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A Branch-and-Cut Algorithm for an Assembly Routing Problem

Masoud Chitsaz, Jean-François Cordeau, Raf Jans

HEC Montréal and GERAD, 3000 Chemin de la Côte-Sainte-Catherine, Montréal, H3T 2A7 Canada

Abstract

We consider an integrated planning problem that combines production, inventory and inbound

transportation decisions in a context where several suppliers each provide a subset of the com-

ponents necessary for the production of a final product at a central plant. We provide a mixed

integer programming formulation of the problem and propose several families of valid inequalities

to strengthen the linear programming relaxation. We propose two new algorithms to separate the

subtour elimination constraints for fractional solutions. The inequalities and separation procedures

are used in a branch-and-cut algorithm. Computational experiments on a large set of generated

test instances show that both the valid inequalities and the new separation procedures significantly

improve the performance of the branch-and-cut algorithm.

Keywords: logistics, assembly routing problem, valid inequalities, subtour elimination

constraints separation, branch-and-cut, integrated production and routing

1. Introduction

The literature on integrated planning in manufacturing industries highlights a significant po-

tential for cost savings in the supply chain by combining production and transportation decisions

(Viswanathan and Mathur 1997, Fumero and Vercellis 1999, Chen and Vairaktarakis 2005, Archetti

and Speranza 2016). The problem of simultaneously planning the production at a plant and the

outbound delivery routing is known in the literature as the production routing problem (PRP)

(Archetti et al. 2011, Adulyasak et al. 2015). When the production plan at the plant is given

and the decisions concern only the inventory and route planning, the problem is referred to as the

inventory routing problem (IRP) (Andersson et al. 2010, Coelho et al. 2013). There exist many
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models and solution algorithms for these two problems. In contrast, few studies have considered the

integration of production planning with inbound transportation for the collection of components

from suppliers to assemble a final product.

When the assembly plant is responsible for organizing the inbound transportation of the various

components, significant gains can be achieved by integrating production planning with inbound

transportation (Carter and Ferrin 1996). Automotive industry examples are studied in Blumenfeld

et al. (1987) and Florian et al. (2011) for US and German manufacturers. Fernie and Sparks (2004)

indicate that in the retail industry the logistics system should be effectively integrated with the

suppliers. More specifically, they highlight the need for the optimization and management of the

entire supply chain of retailers to be a single entity to obtain cost reduction advantages and service

enhancements. Closing the supply chain loop is another example where the collection of the end-

of-life products should be coordinated with the disassembly planning (Guide and Van Wassenhove

2009).

We study the assembly routing problem (ARP) which considers a joint planning problem with

a central plant that produces a final product to satisfy a dynamic but deterministic demand.

The plant collects the necessary components from several suppliers, each providing a subset of

the components. The plant coordinates the scheduling of the production as well as the routing

decisions and shipment quantities from the suppliers. The aim is to minimize the total costs of

production, inventory and routing subject to several types of capacity constraints. The planning is

done over a finite and discrete time horizon. The quantities available at the suppliers are assumed

to be known in advance. The plant has a limited capacity for the production and no backlogging

or stockouts are allowed. Both the plant and the suppliers can carry inventory. The plant has

separate and capacitated inbound and outbound storage areas for the incoming components from

suppliers and for the final product, respectively. Each supplier has a global storage capacity for its

own components. The plant manages a limited fleet of capacitated vehicles to handle the shipment

of components from the suppliers to the plant. Similar to the basic variants of the IRP and PRP,

we do not allow a supplier to be visited by more than one vehicle in a specific period (i.e., no split

pickups).

Some studies in the literature consider the optimization of the inbound transportation and

inventory decisions without taking the production planning at the central plant into account. Pop-
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ken (1994) and Berman and Wang (2006) study a single-period inbound logistics problem. They

consider a multicommodity network with the origin (suppliers), destination (plant), and transship-

ment terminal nodes. The origin-destination commodity flows are supposed to be optimally routed

through this network using at most one terminal node. The cost function includes the transporta-

tion and pipeline inventory costs for all supplier-plant pairs. The optimization of the inventory

decisions together with the explicit inbound vehicle routes through multiple planning periods is

studied in Moin et al. (2011) and Mjirda et al. (2014). Considering the automotive parts supply

chain, these studies investigate the case of a single assembly plant for which multiple suppliers each

provide a distinct part type.

A number of studies investigate the coordination of the inbound vehicle routes with the produc-

tion rate in a just-in-time (JIT) environment where no end-period inventory exists in the planning

horizon. Vaidyanathan et al. (1999) and Satoglu and Sahin (2013) study the parts delivery to an

assembly line with the objective of minimizing the material handling equipment requirements in a

central warehouse. Qu et al. (1999) and Sindhuchao et al. (2005) study the joint replenishment of

multiple items in an inbound material-collection system for a central warehouse under the assump-

tion of an infinite planning horizon. Chuah and Yingling (2005), Ohlmann et al. (2007), Stacey

et al. (2007) and Natarajarathinam et al. (2012) consider a JIT supply pickup problem for an

automotive assembly plant to minimize the inventory and transportation costs. Jiang et al. (2010)

study a similar problem taking the storage space limit into account. Yücel et al. (2013) consider

the problem of transporting specimens from different sites to the central processing facility of a

clinical testing company. Lamsal et al. (2016) study a sugarcane harvest logistics problem in Brazil

that requires the continuous operation of the production mill. Therefore, the inbound flow of raw

material should never terminate.

One observes that the ARP includes a lot-sizing substructure with additional inventory con-

straints together with the distribution routing decisions in each period. Similar to the ARP, an

inventory substructure exists in the uncapacitated lot-sizing problem (LSP) with inventory bounds

which is well-studied in the literature. This problem was first introduced by Love (1973). Atamtürk

and Küçükyavuz (2008) propose an O(n2) dynamic programming algorithm. Van Den Heuvel and

Wagelmans (2008) show that the problem is equivalent to the LSP with a remanufacturing option,

the LSP with production time windows, and the LSP with cumulative capacities. Di Summa and
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Wolsey (2010) consider a variable upper bound on the initial inventory and give valid inequalities

and extended formulations to describe the convex hull. More recently, Hwang and van den Heuvel

(2012) and Phouratsamay et al. (2018) study this problem and propose polynomial and pseudo-

polynomial algorithms for different cost structures. Akbalik et al. (2015) study the multi-item LSP

with stationary production capacity, time-dependent inventory bounds and concave costs as well as

a global capacitated storage space for all the items. They show that the problem is NP-hard even

when each item has stationary and identical production cost and capacity over periods. Also, other

integrated problems such as the IRP (Archetti et al. 2007, Solyalı and Süral 2011, Avella et al.

2015), maritime IRP (Agra et al. 2013), and PRP (Archetti et al. 2011, Adulyasak et al. 2014)

consider bounded inventory in the problem structure. Even though these integrated problems all

show some similarities with respect to the inventory structure, they possess a very different lot siz-

ing structure. More specifically, the IRP and PRP have a distribution structure, whereas the ARP

is based on an assembly structure. Furthermore, another difference is that the ARP considered in

this paper takes into account a given rate of supply at the suppliers.

To the best of our knowledge, there are two papers that studied a problem close to the one

being addressed in this paper. A general case with multiple components and products is introduced

by Hein and Almeder (2016). The authors consider two scenarios. In the first scenario, the plant

is allowed to keep the components in stock while in the second scenario, which represents a JIT

environment, the components that arrive at the plant must be used immediately in production.

They examine both scenarios under the traditional sequential planning approach and under the

integrated approach. In the sequential planning process, an LSP is solved first to obtain the

production plan for the final product. Then, in the second step, they solve an IRP for the first

scenario and one vehicle routing problem (VRP) for each period in the second scenario. The

computational experiments are performed on randomly generated instances with either 4 suppliers,

8 components, 3 final products, and 5 periods or 6 suppliers, 12 components, 4 final products, and

10 periods. They report cost savings of up to 12% with the integrated planning approach compared

to the classical sequential approach. According to this study, one may expect a higher potential

for cost savings in the JIT scenario when applying the integrated approach. Because the authors

did not consider the holding cost at the suppliers in their study, the integrated decision making

is entirely focused on the costs associated with the plant. This is appropriate when the suppliers
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and the assembly plant are separate organizations and the assembly plant is not concerned with

the inventory costs at the suppliers.

