past travel attributes.

Let’s denote that there is a set of customers C = {c1, c2, ..., cm}, who has
previously traveled with the transportation company, where m represents
the total number of customers. For each customer, denoted as ci, a sequence
of historical trip records is available. This sequence, represented as Ti =
[(o1, d1), (o2, d2), ..., (on, dn)], captures the customer’s past travel experiences.
Here, n represents the number of trips in the sequence, while ok and dk denote
the origin and destination cities of the kth trip, respectively. Let Fi represent
the additional features vector for customer ci, which can be expressed as
Fi = {f1, f2, . . . , fn}. Here, fk denotes the vector of additional features for
the kth trip, including attributes such as the weekday of the trip, journey
type, and so on. The length of each vector f is denoted by s, which may vary
depending on the dataset.

Problem : Given the current (or the most recent recorded) location, on+1,
of a customer ci, the historical trip records Ti and additional features vector
Fi, predict the next destination city, dn+1, for that customer ci.

Assumptions : Firstly, the prediction is based solely on the available
information up to the current time, without any knowledge of future trip
records. Secondly, the prediction is limited to the cities served by the trans-
portation company. The model focuses on destinations within the company’s
service area and does not consider locations outside of this scope. Thirdly, it
is assumed that there is enough data to observe patterns. Sufficient historical
travel data are available for customers, enabling the identification of patterns,

6



dependencies, and relationships within the data. Lastly, it is assumed that
the current location of the customer is known. The transportation company
has access to up-to-date information about the customer’s current location,
which is essential for predicting their next destination accurately. These as-
sumptions guide the development of the prediction model and help ensure
that it effectively utilizes available data and current location information to
make accurate predictions within the transportation company’s service area.

Transportation companies can employ various methods to determine the
current location of customers and predict their next destination. These meth-
ods include ticketing or reservation systems where customers provide their
current location details during the booking process. Mobile applications or
account information can also provide location data collected from customers’
devices or accounts. Loyalty programs may require location information for
membership, while check-in systems or beacons at stations enable tracking of
customer locations within the transportation network. Wi-Fi or Bluetooth
connectivity on vehicles or at stations can be utilized to gather customer
presence and location data. Additionally, partnerships with mobile network
operators can provide access to aggregated location data from mobile de-
vices. Also, the most frequent departure location of customers may be avail-
able in the dataset, as is the case in the dataset used in this study. This
most frequent departure location can be used as the current location. Also,
transportation companies can accurately determine the current location of
customers by using their sources. Companies need to take great care when
handling location data from customers in order to respect customer privacy
and comply with data protection laws.

This problem in this study can be formulated as a multiclass classification
problem, where the set of possible destination labels forms the classes. Each
customer’s historical travel attributes serve as the input features. In this
context, the time intervals between trips can be in various temporal granu-
larities, such as a day, week, month, or year. To formulate this problem as
a multiclass classification task, the set of possible destination labels can be
defined as D = {d1, d2, ..., dk, ..., dp}, where p represents the total number of
distinct cities served by the transportation company. Each destination city
dk represents a class label. The goal is to learn a predictive model that can
accurately classify the next destination label dn+1 for each customer ci based
on their historical travel attributes. The model takes the input features,
including the current location, on+1, the historical trip records Ti and the ad-
ditional features vector Fi, and maps them to the corresponding destination
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label dn+1 from set D.
The primary aim of this study is to embark upon the development of

a robust and accurate predictive model specifically designed to predict the
next destinations of customers. The overarching goal is to maximize the
number of correctly classified next destinations. In the context of this study,
the target variable of interest comprises the cities to which customers travel.
This research seeks to enhance the precision and reliability of the developed
model.

The study must consider several factors that influence destination pre-
dictions. One important aspect is the identification of patterns specific to
individual customers, which can aid in making accurate predictions. For in-
stance, a customer who consistently travels to Europe during the summer
season is likely to continue this pattern in the future. Therefore, it is crucial
to thoroughly analyze each customer’s travel history to uncover and under-
stand such recurring patterns. Additionally, seasonality plays a vital role
in travel patterns, as certain destinations experience increased popularity
during specific seasons, such as summer holidays. Taking seasonality into
account improves the precision of destination predictions. Furthermore, it is
essential to consider the impact of business-related travel. Individuals who
frequently travel to specific destinations for business purposes are more likely
to visit those places again in the near future. Identifying such customers and
their associated travel patterns can significantly enhance the accuracy of
predictions.

