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Abstract 
The use of recommender systems has increased dramatically to assist online social network users in the decision-

making process and selecting appropriate items. On the other hand, due to many different items, users cannot 

score a wide range of them, and usually, there is a scattering problem for the matrix created for users. To solve 

the problem, the trust-based recommender systems are applied to predict the score of the desired item for the user. 

Various criteria have been considered to define trust, and the degree of trust between users is usually calculated 

based on these criteria. In this regard, it is impossible to obtain the degree of trust for all users because of the large 

number of them in social networks. Also, for this problem, researchers use different modes of the Random Walk 

algorithm to randomly visit some users, study their behavior, and gain the degree of trust between them. In the 

present study, a trust-based recommender system is presented that predicts the score of items that the target user 

has not rated, and if the item is not found, it offers the user the items dependent on that item that are also part of 

the user's interests. In a trusted network, by weighting the edges between the nodes, the degree of trust is 

determined, and a TrustWalker is developed, which uses the Biased Random Walk (BRW) algorithm to move 

between the nodes. The weight of the edges is effective in the selection of random steps. The implementation and 

evaluation of the present research method have been carried out on three datasets named Epinions, Flixster, and 

FilmTrust; the results reveal the high efficiency of the proposed method. 
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1. Introduction 

The expansion and investment of various commercial and service companies in social networks have caused users 

to encounter a new challenge called information overload, which means that a great deal of information and items 

have been provided to users, and this is the reason that they may not be able to make choices in accordance to 

their needs and interests [1, 2]. In order to solve this challenge, the use of recommender systems has become 

prevalent in recent years. Recommender systems are employed to recommend a variety of items to users by 

applying statistical techniques and knowledge discovery [3]. Recommender systems attempt to make suggestions 

to users according to their performance, personal tastes, user behaviors, and the context in which they are applied 

to match their personal preferences and assist them in the decision-making process [4-6]. In order to provide 

recommendations to users, usually, a matrix is formed that contains some items that the user has ranked; however, 

the problem is related to the high dispersion of these matrices, and due to a large number of available items, the 

user cannot rank a large number of them and must predict their rankings [7, 8]. 

In the real world, users are often influenced by people they trust, and therefore the recommendation made by 

trusted people is far more influential than the suggestions of other people. In these systems, the lack of data related 

to item ranking is compensated by social relations [9]. Accordingly, one of the challenges is that users usually do 

not rank a large number of items and predict the ranking of these specific items and finally provide related 

recommendations. To predict the ranking of items, in recent years, researchers have used trust-based recommender 

systems and have proposed various approaches to calculate trust between users and make different 

recommendations based on this trust. In general, trust is of two types; it can be gained directly by the users 

(Explicit Trust) or obtained from their behavior (Implicit Trust)[10]. Since explicit statements are not always 

available, implicit techniques are more practical compared to explicit approaches [11]; hence, implicit trust is 

applied in the present investigation. The development of a trust relationship between users can possess different 

reasons, and usually, in social networks, the user’s neighbors can be considered as excellent options for users 
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trusted by the target user [12]. Trust can be measured and assessed by a variety of criteria. Each of the works 

applies several criteria to assess the trust level between users, and the accuracy of the recommendations to users 

based on the trust level between them is consequently of great importance. In most cases, the calculation of trust 

was based on the similarity of users in selecting items or their neighbors. The use of this type of trust may not be 

significantly accurate in making recommendations since only behavioral similarity, or neighborship cannot be a 

reliable factor in creating trust and the user that is considered as a trusted user may not be highly ranked in the 

social network (have few friends) and may not be a known and famous person, and this issue causes distrust. In 

the present research, in order to solve this challenge, unity in the number of friends, as well as the importance of 

the user in the social network, is applied in addition to behavioral similarity in selecting similar items and in order 

to measure the importance of the user, a centrality is defined for the user by applying H-index, and this index and 

its improvement are used for the case that the node degrees have not reached the desired threshold to evaluate the 

importance of the user in forming a trust relationship between them and the target user. Another controversial 

issue is the numerous users in Online Social Networks (OSN) that sometimes it is practically impossible to 

evaluate thousands of users (user’s friends and also their friends, etc.) to calculate the trust level of the target user 

and most researchers apply Random Walk method to solve this problem [13, 14].  

A number of users are selected, and the target user's trust in them is calculated and evaluated using Random Walk 

and creating random steps. The Random Walk output may also provide a great deal of irrelevant data, and the 

movement of random steps in-depth network should also be limited. In order to solve these problems, researchers 

have primarily developed a trusted network for the source user, which includes users who possess basic criteria 

(e.g., unity in the selection of items, neighbors, etc.) to trust the target user in them [15, 16]. The random Walk 

length is also limited [15]. However, Random Walk also possesses uniformly (or almost-uniformly) selections, 

and it is needed to do something to increase the probability of selecting the required users and reduce the 

possibility of selecting distinct users with defined criteria. The Biased Random Walk (BRW) is used in the present 

study; the probability of selecting users can be increased by weighting the edges between nodes that are more 

similar to the desired criteria. 

In the present research, the authors primarily develop a trusted network based on the desired criteria for the target 

user, then examine the target user's behavior and seek items in the trusted network that the user has not ranked. In 

order to find the ranking of the desired item in the trusted network, a Trust Walker is used, and the search is made 

using Biased Random Walk (BRW), and the movement of Trust Walker is based on random steps from the source 

user, with the difference that contrary to the standard Random Walk in BRW, the weight of the edges affects the 

selection of random steps. The weight of the edges between users determines how much they trust each other in 

the trusted network, and the higher this weight, the trust level increases. The way of measuring trust between users 

has also been based on three criteria: similarity in the selection of items, the similarity in connections or mutual 

friends between users, and the centrality of the H-index (to determine the prominence of users in social networks). 

The proposed recommender system functions in such a way that if the visited user has rated the item, it returns 

the ranking of that item to the user, and if it has not ranked the item, it suggests items that are most dependent on 

the target user's favorite items and have the most repetition by evaluating the behavioral share of users visited by 

the source user as well as applying the association rules. 

The rest of the present paper is organized as follows. The second section discusses related work. The third section 

contains the problem definition, and the fourth section addresses the proposed method. In the fifth section, the 

method is evaluated, and in the sixth section, the conclusion is made. 

 

2. Related Work 
In recent years, due to the increasing volume of data and the variety of services provided to users, the selection of 

suitable items for users has become challenging, and a variety of recommender systems have been developed. The 

applied types of systems include Content-based Filtering, Collaborative Filtering, or a combination of them. To 

provide personalized recommendations, there are two ways to capture users’ preferences [17]: implicit and 

explicit. In implicit feedback [18], the system infers userâs preferences by monitoring different actions of users 

such as purchasing history, browsing history, clicks, email contents, etc., so this type of feedback reduces the 

burden from the user. In explicit feedback [19], recommender systems prompt users to provide ratings for items 

to reconstruct and improve their model. In the section of related works, first, a review of Collaborative Filtering 

recommender systems is performed, then trust-based recommender systems are evaluated, and finally, several 

types of approaches related to Random walk and its application in trust-based recommender systems are analyzed. 

 

 



2.1. Collaborative Filtering 
The use of Collaborative Filtering methods has proven effective because of using the participating rate of users in 

making recommendations, especially in the case of applying hybrid methods. The collaborative Filtering 

recommender systems employ user preferences to rank the items, which means that users detect a similar target 

user, and ranking them by these users is considered an objective for the user [14]. 