In the case where both the suppliers and the assembly plant belong to the same firm, one

should ideally take into account the suppliers’ inventory costs and capacities in the integrated

decision making process. Chitsaz et al. (2019) study the case with multiple components and one

final product but consider the inventory costs and storage capacity of the suppliers as well as a

component storage area at the plant. They assume that every supplier provides a unique compo-

nent. Consequently, a one-to-one relationship exists between the suppliers and components. The

authors develop a three-phase decomposition-based matheuristic that iteratively solves different

subproblems. They apply their algorithm not only to the ARP, but also to the IRP and the

PRP with the same parameter setting. The computational experiments show that this algorithm

returns high quality solutions for the ARP instances and outperforms existing heuristics on large-

scale multi-vehicle instances of the IRP and PRP. The algorithm finds new best-known solutions

to many standard test instances of these two problems.

We extend the model of Chitsaz et al. (2019) to consider the case where each supplier may

provide a subset of the components necessary for the final product and some components can be

obtained from more than one supplier. This is the first contribution of this paper. Second, we

develop several new valid inequalities to strengthen the linear programming (LP) relaxation of the

mixed integer programming formulation of the problem. Although several of the proposed inequal-

ities are inspired from existing lot-sizing inequalities, a novelty is that some of the inequalities use

the known supply instead of the known demand. Third, we present novel algorithms to efficiently

separate the subtour elimination constraints for the LP solutions that contain fractional routes,

which can be adapted for other vehicle routing problems with the same feature. The inequalities

and separation procedures are used in a branch-and-cut algorithm (BC). We generate a large test

bed consisting of small to large instances with diverse ranges for the number of suppliers, products

and planning periods. Finally, we analyze the impact of each class of valid inequalities on the value

of the LP relaxation and on the final solution. Our extensive computational experiments show that

both the valid inequalities and the new separation procedures notably enhance the performance of

the branch-and-cut algorithm.

The remainder of the paper is organized as follows. We formally define the ARP and express
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it mathematically in Section 2. Section 3 is devoted to the presentation of the inequalities and to

the proof of their validity. In Section 4, we present the upper bound generation procedure. To

separate the subtour elimination constraints for our multi-period VRP, we present two heuristic

algorithms in Section 5. The generation of the test instances and computational experiments are

presented in Section 6. Finally, Section 7 concludes the paper.

2. Problem Definition and Mathematical Formulation

We consider a many-to-one assembly system with n suppliers represented by the set N =

{1, ..., n}. The planning horizon includes l discrete time periods forming the set T = {1, .., l}.

To produce the final product, k distinct components, represented by the set K = {1, ..., k}, are

required. We extend the basic ARP introduced in Chitsaz et al. (2019) by assuming that each

supplier i may provide a subset of the components Ki ⊆ K, where K =
⋃
i
Ki. Moreover, each

component k can be provided by a subset of suppliers Nk ⊆ N , where N =
⋃
k

Nk. We define the

problem on a complete undirected graph with the node set N+ = N ∪ {0}, where 0 represents the

plant, and the edge set E = {(i, j) : i, j ∈ N+, i < j}. We let K+ = K ∪ {0} represent the set

of all items, where 0 represents the final product. The suppliers as well as the central plant each

have a global storage area for the components and may have some component inventory at hand

at the beginning of the planning horizon. Moreover, the central plant has a separate storage space

for the final product. A fleet of m homogeneous vehicles, each with a capacity of Q, is available to

transport the components from the suppliers to the plant.

The decisions to make include whether or not to produce the final product and the quantity to

be produced at the plant in each period, the supplier visit schedule and order in each vehicle route,

and the shipment quantities from the suppliers to the plant. The manufacturing plant needs to

minimize the production, inventory and transportation costs simultaneously for the entire planning

horizon. The complete list of notations is presented in Table 1.

A compact formulation for the ARP can be written as the following MARP model:

(MARP ) min
∑
t∈T

(
upt + fyt +

∑
k∈K+

h0kI0kt +
∑
i∈N

∑
k∈Ki

hikIikt +
∑

(i,j)∈E

cijxijt

)
(1)

s.t.

I00,t−1 + pt = dt + I00t ∀t ∈ T (2)
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Table 1: ARP notation list
Sets:
N+ Set of nodes, N+ = {0, ..., n}, where 0 represents the plant, and N = N+\{0} represents the set of suppliers.
E Set of edges, E = {(i, j) : i, j ∈ N+, i < j}.
K Set of components indexed by k ∈ {1, ..., |K|}. We let K+ = K ∪ {0}.
Ki Set of available components at supplier i ∈ N , Ki ⊆ K.
Nk Set of suppliers that provide component k ∈ K, Nk ⊆ N .
T Set of time periods, indexed by t ∈ T = {1, .., l}.
E(S) Set of edges (i, j) ∈ E such that i, j ∈ S, where S ⊆ N+ is a given set of nodes.
δ(S) Set of edges incident to a node set S, δ(S) = {(i, j) ∈ E : i ∈ S, j /∈ S or i /∈ S, j ∈ S}.
Decision variables:
pt Production quantity in period t at the plant.
yt Equal to 1 if there is production at the plant in period t, 0 otherwise.
Iikt Inventory of component k ∈ Ki at supplier i ∈ N at the end of period t.
I0kt Inventory of component or final product k ∈ K+ at the plant at the end of period t.
xijt Number of times a vehicle traverses the edge (i, j) ∈ E in period t.
zit Equal to 1 if node i ∈ N is visited in period t, 0 otherwise.
z0t Number of vehicles dispatched from the plant in period t.
qikt Shipment quantity of component k ∈ K from node i ∈ Nk to the plant in period t.
Parameters:
f, u Fixed setup and unit production costs, respectively.
hik Unit holding cost of item k at the plant or at supplier i ∈ N+.
cij Transportation cost between nodes i and j, (i, j) ∈ E.
m Fleet size.
C,Q Production and vehicle capacity, respectively.
sikt Supply of component k ∈ K at node i ∈ Nk in period t.
sikt1t2 Cumulative supply of component k ∈ K at node i ∈ Nk from period t1 to period t2 (inclusive), t1, t2 ∈

T, t1 ≤ t2.
bk Unit size of component k ∈ K.
dt Demand for the final product at the plant in period t.
dt1t2 Cumulative demand for the final product at the plant from period t1 to period t2 (inclusive), t1, t2 ∈ T, t1 ≤

t2.
Li Global inventory capacity at supplier i ∈ N for the components k ∈ Ki.
L Global inventory capacity at the plant for the components k ∈ K.
L0 Inventory capacity at the plant for the final product.
Iik0 Initial inventory of component k ∈ K available at supplier i ∈ Nk.
I0k0 Initial inventory of component or final product k ∈ K+ available at the plant.

I0k,t−1 +
∑
i∈Nk

qikt = pt + I0kt ∀k ∈ K,∀t ∈ T (3)

Iik,t−1 + sikt = qikt + Iikt ∀i ∈ N, ∀k ∈ Ki, ∀t ∈ T (4)

pt ≤ Cyt ∀t ∈ T (5)

I00t ≤ L0 ∀t ∈ T (6)∑
k∈K

bkI0kt ≤ L ∀t ∈ T (7)

∑
k∈Ki

bkIikt ≤ Li ∀i ∈ N, ∀t ∈ T (8)

z0t ≤ m ∀t ∈ T (9)∑
k∈Ki

bkqikt ≤ Qzit ∀i ∈ N, ∀t ∈ T (10)
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∑
(j,j′)∈δ(i)

xjj′t = 2zit ∀i ∈ N+,∀t ∈ T (11)

Q
∑

(i,j)∈E(S)

xijt ≤
∑
i∈S

(
Qzit −

∑
k∈Ki

bkqikt

)
∀S ⊆ N, |S| ≥ 2, ∀t ∈ T (12)

pt ≥ 0, yt ∈ {0, 1}, z0t ∈ Z ∀t ∈ T (13)

I0kt ≥ 0 ∀k ∈ K+, ∀t ∈ T (14)

Iikt, qikt ≥ 0 ∀i ∈ N, ∀k ∈ Ki,∀t ∈ T (15)

xijt ∈ {0, 1} ∀(i, j) ∈ E : i 6= 0,∀t ∈ T (16)

x0it ∈ {0, 1, 2}, zit ∈ {0, 1} ∀i ∈ N, ∀t ∈ T. (17)

The objective function (1) minimizes the total production, setup, inventory, and transportation

costs. The inventory costs include both component inventories at the suppliers and at the plant, as

well as the final product at the plant. The set of constraints (2) ensures the final product inventory

flow while constraints (3) do the same for each component at the plant. Constraints (4) guarantee

the inventory flow balance for each component at each supplier. Constraints (5) force a setup at

the plant in each period where production takes place. They also impose a maximum limit on

the production quantity. Constraints (6) consider the storage capacity of the final product at the

plant. Constraints (7) impose the shared storage capacity of the components at the plant. The

shared storage capacity of components at each supplier is enforced by constraints (8). Constraints

(9) impose the limit on the fleet size. Constraints (10) force a vehicle visit whenever components

are shipped from a certain node to the plant. The total component shipment quantity from each

supplier in each period will also be limited by the vehicle capacity. Constraints (11) are the degree

constraints. Constraints (12) are the subtour elimination constraints (SEC). These constraints are

the modified version of the VRP capacity-cuts (Toth and Vigo 2001, Iori et al. 2007). They require

each route to be connected to the plant and the total shipments on each route to not exceed the

vehicle capacity. There exists an exponential number of these constraints. They are referred to in

the literature as generalized fractional subtour elimination constraints (GFSEC) (Adulyasak et al.