3.2. Proposed Method

Given a dataset D consisting of customer trip sequences, where each se-
quence Ti represents the historical trips of customer ci as mentioned in Section
3.1, it is aimed to train the model to accurately predict the next destination.

For this purpose, a sliding window approach is proposed. In general,
such approaches are commonly used in tasks involving sequential data anal-
ysis and prediction. They are based on windows moving through a sequence
of data, capturing subsets of data at each step. Utilizing the sliding window
technique, the travel data is segmented into overlapping fixed-length win-
dows. By using a series of prior destinations as inputs for predicting the
subsequent destination, this technique enables the LSTM model to identify
temporal patterns and dependencies within the data. In this regard, the slid-
ing window method helps to uncover both short-term and long-term patterns
in the consumer’s travel history.
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Regarding short-term dependencies, the sliding window method enables
the LSTM model to recognize recent travel behaviors within a predetermined
window of past trips. Focusing on a limited selection of the latest trips allows
the model to concentrate on the customer’s immediate actions and prefer-
ences. This is beneficial for identifying short-term variations and tendencies
in the customer’s travel decisions. In the case of long-term dependencies,
with the help of sliding window method, the model can accommodate a va-
riety of historical trips, including more distant and recent ones, by swiping
the window along the trip sequence. As a result, the customer’s enduring
preferences and tendencies can be captured by the model. Over time, the
model can learn and comprehend the customer’s destination choices which
are influenced by broader travel habits and patterns by integrating a wider
window of historical data.

Formally, let Ti = [(o1, d1), (o2, d2), ..., (on, dn)] be the sequence of trips
for customer ci and n is the number of trips. A sliding window of size w is
defined over the sequence of Ti as:

Wi ={[(o1, d1), (o2, d2), ..., (ow, dw)]1i ,
[(o2, d2), (o3, d3), ..., (ow+1, dw+1)]

2
i , ...,

[(on−w, dn−w), (on−w+1, dn−w+1), ..., (on−1, dn−1)]
n−w
i }

(1)

The dataset with custom features for customer ci can be denoted as:

Ri ={(w1
i , e

1
i ), (w

2
i , e

2
i ), ..., (w

n−w
i , en−w

i )}
={([(o1, d1), (o2, d2), ..., (ow, dw)]1i , e1i ),
([(o2, d2), (o3, d3), ..., (ow+1, dw+1)]

2
i , e

2
i ), ...,

([(on−w, dn−w), (on−w+1, dn−w+1), ..., (on−1, dn−1)]
n−w
i , en−w

i )}

(2)

Each tuple in Ri for customer ci represents an entry, where n − w is
the number of windows. The feature vector Ei = {e1i , e2i , . . . , en−w

i } includes
custom features for each window that are derived from additional features
vector Fi, defined in Section 3.1, present in the original dataset. These
custom features are created based on the dataset and are subject to the
feature engineering choices made by the researcher. The custom features
can be modified or adjusted as needed. If there are any additional features
available, they can also be added to the feature vector E. The set Ri is
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constructed in a way that consists of the historical trips of customer ci.
After splitting the dataset, the training set is formed by including all trips
of the customer except for the last trip. The last trip is reserved for the
test set. In the training process, the origin city of the last trip following the
window in the training set is added as a feature before the final layer, and the
model is trained to predict the destination city of this last trip associated
with that window. The same process is applied to the test set, with the
only difference being that the test set includes only the last trip among all
the trips made by each customer. This approach ensures that the model is
trained on the customer’s historical travel data, excluding the last trip, and
is then evaluated on its ability to predict the destination city of the last trip
in the test set.