Collaborative filtering methods are further divided into three categories: memory-based, model-based, and hybrid 

of both [20-22]. Memory-based methods utilize users’ past behavior and recommend products that other users 

with similar interests have selected in the past [23, 24]. They have been widely used in commercial recommender 

systems [25]. Memory-based algorithms are either user-based [26] or item-based [27, 28]. User-based algorithms 

predict rating given by a user to an item based on the ratings by similar users, whereas, item-based algorithms 

estimate the rating based on the ratings of similar items previously chosen by the user. Methods used in traditional 

recommender systems are mostly based on user-item rating matrix. Model-based methods utilize available data 

to train a predefined model for rating prediction. Some of the commonly used: clustering [29] and Matrix 

Factorization model [30]. Model-based approaches can handle problems with limited data using hierarchical 

clustering to enhance the accuracy of the prediction [30, 31]. Matrix factorization factorizes the user-item rating 

matrix using low-rank representation. Although model-based methods mitigate the sparsity problem, handling 

users who have never rated any item is a challenging problem in both memory-based and model-based approaches. 

 

2.2. Trust Recommender Systems 
Simultaneously with the growth of the application of various social networks, the use of recommender systems 

has been equally considered by researchers. Over the past few years, the relationship between users in social 

networks has been studied from different aspects, and one of these perspectives is the relationship between users 

based on the trust level between them. Many studies have indicated that the selection and purchase of different 

items have been made based on the recommendations of friends and people who were trustful for the user [16]. 

Accordingly, if the interactions between users on social networks are based on trust between them, the efficiency 

of recommender systems in providing a variety of suggestions to users is increased, and it will be promising that 

the target user to receive some suggestions from more trusted users; thus, the possibility of accepting the 

recommendations increases [32]. The more trust between the two users, the higher the percentage of acceptance 

of the target user's recommendations. In this regard, many pieces of research have been conducted related to trust 

recommender systems [8, 33, 34]. 

Trust methods can be classified into implicit and explicit methods. Implicit trust is usually obtained from user-

item interactions (i.e., ratings), and explicit trust is extracted from the user relationships (who they trust and up to 

what extent) [20, 35-37]. These methods analyze pre-existing relationships in a web of trust for an active user [38, 

39]. Collaborative filtering methods are most effective when users have expressed enough ratings.  

The use of these types of trust usually predicts the ranking or suggestion of items to the user and is often applied 

in cases where the considered items possess a ranking of 1-5. In [40], a method based on trust and matrix 

factorization has been presented called TrustSVD, which uses explicit and implicit types of trust to predict not-

ranked items by users and is unknown for them. In [41], a recommender system based on Mobile Applications is 

presented, which calculates the similarity between users according to social relationships and the trust level 

between them; this method is used to solve the data sparsity and cold start problems. In order to establish trust, 

users’ social relationships and interactions, as well as their social reputation on the social network, are used. 

 

2.3. Trust-based Random Walk 
The basis of all recommender systems is identical. Their similarity is in assigning and recommending items of 

interest to users. The use of random walking in recommender systems has increased significantly in recent years 

and was first mentioned in [42] and also used in the book recommender system in [43]. In [44] a random walk has 

also been applied to recommend a movie on YouTube. The TrustWalker algorithm was first proposed by Jamali 

[15], which was a combination of a trust-based method and a commodity-based group refinement method. In this 

method, a random walk has been used to refine the trusted network, and it has been indicated that people who are 

closer to the user and have ranked a similar user-item are more valuable compared to users who ranked the user-

item but are farther away from the user (they are not the user's direct neighbor). 

There are some algorithms such as Eigentrust [45], Appleseed [46], and another algorithm in [47] that use principal 

eigenvector to make trust computations. However, these methods produce ranks of trustworthiness of users, so 

they would be suitable for systems where ranks are considered. The TidalTrust model finds all raters with the 

shortest path from the source user and aggregates their ratings weighted by the trust between them. Another 



method is MoleTrust [48] where the computation of trust value between two users is based on backward 

exploration. Also, trust values in recommender systems help to predict the behavior of those users who have rated 

fewer products [49]. In the paper [50], authors propose a hybrid recommendation technique that combines content-

based, collaborative filtering, and random walk with restart method recommendation algorithm by utilizing social 

network information. In [17], a method called ContextWalk has been proposed in which the movie recommender 

system on the related website modeled the user’s behavior on the contextual graph according to the user's 

selections and by applying random walking. In [18], an algorithm based on random walking was developed in 

which the problem of cold start is solved for users in social tagging data. 

The potential transitive relations between users and items can be captured through their interaction with tags. In 

[19], the authors provide a random walking ranking algorithm called ItemRank, which is capable of ranking users' 

preferences and providing high-ranking items and recommendations. Authors in [51] have presented a method 

based on a random walk with LDA. They use LDA to mining the potential property of products and apply the 

results to construct the transition matrix for the random walk. They analyzed the structure of the networks through 

the distribution of the degree of the nodes and discussed how they influence the performance of the algorithms. 
 

3. Problem Definition 
In recommender systems, there is a set of users in the form of U = {U1, U2, ….. UN} and they rate some items in 

the form of I = {I1, I2, ….. IM}; thus, we have: RIu = {Iu1, Iu2 , …., Iuk}. The score of item I by user U is in the form 

of ru,i, which is often a number in the range of 1 to 5; the larger the number, the more the user is interested in that 

particular item. In trust-based systems, the trust or distrust between users is often indicated by 0 or 1. If node U 

trusts node V, vut , equals 1, and a value of 0 indicates the distrust of node U to node V; this type of trust is known 

as binary trust, e.g., Amazon and eBay. In this regard, if  TUu = {v Ԑ U |tu,v = 1} that represents the set of users 

that are directly trusted by u, the trusted network containing a graph can be defined as: G = <U, TU> where         

TU = {(u, v)|u Ԑ U; v Ԑ TUu}. There is one node for each user, and the number placed between the nodes on each 

edge indicates the degree of trust of the two nodes with a friendly relationship in the trusted network. In general, 

a user (u Ԑ U) and an item (i Ԑ I) are given and iur ,  is unknown for a recommender system, which means that the 

recommender system must be capable of predicting the score of the item I rated by user U. The score predicted 

by the recommender system is indicated by 
'

,iur . The conventional recommender systems usually obtain the 

prediction of the score of item ŕu, i using the similarities between users [33]. They find users who have rated the 

desired item for the target user, select users among them who have similar profiles to the target user and predict 

the score of the considered item in this way. In trust-based recommender systems, item score prediction is 

performed using behavior analysis and profiles of trusted users of the target user by developing a trusted network; 

this means that it checks which of the trusted users of the target user has rated that item to assign a score to the 

item. Because of the large number of users in online social networks, it is impossible to check all users and 

calculate the degree of trust of each user. To solve this problem, most researchers use the Random Walk algorithm 

and randomly select some users and calculate the degree of trust based on the desired criteria among users. 