2014). Constraints (13)-(17) are domain constraints.
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3. Strengthening the LP Relaxation Bound

We present valid inequalities to improve the LP relaxation ofMARP . Moreover, we present the

links between these inequalities and related polyhedral studies in the literature. The polyhedral

structure of the LSP and VRP has been researched extensively. Barany et al. (1984) give a com-

plete linear description of the convex hull of the solutions for the uncapacitated LSP. Pochet (1988),

Miller et al. (2000), and Atamtürk and Muñoz (2004) present inequalities for the capacitated LSP

with unlimited storage capacity. Atamtürk and Küçükyavuz (2005) investigate the polyhedral

structure of the lot-sizing problem with inventory bounds and fixed costs. The polyhedral study of

multiechelon LSP with intermediate demands is given in Zhang et al. (2012). The uncapacitated

LSP is a special case of fixed charge network design (Van Roy and Wolsey 1985). Gendron et al.

(1999) and Küçükyavuz (2005) study polyhedral approaches for capacitated multicommodity net-

work design and fixed-charge network flow problems, respectively. Chouman et al. (2016) present

cut-set-based inequalities for multicommodity capacitated fixed-charge network design problems.

Similarly, many polyhedral studies are presented in the literature for different variants of the VRP.

Cornuejols and Harche (1993) and Ralphs et al. (2003) study the capacitated variant and Belenguer

et al. (2000) investigate the split delivery VRP.

Three classes of valid inequalities are presented to improve the LP relaxation bound for the

MARP model. The first class contains (l,S,WW)-type inequalities. The second one concerns the

bounds on the variables. We present the proof of the propositions in Section 1 of the online

supplementary material. The last class includes general inequalities for the ARP. Propositions

1, 2 and 7 present inequalities derived from the particular structure of the underlying LSP for

each component k (Pochet and Wolsey 2006). These inequalities take advantage of the aggregated

available inventory of each component k at the suppliers (that provide component k) and the

production plant for each period t ∈ T .

3.1. (l,S,WW)-type inequalities

The (l,S) inequalities were introduced in Barany et al. (1984) and provide the convex hull of the

single-item uncapacitated LSP. In the (l, S) inequalities, l refers to a period (l ≤ |T |) where T is the

number of periods, and S is a subset of periods {1, ..., l} not necessarily connected (S ⊆ {1, ..., l})

such as periods {1, 3, 7} when l = 10. For a numerical example, we refer to Pochet and Wolsey

(2006), pp. 122-123. Although there is an exponential number of these constraints for a general cost
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structure, Pochet and Wolsey (1994) showed that under the Wagner-Whitin (WW) cost condition

it is sufficient to consider only O(l2) inequalities to describe the convex hull of the single item

uncapacitated lot-sizing problem which are referred to as (l, S,WW ) inequalities. The WW non-

speculative cost structure requires the sum of unit production and inventory costs in every period

to be larger than or equal to the unit production cost in the next period. Therefore, when the unit

production costs are the same for all periods, the WW cost condition holds because the inventory

costs are nonnegative. We first present the known (l, S,WW ) inequalities applied to the lot-sizing

structure (2) and (5):

t2∑
e=t1

pe ≤ I00t2 +

t2∑
e=t1

det2ye ∀t1, t2 ∈ T, t1 ≤ t2. (18)

These inequalities link the production and setup variables at the plant with the predetermined

downstream demand in order to improve the LP relaxation lower bound. Next, we derive three

new families of valid inequalities for the ARP. The new inequalities are inspired from the standard

(l, S,WW ) inequalities, but present some novelties. In Proposition 1, we develop new inequalities

that link the production and setup variables at the plant with the known upstream supply. The

structure of the proof (given in Section 1 of the online supplementary material) follows a similar

structure as for the (l, S) inequalities (Pochet and Wolsey 2006), but with an inverted logic as

it takes into account the known supply at the suppliers. Moreover, in Propositions 2 and 3 we

propose new inequalities linking the shipment quantities and node visit variables with the given

supply and demand, respectively. The novelty in the structure of these constraints is that, for a

given period, the shipment variables are defined for each supplier-component combination, whereas

the supplier visit variables are only related to the supplier. There is no setup-type constraint in

the model that directly links each component shipment variable to its supplier visit variable. This

is different from a traditional lot-sizing structure.

Proposition 1. Inequalities

t2∑
e=t1

pe ≤ I0k,t1−1 +
∑
i∈Nk

Iik,t1−1 +

t2∑
e=t1

∑
i∈Nk

sikt1eye ∀k ∈ K,∀t1, t2 ∈ T, t1 ≤ t2 (19)

are valid for the MARP .

Notice that although both inequalities (18) and (19) provide bounds on the total production

quantities, the first set of inequalities considers the cumulative demand and the remaining product
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inventory at the last period (t2) while the second set of inequalities takes the cumulative component

supply and the available inventory at the beginning of the first period (t1) into account.

Proposition 2. Inequalities

t2∑
e=t1

qike ≤ Iik,t1−1 +

t2∑
e=t1

sikt1ezie ∀i ∈ N, ∀k ∈ Ki, ∀t1, t2 ∈ T, t1 ≤ t2 (20)

are valid for the MARP .

Proposition 3. Inequalities

t2∑
e=t1

∑
i∈Nk

qike ≤ I00t2 + I0kt2 +

t2∑
e=t1

det2
∑
i∈Nk

zie ∀k ∈ K,∀t1, t2 ∈ T, t1 ≤ t2 (21)

are valid for the MARP .

Both inequalities (20) and (21) provide bounds on the total shipment quantities. The first

set of inequalities considers the cumulative component supply and the available inventory at the

beginning of the first period (t1) at each supplier while the second set of inequalities takes the

cumulative demand and the remaining product and component inventory at the plant in the last

period (t2) into account.

3.2. Bounds on variables

The bounds we propose in this subsection are linked to the cut-set type inequalities. Atamtürk

and Küçükyavuz (2005) observe that (l,S) inequalities may not cut off fractional LP extreme solu-

tions for lot-sizing with inventory bounds and fixed costs if for the subset of periods S incoming or

outgoing inventory is at capacity. They introduce cut-set type inequalities to enforce one produc-

tion setup for a certain number of periods. We introduce inequalities that are both a generalization

and an extension of the cut-set type inequalities. We generalize the cut-set type inequalities to

provide integer lower bounds on the number of required production setups from period e = 1 to

t ∈ T (Proposition 4). We further extend these cut-set type inequalities to enforce integer lower

bounds on the number of vehicles dispatched (Proposition 5), and supplier visits from period e = 1

to t ∈ T (Propositions 6-7).

Let Qit (measured in required space) be a parameter equal to the sum of cumulative supply of

components and the initial inventory of the components at supplier i minus its available storage

capacity, i.e.,
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Qit =
∑

k∈Ki
bk(sik1t + Iik0)− Li.

Proposition 4. Inequalities

⌈
max

{
0, d1t − I000, (

∑
k∈K bkI0k0 +

∑
i∈N max{0,Qit} − L)/

∑
k∈K bk

}
min{C,maxe∈{1,...,t}{de}+ L0}

⌉
≤

t∑
e=1

ye ∀t ∈ T (22)

are valid for MARP .