It is assumed that there may exist intermediary trips between the desti-
nation city of a trip and the origin city of the next trip, regardless of whether
they are the same or different. These intermediary trips, if present, may in-
volve modes of transportation not provided by the transportation company.
The model focuses solely on predicting the next destination based on the
available data and does not consider the specific means by which the cus-
tomer reaches the origin city of the next trip after the destination city of the
current trip.

M = argminM

m∑
i=1

n−w∑
j=1

L(M(Rj
i , o

w+j
i ), dw+j

i ) (3)

In Equation 3, M(Rj
i , o

w+j
i ) represents the trained model using historical

data, the origin city of the trip following the window, and custom features
for customer ci at entry j, where j includes the window and related custom
features with that window as represented as in Equation 2. m represents
the number of customers in the dataset. In the training process, the origin
city of the trip following the window, denoted as ow+j

i , is provided to the
model just before the final layer. Additionally, dw+j

i represents the true
next destination associated with that window. The function L represents a
suitable loss function that measures the discrepancy between the predicted
and true destinations. The goal is to find the function M that minimizes
this prediction error across all customers during the training stage. The
performance of the model will be evaluated using the top-N F1 score metric
in the test set. The following parts below will provide a detailed explanation
of the entire process.
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The first step of the model is converting the dataset into a window in
which the past sequence is used as a feature in the LSTM model as in Equa-
tion 1. For the specified window size, a group of trips is used to create a
travel data chain. The travel data chain has the past trips of the customer
with time-based orders. Other than the travel data chain, a set of features
can also be created to contribute to the model’s prediction power as in Equa-
tion 2. The windowing process is represented below with a window size of 3
(Figure 1). This is a parameter to prepare the dataset and different window
sizes can affect the performance. In Section 4, different window sizes will be
tried to find the optimum performance.

After the windowing operation is applied, the dataset is converted into
a sequential format that allows it to be easily integrated with an LSTM
model. After the data is arranged in this sequential manner, it opens up
to the temporal patterns and dependencies that are present throughout the
dataset.

Figure 1: A Windowing Sample

In addition, as Table 3 illustrates, custom features can be developed using
the existing features of the dataset to improve the model’s predictive power.
These unique characteristics are intended to catch extra details and subtleties
that could lead to a higher degree of prediction accuracy. After the creation
of the dataset, several preprocessing steps are implemented to ensure its
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suitability for feeding into the LSTM model. The LSTM model requires four
distinct components as input: numerical features, categorical features, date
features, and embedding features.

Starting with the numerical features, a numerical transformer pipeline is
applied to handle missing values and standardize the features. To address
missing values, a simple imputer is employed, which fills the gaps with the
median values of the respective features. This imputation strategy ensures
the preservation of data integrity and minimizes the impact of missing infor-
mation. After that, the numerical features are normalized using a standard
scaler to ensure consistency and prevent any one feature dominating the
learning process.

The next step involves the categorical features, which are converted into
a numerical format using a one-hot encoding technique. By means of this
conversion, the LSTM model can efficiently comprehend and employ cate-
gorical data for both training and prediction purposes. Categorical variables
are represented as binary vectors.

Finally, the features of embedding are discussed. To transform specific
features into embedding vectors, an embedding layer is added before the
LSTM model. By using this method, the sparsity issue related to high-
dimensional sparse features is mitigated. One-hot encoding is sufficient for
categorical features with few categories, but embeddings are preferred for
features with many categories. By representing these features as lower-
dimensional embedding vectors, the model benefits from more efficient rep-
resentation and enhanced generalization capabilities.

Following the preprocessing of the features and the incorporation of em-
bedding layers for the city-based features, the next step involves utilizing a
concatenation layer to merge all the input components. This concatenated
layer serves as the input for the subsequent model architecture. In this
specific case, two LSTM layers are employed to capture the sequential de-
pendencies and temporal patterns within the data effectively. Furthermore,
an embedding layer specifically designed for the origin city feature is added
to the model architecture.

As the last layer before the output, a dense layer is also added to the
model. This dense layer is responsible for transforming the learned repre-
sentations into appropriate output predictions. Using a softmax activation
function, the raw outputs are transformed into a probability distribution over
the various categories that make up the model’s desired output. To provide a
visual representation of the model architecture, Figure 2 presents a diagram
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depicting the various components and connections within the model.