In the present study, in addition to trust-based relationships between users based on the degree of similarity 

between them in selecting items, their common connections (the number of mutual friends), and the importance 

of users in social networks are used to predict the score of items. Therefore, a pattern of social trust is developed 

between users that both the importance of users in social networks and the degree of similarity between them 

(based on common items and connections) are considered. In the following, a TrustWalker is created using Biased 

Random Walk (BRW) that starts to move from the source node and is randomly affected by the weight placed on 

the edges (according to the criteria) in the selection of nodes, and then checks whether the selected user has rated 

the source or target user’s considered item. If the visited user has rated the item, its score will be returned; 

otherwise, Trust Walker selects a node based on the weight of the edges and checks whether the visited user has 

rated that item or not by affecting by them, and based on the average distance achieved for each dataset, the level 

of TrustWalker movement in the trusted network is obtained, and if the score of the desired item is not found 

among the visited user, the behavior of these users with the target user is assessed using association rules and 

some items are recommended to the target user that are related to the items rated by them as well as their scores 

are in the range of scores related to the items of interest to the target user. If the score of searched items is not 

performed by visited, the items related to their interests are offered to the target user; hence, the similarity criterion 

between users in selecting similar items is more important than the other two criteria. Accordingly, the impact 

factor of item similarity in weighting the edges is considered to be double; therefore, the probability of selecting 

users who have item similarity with the target user is increased by BRW. 



Two matrices are used to develop a trusted network. In the first matrix, users are searched who have rated and 

selected common items with the target user, and the second matrix includes the users who have mutual friends 

with the target user. Then, the desired graph or trust network is created between the users by combining these two 

matrices. In the following sections, first, the development of the trusted network is discussed. 

 

3.1. Trust Network Construction 
In this section, a trusted network is developed for the target user. The purpose of creating a trusted network is to 

find users who are trusted by the target user according to the defined criteria, and these users are identified in two 

steps and then combined, and the relationship between them is determined, and finally, a unit graph is created, 

which is considered as a trusted network. 

 

3.1.1. Creating a Matrix Based on the Similarity of Items 
To discover users who have rated items similar to the target user, a user-item matrix is created, and users are 

placed in each row of the matrix, and the matrix columns represent the rated items by users. An example of a user-

item matrix is shown in Table 1, in which the users (U) rate their desired items (I) and the similarity of users with 

the target user in the selection of desired items is determined through this matrix, and each user with behavioral 

similarity with the target user enters the considered trust graph. The user-item matrix is presented in Table 1. 

 
Table 1. The user-item Matrix 

 I1 I2 I3 I4 I5 … 

U1 3 5 - 4 2 … 

U2 3 4 2 - 4 … 

U3 - 1 - 3 3 … 

U4 2 5 3 4 5 … 

U5 

…. 

- - 2 - 5 … 

 

3.1.2. Creating a Matrix Based on Friend Similarity (Sharing Links and Connections) 
In order to detect users with mutual friends with the target user, a user-user matrix is created, and the desired users 

are placed in each row of the matrix, and the matrix columns represent the friends of the considered user. 

Accordingly, if each user has a friendship with another user, the number 1 will be written in the desired matrix 

entry; otherwise, 0 will be placed between two users. For instance, in Table 2, user U1 has a friendly relationship 

with users V2, V3, and V4, and the number 1 is placed in front of each of the columns attributed to these users. 

Similarly, through this matrix, each user's relationship with other people is determined. The user-user matrix is 

presented in Table 2. 

 

 
Table 2. The user-user matrix 

 V1 V2 V3 V4 V5 … 

U1 0 1 1 1 0 … 

U2 1 0 1 1 1 … 

U3 1 1 0 0 1 … 

U4 1 1 0 0 1 … 

U5 

…. 

0 1 1 1 0 … 

 

In the following, according to the outputs of Tables 1 and Table 2 for each user, the users who have similarity 

with them in the selection of items or have mutual friends with the user are identified; finally, they are placed in 

a graph named “trust network” and their relationships between with the target user and other users is specified. 

 

 

 



3.2. Definition Trust 
After creating a trusted network, some criteria are introduced that the target user's trust in other users in the trusted 

network is based on these criteria. The criteria considered to define trust in the present study include calculating 

two types of similarities between users and defining a centrality for each user to assess the importance of the user 

in the social network. The criteria considered to define the desired trust between users are as follows. 

 

3.2.1. Similarity-based Trust 
The similarity between users is calculated based on two factors as the following. 

 

3.2.1.1 Rating Similarity 
In this section, the similarity of users in selecting common items is calculated. To calculate the similarity between 

users in selecting the items rated by both users a and b, the Pearson correlation coefficient function is used as 

follows: 
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Accordingly, )(bri  and )(ari  represents the scores respectively given by the users a and b for the item i. Also, 

)(' br  and )(' ar  represents the average scores given by the users a and b, respectively. baA ,  represents a set of 

items rated by both users a and b. The values returned by the Pearson function are in the range of [-1,1]. The 

negative correlation indicates that there is no similarity between the two users in the selection of items. Only the 

positive values returned by the Pearson function are considered in the present investigation, which indicates the 

similarity between users in the selection of items. The way of calculating the impact factor for this level of 

similarity between two nodes is that the sum of the items rated by the two users is calculated and the result is 

divided on the number of common items between two users; thus, the following relation is obtained: 
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As can be seen, the sum of the items rated by the two users a and b and the obtained result is divided into the 

common rated items between the two users, and the outcome is considered as the impact factor of the similarity 

of items between two users. 

 

3.2.1.2. Connection (Friends) Similarity 
In this section, users' similarity is calculated based on the number of similar connections or mutual friends. In this 

regard, in addition to measuring the similarity of items, another function is introduced to calculate the similarity 

of users in their connections, by which the users’ links or mutual friends can be detected. Thus, the following 

equation can be written: 
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Where, the number of mutual friends between the users a and b is calculated in relation to the total number of 

friends of the user a, and the larger this number is, the two users have higher similarity in their friends and 

connections. The considered impact factor is also measured based on the following equation: 
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This formula calculates the sum of the degrees of two nodes and divides the result between the links or mutual 

friends between two nodes; the final result is equal to the considered impact factor. 

 

 



 

3.3. Centrality-based Trust 
The users with high importance (high impact) represent the degree of user’s influence on other users [52], and 

various criteria have been defined to calculate this level of influence; in the present research, the H-index 

Centrality criterion is used for this purpose. In a general definition of H-index centrality, a threshold (k) is 

considered, which includes neighbors with minimum degrees of k for each node. Accordingly, the function 

)( ik VC  was first defined, including several neighbors of the node 
iV  with the degrees greater than or equal to 

k. Hence, the following equation is obtained: 

𝑐𝑘(𝑣𝑖) = |{𝑣𝑗|𝑣𝑗 ∈ 𝑁𝑖  𝑎𝑛𝑑 𝑑𝑗  ≥ 𝑘}|                (5) 

 

In the following, the H-index function can be defined as follows [53]: 

 

             H – index (𝑣𝑖) = 𝑚𝑎𝑥𝑘 (𝑐𝑘(𝑣𝑖))        where       𝑐𝑘(𝑣𝑖) ≥ 𝑘                   (6) 

 

The function's value is a maximal value for k such that k of the neighbors has degrees greater than or equal to k. 