Notice that
∑

k∈K bk in the last expression of the LHS of the inequalities (22) represents the

total required space by the components which are required to produce one unit of the final product.

Next, we present valid inequalities for the lower bound on the total number of necessary vehicles

dispatched from period e = 1 to t.

Proposition 5. Inequalities⌈
1

Q
max

{∑
k∈K

bk max{0, d1t − I000 − I0k0},
∑
i∈N

max{0,Qit}
}⌉
≤

t∑
e=1

z0e ∀t ∈ T (23)

are valid for MARP .

Next, we present valid inequalities for a lower bound on the total number of necessary node

visits from period e = 1 to t in the following proposition.

Proposition 6. Inequalities⌈
max{0,Qit}

min
{
Q,Li + maxe∈{1,...,t}{

∑
k∈Ki

bksike},
∑

k∈Ki
bk(Iik0 + sik1t)

}⌉ ≤ t∑
e=1

zie ∀i ∈ N, ∀t ∈ T

(24)

are valid for MARP .

At any supplier, when the initial inventories plus the cumulative supply of components in the

first t periods exceed the storage capacity, inequalities (24) provide a lower bound on the number of

required visits to that supplier during these periods. The cumulative shipments from the supplier

in the first t periods is limited first by the vehicle capacity, second by the available storage plus

the maximum total component supply in any of those periods, and third by the sum of the initial

inventories and the total supply of all components during these periods.
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Proposition 7. Inequalities⌈
max{0, d1t − I000 − I0k0}

min
{Q
bk
,maxi∈Nk

{Iik0 + sik1t}
}⌉ ≤ t∑

e=1

∑
i∈Nk

zie ∀k ∈ K,∀t ∈ T (25)

are valid for MARP .

For the periods whose cumulative demand cannot be satisfied from the initial product inventory

and in the case where the initial inventory of a given component is not sufficient for the production,

inequalities (25) force visits to the nodes which supply that specific component. The cumulative

shipments of a component from any of the associated suppliers in the first t periods is limited not

only by the vehicle capacity but also by the maximum of the initial inventory of that component

plus the total supply of the component from those suppliers in the same periods. It is possible to

state inequalities (24)-(25) for the edge variables (xijt) instead of node visits (zit). This leads to

identical constraints due to the degree constraints (11).

3.3. General inequalities

Without the SECs (12) added a priori to the model (e.g., as in the case of a BC algorithm), it

may happen that the plant would not be connected to the other visited nodes in certain periods. In

these cases, the following inequalities impose a positive value on the number of dispatched vehicles

and hence on the degree of the plant if any node is visited in the same period:

zit ≤ z0t ∀i ∈ N, ∀t ∈ T. (26)

Another type of SEC is Dantzig-Fulkerson-Johnson (DFJ), which can be represented for the

MARP as follows:

∑
(i,j)∈E(S)

xijt ≤
∑
i∈S

zit − zet ∀S ⊆ N, |S| ≥ 2, ∀e ∈ S, ∀t ∈ T. (27)

DFJ inequalities are referred to in the literature as connectivity constraints (Laporte 1986), infeasible-

path constraints (Ascheuer et al. 2000, Iori et al. 2007), or clique constraints (Bektaş and Gouveia

2014). They were first proposed by Dantzig et al. (1954) for the travelling salesman problem

(TSP). These inequalities imply that the number of edges that can be chosen from the set of all

edges with both endpoints in a subset of nodes S cannot be more than |S| − 1. The cardinality of

these inequalities is exponential and thus they cannot be added a priori to the model in practical

13



applications. Both GFSECs and DFJs can be added to the model at the same time. Observe that

DFJs do not impose the vehicle capacity. Archetti et al. (2007) and Archetti et al. (2018) employ

DFJ constraints for the IRP, and Archetti et al. (2011) and Adulyasak et al. (2014) use them for

the PRP. The following inequalities enforce node visits for each edge traversal:

xijt ≤ zit and xijt ≤ zjt ∀(i, j) ∈ E(N),∀t ∈ T. (28)

Inequalities (26) and (28) are used by Archetti et al. (2007) for the IRP, and by Archetti et al.

(2011) and Adulyasak et al. (2014) for the PRP. Inequalities (28) are special cases of DFJs for node

pairs (Gendreau et al. 1998), which can be added to the model a priori due to their polynomial

cardinality.

4. Generating Upper Bounds

We adapted the unified matheuristic proposed in Chitsaz et al. (2019) and applied it to the

generalized ARP, where each supplier provides a subset of the components, to obtain high quality

feasible solutions as well as cutoff values that can be used to prune branches in our BC algorithm.

This matheuristic (CCJ-DH) works by decomposing the problem into three separate subproblems

and solving them iteratively. The first subproblem is a special LSP which determines a setup

schedule with an approximation of the total transportation cost using the number of dispatched

vehicles. The second subproblem returns node visits and shipment quantities. The latter employs

another approximation of the total transportation cost using the node visit transportation cost.

Finally, the third subproblem considers a separate VRP for each period t.

The solutions of the routing subproblems are used to update the node visit cost approximation

in the second subproblem for the next iteration. This procedure is repeated to reach a local

optimum. Then, a change in the setup schedule is imposed to explore other parts of the feasible

solution space and diversify the search. The algorithm uses diversification constraints (Fischetti

et al. 2004) to generate both new setup schedules using the first subproblem, and new node visit

patterns using the second subproblem. The method terminates when a stopping condition is met.

We present the detailed adaptation of CCJ-DH in Section 2 of the online supplementary material.
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5. Separating Fractional Multi-Period Subtour Elimination Constraints

Subtour elimination constraints (12) belong to the family of capacity-cut constraints (CCC)

which were developed for the capacitated VRP (Toth and Vigo 2001, Iori et al. 2007). The RHS of

these constraints represents the number of vehicles required to serve the subset of nodes for which

the inequality is applied. Depending on how the RHS is computed, different classes of this set of

constraints can be obtained. The direct use of the fractional RHS results in the fractional capacity

inequalities. This class of capacity constraints can be separated by solving a series of max-flow or

min-cut problems in polynomial time (Semet et al. 2014). The next three classes of CCCs need

specific algorithms and their separation is known to be NP-complete (Augerat 1995). When the

RHS is rounded up, one obtains the rounded capacity inequalities. Using the optimal value of the

bin-packing problem (where the weights of the items are equal to the shipment sizes and the bin

capacity is equivalent to the vehicle capacity) in the RHS results in the weak capacity inequalities.

Finally, computing the minimum number of required vehicles results in global capacity constraints

and gives the tightest form.

Unlike the other types of CCCs, the quantities in the RHS of GFSECs are not given parameters

but node visit (zit) and shipment quantity (qikt) variables. For the non-vehicle index formulations

of the IRP and the PRP, GFSECs are necessary to maintain the vehicle capacity of each route.

To the best of our knowledge, there is no exact algorithm to separate GFSECs in polynomial time

and it is not known whether separating GFSECs is NP-hard or not. Instead, a weak form of

them (with zit = 1) is usually separated using separation procedures designed for the TSP and

VRP CCCs. Most of the BC algorithms in the IRP and the PRP literature use the separation

procedure of Padberg and Rinaldi (1991) or heuristics that are included in the CVRPSEP package

of Lysgaard et al. (2004). The procedures of Padberg and Rinaldi (1991) and Lysgaard et al. (2004)

were originally developed for the TSP and the VRP, respectively. The algorithm of Padberg and

Rinaldi (1991) is used by Archetti et al. (2007, 2011), Solyalı and Süral (2011), Avella et al. (2015)

and Archetti et al. (2018). The CVRPSEP package is used by Adulyasak et al. (2014). If a violated

inequality is found by one of these procedures, one has to check whether the corresponding GFSEC

is violated or not (Solyalı and Süral 2011). In Section 3 of the online supplementary material, we

present two examples for the LP solutions to the routing problem containing fractional values

for the node visit (zit) and edge traversal (xijt) variables. One example shows the case where a
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non-violated subtour elimination constraint is returned. The other example demonstrates the case

where a violated subtour elimination constraint cannot be identified when the weak GFSEC is

separated.

The separation problem for GFSECs in the ARP is to find a subset of nodes S ⊆ N with

cardinality greater than or equal to 2 (|S| ≥ 2) for which the corresponding constraint is violated

by the fractional solution. In each period t, the non-zero z∗ and x∗ values of the optimal LP

solution form a subgraph Gt(N t, Et). Each node in Gt has a shipment volume of
∑

k∈Ki
bkq
∗
ikt. In

order to define the separation problem, let the binary variable vi be equal to 1 if and only if node

i ∈ N t is selected and binary variable wij be equal to 1 if and only if edge (i, j) ∈ Et is chosen.