Figure 2: The Diagram of the Proposed Model

4. Application of the Proposed Method and Results

In this chapter, the proposed method is applied on a real-world dataset
obtained from an airline company. The chapter presents and analyzes the
experimental results, with a primary focus on assessing the performance of
the proposed method in predicting the next destination of customers. The
dataset serves as the basis for evaluating the performance and efficiency of
the proposed approach. To gain deeper insights, several experiments are con-
ducted to investigate the impact of different parameters on the performance
of the proposed method. The results obtained from these experiments are
presented in detail, and the implications of these results are thoroughly dis-
cussed.
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4.1. Characteristics of Data

This study utilizes a dataset obtained from an airline company. It con-
tains comprehensive information about customers who have traveled by air
in the past five years. The dataset includes a large volume of flight-related
records, with 115 million entries. Within this dataset, there are 36 mil-
lion unique customers, showcasing the diversity of individuals represented.
Among the customers, approximately 20 million have taken only one flight,
while 16 million have a history of multiple flights. To prepare the dataset
for modeling, a selection process is employed. Customers with more than 17
flights including the last trips of training and test sets after creating windows
are considered, aligning with the maximum window size of 15. The dataset
is further refined by focusing on the top 16 cities, which account for about
90 percent of the flights. This selective approach enables targeted analysis
and prediction of the most significant and frequently visited destinations.
As a result of these procedures, the final dataset consists of 222,000 distinct
customers, forming the basis for subsequent analyses. Subsets of this cohort
are strategically chosen to facilitate specialized investigations and tailored
analyses within specific customer segments.

Features are as follows:

Table 1: Features in the Dataset
Column name Explanation
PRIM TKT NUM Customer ticket number
CITY NM Arrival city
CNTRY NM Arrival country
ORG CITY NM Departure city
ORG CNTRY NM Departure country
CUST KEY Customer key
SEG LCL DEP DT GMT departure time
ORGN AP Departure airport code
DSTN AP Arrival airport code
DOM INTNL FLAG Flight type domestic or international
JRNY TYP Journey type
TOP1 ORG MKT REGN The region that the customer departs most
TOP1 ORG CTY The city that the customer departs most

The original dataset contains the aforementioned features, yet not all of
them are utilized in the subsequent analysis. Alongside the existing features,

14



additional custom features are created to enhance the prediction capabilities
of the model. These custom features are specifically engineered to capture
additional insights and patterns that can contribute to improved predictive
performance.

In the following sections, these custom features will be described in de-
tail, outlining their purpose and the rationale behind their inclusion. By
incorporating these custom features, it is aimed to augment the richness of
information available to the model, enabling it to uncover more intricate
relationships and dependencies within the data.

4.2. Creating the Datasets

The first step before the application of the models is data preprocess-
ing. In this step, data cleaning, transformation, integration, reduction, and
sampling are applied to transform raw data into a format that can be eas-
ily analyzed and interpreted. In the original dataset, a significant number
of erroneously recorded city names are identified and subsequently rectified
through a rigorous analysis process. To enhance memory utilization during
the modeling phase, variable types are adjusted to accommodate the sub-
stantial size of the dataset, which demands a substantial memory allocation.
To ensure data integrity, rows with identical values in the arrival and depar-
ture city fields are excluded from the analysis. Furthermore, rows containing
null values in either the arrival city, origin city, or top origin city columns
are also eliminated from the dataset, ensuring the reliability and quality of
the subsequent analysis.

The following steps are made for the LSTM model. Because of the nature
of the problem, the dataset should be derived from different customers to
generalize the behavior pattern and should contain all the flights of each
customer for the sake of completeness. In this regard, a group of customers
with different sizes is chosen as the subset. The random sampling method
is applied to choose a subset since this is a customer-based model. Three
different levels of sizes are chosen to test the effect of the customer size on
the results. 5000, 15000, and 25000 are chosen as the low, medium, and high
levels. All the flight data of these customers are gathered to create a dataset.

