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Abstract
Clustering can be a valuable tool for analyzing large datasets, such as in e-commerce applications.
Anyone who clusters must choose how many item clusters, K, to report. Unfortunately, one must
guess at K or some related parameter. Elsewhere we introduced a strongly-supported heuristic,
RSQRT, which predicts K as a function of the attribute or item count, depending on attribute
scales. We conducted a second analysis where we sought confirmation of the heuristic, analyzing
data sets from theUCImachine learning benchmark repository. For the 25 studies where sufficient
detail was available, we again found strong support. Also, in a side-by-side comparison of 28
studies, RSQRT best-predicted K and the Bayesian information criterion (BIC) predicted K are the
same. RSQRT has a lower cost of O(log log n) versus O(n2) for BIC, and is more widely
applicable. Using RSQRT prospectively could be much better than merely guessing.
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1. INTRODUCTION
Clustering can be a valuable tool for analyzing large amounts of data such as business
transactions, network events, customer profiles, and activity levels. It is commonly used in
e-commerce, data mining, or science (Lin and Dyer 2010).Among other issues, anyone who
clusters faces a vexing problem: how many item clusters, K, to report. Ideally some
algorithm decides the number of clusters. Unfortunately, as several authors lament, the
clustering literature offers little help in predicting K. For example, Dubes (1987) says that
“one of the most venerable problems in cluster analysis is: how many clusters are in the
data?” Cadez and Smyth (1999) refer to the :”ever-thorny question of how many clusters are
being suggested by the data.” And Jain and Moreau (1987) indicate that a “very difficult
problem in cluster analysis is to determine the number of clusters present in a data set.”
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Therefore, one must guess at K or some other related parameter with each of the three
computational frameworks available in the clustering literature: Euclidean, model-based and
complexity theory.

In the Euclidean framework cluster analysis techniques compare items using distance
measures (Euclidean, Mahalanobis, Jaccard, etc.) (Restle 1959, Everitt 1993, Gordon 1981,
Jain and Dubes 1988, Hartigan 1975, Tversky 1977). Euclidean technique authors are
largely silent about predicting K, focusing instead on time complexity, statistical soundness,
evaluating goodness given a K value, etc. So one must resort to trying every possible K
value (which is often computationally infeasible), or to guessing. For example, a researcher
might: for each K-means analysis, guess what K to supply as an input parameter; after each
hierarchical clustering, guess where to cut a dendrogram to determine K; and, for either
technique, guess which of several, often-conflicting goodness measures yields the “best” K
(Jain and Dubes 1988, Hartigan 1975, Kaufman and Rousseeuw 1990, Dunn 1974, Gyenesei
2000, Milligan et al. 1983, Halkidi et al. 2000, Turenne 2000).

In the model-based framework, one hypothesizes a mixture of underlying probability
distributions generating the data with each mixture component representing a different
cluster (Dubes 1987, Fraley and Raferty 1998). With Bayesian theory, one can sometimes
predict the number of components, but “even for the relatively simple Gaussian mixture
model, the posterior cannot be calculated in closed form and must either be approximated
analytically or estimated via sampling” (Smyth 2000). The Bayesian information criterion
(BIC) can approximate the Bayesian model, but for only about a half-dozen components,
beyond which it poses a substantial computational burden(Fraley and Raferty, 1998, 2000;
Banfield and Raferty 1993). More importantly, one must still guess which model (spherical,
diagonal, non-diagonal, etc.) best represents the cluster shapes (Bensmail and Celeux 1996).

In the complexity theory framework, global structure emerges from local activity rules; a
system of elements (items) settles into K attractors (clusters); and power laws predict the
element distribution(Lewin 1992).Unfortunately, complexity theory authors too are largely
silent about K. A notable exception is Kauffman (1993) who observed a roughly square root
relationship between elements and attractors, for example, in a Boolean network of 100
elements there were eight attractors, and one with 1,000 elements had 33 attractors. Others
have observed organisms where the number of cell types was roughly the square root of the
number of genes (Lewin 1992).