We formulate the GFSECs separation problem for each period t as follows:

(StGFSEC) min
∑
i∈Nt

(Qz∗it −
∑
k∈Ki

bkq
∗
ikt)vi −Q

∑
(i,j)∈E(Nt)

x∗ijtwij (29)

s.t. ∑
i∈Nt

vi ≥ 2 (30)

wij ≤ vi ∀(i, j) ∈ Et (31)

wij ≤ vj ∀(i, j) ∈ Et (32)

vi, wij ∈ {0, 1} ∀i ∈ N t,∀(i, j) ∈ Et. (33)

Since Gt is defined for (i, j) ∈ Et, it may not be a complete subgraph nor a connected one.

Observe that any feasible solution to this problem which has a strictly negative value returns one or

more violated GFSECs. Notice that unlike the separation problem for the VRP CCCs, this problem

is independent of the plant’s (depot’s) adjacent edges (x0it). Moreover, the problem StGFSEC is

separable over the disconnected elements of the subgraph of period t, as was first implemented by

Laporte et al. (1985) for the VRP under capacity and distance constraints.

To separate violated GFSECs with fractional node degrees, we propose two heuristics which

can also be adapted for other vehicle routing problems. We define e = (ie, je) ∈ Et, the index

of edges in the subgraph edge set of period t. We initialize sets Ω1, ...,Ω|Et| indexed by ε, and

populate each Ωε with edge ε ∈ Et. We define Φ(Ωε) as the set of nodes corresponding to all the

edges in Ωε. Let Ci = Qz∗it −
∑

k∈Ki
bkq
∗
ikt represent the node cost and Ce = Q

∑
(i,j)∈E(Nt) x

∗
ijt

the edge gain. The first algorithm (Algorithm A1) finds violated GFSECs (for each period t) by
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adding to set Ωε the edge e which has the least marginal cost (Cie + Cje − Ce), not necessarily a

negative cost, at each iteration. We only check for e > ε to force every initial set Ωε to deal with

a different subset of edges. Otherwise, different sets eventually may end up with the same result.

Notice that the last set, Ω|Et|, will not examine other edges.

Algorithm 1: GFSEC Separation Procedure: A1

1: Initialize |Et| sets Ωε, for all ε ∈ Et
2: for all ε ∈ {1, ..., |Et|} do
3: for all e ∈ Et \ Ωε, e > ε do
4: e∗ = arg mine{Cie + Cje − Ce}
5: Ωε ← Ωε ∪ {e∗}
6: if Φ(Ωε) introduces a violated GFSEC and Φ(Ωε) is not found yet then
7: Add Φ(Ωε) to the list of violated GFSECs
8: end if
9: end for

10: end for
11: return the list of violated GFSECs

The second algorithm (Algorithm A2) has a similar structure as A1 with the difference that

it terminates the search procedure for each set Ωε when the set returns the first violated GFSEC

and then proceeds to the next set. Moreover, Algorithm A2 does not accept the node sets which

have (node) overlap with the violated GFSECs found earlier in the current call of the algorithm.

Because every violated GFSEC needs to have at least two nodes, there is an explicit upper bound

of |N t|/2 on the number of violated GFSECs that A2 returns for each period t.

6. Computational Experiments

The experiments were performed on the Calcul Québec computing infrastructure with Intel

Xeon X5650 @ 2.67 GHz processors and a memory limit of 25 GB. The BC procedure is imple-

mented in C++ using the CPLEX 12.6 callable library. All experiments are performed in sequential

form using one thread. The algorithm applies the valid inequalities at the root node and adds GF-

SECs and DFJs at each node of the search tree as cutting planes whenever they are violated by

more than 0.1 unit. To separate GFSECs, we either use CVRPSEP, A1 or A2. When a violated

GFSEC is found, the BC method also adds the corresponding DFJ. In our experiments we set a

time limit of one hour both for the BC and for CCJ-DH. We run the BC experiments with and

without the CCJ-DH cutoff values to measure the performance of both methods in providing upper

bounds.
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We introduce a diverse set of instances to better study and evaluate the performance of the

BC. We present the test bed generation procedure for the ARP in Section 6.1. We analyze the

performance of CCJ-DH on the new instances in Section 6.2. We report the sensitivity analysis of

the effect of valid inequalities on the LP relaxation of the MARP model, and the performance of

the BC in Section 6.3. The performance analysis of the BC with different separation procedures

is presented in Section 6.4. In Section 4 of the online supplementary material, we report the

performance of the BC on the existing large instances of Chitsaz et al. (2019) and compare our

results with the two lower bounding methods presented in that paper.

6.1. ARP Tests Instances

Two out of three ARP data sets introduced in Chitsaz et al. (2019) include instances with

50 and 100 suppliers, all with 6 periods. Therefore, they are too large to be solved by our exact

algorithm. Moreover, those instances only consider the case where every supplier provides a unique

component. To cover the general case of the ARP presented in this paper, and to test the BC on

different sizes of instances, we generated three new classes of instances. The first class includes

instances where each supplier provides a unique component type. The second class represents

the case where each supplier provides a subset of components. The third class corresponds to

the situation in which one single component is offered by all suppliers. Each class includes data

sets with five different planning horizons ranging from 4 to 12 periods with a step of two. For

each planning horizon we consider eight different numbers of suppliers, increasing by steps of 3.

For each combination of the number of planning periods and suppliers we randomly generated

five instances. Overall, 600 instances are generated for three classes, five planning horizons, eight

numbers of suppliers, and five instances per category. As a result, the test bed includes small to

large size instances. The rest of the specifications for the ARP instances are developed similar

to the practices of Archetti et al. (2011) for the PRP. Table 2 presents an overview of the ARP

instance parameters.

6.2. Performance of the Heuristic

Table 3 shows the performance of the adapted CCJ-DH on different classes of the new ARP

instances compared to the BC when using the best-bound node selection strategy and algorithm

A1 for separating fractional subtours, and with the imposed time limit of one hour. The second
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Table 2: ARP test instances*
Class 1 2 3

Number of instances 200 200 200
Number of periods: l 4 to 12

Number of suppliers: n (for l = 4) 18 to 39
Number of suppliers: n (for l = 6) 15 to 36
Number of suppliers: n (for l = 8) 12 to 33

Number of suppliers: n (for l = 10) 9 to 30
Number of suppliers: n (for l = 12) 6 to 27

Number of components: k n 0.4n 1
Number of vehicles: m UL‡

Vehicle capacity: Q 2 maxi Li

Demand (final product): dt = d Constant and UDRI††[50, 100]
Production capacity: C UDRI††[d, 3d]

Component supply: sikt = sik Constant and UDRI††[5, 0.5d]
Component size: bk UDRI††[1, 2]

Plant inventory capacity for final product: L0 UDRI††[2d, 3d]
Plant inventory capacity for components: L

∑
i∈N Li

Supplier inventory capacity: Li
∑

k∈Ki
bk(Iik0 + 2sik)

Plant initial inventory of final product: I000 UDRI††[0, 1.5d]
Plant initial inventory of components: I0k0 UDRI††[I∗k

†, I∗k
† + 0.5d]

Supplier initial inventory: Iik0 UDRI‡†[0, d]
Unit production cost: u h00/5

Production setup cost: f 150u
Plant unit final product holding cost: h00 UDRI††[

∑
k∈K h0k, 1.5

∑
k∈K h0k]

Plant unit component holding cost: h0k maxi hik
Supplier unit holding cost for each component: hik UDRI††[1, 5]

Supplier and plant x,y coordinates UDRI††[0, 1000]
Travel distance SA‡†

Unit transportation cost 1
* Adapted from Chitsaz et al. (2019)
† I∗k = max{0, l(d−

∑
i∈Nk

sik)− I000}, ‡ Unlimited, †† Uniformly Distributed Random Integer,

‡† Similar to Archetti et al. (2011)

column in this table presents the number of instances (#). The rest of the columns show the

number of best upper bounds (#BUB) found by CCJ-DH, the average solution time (CPU), and

the gaps of the heuristic solution with respect to the upper bound (Gap UB) and lower bound