Due to the sequential character of the dataset, the flights should be in a
time-based order. Also, to validate the model properly, the test set should
be chosen with the latest flights of each customer, as indicated in Figure 1.
So, the last flight of each customer is taken as the test set and the remaining
is used to create the training set by using the window size parameter. As
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explained in Figure 1, the window size is an important parameter for creating
a dataset since it directly affects the dimensionality of the feature set and
so the performance of the model. Three different window sizes are selected
to test the effect of the window size on the performance. 5, 10, and 15 are
the three levels and the dataset is created with these window sizes for each
customer group. Also, since the last flight of the customer is used in the
test set, a k-fold cross-validation strategy cannot be employed. Since there
is enough data to create more datasets, for each customer size, 5 different
customer sets are selected to be used as validation.

Figure 3: Data Splitting for Validation

In Figure 3, the selection process of customer datasets is demonstrated.
For each combination, different customer sets are used in the model and the
average scores of these five different customer sets are taken as the final score
for each parameter setting.

As a summary, a total of 45 datasets are created for 3 different customer
sizes and 3 window sizes, in which each different parameter setting has 5
different datasets. The summary table for the details and shapes of the
datasets is given below (Table 2).
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Table 2: Dataset Summary Table

Customer
size

Window
size

Average number
of rows in train

data

Number of rows
in test data

5K 5 124K 5K
5K 10 110K 5K
5K 15 95K 5K
15K 5 378K 15K
15K 10 333K 15K
15K 15 289K 15K
25K 5 626K 25K
25K 10 552K 25K
25K 15 477K 25K

4.3. Selection of the Performance Metric

The choice of performance metric for the next destination prediction de-
pends on the specific requirements and objectives of the task. While the F1
score is commonly used for binary classification tasks, it may not directly
address the top-N prediction scenarios where the goal is to predict the most
likely destinations among a larger set of options. In such cases, the top-N
F1 score can be a suitable metric. It is widely recognized as a popular eval-
uation metric for ranking tasks (Liu et al., 2016). There are several reasons
and advantages to using this metric. Next destination prediction often in-
volves ranking a set of potential destinations based on their likelihood. The
top-N F1 score evaluates the model’s ability to rank the correct destination
within the top-N predictions. It evaluates the model’s top-N predictions in
terms of accuracy and recall by taking into account both false positives and
false negatives within that subset. In real-world scenarios, users are typically
interested in a limited number of most probable destinations.

The top-N F1 score provides a more practical evaluation by considering
the model’s performance in identifying the relevant destinations within the
top-N predictions. It focuses on the accuracy of the most important pre-
dictions rather than evaluating the entire prediction space. Since there are
frequently a lot of possible destinations in the next destination prediction, it
is not practical to assess the model’s performance on each class separately.
This approach reduces computational complexity while still capturing the
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model’s ability to identify the most relevant options. The top-N F1 score
aligns with the real-world scenario where users are typically presented with
a limited number of destination options. For all the specified reasons, the
top-N F1 score is utilized in this study.

4.4. Experimental Runs

LSTM requires a great amount of computational power to run (Hossain
et al., 2023). They can be computationally intensive, especially if the network
is large or the training dataset is very large. High-power CPUs and GPUs
are used to run LSTM models on big datasets. The dataset in this study
has 115 million rows of flight data for over 36 million customers which can
be considered quite big. Because of the limited time and resources, a subset-
choosing strategy is employed to run the proposed method and obtain results
for analyses.

4.5. Results and Discussion

In this section, the experimental results of the proposed model are pre-
sented and discussed. As previously elucidated in Section 4.3, the chosen
performance metric is the top-N F1 score, which is defined to take into ac-
count the precision and recall of the model’s predictions for the top-N most
probable classes. The rationale behind utilizing the top-N F1 score is its abil-
ity to prioritize the identification of the most likely classes, rather than solely
focusing on the top 1 prediction. The tables display the top-1, top-3, top-5,
and top-7 F1 scores for both models. By evaluating the model’s performance
across these different prediction scenarios, a comprehensive understanding
of its predictive capabilities can be attained. Following the model specifica-
tions detailed in Section 3.2, the subsequent steps are meticulously executed
to ensure a robust implementation that maximizes the potential of the LSTM
architecture for accurate prediction.