The considered value for k is equal to the average degree of neighbors of the node 𝑣𝑖, and for example, if the 

average degree of neighbors of the node 𝑣𝑖 is equal to 3, only the nodes get impact factor that the minimum degree 

of which equals to higher than or equal to 3. The average degree of neighbors of one node is also obtained 

according to Eq. (7). 
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According to this equation, the average degree of neighbors is equal to the absolute floor of the total degree of 

neighbors of the node 𝑣𝑖 divided on the degree of 𝑣𝑖 where the obtained number is considered as the threshold for 

K in the H-index formula. The way of applying H-index is that an impact factor is added for each neighbor with 

a degree equal or higher than the average degree of the considered neighbor of the node, and the value of the 

impact factor depends on the number of neighbors of each node. For instance, if the visited node of met 𝑣𝑖 

possesses a degree of 10 and the average degree of its neighbors is equal to (k = 4), and three of the node’s 

neighbors possess at least a degree of 4, then for each node with a minimum degree of 4, the value of  0.1 

(1/10=0.1) is added to the node 𝑣𝑖i as the impact factor; therefore, the total impact factor of the visited node 𝑣𝑖 

will be equal to (3×0.1=0.3). It is noteworthy that the H-index only selects nodes with a minimum degree of k; 

hence, some nodes with a degree less than the defined threshold (k) may be deleted, and a part of the structural 

information of the network can be ignored accordingly [54], while these nodes may be of great importance in the 

network. 

In order to solve this problem in the present article, the H-index is enhanced, and the improved version is used. 

For example, consider the node 𝑣𝑖 that one of its neighbors is the node 𝑣𝑗, and the degree of node 𝑣𝑗 is lower than 

the obtained average for the degrees of neighbors of the node 𝑣𝑖. Therefore, the first-degree neighbors (direct 

neighbors) of the node 𝑣𝑗 are evaluated, and if the degree of each of the neighbors of the node 𝑣𝑗 is equal to the 

minimum average obtained for the degree of neighbors of the node 𝑣𝑖, an impact factor equal to 
1

2
 is considered 

for the node 𝑣𝑗 for each neighbor of the node 𝑣𝑗, and accordingly, the value of the impact factor for each neighbor 

of the node 𝑣𝑗 with a minimum degree equal to the average of neighbors of the node 𝑣𝑖 is considered                                       

)05.01.0
2

1
(  , that means that if the degree of node 𝑣𝑗 is equal to 3, but the degree of two of the neighbors of the 

node 𝑣𝑗 is higher than 3, the impact factor considered for node 𝑣𝑗 will be equal to (2*0.05 =0.1). Therefore, the 

following equations will be obtained as follows: 

 

 

𝑐𝑘(𝑣𝑖) = |{𝑣𝑗|𝑣𝑗 ∈ 𝑁𝑖  𝑎𝑛𝑑 𝑑𝑗  < 𝑘 and 𝑣𝑗𝑑𝑗 < 𝑘            (8) 
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Eq. (8) includes a node, the degree of which and its neighbors are less than k, and this node is considered as a 

nonsignificant node, and the impact factor is not considered as the node’s importance by the H-index. Eq. (9) 



includes the nodes with a degree less than k but the degree of node’s neighbors is equal or higher than the value 

obtained for k, and therefore the number of this node’s neighbors with a degree equal or higher than k is considered 

to be the impact factor with the value of  
1

2
. 

 

3.4. TrustWalker Model 
In a graph, the relationship between nodes is usually indicated by the weight of edges between them. The idea of 

Random Walk is that the user starts moving from a specific node in the graph selects one of them with an equal 

probability in each step according to the number of neighbors of each node, and this action is repeated to reach 

the desired node. If G = (V, E) is a connected graph with n vertices and m edges. A Random Walk on the graph 

G is as follows: starting from the node 
0v , if we are in the tth step of the node tv , we move toward one of the 

neighbors of tv ( )( tvd   is the degree of the node tv ) with the probability of 
)(

1

tvd
. The sequence of random 

nodes of 
tv t = 0, 1, 2,… is a Markov chain. The node tv  can be assumed to be constant or selected by the 

distribution of 0P  among the graph nodes. The distribution of tv  is denoted by tP  as follows:  

 

)(iPt
Prob )( iVt                           (10) 

The transfer probability matrix in the Markov chain is indicated VjijipM  ,, )(  as the following: 
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Now it is supposed that GA  is the adjacency matrix of the graph G, and also D is the diagonal matrix                                      

( jiD ji  ,0, ), which is defined as follows: 
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id
D ji                                           (12)         

Hence, the matrix M can be calculated with a simple matrix operator. 

 

GADM                                   (13) 

 This equation is applied when the purpose is to perform the Random Walk uniformly. However, if each of the 

edges possesses a weight (in the present study, each of the edges each has a weight), GA  is the weighted matrix 

of the graph G and D is the diagonal matrix; hence, the following equation is obtained: 
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Then, using Eq. (10), the transfer probability matrix can be obtained for the state that the edges are weighted. The 

weight of edges between nodes indicates the probability of the selection of which node by the user. Random steps 

are modeled using the probability of transferring between nodes with different information such as user’s 

preferences or related tags [17]. Generally, the traditional Random Walk algorithm has high precision but low 

personality and diversity [55]. 

In the present paper, the Random Walking algorithm is improved, and Biased Random Walk (BRW) is applied in 

which the movement and selection of random steps will be affected by the weight between the edges and each 

node with higher edge weight based on the considered criteria is more probably to be selected by TrustWalker. In 

network science, a biased Random Walk on a graph is a time path process in which an evolving variable jumps 

from its current mode to one of the various potential new modes, unlike in a pure Random Walk, the probabilities 

of the potential new modes are unequal [15]. 



The TrustWalker model proposed with the BRW algorithm is known as Centrality Connection Items-TrustWalker 

(CCI-TrustWalker). Each node is rated based on three defined criteria, and the higher the node's score, the more 

probable to be selected in the Random Walk. Distancing from the active user is one of the main challenges in the 

use of trust networks in recommender systems. In the trusted network, the more the distance from the active user, 

the wider the scope of information; however, the precision and importance of the information decrease. To solve 

this problem, the movement of TrustWalker in the trusted network is limited, and in each of the three studied 

datasets, the average distance is calculated, and the number obtained for them is approximately equal to 6; 

therefore, the maximum length of TrustWalker steps for the movement in the depth of the network is equal to six 

nodes. In Ref. [15], the same value has been considered for TrustWalker. 

TrustWalker launches the Random Walk by starting from the active user U0 and is placed in step k of the Random 

Walk at node U, then checks whether it possesses the desired item score or not; if there is no score for the item, it 

goes to the next node, and this action is repeated until it finds the considered score or reaches the maximum 

network depth. If the user visited by BRW has rated the item i, the walk is stopped, and the score of item i is set 

as ri,u, and returned as the Random Walk output. However, if the item is not rated by this visited user or node, 

two states will occur as follows: 

1. The walk is not continued with the probability of  Pi,u,k, and two modes of A and B will be discussed.  

A: The Random Walk is stopped and returns a number as output (0 or 1). In this case, the following conditions 

must be simultaneously satisfied. 

A-1- The visited users not to score the item searched by the target user or source. 

A-2- The length of Random Walk steps is calculated based on the average distance for each dataset, and the result 

is approximately equal to 6, and accordingly, the maximum number of TrustWalker steps in the trusted network 

is equal to six steps (𝑙 = 6). 

A-3- After evaluating the behavior of the visited users of X, it should be determined that there is no behavioral 

similarity between the visited users and the source user in the selection of items, and according to Eq. (1), there 

is a negative correlation between two users, and the output of the numeric function is negative. 

According to mode A, the number of k steps must be included in the calculation of kuiP ,,  so that long walks can 

be avoided, and if there are all three of the above conditions, TrustWalker returns a number as an output; so that 

it returns 1 for large inputs and 0 for small inputs as follows: 

te
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According to Eq. (15): 
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As indicated, the weight obtained based on the items as mentioned above is considered as the main criterion for 

stopping. 