(Gap LB) obtained by the BC, respectively. The results highlight the fact that the instances of

the second class need significantly more computing time. In these instances, each supplier provides

multiple components. There are consequently more shipment variables (qikt), which results in a

larger lot-sizing part compared to the instances in the two other classes. For the instances that are

not solved to optimality by BC (larger instances), the matheuristic finds 122 best upper bounds

(BUB) out of 161 instances (all classes). For these instances, CCJ-DH is able to improve the UBs

found by the BC by 59%, 62.2% and 15.5% on average for the instances in the first, second and

third class, respectively. For the instances solved to optimality, the heuristic provides high quality

solutions within 1.2%, 1.2% and 1.6% of the optimal solution for the first, second and third class,

respectively.
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Table 3: Summary of the CCJ-DH results

Data Set # #BUB CPU Gap UB† (%) Gap LB‡ (%)

Class 1
Not Optimal 51 43 248.9 -59.04 2.74
Optimal 149 1 119.6 1.19 1.19
Total 200 44 152.6 -14.17 1.59

Class 2
Not Optimal 81 66 2963.1 -62.24 3.62
Optimal 119 4 1786.3 1.22 1.22
Total 200 70 2262.9 -24.48 2.2

Class 3
Not Optimal 29 13 90.8 -15.54 2.86
Optimal 171 5 44.1 1.55 1.55
Total 200 18 50.9 -0.93 1.74

† Gap UB = (UBCCJ−DH - UBBC) / UBBC
‡ Gap LB = (UBCCJ−DH - LBBC) / LBBC

6.3. Analysis of Valid Inequalities

To evaluate the effect of applying valid inequalities, we solve the LP relaxation of the MARP

model where the SECs (12) are relaxed. We present in Table 4 the average LP solution times and

values when no valid inequality is added to the model (None), and compare it with the cases where

known valid inequalities (Known) from the literature (i.e., (18), (26)-(27)), or all valid inequalities

(All) (i.e., (18)-(27)) are added to the model. Each row in this table shows the results for a period-

supplier size combination. For the ease of comparison, the LP solution values are presented as

a percentage of the BUB (LP%) for each instance. The average LP solution values without the

valid inequalities vary in the range 63% to 65.9% for different classes and this range increases to

70.8% to 76.9% when the known inequalities are added and further to 88.7% to 90.2% with all

valid inequalities added to the model. This is a significant improvement which is obtained at the

expense of longer LP solution times. The average CPU times grow by a factor of 34, 22 and 10

for the instances in the first, second and third class, respectively when comparing the formulation

without the valid inequalities to the formulation with all inequalities. We present details on the

average LP solution values with and without considering each valid inequality type in the model

in Section 5 of the online supplementary material.

We also compare the effect of the valid inequalities on the BC performance. In Table 5, we

report a summary of the results on the performance of the BC when the default or the best-bound

node selection strategies are employed, and either no inequality (None), only known inequalities

(Known) or all inequalities (All) are applied. In all of these experiments we used algorithm A1 to
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separate SECs (12) and (27). This table presents the number of optimal solutions (#Opt), CPU

time, the average lower bound values as a percentage of the upper bound obtained by the BC

without applying the CCJ-DH cutoffs (%UB) and as a percentage of the BUB (%BUB) for each

BC scenario and each class. To calculate the BUB for each BC scenario, we considered the upper

bounds obtained by either that BC scenario or CCJ-DH.

The results indicate that the BC returns better results, in terms of the number of optimal

solutions, average solution time, and optimality gap, when all inequalities are applied and the

best-bound node selection strategy is selected. The BC returns better %UB with the default node

selection strategy on all classes of instances. This highlights the fact that without applying CCJ-

DH cutoffs, the default node selection strategy performs better than the best-bound. By comparing

%UB and %BUB for each node selection strategy and each class, one observes the effect of applying

CCJ-DH cutoffs within the BC. The best-bound node selection strategy results in better average

lower bounds and consequently better results for %BUB.

On the instances of the first class, applying all inequalities and the best-bound node selection

strategy enables the BC to obtain 149 (out of 200) optimal solutions in an average of 1422 seconds

compared to 52 optimal solutions when known inequalities are employed, and only 8 optimal

solutions when no valid inequality is considered. On the harder instances of the second class,

the BC finds 119 optimal solutions within the time limit when all inequalities are added to the

model while it is able to find 64 optimal solutions with known inequalities and only 5 optimal

solutions without the valid inequalities. The same difference in the performance of the BC exists

on the instances of the third class where 171 optimal solutions are found with all valid inequalities

compared to 107 optimal solutions with known inequalities, and 14 optimal solutions without the

valid inequalities. Overall, compared to the cases with no or only known inequalities, using all

inequalities in BC with both node selection strategies notably increases the number of optimal

solutions and significantly improves the %UB and %BUB for all classes. These results show that

our new valid inequalities make a substantial difference in the success of the BC.

The detailed results for the same scenarios of the BC are presented in Tables 6 and 7. Similarly,

in all of these experiments we used algorithm A1 to separate SECs (12) and (27). These tables

present CPU, %UB, and %BUB for every period-supplier combination group of each instance class.

The number of instances (out of five) that are not solved to optimality is specified in parentheses
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within the %BUB figures.

Table 5: Summary of the results of the BC with the default and the best-bound node selection strategies, and with
and without the valid inequalities on different instance classes*

Node Valid Class 1 Class 2 Class 3

Selection Ineq. Size #Opt CPU %UB %BUB Size #Opt CPU %UB %BUB Size #Opt CPU %UB %BUB

Default None 200 11 3157 69.6 96.7 200 5 3234 65.4 95.2 200 22 3045 79.6 95.9
Known 200 51 2576 86.3 96.8 200 44 2729 83.9 95.2 200 107 1912 96.1 97.5
All 200 103 1980 91.2 99 200 69 2420 85 97.9 200 155 1205 98.3 99.5

Best-Bound None 200 8 3207 56.5 97.3 200 5 3260 36.9 96.3 200 14 3098 64.5 96.6
Known 200 52 2578 57.3 97.3 200 64 2418 61.8 96.3 200 107 1872 89.8 98.1
All 200 149 1422 84.7 99.4 200 119 1976 74.4 98.7 200 171 938 97.4 99.8

* Separation procedure used for all BC scenarios: algorithm A1

Size: Number of instances, None: With no inequality, Known: With known inequalities (18), (26) and (27),

All: With all inequalities (18)-(27)

6.4. Analysis of Different Separation Procedures

In Table 8, we present the performance of the BC with all valid inequalities added when the

CVRPSEP package, A1 and A2 are applied to separate SECs (12) and (27). We used the best-

bound node selection strategy for all these experiments. In this table we report CPU, %BUB

and the number of instances that are not solved to optimality (inside the parentheses) for each

combination of the period-supplier setting. One observes that both of our separation procedures

outperform the CVRPSEP package by enabling the BC to find more optimal solutions within the

time limit. The results in this table suggest that the BC is capable of closing the optimality gap

for many more period-supplier combinations in each class with a better solution time when it uses

A1 and A2 compared to when it employs the CVRPSEP package. Furthermore, the BC with A2

is performing better on larger instances compared to the case with A1. This is why we use A2 in

our BC when we apply it to solve the large ARP instances of Chitsaz et al. (2019) presented in

Section 4 of the online supplementary material. The BC is capable of solving instances with up to

4 periods and 33 nodes, 6 periods and 30 nodes, 8 periods and 27 nodes, 10 periods and 24 nodes,

and 12 periods and 21 nodes within the time limit.