The initial step of the model involves transforming the dataset into a
window, where the preceding sequence is employed as a feature within the
LSTM model. Within the defined window size, a collection of flights is se-
lected to form a flight chain, encompassing the customer’s previous flights
in chronological order. In addition to the flight chain, a set of features is
generated to enhance the predictive capability of the model. Various window
sizes will be experimented with in order to identify the optimal performance.
Following the implementation of the windowing operation, the data under-
goes conversion into a sequential format, rendering it suitable for input into
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an LSTM model. Apart from the customer key, the dataset comprises addi-
tional columns including the origin city, destination, flight date, top origin
city for each customer, flight type as a domestic or international flight, and
journey type as one-way or return.

Furthermore, in the feature engineering step, certain features are crafted
to enhance the predictive capabilities of the model (Table 3). Some of these
features are derived from existing ones, while others are specifically created
for each flight chain. For each flight, the day, week, month, and weekday of
the flight date are extracted. The season of the flight is determined based on
the month of the flight date. These extracted features will be employed in
the derivation of additional window-specific features. The time difference be-
tween the first and last flights within a window is computed as the duration
of the window. Additionally, the average flight day within a window is cal-
culated to represent the frequency of travel for a given customer. The total
count of domestic flights and the number of return flights within a window
are also captured.

Table 3: Custom Features

Feature name Explanation

Average day difference Day difference between the first and the
last flight of the window

Domestic flight count Number of domestic flights
Return trip count Number of return flights
First season The season of the first flight
Last season The season of the last flight
Days Day of the flight date
Months Month of the flight date
Weekdays Weekday of the flight day
Flights array Past flights of the customer in chrono-

logical order

Once the dataset is created, several preprocessing steps are implemented
to ensure its compatibility with the LSTM model, as described in Section
3.2. The LSTM model requires four distinct components as input: numerical
features, categorical features, date features, and embedding features. There-
fore, appropriate preprocessing techniques are applied to each component to
properly prepare the data for feeding into the LSTM model.
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In this scenario, the city variable exhibits numerous alternative values,
and employing one-hot encoding would lead to a high-dimensional and sparse
feature matrix. To address this issue, embeddings are employed to represent
these features more efficiently. Consequently, an embedding layer is utilized
for the flight chain, top origin city, and origin city. The flight chain and top
origin city are provided as inputs to the architecture, while the origin city is
specifically given at the final layer, just prior to the softmax function. This
design choice is motivated by the need to train the model exclusively with
the features, ensuring that the origin of the last flight does not influence the
model parameters.

Numerical features: Average day difference, domestic flight count, return
trip count

Categorical features: First season, last season, days, months, weekdays
Embedding features: Flights array, top origin city, origin city
Following the preprocessing of the features and the application of em-

bedding layers to the city-based features, a concatenation layer is employed
to combine all inputs. This concatenated layer serves as the input for the
subsequent model, which consists of two LSTM layers. The first LSTM layer
consists of 100 nodes, while the second layer is composed of 20 nodes. These
specific values are selected after experimenting with different configurations.
It is observed that using lower values adversely affects the model’s perfor-
mance, whereas higher values do not lead to any significant improvement in
performance. Therefore, the chosen configuration of 100 nodes in the first
layer and 20 nodes in the second layer strikes a balance that optimizes the
performance of the LSTM model. Additionally, an embedding layer for the
origin city is incorporated, followed by the inclusion of a dense layer. The
output of the dense layer is then passed through a softmax function to con-
vert it into categorical probabilities. Given that the model produces output
in the form of multiclass categories, a softmax function is utilized for this
purpose.
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Table 4: Results of the Proposed Model

Customer
size

Window
size

Top-1
F1 score

Top-3
F1 score

Top-5
F1 score

Top-7
F1 score

5,000 5 0.73 0.85 0.91 0.94
5,000 10 0.71 0.85 0.92 0.93
5,000 15 0.72 0.85 0.91 0.93
15,000 5 0.74 0.85 0.92 0.96
15,000 10 0.74 0.86 0.92 0.95
15,000 15 0.73 0.86 0.93 0.95
25,000 5 0.76 0.88 0.93 0.96
25,000 10 0.78 0.88 0.94 0.96
25,000 15 0.78 0.89 0.93 0.97

In this model, two parameters used are customer size and window size as
can be seen in Table 4. Based on analysis of variance (ANOVA) of results,
the main and interaction effects of customer size (CS) and window size (WS)
are calculated for four F1 scores (Top 1, Top 3, Top 5, Top 7), and the results
obtained are provided in Table 5.