Whatever the framework, generally one must guess repeatedly, somehow picking an initial
K, clustering, examining the results, picking a hopefully-better K, re-clustering – and so on
until one homes in on a value of K that yields a satisfactory story. Of course, the analysis
may not be so simple. One might try several K values at once, experiment with distance
measures, analyze subsets of the data, etc. Sometimes a less pejorative term than “guess
repeatedly” for this process is used, such as calling K “empirically chosen”(Bertone 2001)–
but one still must guess.

Intrigued by Kauffman's square root observation, we set out to determine if it fit the K
values that researchers actually have reported, and, more generally, to discover patterns in
those K values that could assist in choosing K. To that end, we performed two analyses of
reported K values, the first reported in Carlis and Bruso (2010), developed an heuristic
predictive of K, and found that that the heuristic is a possible substitute for BIC, since it is
cheaper and more widely applicable than BIC.

In the following sections we describe the RSQRT heuristic, and the data and results from the
two studies. We then compare RSQRT with BIC, and related work. We finish with a
discussion about aspects of RSQRT and the possibility of using it prospectively.
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2. THE RSQRT HEURISTIC
Thus motivated, we began acquiring clustering articles, keeping track of a study's K reported
clusters, and n items, where an item is a set of variable values of interest to a user. An item
might be a purchase, a network packet delivery, a customer’s demographic characteristics,
or a protein’s expression levels under differing experimental conditions. Since it quickly
became apparent that Kauffman’s notion would not be sufficient, we also tracked each
study’s t attributes, and each attribute's scale, which, broadly, is nominal (name, category,
true/false, color, etc.) or numeric (temperature, weight, percentage, count, distance, etc.).
Think of each study’s data represented in a simple table with items as rows, attributes as
columns, and result clusters as groups of rows with each row assigned by the clustering
process to exactly one cluster.

After examining a few studies we devised a recursive square rootheuristic, RSQRT,
extending Kauffman’s notion two ways. First, we noticed that sometimes the value of
Kreported (always an integer) was closer to t0.5 than to n0.5, depending on the scale of the
variables. So RSQRT has a count-of-things parameter, which is n if a study's attributes are
all numeric, and is t if they are all nominal or of mixed scales. We note that nominal scales
seem to dominate for clustering.

Second, while the square root of n or t is often far from the Kreported, we noticed that the
fourth root, or higher, is often much closer to Kreported. So RSQRT produces a list of
predicted values for K following this formula for x things, where x is n or t, as follows:

and r is called the recursion level.

For example, a study with 10,000 things has RSQRT(10,000) = {100, 10, 3.1, 1.76}, and the
maximum possible r is rmax = 4. RSQRT repeatedly takes square roots, terminating when its
last value is below 2.25, because the next list value would be closer to 1 than 2, and K = 1
would add no value. If this example study's Kreported = 3 then its Kbest-predicted = 3.1, its r = 3
(eighth root), and its difference, d = | Kreported − Kbest-predicted | = 0.1.

The heuristic predicts that Kreported will be close to a Kpredicted value, that is, d will be small.
Do not misinterpret d, which means difference, not error. We do not presume to judge the
goodness of the values of Kreported that researchers and reviewers found worthy. Instead, we
are looking to find helpful patterns in what they report.

3. METHODS
To assess the goodness of the heuristic's fit and the breadth of its applicability, we sought a
broad collection of articles coming from mostly biomedical disciplines, with only 10% or so
of the studies related to e-commerce. The studies employed many different clustering
techniques. We focused on real datasets, and excluded synthetic data sets. A few articles had
more than one "study,” analyzing more than one dataset or using more than one clustering
technique. Of course, we expect that most researchers try more than one technique, distance
measure, or K, but only report the best results, or just those that offer insight to a problem,
and were acceptable to reviewers – ones that help tell a coherent story.