Moreover, in Table 9 we present more details on the BC performance. For each SEC separation

procedure and for each class, this table shows #Opt, the average number of explored nodes in

the search tree (#Node), the average number of added GFSECs (GFS), the average amount of

violation for the added GFSECs (AVGFS), the average number of added DFJs (DFJ), the average

amount of violation for the added DFJs (AVDFJ), and information about the number of cuts

that are added automatically by CPLEX: cover cuts (Cover), flow cover cuts (Flow), clique cuts
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Table 9: Summary of added SECs and CPLEX cuts for different classes of instances when different separation
procedures are applied*

Sep Class Size #Opt #Node GFS AVGFS DFJ AVDFJ Cover Flow Clique MIR Path ImplBd ZeroHalf LiftProj

CVRPSEP 1 200 78 7016 561.3 0.4 3432.3 0.62 172.2 254.2 19.2 745.9 26.1 69.9 295.9 17.8
2 200 77 2898 209.1 0.4 1607.3 0.75 156.1 628.5 1.4 2010.5 89 377.4 151.7 24.4
3 200 117 4452 562.3 0.42 4753.7 0.76 120.4 232.2 3.3 661.1 2.2 68.4 137.7 22.2

Total 600 272 4768 442.2 0.41 3252.6 0.71 149.5 373.8 7.9 1146.4 39.5 173.6 194.4 21.5

A1 1 200 149 3940 981.2 0.29 4528 0.4 96.6 133.1 16.1 349.8 8 44.1 93.2 16.2
2 200 119 2295 1024.9 0.24 3958.7 0.37 99.6 359.9 1.3 1034.8 39.3 253.7 68.3 17.5
3 200 171 1887 748.9 0.22 3839.1 0.42 56.5 114.1 3.3 359 0.8 39.7 45.4 13.4

Total 600 439 2707 918.3 0.25 4108.6 0.4 84.3 202.4 6.9 581.2 16 112.5 69 15.7

A2 1 200 148 5013 432.1 0.21 1473 0.44 127.8 187.6 18.1 510.3 13.2 58.2 168 14.7
2 200 105 1962 349.3 0.18 1148.5 0.43 110 419.1 1.4 1320.2 45.2 304.4 79.6 17.6
3 200 174 2047 305.9 0.19 1481.8 0.48 78.2 173.5 3.3 535.9 1 50.1 70.5 13.5

Total 600 427 3007 362.4 0.2 1367.7 0.45 105.3 260.1 7.6 788.8 19.8 137.5 106 15.3

* Best-bound node selection strategy is used for all these experiments
Sep: Separation procedure

(Clique), mixed integer rounding cuts (MIR), flow path cuts (Path), implied bound cuts (ImplBd),

zero-half cuts (ZeroHalf), and lift-and-project cuts (LiftProj). The results indicate that for each

class the BC has to explore many more nodes and finds fewer optimal solutions when it employs

the CVRPSEP package compared to when it uses one of the proposed separation procedures.

Another observation is that the average violation amount of the SECs (both GFSECs and DFJs)

found by the CVRPSEP package is higher than the ones found by the other separation procedures.

The reason is that CVRPSEP is not able to find violated SECs in the initial stages of the search

tree because the node visit values are small in a fractional solution. In other words, because

the CVRPSEP package is not effective on the initial fractional solutions, the BC explores more

different node visit patterns within the search tree. The same is also true for other types of cuts

that are generated by CPLEX. Overall, the performance of the BC when it uses one of the proposed

separation algorithms, A1 or A2, is better than when it employs CVRPSEP.

The results in Tables 5-9 indicate that instances in the second class are generally harder and it

takes longer for the BC method to solve them (higher average CPUs and lower %UB and %BUB).

Within the specified time limit, the BC obtains fewer optimal solutions for the instances in this

class compared to when it is applied to the instances in the first and the third class. Instances in

the third class are relatively easier to solve compared to the other ones. The BC method obtains

the largest number of optimal solutions and lowest average gaps for the instances in this class

within the smallest average solution time.
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7. Summary

We generalized the assumptions of the assembly routing problem (ARP) to the case where

each supplier may provide a subset of the components necessary for production. We presented

a mixed integer linear programming model for this problem. We also developed many randomly

generated test instances for this problem, for which we obtained good quality upper bounds by

adapting the matheuristic of Chitsaz et al. (2019). To solve the problem to optimality, we proposed

several types of valid inequalities and analyzed their performance with respect to the LP solution

value of the model. Based on the valid inequalities, we proposed a branch-and-cut algorithm and

performed extensive experiments to analyze different aspects of the algorithm. In addition, we

have developed two algorithms to separate multi-period fractional capacity cut constraints and

compared their efficiency with the state-of-the-art separation procedures of Lysgaard et al. (2004)

for the single-period VRPs.

Our extensive computational experiments indicate that applying our newly developed valid

inequalities significantly improves the performance of the branch-and-cut algorithm. Furthermore,

the performance of the branch-and-cut algorithm is substantially enhanced when it employs any

of our new separation procedures compared to the case when it uses the separation procedures

offered in Lysgaard et al. (2004).

An interesting avenue for future research on the ARP is to compare different reformulations.

The ARP is an integrated problem that considers lot-sizing (with an assembly structure) and

capacitated vehicle routing problems at the same time. Beside the standard formulation for the

LSP, it is possible to consider echelon stock, facility location, and shortest path, among others

(Pochet and Wolsey 2006). Available formulations for the VRP (Toth and Vigo 2014) are standard,

single-/two-/multi-commodity formulations as well as path-based formulations. These result in a

large number of promising possibilities to present reformulations for the ARP.
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Online Supplementary Material

A Branch-and-Cut Algorithm for an Assembly Routing Problem

1. Proofs

Proposition 1. Inequalities

t2∑
e=t1

pe ≤ I0k,t1−1 +
∑
i∈Nk

Iik,t1−1 +

t2∑
e=t1

∑
i∈Nk

sikt1eye ∀k ∈ K,∀t1, t2 ∈ T, t1 ≤ t2 (19)

are valid for the MARP .

Proof. The inequalities for
∑t2

e=t1
ye = 0 are trivial because

∑t2
e=t1

pe = 0. Otherwise, let θ be the

last period in which the production setup is performed, i.e., θ = maxe{t1 ≤ e ≤ t2|ye = 1}. Then,

t2∑
e=t1

pe =
θ∑

e=t1

pe

=

θ∑
e=t1

(I0k,e−1 − I0ke +
∑
i∈Nk

qike)

=
θ∑

e=t1

(
I0k,e−1 − I0ke +

∑
i∈Nk

(Iik,e−1 − Iike + sike)
)

= I0k,t1−1 − I0kθ +
∑
i∈Nk

(Iik,t1−1 − Iikθ + sikt1θ)

≤ I0k,t1−1 +
∑
i∈Nk

Iik,t1−1 +
∑
i∈Nk

sikt1θ

= I0k,t1−1 +
∑
i∈Nk

Iik,t1−1 +
∑
i∈Nk

sikt1θyθ

≤ I0k,t1−1 +
∑
i∈Nk

Iik,t1−1 +

t2∑
e=t1

∑
i∈Nk

sikt1eye.

The first four equations follow from the definition of θ, constraints (3), constraints (4), and the

definition of sikt1t2 , respectively. The first inequality holds due to the non-negativity of inventory

variables. The next equation is valid because yθ = 1. The last inequality holds because the ye

variables are nonnegative.

Proposition 2. Inequalities

t2∑
e=t1

qike ≤ Iik,t1−1 +

t2∑
e=t1

sikt1ezie ∀i ∈ N, ∀k ∈ Ki, ∀t1, t2 ∈ T, t1 ≤ t2 (20)
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are valid for the MARP .

Proof. If
∑t2

e=t1
zie = 0, then the supplier i will not be visited during periods t1 to t2. Therefore, for

these periods no shipment is possible (
∑t2

e=t1
qike = 0) and inequalities (20) are satisfied. Otherwise,

let θ be the last period in which the supplier i will be visited, i.e., θ = maxe{t1 ≤ e ≤ t2|zie = 1}.

Then,

t2∑
e=t1

qike =
θ∑

e=t1

qike

=
θ∑

e=t1

(Iik,e−1 − Iike + sike)

= Iik,t1−1 − Iikθ + sikt1θ

≤ Iik,t1−1 + sikt1θ

= Iik,t1−1 + sikt1θziθ

≤ Iik,t1−1 +

t2∑
e=t1

sikt1ezie.

The first three equations hold due to the definition of θ, constraints (4), and the definition of sikt1t2 ,

respectively. The first inequality is valid because of the non-negativity of inventory variables. The

next equality is valid for the reason that ziθ = 1. The last inequality holds because the zie variables

are nonnegative.

Proposition 3. Inequalities

t2∑
e=t1

∑
i∈Nk

qike ≤ I00t2 + I0kt2 +

t2∑
e=t1

det2
∑
i∈Nk

zie ∀k ∈ K,∀t1, t2 ∈ T, t1 ≤ t2 (21)

are valid for the MARP .

Proof. If
∑t2

e=t1

∑
i∈Nk

zie = 0, then no visit to the suppliers i ∈ Nk will be made during periods t1

to t2 and hence no shipment of component k is possible during this period (
∑t2

e=t1

∑
i∈Nk

qike = 0).