It is evident from Table 5 that the only main factor CS exhibits statisti-
cally significant results for all evaluated F1 scores. The results for Top-1, Top-
3, Top-5 and Top-7 F1 scores are (p < .01, η2 = .893), (p < .01, η2 = .966),
(p < .05, η2 = .500) and (p < .01, η2 = .893), respectively.
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Table 5: Results of Factorial ANOVA

F1 Score Factor Sum Sq df F p η2

Top 1

CS 0.004876 1 45.308 .001** .893
WS 0.000012 1 0.111 .753 .000

CSxWS 0.000253 1 2.348 .186 .000
Error 0.000538 5 – – –

Top 3

CS 0.001667 1 34.483 .002** .966
WS 0.000667 1 1.379 .293 .000

CSxWS 0.000250 1 0.517 .504 .000
Error 0.000242 5 – – –

Top 5

CS 0.000600 1 16.364 .010* .500
WS 0.000017 1 0.455 .530 .000

CSxWS 0.000000 1 0.000 1.00 .000
Error 0.000183 5 – – –

Top 7

CS 0.001350 1 50.625 .001** .893
WS 0.000167 1 0.625 .465 .000

CSxWS 0.000100 1 3.750 .111 .000
Error 0.000133 5 – – –

* p < .05, ** p < .01, CS: Customer Size, WS: Window Size
The p-value represents the likelihood of obtaining an outcome as ex-
treme or more extreme than the one actually observed, under the as-
sumption that the null hypothesis is correct (Moore, 1996). Beyond
the p-value from factorial ANOVA, reporting the effect size coefficient,
which is sample size independent, is crucial for practical significance.
Commonly used effect size coefficients in Factorial ANOVA results are
η2 and partial η2 (Clark and LaHuis, 2012; Norouzian and Plonsky,
2018).

Following the results of the factorial ANOVA, further investigations have
been conducted on CS that are significant and have medium to high effect
sizes. In this context, the ‘TukeyHSD’ function in the ‘stats’ package (Team,
2010) has been utilized to perform the Tukey multiple comparison test. The
results obtained are provided in Table 6. As for WS, all results demonstrate
no statistical significance.
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Table 6: Post Hoc Comparisons of Customer Size using Tukey’s Test

F1 Score Contrast Estimate SE df t.ratio p.value

Top 1
CS5K, CS15K -0.0167 0.080943 4 -1.768 0.2900
CS5K, CS25K -0.0533 0.080943 4 -5.657 0.0105*
CS15K, CS25K -0.0367 0.080943 4 -3.889 0.0380*

Top 3
CS5K, CS15K -0.0667 0.080333 4 -2.000 0.2276
CS5K, CS25K -0.0333 0.080333 4 -10.000 0.0013**
CS15K, CS25K -0.0267 0.080333 4 -8.000 0.0029**

Top 5
CS5K, CS15K -0.01 0.08471 4 -2.121 0.2006
CS5K, CS25K -0.02 0.08471 4 -4.243 0.0286*
CS15K, CS25K -0.01 0.08471 4 -2.121 0.2006

Top 7
CS5K, CS15K -0.02 0.08471 4 -4.243 0.0286*
CS5K, CS25K -0.03 0.08471 4 -6.364 0.0069**
CS15K, CS25K -0.01 0.08471 4 -2.121 0.2006

* p < .05, ** p < .01, CS: Customer Size

Table 6 shows that for Top 1 and 3 in terms of CS, there is no significant
difference between 5K and 15K, but there is a significant improvement from
15K to 25K. For Top 5, increasing CS from 5K to 15K or from 15K to 25K
does not make a significant difference. Only increasing CS from 5K to 25K
shows a significant improvement. For Top 7, increasing CS from 5K to 15K
or 25K brings a significant improvement, while increasing it from 15K to 25K
does not create a significant difference. Therefore, it can be recommended
to prefer 25K for all top-N F1 scores.
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Figure 4: F1 Scores for the Customer Size

When Figure 4 is examined, it is observed that in all top 1, 3, 5, and 7
scores, the F1 scores increase as the customer size increases.