We acquired 251 studies but dismissed 25 because, although the authors used clustering
analysis techniques, they had predetermined K, and therefore, we think, classified, not
clustered. We note that predetermined determined clusters might be called natural clusters,
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but their use is post-clustering. This generally involves assigning a new item to one of those
clusters, that is, classifying it, not clustering. The remaining 226 studies encompass 44
different subject areas (Table 1), and use several dozen different clustering techniques
(Table 2), and use whatever distance measures were appropriate for their data. These studies
come from various places, mostly journals, with about half found via PUBMED.

4. RESULTS
This milieu exhibits a “serial and periodic” characteristic, for which a spiral display can be
valuable (Carlis and Konstan 1998). Therefore, with Figure 1's spiral we compactly present
various study properties: scale, r, d and the Kreported distribution. A spiral of Archimedes is
augmented so that square and higher roots are readily discernible, for example, the ray
passing from the origin through 256, and 16, the square root of 256, is where the next inner
lap of the spiral touches the ray (r = 1); the fourth root (4) is on the second inner lap (r = 2),
etc. For each of the 226 studies a symbol appears on the spiral showing its:

attribute scale kind by its fill (bluish = numeric; amber-ish = nominal or mixed);

t(amber shape) or n(blue shape) value by its position, with position numbers on the
outside of the spiral line.

d category by its darkness (darker means a better fit with the heuristic), with these
categories:

• darkest (d≤0.5; which rounds to an exact match);

• dark(0.5≤d< 1.0);

• pale(1.0≤d< 2.0);

• palest (d≥2.0).

r by r+2 sides to its shape (more sides means higher recursion), for example, r = 1
appears as a triangle.

Note that studies may be stacked at a position, for example, several studies stack at 30,
where the law of large numbers begins to give a study statistical significance. Also on the
spiral is the frequency distribution of Kreported, depicted with italicized numbers on the
inside of the spiral line, for example, 24 studies have Kreported = 5.

Here is a brief description of one study for each kind of attribute scale, plus how it appears
on the spiral.

All nominal. A group of n = 136 people, normal or diagnosed with schizophrenia, were
measured on t = 70 variables. Using intra-group agreement scores calculated by hand,
groups of individuals similar among themselves were analyzed to detect common
response patterns. Zubin (1938) reports nine clusters of people. Applying RSQRT to t
we get RSQRT(70) = {8.3, 2.8, 1.7} An arrow points to the medium dark amber (d =
0.7) triangle (r = 1) for this study, which is one of five studies reporting nine clusters.

All numeric. A group of n = 655 cancer and control patients were clustered using K-
means according to their measured food-intake (t = 1). Chen et al. (2002) report six
clusters of patients. Applying RSQRT to n we get RSQRT(655) = {25.59, 5.05, 2.24}.
An arrow points to the medium dark blue (d = 0.95) square (r = 2) for this study, which
is one of fifteen studies reporting six clusters.

Mixed. Electromicroscopy is used to measure t = 16 characteristics of n = 42 species of
pollen. There are twelve continuous variables (numeric) measuring geometric properties
of the trilobed grains and four discrete (nominal) variables measuring, by unreported
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means, the presence or absence of patterns. Applying RSQRT to t, we get RSQRT(16)
= {4}. Small et al. (1971) report four clusters of species. An arrow points to the darkest
amber (d = 0.0) triangle (r = 1) for this study, which is one of forty studies reporting
four clusters.

Next, our examination of the results focuses on r and d.

For r, the recursion level, Figure 1 and Table 3 show that fewer numeric scale studies had r
= 1 (blue triangles) than r> 1 (blue squares, etc.), but the opposite holds for nominal or
mixed studies (amber shapes). This is sensible since a study’s n value generally is
considerably larger than its t value. Only a few studies have a t large enough for the formula
to calculate an eighth or sixteenth root, and none of those roots had the best d. So
Kauffman’s square root of n notion (blue triangle) fits just 58 studies, which is about one of
three numeric studies and about one of four studies overall.