B: The mode B is also similar to mode A. Only in condition A-3, the output of the Pearson function of Eq. (1) is 

a positive number (positive correlation) and indicates the presence of common items between the visited users 

and the target user. In this case, the user’s behaviors are evaluated by association rules, and the items dependent 

on the items rated by the target user are identified, and ultimately are recommended to the target user. 

2. The walk is continued with the probability of kuiP ,,1 , and the movement toward the next node is done, which 

is the neighbor of the current node U. 

If the decision is to continue the walk, one of the neighbors of node U should be selected. If the variable uS  is 

considered as a random variable leading to the random selection of the node V, which is the neighbor of node U, 

Eq. (17) will be obtained for uS  as follows:     
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Where, Wi  indicates the weight between the nodes that is obtained using the desired criteria and includes Eq. 

(18). 



321

3

2

1

)2(

),(

),(

),(


























ij

indexH

Con

Item

W

baCen

baSim

baSim

              (18) 

As mentioned earlier, the importance of item similarity (
1 ) is higher than the other two criteria and its impact 

factor is considered to be doubled because of the high probability of selecting users who have similar behavior 

with the target user so that if the searched item is not rated by users, another item could be recommended to them 

using the behavioral similarity between them and the target user. Accordingly, the proposed CCI-TrustWalker 

model is defined as Eq. (19): 

 

𝐶𝐶𝐼𝑖𝑗
𝐵𝑅𝑊(𝑡) = ∑

𝑊𝑖𝑗

∑ 𝑊𝑖𝑗𝑗𝜖Γ(𝑖)
(𝑡) +

𝑊𝑗𝑖

∑ 𝑊𝑗𝑖𝑖𝜖Γ(𝑗)
(𝑡)𝑙

𝑡=1                                        (19) 

 

Where (𝑙) and Γ(𝑖) are denoted as the length of the path in the graph and the first-order neighborhood of a node, 

respectively. 𝑊𝑖𝑗 contains the sum of the weights based on the parameters 
321 ,,   (Eq. 18) and makes the 

CCI-TrustWalker movement biased according to the edge weights. The reason for the use of  
𝑊𝑖𝑗

∑ 𝑊𝑖𝑗𝑗𝜖Γ(𝑖)
(𝑡) +

𝑊𝑗𝑖

∑ 𝑊𝑗𝑖𝑖𝜖Γ(𝑗)
(𝑡) is that in the CCI-TrustWalker movement, given that the level of trust between nodes “i and j” and 

“j and i” may be different and the symmetry problem is solved accordingly, the levels of trust of “i and j” and “j 

and i” are summed. 

 

 

3.5. Recommendation 
The recommender system operates in two parts. In the first step, if the score of the considered item is in the trust 

network, it is detected and presented to the target user by the recommender system. The implementation of the 

CCI-TrustWalker compares the behavior of the visited node with the target user in terms of item similarity. If the 

item similarity is satisfied between two users, it goes to the next node, and it repeats this operation to depth 6 in 

the trusted network in the case that the desired node is not found. It then recommends items to the target user, 

which have not been rated by the target user. However, they rated the visited nodes, and these items are dependent 

on the common items between two users, and also the scores given to them by the visited users are in the range 

of target user’s interests. Accordingly, first, the score that determines the target users’ level of interest should be 

discovered; for this purpose, the average scores given by the user must be detected. Hence, the following equations 

can be stated: 
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Lack of Interest = X <  Interests                       (21) 

In Eq. (20), uir  (item u) is rated by the user r and given a score i by the user. n is referred to as the number of rated 

items. The value of i is equal to the number of items rated by the user. Since the scores are integers, the average 

obtained from the user’s rating is placed within the absolute floor. Accordingly, if the score given to an item 

suggested by the visited user is equal or higher than the average user scores, it indicates the user's interest in that 

item, and if it is less than the value obtained for interests, it shows the user’s lack of interest in that particular item. 

The association rules are applied to assess the user’s behavior and identify repetitive and interdependent items. 

The used association rules consist of three items, as follows [5, 56]:  

1. Support: The ratio of the number of intersections in which both objects A and B are present, to the total number 

of records. The value obtained for support is in the range of 0 to 1, and the greater values indicate the higher 

relationship between these two objects. The support criterion for A and B is shown in Eq. (22) and Eq. (23) as 

follows: 

Supp ( A⟹ 0 ) = P ( A ∩ 0 ) = P (A) P ( 0 │A) = P (0) P (A│0)                   (22) 

Supp ( B⟹ 1 ) = P ( B ∩ 1 ) = P (B) P ( 1 │B) = P (1) P (B│1)                   (23) 



2. Confidence: The value of this criterion is also in the range of 0 to 1, and higher values will increase the quality 

of added rule. The use of this criterion, along with support, would be an excellent complement to evaluate the 

association rules. The confidence criterion for A and B is presented in Eq. (24) and Eq. (25) as follows: 

Conf ( A⟹ 0 ) = P (A│0)                   (24) 

Conf ( B⟹ 1 ) = P (B│1)                   (25) 

3. Lift: This criterion, also known as “Intersect Factor” or “Interestingness," shows the level of independence 

between objects A and B. The value of the criterion can be a numerical value between 0 to infinity. The values 

less than 1 indicate the negative relationship between A and B; hence, the extracted law is not attractive. The 

values higher than 1 indicate that A provides more information about B, causing a higher attractiveness of the 

evaluation law. The lift criterion for A and B is shown in Eq. (26) and Eq. (27) as the following: 
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For instance, suppose that the behavior of user X is as mentioned below as well as this user has rated the items 

according to Table 3 and provided the corresponding score for each in the range of [0-5] as follows: 

 

Table 3. An example of the behavior of user X  

User X 1 2 3 4 5 6 7 8 9 10 

Items 27 33 115 178 203 240 259 307 333 377 

Ratings 3 4 2 4 5 5 4 3 4 3 

As can be seen, the user has rated ten items and given the corresponding score to each of the items. In the 

beginning, the average scores given by users are calculated according to Eq. (20) to determine the minimum scores 

for the interest range of users, which is equal to (Interest Usex X →  ⌊3.7⌋ = 3 ). Accordingly, the items with a 

minimum score of 3 are in the range of the user’s interests. In the second step, the association rules are discussed, 

and the behavior of nodes that were visited in the trusted network and did not rate the considered item is compared 

with the user X, and the results are presented in Figure 1. 

 

 

 

 

 

 

 

 

Figure 1. The output obtained from the implementation of the association rules algorithm 

As shown in Figure 1, the relevant rules are extracted, and the most item repetitions are in Rules 4 and 6 

(highlighted in blue), which include five repeated items. The users’ behavioral similarity with the user X is in 4 

and 3 items in rules 4 and 6, respectively. The related items are also shown besides these items, which include the 

items 70,203,333. Therefore, it can be concluded that item 70 is related to the other five items. Thus, the score 

given to the item 70 is evaluated, and if its minimum score is equal to 3, it can be recommended to user X. If the 

Rule #1: [27  178  240]  --> [207  259] 
Support = 0.33

Confidenec = 0.872 

Lift = 1.23 
  

Rule #2: [27  178  307 333]  --> [35  240  377] 

Support = 0.21
Confidenec = 0.815 

Lift = 1.227 

  
Rule #3: [33  240]  --> [70] 

Support = 0.54

Confidenec = 0.8333 
Lift = 1.14 

  

Rule #4: [27  203  212  259  307]  --> [70  333] 
Support = 0.61228

Confidenec = 0.88146 

Lift = 1.33 

 

Rule #5: [33  112  203]  --> [70  95] 
Support = 0.6122

Confidenec = 0.8245 

Lift = 1.195 
  

Rule #6: [17  111  240  307  377]  --> [70  203  333] 

Support = 0.224
Confidenec = 0.7841 

Lift = 1.205 

  
Rule #7: [27  240]  --> [77  166  333] 

Support = 0.6014

Confidenec = 0.8144 
Lift = 1.333 

  

Rule #8: [127  178  333]  --> [77] 
Support = 0.5833

Confidenec = 0.8412 

Lift = 1.27 

 



score of item 70 is less than 3, other items extracted in the next rules can be discussed, and various 

recommendations can be made to the target user. 