This analysis underscores the crucial role of customer size in enhancing
the model’s performance. On the other hand, the results from the factorial
ANOVA also indicate that the window size does not have a significant impact
on the performance of the model. It corroborates the notion that more
extensive data leads to greater generalization and, consequently, improved
performance, a principle particularly relevant for complex models like LSTM,
as noted in prior studies by Zhu et al. (2019) and Sun et al. (2020).

5. Conclusion

Predicting the next destinations of customers has become a prominent
and relevant topic in recent times. This is mostly because of all the advan-
tages it provides businesses with, like maximising operational effectiveness,
improving marketing strategies, and raising general customer satisfaction.
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Several strategies are used to accomplish this goal, however, developing a
reliable model that can accurately predict the next destinations poses a sig-
nificant challenge.

In this study, an LSTM model is developed to predict the next destina-
tions of customers. The model is tested using a dataset obtained from an
airline company. LSTM is a neural network model working very well with
sequential data and has the capabilities to deal with higher complexity and
long-term dependencies. To evaluate the impact of different factors on the
results, the model is applied to a diverse range of customer populations and
varying window sizes. By systematically varying the number of customers
and window sizes, this study aims to uncover valuable insights into the in-
fluence of these variables on the performance of the model. Moreover, this
empirical investigation provide valuable guidance for optimizing the model’s
configuration and enhancing its predictive accuracy in real-world scenarios.
The results of the model indicate that the most favorable outcomes in terms
of top-1, top-3, and top-7 F1 scores are obtained when the customer data
is at its largest scale. It is observed that the performance of the model is
positively influenced by the size of the customer data. However, the impact
of the window size is not statistically significant and shows no effect on the
performance. Overall, the obtained results give hope that the performance
of the proposed method could also be high and satisfactory in other datasets.

There can be several reasons for not being able to reach high scores suc-
cessfully. One of the major obstacles is the lack of data. If there is not
enough historical data available on the travel patterns of customers, it can
be challenging to build accurate prediction models. This is particularly true
for new customers or customers who have not traveled frequently in the past.
Another obstacle can be incomplete data, which is missing critical informa-
tion such as the travel purpose, the customer’s demographics, or the time
of the year. This missing data can significantly impact the performance of
the prediction models. Also, the complexity of travel behavior is of utmost
importance in terms of building good models. Travel decisions of customers
can be varied frequently depending on several different factors such as the
purpose of travel, preferences, changes in the travel industry, economic con-
ditions, etc. Another obstacle is unforeseen events, which can be called out-
liers as well. These conditions can be weather disruptions, political unrest,
or health emergencies, which make it difficult to accurately predict the next
destinations of customers. Taking all these circumstances into consideration,
building robust models can be highly challenging.
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Future studies could explore the use of more extensive datasets and more
complex model architectures, as the analysis suggests that incorporating
more data leads to improved performance. Another aspect that could be
explored in future work is predicting the timing of the next travel. While
this study focuses on predicting the next destination, forecasting the specific
time at which a customer is likely to travel to that destination could provide
valuable insights. It is worth considering that the structure of the dataset
itself may have influenced the obtained results. Therefore, future research
endeavors should delve deeper into exploring the potential impact of dataset
characteristics on the performance of predictive models.

Declaration of generative AI and AI-assisted technologies in the
writing process

During the preparation of this work the authors used ChatGPT in or-
der to improve language and readability, with caution. After using this
tool/service, the authors reviewed and edited the content as needed and
take full responsibility for the content of the publication.
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