For d, the difference between predicted and reported, the predominantly dark (blue or
amber) shapes in Figure 1 and the distribution of d values in Table 4 strongly support the
heuristic. The median d is 0.4 and the average d is 1.3, both of which are much smaller than
Kauffman’s examples led us to expect. For over half of the studies d exactly matches the
Kbest predicted (darkest shapes), that is, d≤0.5, and we round to the nearest integer to obtain
Kpredicted. Also, d≤1.0 for >3 out of four studies, and d≤2.0 for >9 out of ten studies. The
distribution of d values is approximately the same for each of the attribute scales as it is
overall. (Note the darkness pattern for blue and amber shapes in Figure 1.)

We looked in more detail at the worst fitting studies, with d> 2 (palest shapes), and found
that all but two of the 21 such studies had one or more extenuating factors qualifying its
poor fit. First, the four studies with the largest d values cluster data with more complex
distances than simple numeric ones, using either multiple genomic sequence segments or
molecule shapes. Excluding just these four studies lowers the average d to a remarkable 0.8.
Second, eight large d studies come from articles where other studies analyzing its dataset
had an exactly matching Kreported. Third, three large d studies, although they used real data,
came from a software vendor's tutorial intended to illustrate clustering techniques rather than
report refereed scientific results. Fourth, two large d studies used expert opinion, one
employing a self-described “poor man's” clustering technique, while the other was based on
a now-obsolete soils taxonomy. Finally, seven large d studies used hierarchical
agglomerative clustering (HAC), which yields a dendrogram not clusters, and researchers
had to guess about where to cut the dendrogram to form clusters. (Even including these
poorly fitting studies, the median d for studies using HAC overall was 0.4.) Therefore, the
RSQRT heuristic is even more strongly supported than it appears at first.

We also analyzed three other d properties, finding that each supports the heuristic. First, we
verified that the recursive square root was a better fit than other functions, for example, cube
root or log. Figure 2 shows the distribution of the count of studies versus the root for
Kreported. These values were calculated using log(Kreported) ÷ log(n or t, as appropriate).
Figure 2 has large peaks at 0.5 (square root) and 0.25 (fourth root); and has minor peaks at
0.12 (eighth root) and 0.06 (sixteenth root). Further, there are no noticeable peaks at .33 or
elsewhere, which, if present, would provide support for the cube root or other roots. Figure 3
plots d versus the reported K for log and for RSQRT. Note that for K = 4 and beyond, the d
using the log is always larger than the d using RSQRT. There is no recursive application of
log for this set of studies because log(log(m)) or log(log(t)) nearly always produces a value
less than 1, which would imply no clustering. Second, the sign of Kreported − Kbest predicted is
about evenly divided between positive (122 studies) and negative or zero (104 studies).
Third, the paired t test shows RSQRT is statistically better (p<0.05) than its opposite, that is,
using t as an argument to RSQRT with numeric scale data, and n with nominal or mixed.
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Finally, as shown in Figure 4, removing the Kreported = 2 or 3 studies, where d cannot be
more than 1.0, somewhat worsens the d statistics, but does not qualitatively change our
assessment.

Next, to validate the heuristic further, we conducted a second analysis, applying the heuristic
against the University of California Irvine Machine Learning Repository, using the Fiebrink
subset, where 25 studies met the criteria for our analysis of the heuristic(Fiebrink et al.
2005). The others lacked sufficient detail, clustered on sequences, or performed
classification, not clustering.

Figure 5 shows the cumulative frequency distribution of the d values. It shows that in the
second analysis most of the d values are small, and if added to Figure 1, would have dark
values. Figure 4 also plots the distribution if small K values are excluded, ones where d
cannot be large.

As shown in Figure 6, the exponent of Kreported values peaks at .5 and .25 (as in Figure 2),
and 92% (23 of 25) of the d values are less than 0.5 (which is exactly matching). Figure 7
shows a side-by-side comparison of the Machine Learning Repository data sets and the first
analysis’ data sets. Both collections show a local maxima near 0.5 (square root) and near
0.25 (fourth root). The original data set also shows small peaks near 0.12 (eighth root) and
0.06 (sixteenth root).