 

4. Proposed Method 
The present research objective is to discover and predict the score of items that are considered unknown and were 

not rated by the target user, and finally, recommend the item to the user or items that have a friendly relationship 

with the considered item. For this purpose, the search is performed for the users who are trusted by the target user. 

The desired trust is defined and evaluated by a number of criteria, and then the recommendations related to the 

target user are presented based on the output. The steps of this operation in the proposed method are as presented 

in Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2. The framework of the proposed method 

 

As demonstrated, the proposed method consists of three phases. In the first phase, a trusted network is created for 

the target user, and the trusted network also consists of two user-item (behavioral similarity based on item 

selection) and user-user (possessing mutual friends) matrices and user-user. The trust network is created based on 

these two matrices, and the relationships between the users and the target user as well as other users are 

determined., In the second phase, after developing a trusted network, the trust is defined. The second phase also 

includes the calculation of rating similarity, connection similarity, and centrality-based trust. As mentioned earlier, 

in the present study, it is assumed that the degree of trust between users is obtained through the degree of similarity 

between them as well as the importance of users in social networks. To evaluate the similarity between users, the 

similarity between the items rated by them and also the degree of similarity in their connections (the number of 

friends) is applied, and also the importance of users in the social network is obtained based on the definition of a 

centrality which includes the definition of H-index and its improvement. Accordingly, the degree of trust between 

users in the trusted network created for the user is obtained by assessing the mentioned factors. The ways of 

evaluating and calculating each of these criteria for creating a trust has been fully explained in Section 3. In the 

third phase, the TrustWalker Model is also presented, and according to the results obtained from the first and 

second phases, it starts from the target user to visit the nodes using the Biased Random Walk (BRW) algorithm. 

In this phase, the movements between nodes will be affected by the weight of edges (based on three criteria 

defined for trust). In the following, some recommendations are presented to the target user according to the visited 

nodes and the obtained results. If the score of the searched item is available among the visited users, that item will 

be returned to the target user, and if the visited user has not rated that item, the behavioral similarity between the 



visited users and the target user is evaluated using association rules, and if there is a behavioral similarity, the 

items dependent to the rated items by the target user are recommended to the user, which is fully discussed in 

Section 3.5. Finally, the proposed method is evaluated, which includes the comparison of this method with other 

approaches. The algorithm of the proposed method is presented as Algorithm 1: 

 

Algorithm 1. 

Require: Target User 
tU  

1:   
tC UU   

2:                  while the walk is not terminated do 

3:      Assign a value to edges based on Trusted users: 

4:               Calculate   
321 )2(          // formula 18 

5:        S = Select one of the Active User (n) neighbors  by TrustWalker 

6:                        If S has a rating for target item then 

7:       Return the rating value 

8:        end 

9:  end 

10:    Calculate 
kuiP ,,

             // formula 11 

11:         R = Random Number 

12:                If    R<
kuiP ,,

 &&  0),( baSimPea
  // Formula 1  &&  Steps = Max_Step   // 6 degree 

13:     Calculate Association Rules  

14:           else if    

15:                R<
kuiP ,,

 &&  0),( baSimPea
  &&  Steps > Max_Step  

16:           Return 0 or 1    // formula 15 and 16 

17:           while Steps < Max_Step   

18:    Calculate step 10 

19:     else 

20:             Return “Can not cover” 
21:                 end 

22:            end 

23:       end 

 

5. Experiments 

5.1. Datasets 
In the present research, in order to evaluate the proposed method, the datasets of the Ref. [57] were used, and the 

descriptions provided for each of the datasets are as follows: 

In this paper, three real-world datasets including Epinions1, Flixster2, FilmTrust3 are used in the experiments [57]. 

Epinions is a website in which users can express their opinions about items (such as movies, books, and software) 

by assigning numerical ratings and writing text reviews. Users can specify other users as trustworthy (to the trust 

list) or untrustworthy (to the distrust list) according to whether the text reviews and comments of other users are 

consistently valuable to them or not. The data set is generated by [36], consisting of 49 K users who issued 664 K 

ratings over 139 K different items and 478 K trust statements. The ratings are integers ranged from 1 to 5, and the 

trust values are also binary (either 1 or 0).  

Flixster is a social movie site in which users are allowed to share their movie ratings, discover new movies, and 

interact with others who have similar tastes. We adopt the data set4 collected by [15] which includes a large amount 

of data. The ratings are real values ranged from 0.5 to 4.0 with an interval 0.5, and the trust statements are scaled 

from 1 to 10 but not available. Hence, they are converted into binary values the same as FilmTrust, that is, trust 

value 1 is assigned to a user who is identified as a trusted neighbor and 0 otherwise. Note that the trust statements 

                                                           
1 http://www.epinions.com 
2 http://www.flixster.com 
3 http://trust.mindswap.org/FilmTrust 
4 http://www.cs.sfu.ca/sja25/personal/datasets 



in this data set is symmetric. We sample a subset by randomly choosing 53 K users who issued 410K item ratings 

and 655 K trust ratings. 

FilmTrust is a trust-based social site in which users can rate and review movies. Since there are no publicly 

available data sets due to the preservation of user privacy, we crawled the whole site in June 2011, collecting 1986 

users, 2071 movies, and 35,497 ratings. The ratings take values from 0.5 to 4.0 with step 0.5. In addition, we also 

gathered 1853 trust ratings that are issued by 609 users. The average number of trusted neighbors per user is less 

than 1. Originally, users can specify other users as trusted neighbors with a certain level of trust from 1 to 10. 

However, these trust values are not available due to the sharing policy. We can only get the link information 

among users and hence the trust value is 1 if a link exists between two users otherwise the value is 0. 

It is noted that all the data sets are highly sparse, i.e., users only rate a small portion of items in the system. The 

rating sparsity is computed by: 

 

Sparsity = 100)(1 



ItemsUsers

Ratings
              (28) 

The information about each of the datasets is presented in Table 3. 

Table 3. The information about the studied datasets 

Data set Users Items Ratings Trust Sparsity (%) 

Epinions 49K 139K 664K 478K 99.95 

Flixster 53K 18K 410K 650K 99.96 

FilmTrust 1986 2071 35,497 1853 99.86 

 

5.2. Evaluation Measures 
Leave-One-Out (LOO) method has been extensively used to evaluate recommender systems [15, 58, 59]. In the 

present article, LOO is applied to assess the proposed method, and the precision of different algorithms in 

predicting the score of the items is compared by hiding the actual scores. Mean Absolute Error (MAE) and Root 

Mean Squared Error (RMSE) have been used in various studies [15, 20, 59]. The calculation of error of the 

recommender systems using MAE and RMSE is performed by the following equations: 
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Where, 
suR ,
 implies the actual score of the items rated by the user and 

suR ,
  is the predicted score for the items by 

the recommender system. N is the total number of predictions made by the recommender system. The lower the 

value obtained for both equations, the lower the algorithms' error in predicting the score of items; hence, the 

algorithm with the lowest error is more precise in predicting the score of items. Since the evaluated data are 

limited, the recommender system may not be capable of predicting the score of items for all users and items due 

to data scattering and lack of information in some cases. In order to predict the score of items and calculate the 

similarity between users, the relevant information of each user should be available that includes <User: Centrality, 

Item>, and if the recommender system does not have this information, it will be unable to cover this user. Hence: 

100 Coverage 
N

S                (31) 

Where, S implies the number of predicted scores and N is the number of tested scores, and it indicates how many 

scores the recommender system could cover and test the data for each Coverage dataset. 

 

Precision: In this context, precision refers to a normalized form of RMSA and is defined as follows: 



MaxRMSE

RMSE
 -1Precision                (32) 

In this regard, for the Epinions dataset, the score range is between [1,5], and the value of 
MaxRMSE = 4 is 

considered as the maximum possible error [15, 59]. For the Flixster dataset, the score range is between [0.5,4.0], 

and the value of 
MaxRMSE =3 is considered as the maximum possible error. In this context, for the FilmTrust 

dataset, the score range is between [1,10], and the value of 
MaxRMSE = 9 is considered as the maximum possible 

error. F-Measure is the next criterion to be evaluated and is defined as follows: 

 

 CoveragePrecision 

 CoveragePrecision 2
 Measure-F
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            (33) 

5.3. Comparing with Other Methods 
In this section, the proposed method is compared with other approaches based on the considered criteria, and the 

efficiency of each method is evaluated. The compared methods include CFPearson [60], ItemCF [61], TidalTrust 

[58], MoleTrust [36], TrustWalker [15], CoTrustWalker [62], CliquesWalker [63], TrustMF [54], TrustSVD [40], 

and Trust-Enhanced [59] and the results have been obtained based on the criteria considered from the comparison 

of the proposed algorithm called Centrality Connection Items-TrustWalker (CCI-TrustWalker) with other 

algorithms and on the stated datasets. The users have also been classified into four categories: 25%, 50%, 75%, 

and 100%. The MAE and RMSE criteria are implemented for each of the mentioned intervals, and the results are 

presented in Tables 4, 5, and 6 as follows: 

 
Table 4. Epinions dataset MAE and RMSE 

 EPINIONS 
25% 50% 75% 100% 

MAE RMSE MAE RMSE MAE RMSE MAE RMSE 

1 CFPearson 0.8752 0.9355 0.8326 0.9124 0.8157 0.9031 0.8517 0.9228 

2 ItemCF 0.8122 0.9011 0.8375 0.9151 0.8144 0.9024 0.7672 0.8758 

3 TidalTrust 0.7711 0.8781 0.7955 0.8919 0.8149 0.9027 0.7147 0.8453 

4 MoleTrust 0.8221 0.9066 0.7433 0.8621 0.7315 0.8552 0.8176 0.9042 

5 TrustWalker 0.7948 0.8915 0.7339 0.8566 0.6552 0.8094 0.6773 0.8229 

6 CoTrustWalker 0.6525 0.8077 0.6725 0.8200 0.5335 0.7304 0.5426 0.7366 

7 CliquesWalker 0.6438 0.8023 0.6339 0.7961 0.6019 0.7758 0.5202 0.7212 

8 TrustMF 0.6178 0.7860 0.7224 0.8499 0.6064 0.7787 0.5925 0.7697 

9 TrustSVD 0.6517 0.8072 0.6104 0.7812 0.5823 0.7630 0.5546 0.7447 

10 Trust-Enhanced 0.5209 0.7217 0.5147 0.7174 0.4887 0.6990 0.5052 0.7107 

11 CCI- TrustWalker 0.4141 0.6435 0.3702 0.6084 0.3555 0.5962 0.3324 0.5765 

 

Table 5. Flixster dataset MAE and RMSE 

 FLIXSTER 
25% 50% 75% 100% 

MAE RMSE MAE RMSE MAE RMSE MAE RMSE 

1 CFPearson 0.8996 0.9484 0.8502 0.9220 0.8144 0.9024 0.7224 0.8499 

2 ItemCF 0.8577 0.9261 0.8621 0.9284 0.8225 0.9069 0.7416 0.8611 

3 TidalTrust 0.8100 0.9000 0.7855 0.8862 0.7362 0.8580 0.7446 0.8629 

4 MoleTrust 0.7663 0.8753 0.7230 0.8502 0.7495 0.8657 0.6844 0.8272 

5 TrustWalker 0.7544 0.8685 0.7108 0.8430 0.7233 0.8504 0.6430 0.8018 

6 CoTrustWalker 0.8004 0.8946 0.8125 0.9013 0.7150 0.8455 0.6314 0.7946 

7 CliquesWalker 0.7436 0.8623 0.8004 0.8946 0.7364 0.8581 0.6666 0.8164 

8 TrustMF 0.6547 0. 8091 0.6320 0.7949 0.6500 0.8062 0.5901 0.7681 

9 TrustSVD 0.5669 0.7529 0.5435 0.7372 0.5514 0.7425 0.5107 0.7146 

10 Trust-Enhanced 0.5503 0.7418 0.5127 0.7160 0.5001 0.7071 0.4667 0.6831 

11 CCI- TrustWalker 0.4217 0.6493 0.4012 0.6334 0.3879 0.6228 0.3547 0.5955 



Table 6. FilmTrust dataset MAE and RMSE 

 FILMTRUST 
25% 50% 75% 100% 

MAE RMSE MAE RMSE MAE RMSE MAE RMSE 

1 CFPearson 0.8604 0.9275 0.8210 0.9060 0.7714 0.8782 0.6743 0.8211 
2 ItemCF 0.8021 0.8956 0.7422 0.8615 0.8055 0.8974 0.7336 0.8565 

3 TidalTrust 0.7816 0.8840 0.7314 0.8552 0.6825 0.8261 0.7100 0.8426 

4 MoleTrust 0.8210 0.9060 0.8354 0.9140 0.7438 0.8624 0.6775 0.8231 
5 TrustWalker 0.7652 0.8747 0.7750 0.8803 0.7229 0.8502 0.6744 0.8212 

6 CoTrustWalker 0.7324 0.8558 0.6655 0.8157 0.6111 0.7817 0.6332 0.7957 

7 CliquesWalker 0.6419 0.8011 0.5918 0.7692 0.5554 0.7452 0.5104 0.7144 
8 TrustMF 0.7116 0.8435 0.6413 0.8008 0.5633 0.7505 0.5764 0.7592 

9 TrustSVD 0.6300 0.7937 0.5863 0.7657 0.4818 0.6941 0.4580 0.6767 

10 Trust-Enhanced 0.5867 0.7659 0.5240 0.7238 0.4633 0.6806 0.4166 0.6454 

11 CCI- TrustWalker 0.4829 0.6949 0.4355 0.6599 0.3691 0.6075 0.3417 0.5845 

 

As can be seen, the CCI-TrustWalker algorithm has the lowest error in all three datasets compared to other 

algorithms. In the following, the precision criterion is calculated, and the accuracy of the algorithms is calculated 

according to the RMSE value obtained for each of the algorithms. Also, the results obtained for each algorithm 

are compared and presented in Table 7 as follows: 