In sum, the two analyses each show strong support for the RSQRT heuristic. The k
distribution, r distribution, d properties, and other characteristics are substantially the same
in both.

5. RSQRT VERSUS BIC
BIC is a widely used technique for estimating the number of clusters in a data set.(Banfield
and Raferty 1993; Bensmail and Celeux 1996; Fraley and Raferty 1998, 2000).In order to
support our claim for the usefulness of RSQRT, we performed an experiment to compare,
for the same data sets, the RSQRT best predictions against the reported BIC prediction,
where the authors had to guess, perhaps repeatedly, which model best represents the cluster
shapes.

We chose 27 journal articles that used BIC as a data analysis technique, from IEEE,
PubMed, and Citeseer. These articles were all published in refereed journals and so had their
BIC estimates and results vetted by peer review. We vetted the articles using the same
criteria we used to subset our more general set of 251 journal articles. We rejected two
because we could not determine n, the original number of items in the data set being
analyzed; we rejected four because the studies used only synthetic data; we rejected ten
because they used BIC for classification not for clustering; and we rejected one because it
clustered sequences of data, which we know RSQRT does not handle well. This left 12
journal articles, three of which were part of the first analysis. They describe 28 studies.

We performed pairwise statistical analysis on the K values using the null hypothesis that the
estimates generated by BIC and RSQRT. They are equal and the alternate hypothesis that
the estimates are different. The t-statistic is 1.548. The two-tailed t critical value for 27 d.f.
with a .05 significance level (90%) is 2.052. Since 1.548 is less than 2.052, we cannot reject
the null hypothesis, meaning that we accept the null hypothesis that the BIC estimate and the
RSQRT estimate are equal.

We used a paired statistic for analyzing whether the predicted value from BIC and the
predicted value from RSQRT are the same. For the statistical analysis, our null hypothesis is
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that the mean d value for the paired difference is 0: that is, the two predicted values are
equal. The alternate hypothesis is that they are not equal. There were these statistics: BIC -
RSQRT = 0; count = 28; average difference = 1.14; std. dev. = 3.897; t score = 1.548. The
standard t score α = .050 for a two-tailed test with 27 degrees of freedom is 2.052. Since
1.548 is less than 2.052, we do not reject the null hypothesis. The p-value for this test is
0.1212. Since the p-value is greater than the α value of .050, again we do not reject the null
hypothesis. In summary, we cannot reject the null hypothesis.

The consequences of this comparison are threefold. First, the analysis shows that from a
statistical viewpoint, BIC and RSQRT estimate the same number of clusters in a data set.
Soit appears that either technique may be used, although more confirming evidence is
desirable.

Second, RSQRT, with a computational complexity of O(log log n), has an advantage over
BIC with a computational complexity of O(n2). To use BIC effectively, a researcher must
guess at shapes, and calculate BIC across multiple K values against multiple statistical
models to get a BICpredicted value for K. The effective computational cost is w choices for
Ky model choices timesO(n2). From a researcher’s standpoint, BIC is burdensome.

Third, RSQRT applies more broadly than BIC. RSQRT applies to both nominal scale
attributes and numeric scale attributes. With BIC you must pay close attention to nominal
scale attributes to avoid having them dominate the numeric scale attributes.

6. OTHER RELATED WORK
Two other research efforts deserve mention here. Tibshirani et al. (2001) proposed the gap
statistic procedure to generate a set of possible values for k and then identify the most likely
K value. This is the value of K with the minimum value for the authors’ gap statistic. The
processing expense is perhaps equal to or perhaps slightly less than using BIC and the
authors don’t make a comparison directly against the BIC. However, as we suggest with
RSQRT, Tibshirani et al. (2001) suggested that researchers must apply the gap statistic
thoughtfully: “The results for the gap statistic are shown ... The estimated number of clusters
is two … However, the gap function starts to rise again after six clusters, suggesting that
there are two well-separated clusters and more less separated ones.” This implies that K=2
gives the best value for the gap statistic, but K=6 might provide better support for the
researchers’ story.

Ben-David et al. (2007) addressed a related question about the goodness of the chosen K
more than choosing K itself. They stated that “distressingly little is known about the
theoretical properties of clustering. In particular, two central issues, the problem of assessing
the meaningfulness of a certain cluster structure found in the data set and the problem of
choosing K… which best fits the given data set are basically unsolved.” Their paper
described an approach to analyze cluster stability a means to address the first issue without
directly addressing the second issue.

7. CONCLUSION
We presented here strong evidence that our heuristic successfully predicts the K values that
researchers actually report with simple nominal, numeric, or mixed scale attributes, and does
so across many subject areas and both manual and algorithmic clustering techniques.
Certainly our heuristic fits more broadly than Kauffman’s notion. However, questions
remain: What are its limits? Why does it work? And is it useful?
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We already know that our heuristic’s limitations include predicting poorly for some complex
numeric scales. We also expect it to not predict well with document clustering, for example,
the Reuters-21578 at UCI, where an item by variable matrix formulation does not fit. We
also suspect that it will predict poorly where subsets of the items are sequentially
interrelated, because that makes it problematic to base calculations on the number of items,
n. The heuristic might apply in areas other than clustering where picking K is an issue, such
as matrix factorization (Berry et al. 2007).

Although, of course, we cannot say definitively why the heuristic fits so well with the K's
that other researchers have reported, we can address several smaller questions about why
what we discovered is sensible.

First, why n or t? With numeric scale attributes, clustering techniques assess more or less
continuous differences, but with nominal ones they assess discrete matches. Considering a
simple case. If numeric scale items A and B, and B and C are pair-wise near each other, then
A and C will also be near – at worst, and uncommonly, the sum of the other pairs' distances.
However, the similarity of two nominal scale items depends on how many attributes match
(there is no “close” on one attribute), and if A and B match on half of the attributes and B
and C match on half of the attributes, A and C might not match on any attribute. It may help
to visualize the difference for a small (a t of three) problem. Consider, then a unit cube, for
true/false nominal scale data, each item is a point on a cube corner, and two items are either
in the same place or are far from each other – in different corners and there are only a few
corners, so K cannot be large. Likewise, with mixed scale variables, even a few nominal
scale variables makes the items appear near corners. In contrast, for numeric scale data
normalized to a zero to one range (and so still depicted with a unit cube) each item is a point
somewhere on the inside of the cube. Here it is unlikely that most of the items appear at or
near corners, and so t and thus the number of corners does not influence K. So we think it
sensible that researchers act differently with different scales.

Second, why recursive? This is a matter of pragmatics. In a report, clustering is not the end,
but a means to help researchers make a convincing story, and a K in the thousands is beyond
interpretation. A researcher rarely reports more than a few dozen clusters, so an r> 1 for a
large n or t makes sense, as does an r<rmax, since rmax often corresponds to a K with too
coarse a clustering to support an interesting, insightful story.

Third, why square root? Well, we think this is sensible since the square root is the simplest
nonlinear reducer, and, furthermore, we found that its nearest competitors, cube root and
log, predict poorly. However, we expect that more complicated scales will likely require
more complicated heuristics.

Fourth, and perhaps most intriguing, does K come from data or people? That is, can a good
K be determined from the data independent of observers, as implied by the literature quotes
asking how many clusters there inherently “are,” or must people judge that a K tells a good
story? While the substitutability, in some cases, of RSQRT for BIC argues for inherency,
this remains an open question. It may be that this questionis a matter for philosophy or
cognitive science, and that Lakoff’s embodied mind categorical metaphor is relevant (Lakoff
and Nuñez 2001)

Wethink that researchers decide upon a K that best supports their ability to tell a compelling
story about a data set. They explore it, and do not conclude that the result of a single
execution of any technique shows an inherent number of clusters. Techniques such as BIC,
Rand’s statistic, mixture models, global optimum search, and others give the researcher
some insight into a likely number of clusters to report. In reading the articles underlying our
work the most compelling ones use multiple values for K, analyze pros and cons for each K
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value, searching for a K supporting a story. Whether the researcher creates this list of
possible K values using multiple subsets (training sets) of the data, or using multiple
techniques, or using RSQRT is really secondary to what the different values of K reveal
about the data set. Real data sets are messy and can support multiple interpretations or
multiple insightful stories about them.