 
Table 7. Epinions, Flixster, and FilmTrust  datasets Precision 

Epinions 

Precision 25% 50% 75% 100% Flixster 

FilmTrust 

1 CFPearson 

0.7661 0.7719 0.7742 0.7693 

0.6838 0.6926 0.6992 0.7183 

0.8969 0.8993 0.9024 0.9087 

2 ItemCF 

0.7747 0.7712 0.7744 0.7810 

0.6913 0.6905 0.6977 0.7129 

0.9004 0.9042 0.9002 0.9048 

3 TidalTrust 

0.7804 0.7770 0.7743 0.7886 

0.7000 0.7046 0.7140 0.7123 

0.9017 0.9049 0.9082 0.9063 

4 MoleTrust 

0.7733 0.7844 0.7862 0.7744 

0.7082 0.7166 0.7114 0.7242 

0.8993 0.8984 0.9041 0.9085 

5 TrustWalker 

0.7771 0.7858 0.7976 0.7942 

0.7105 0.7190 0.7165 0.7327 

0.9028 0.9021 0.9055 0.9087 

6 CoTrustWalker 

0.7980 0.7950 0.8174 0.8158 

0.7018 0.6995 0.7181 0.7351 

0.9049 0.9093 0.9131 0.9115 

7 CliquesWalker 

0.7994 0.8009 0.8060 0.8197 

0.7125 0.7018 0.7139 0.7278 

0.9109 0.9145 0.9172 0.9206 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In each row of Table 3, each of the algorithms has been implemented for different intervals in all three datasets, 

and each dataset is marked with a separate color. Also, in each row, Precision's maximum value is highlighted in 

8 TrustMF 

0.8035 0.7875 0.8053 0.8075 

0.7303 0.7350 0.7312 0.7439 

0.9062 0.9110 0.9166 0.9156 

9 TrustSVD 

0.7982 0.8047 0.8092 0.8138 

0.7490 0.7542 0.7525 0.7618 

0.9118 0.9149 0.9228 0.9248 

10 Trust-Enhanced 

0.8195 0.8206 0.8252 0.8223 

0.7527 0.7613 0.7643 0.7723 

0.9149 0.9195 0.9243 0.9282 

11 CCI- TrustWalker 

0.8391 0.8479 0.8509 0.8558 

0.7835 0.7888 0.7924 0.8015 

0.9227 0.9266 0.9325 0.9350 



yellow for each implementation of the relevant algorithm in each dataset. As can be seen, the maximum value of 

Precision in all three datasets is related to the CCI-TrustWalker algorithm. Finally, the algorithms are evaluated 

using the F-Measure criterion. Before performing this action, it is needed to calculate the Coverage for each of 

the algorithms in all three datasets, the results of which are indicated in Figure 3 as follows: 

 

 

 

 

 

 

 

 

 

 

 

Fig 3. Algorithms Coverage in the datasets 

As evidenced, the CCI-TrustWalker algorithm had the highest Coverage in all three datasets compared to other 

algorithms. The F-Measure criterion is calculated based on the obtained Coverage and Precision, and the results 

are presented in Table 8. 

 

 

 

 

 

 
Table 8. Epinions, Flixster, and FilmTrust  datasets F–Measure 

Epinions 

F–Measure 25% 50% 75% 100% Flixster 

FilmTrust 

1 CFPearson 

0.5508 0.5523 0.5529 0.5516 

0.5842 0.5874 0.5897 0.5964 

0.6337 0.6343 0.6351 0.6366 

2 ItemCF 

0.6500 0.6488 0.6499 0.6522 

0.5665 0.5663 0.5682 0.5737 

0.7272 0.7285 0.7272 0.7287 

3 TidalTrust 

0.6910 0.6896 0.6886 0.6942 

0.5967 0.5983 0.6017 0.6011 

0.7621 0.7632 0.7644 0.7637 

4 MoleTrust 0.6359 0.6396 0.6402 0.6360 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.6989 0.7030 0.7005 0.7066 

0.6259 0.6256 0.6270 0.6281 

5 TrustWalker 

0.6958 0.6993 0.7039 0.7026 

0.6325 0.6401 0.6349 0.6411 

0.6599 0.6597 0.6606 0.6614 

6 CoTrustWalker 

0.6849 0.6838 0.6920 0.6914 

0.6166 0.6158 0.6229 0.6292 

0.5829 0.5838 0.5846 0.5843 

7 CliquesWalker 

0.6374 0.6378 0.6394 0.6437 

0.5516 0.5483 0.5520 0.5561 

0.7979 0.7993 0.8004 0.8016 

8 TrustMF 

0.7594 0.7522 0.7602 0.7612 

0.6933 0.6954 0.6937 0.6994 

0.7834 0.7852 0.7873 0.7869 

9 TrustSVD 

0.7679 0.7709 0.7730 0.7751 

0.7497 0.7520 0.7512 0.7558 

0.7724 0.7735 0.7763 0.7770 

10 Trust-Enhanced 

0.7832 0.7837 0.7858 0.7844 

0.7033 0.7070 0.7083 0.7174 

0.8478 0.8498 0.8518 0.8535 

11 CCI- TrustWalker 

0.8590 0.8636 0.8652 0.8677 

0.8013 0.8040 0.8059 0.8106 

0.8848 0.8866 0.8893 0.8904 



As demonstrated, the maximum value for each of the algorithms and in each dataset is highlighted in yellow color. 

The results presented in Table 4 in all three datasets indicate that the method presented in the present study has 

higher efficiency than other algorithms based on the F-Measure criterion. 

 

6. Conclusions 
In the present article, the scores of items that the user has not rated were predicted, and a trust-based recommender 

system was used to predict the score of these items. For this purpose, a trusted network is created that includes 

users who have similarities in behaviors with the target user in the selection of items and friends. After creating 

the trusted network, a TrustWalker is developed that randomly selects the nodes in the trusted network by 

employing the BRW algorithm. Before the movement of TrustWalker between users on the network, the degree 

of trust between them is defined and calculated. In order to define trust between users, three criteria are applied 

that include the similarity of the selection of items by users, the similarity in the connections (mutual friends), and 

also the importance of a node in the social network. Centrality has been defined for each node, and H-index has 

been used and improved to evaluate the node's importance in the social network. 

After calculating each of these criteria, the results have been used to weigh the nodes' edges. The greater the values 

for weights of edges, the higher the degree of trust between the two nodes with which the edge is connected. After 

weighting the edges, the BRW algorithm is implemented, which starts moving from the source node and visits the 

node at each random step. The weight of each edge affects the selection of the BRW random step. TrustWalker 

evaluates two modes for terminating the walk on the trusted network. An important point in the implementation 

of the proposed method is that in the weighting of the edges between the nodes, the degree of behavioral similarity 

between the nodes is considered doubled compared to the other two criteria with impact factors, and this leads to 

more probability of the selection of users with behavioral similarity with the target user. It also makes it possible 

to discover the items dependent on the target user’s interests using the association rules and behavioral similarity 

between them in the case that the searched item is not rated by visited users. 

The proposed recommender system also acts in two modes. In the first mode, if the system finds the score of the 

desired item, returns it to the target user, and in the second mode, if it does not detect the score of the item, it finds 

some items and recommends that these items have dependencies with the selected items by the target user. The 

results obtained from the output of the proposed method in the present research, in comparison with other methods 

in the evaluation section, indicate better performance of this algorithm. The proposed method has also caused the 

BRW to move toward nodes that are trustful to the source user. This trust itself is obtained from the degree of 

similarity between users and their importance in the social network, making the recommender system either find 

the score of the searched item immediately or make some recommendations to the users in the range of their 

interests. 
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