Whatever the ultimate source of K, for now “what K?” is a practical question for every
researcher who clusters to address. The heuristic is not prescriptive, that is, it does not say
one must report an RSQRT K value. However, it might be used prospectively as a
replacement for plain guessing and as a low-cost replacement, where appropriate, for
guessing with BIC. If the dataset has simple variable scales, then to use the heuristic
prospectively one would: assess whether to use n or t; either get the RSQRT list by
calculating or by inspecting the spiral; pick one (or perhaps several) of the candidate K
values (perhaps also trying plus and minus one from the target or targets) to use as an initial
K target. One would work as before: clustering and examining the suitability of the results;
and so on. Thus the heuristic can provide researchers who must pick K with a starting point
considerably cheaper than BIC and considerably better than guessing.
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Highlights

We propose a heuristic RSQRT to estimate the number of clusters, K, in a data set.

RSQRT applies well to numeric and nominal scale data attributes.

Results correlate with BIC estimations for k and RSQRT has much a lower
computational cost.
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Figure 1.
A spiral display of RSQRT data
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Figure 2.
Frequency distribution of the actual roots reported in our set of studies
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Figure 3.
Plots of d versus the reported K for log and for RSQRT
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Figure 4.
Cumulative frequency distribution of d with differing minimal K
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Figure 5.
Cumulative frequency distribution of dfor Machine Learning Repository data sets
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Figure 6.
Count of studies versus actual exponents of reported K versus the t or m values
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Figure 7.
Comparison of Machine Learning Repository data sets and first analysis data sets
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Table 1

Frequency Distribution of Subject Areas

Area Count

Anesthesiology 1

Animal science 1

Atmospheric science 1

Audiology 1

Brain injury 1

Geography 1

Nursing research 1

Oceanography 1

Psychooncology 1

Psychosomatic research 1

Acoustics 2

Adolescent psychology/child devel. 5

Agriculture 3

Alcohol abuse 7

Anthropology 5

Archaeology 20

Art 3

Biology/microbiology/neurobiology 15

Biomedical engineering 6

Business/economics 13

Chemistry/biochemistry/geochemistry 5

Radiology 1

Area Count

Cluster analysis 15

Computer science – (web usage) 1

Dentistry / periodontology 3

Ecology 6

Education 3

Environmental systems 2

Epidemiology 3

Food science / nutrition 7

Gastroenterology 4

Genetics 8

Geology 7

Kinesiology/comparative/physiology 10

Market research/tourism 5

Electron Commer Res Appl. Author manuscript; available in PMC 2013 March 01.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Carlis and Bruso Page 20

Area Count

Medicine/pediatrics/gerontology 20

Neurology 1

Neurophysiology 2

Oenology 2

Pharmacology 2

Psychiatry 8

Psychology 18

Schizophrenia research 4

 Total 226
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Table 2

Frequency Distribution of Clustering Techniques

Clustering Technique Count

Average-linkage 10

Between-group linkage 2

Complete-linkage 5

Cross-validated likelihood 2

Eigenvalue decomposition 2

Exact Bayesian inference 2

Finite mixture model 3

Hierarchical agglomerative clustering 28

Intersection 2

k-means 48

Single-linkage 13

Smith-Waterman 2

Sum of squares 3

UPGMA 7

Ward’s 32

WPGMA 2

Other (14 techniques) 17

No technique credited 46

 Total 226
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Table 3

Distribution of study recursion level, r, of Kbest-predicted values by RSQRT parameter n or t and their total

r for Kbest predicted n; blue t; amber t + n Figure 1 shape: r + 2 sides

1 58 31 89 △

2 103 15 118 ◇

3 17 0 17 ⬠

4 2 0 2 ⎔

Total 180 46 226
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