Then, inequalities (21) are satisfied because the left-hand-side (LHS) will be equal to zero and the

inventory variables in the right-hand-side (RHS) are nonnegative. Otherwise, let θ be the first

period in which at least one node i ∈ Nk is visited, i.e., θ = mine{t1 ≤ e ≤ t2|
∑

i∈Nk
zie ≥ 1}.

3



Then,

t2∑
e=t1

∑
i∈Nk

qike =

t2∑
e=θ

∑
i∈Nk

qike

=

t2∑
e=θ

(I0ke − I0k,e−1 + pe)

=

t2∑
e=θ

(
I0ke − I0k,e−1 + (I00e − I00,e−1 + de)

)
= I00t2 − I00,θ−1 + I0kt2 − I0k,θ−1 + dθt2

≤ I00t2 + I0kt2 + dθt2

≤ I00t2 + I0kt2 + dθt2
∑
i∈Nk

ziθ

≤ I00t2 + I0kt2 +

t2∑
e=θ

det2
∑
i∈Nk

zie

= I00t2 + I0kt2 +

t2∑
e=t1

det2
∑
i∈Nk

zie.

The first four equations follow from the definition of θ, constraints (3), constraints (2), and the

definition of dt1t2 , respectively. The first inequality holds due to the non-negativity of inven-

tory variables. The next inequality is valid because at least one node is visited in period θ, i.e.,∑
i∈Nk

ziθ ≥ 1. The last inequality is valid since the zie variables are nonnegative. The last equa-

tion holds due to the assumption that θ is the first period in which at least one node i ∈ Nk is

visited.

Lemma 1. Inequalities

max{0,Qit} ≤
t∑

e=1

∑
k∈Ki

bkqike ∀i ∈ N, t ∈ T

are valid for MARP .

Proof. We have

Qit ≤
∑
k∈Ki

bk(sik1t + Iik0)−
∑
k∈Ki

bkIikt

=
∑
k∈Ki

bk

t∑
e=1

(sike + Iik,e−1 − Iike)
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=

t∑
e=1

∑
k∈Ki

bkqike,

where the inequality follows from the storage capacity constraints (8), and the equations hold due

to the definition of sikt1t2 and constraints (4), respectively. Because only a strictly positive Qit

triggers the shipment to the plant, we obtain:

max{0,Qit} ≤
∑t

e=1

∑
k∈Ki

bkqike.

Proposition 4. Inequalities

⌈
max

{
0, d1t − I000, (

∑
k∈K bkI0k0 +

∑
i∈N max{0,Qit} − L)/

∑
k∈K bk

}
min{C,maxe∈{1,...,t}{de}+ L0}

⌉
≤

t∑
e=1

ye ∀t ∈ T (22)

are valid for MARP .

Proof. We first obtain two lower bounds on the cumulative production from period 1 to t.

t∑
e=1

pe =

t∑
e=1

(de + I00e − I00,e−1)

= d1t + I00t − I000

≥ d1t − I000.

The first and the second equations hold because of constraints (2), and the definition of dt1t2 ,

respectively. The inequality is valid due to the non-negativity of the inventory variables. Moreover,

∑
k∈K

bk

t∑
e=1

pe =
∑
k∈K

bk

t∑
e=1

(I0k,e−1 − I0ke +
∑
i∈Nk

qike)

=
∑
k∈K

bkI0k0 −
∑
k∈K

bkI0kt +
∑
i∈N

t∑
e=1

∑
k∈Ki

bkqike

≥
∑
k∈K

bkI0k0 − L+
∑
i∈N

max{0,Qit}.

The first equation follows from constraints (3). The second equation is obtained by rearranging

the terms. The inequality holds based on the component storage capacity at the suppliers and

Lemma 1. Next, we determine two upper bounds on the cumulative production from period 1

to t. The cumulative production amount forces a minimum number of production setups due to
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production capacity constraints (5):
∑t

e=1 pe ≤ C
∑t

e=1 ye. Then, we present another expression

for the minimum number of required production setups:

t∑
e=1

pe ≤
t∑

e=1

(de + I00e)ye

≤
t∑

e=1

max
e′∈{1,...,t}

{de′ + I00e′}ye

= max
e′∈{1,...,t}

{de′ + I00e′}
t∑

e=1

ye

≤
(

max
e′∈{1,...,t}

{de′}+ L0

) t∑
e=1

ye.

The first inequality is valid since pt = dt + I00t − I00t−1 ≤ dt + I00t, and the fact that yt = 0 forces

pt = 0. The second inequality and the equation hold trivially. The last inequality is valid because

of the product storage capacity (L0). Combining the two parts of the proof, we obtain:

max
{

0, d1t − I000,
(∑

k∈K bkI0k0 +
∑

i∈N max{0,Qit} − L
)
/
∑

k∈K bk

}
≤∑t

e=1 pe ≤ min
{
C,maxe∈{1,...,t}{de}+ L0

}∑t
e=1 ye.

Proposition 5. Inequalities⌈
1

Q
max

{∑
k∈K

bk max{0, d1t − I000 − I0k0},
∑
i∈N

max{0,Qit}
}⌉
≤

t∑
e=1

z0e ∀t ∈ T (23)

are valid for MARP .

Proof. We obtain the first expression as follows:

t∑
e=1

Qz0e ≥
t∑

e=1

∑
k∈K

∑
i∈Nk

bkqike

=

t∑
e=1

∑
k∈K

bk(de + I00e − I00,e−1 + I0ke − I0k,e−1)

=
∑
k∈K

bk(d1t + I00t − I000 + I0kt − I0k0)

≥
∑
k∈K

bk(d1t − I000 − I0k0).

6



The first inequality is valid since the LHS is the total capacity of the dispatched vehicles from

period e = 1 to t, and the RHS is the total shipped amount over the same periods, all components

and all suppliers. The first equation follows from constraints (3), and by replacing the pt variables

using constraints (2). The second equation is valid due to the definition of dt1t2 . The second

inequality holds due to the non-negativity of inventory variables. Next, we have

t∑
e=1

Qz0e ≥
t∑

e=1

∑
i∈N

∑
k∈Ki

bkqike

≥
∑
i∈N

max{0,Qit},

where the first inequality is valid because of the total fleet capacity, and the second inequality

follows from Lemma 1.

Proposition 6. Inequalities⌈
max{0,Qit}

min
{
Q,Li + maxe∈{1,...,t}{

∑
k∈Ki

bksike},
∑

k∈Ki
bk(Iik0 + sik1t)

}⌉ ≤ t∑
e=1

zie ∀i ∈ N, ∀t ∈ T

(24)

are valid for MARP .

Proof. Based on Lemma 1 we know that

max{0,Qit} ≤
∑t

e=1

∑
k∈Ki

bkqike.

Now, we present upper bounds on the cumulative shipments from node i during period 1 to t. The

vehicle capacity constraints (10) provide the first upper bound:
∑t

e=1

∑
k∈Ki

bkqike ≤ Q
∑t

e=1 zie.

Next, we have

t∑
e=1

∑
k∈Ki

bkqike ≤
t∑

e=1

(Li +
∑
k∈Ki

bksike)zie

≤
t∑

e=1

(
Li + max

e′∈{1,...,t}
{
∑
k∈Ki

bksike′}
)
zie

=
(
Li + max

e′∈{1,...,t}
{
∑
k∈Ki

bksike′}
) t∑
e=1

zie.

Where the first inequality follows from
∑

k∈Ki
bkqikt ≤ Li +

∑
k∈Ki

bksikt which is valid due to

constraints (4) and (8), and the fact that zit = 0 forces
∑

k∈Ki
bkqikt = 0. The second inequality

7



and the equation hold trivially. Moreover, we have

t∑
e=1

∑
k∈Ki

bkqike ≤
t∑

e=1

∑
k∈Ki

bk(Iik0 + sik1e)zie

≤
t∑

e=1

∑
k∈Ki

bk
(
Iik0 + max

e′∈{1,...,t}
{sik1e′}

)
zie

=
t∑

e=1

∑
k∈Ki

bk(Iik0 + sik1t)zie

=
∑
k∈Ki

bk(Iik0 + sik1t)

t∑
e=1

zie.

Where the first inequality is valid for the reason that qike ≤ Iik0 + sik1e which is valid due to

constraints (4), the definition of sikt1t2 , and the fact that zit = 0 forces
∑

k∈Ki
bkqikt = 0. The

second inequality holds trivially. The first equation follows from maxe′∈{1,...,t}{sik1e′} = sik1t. The

second equation holds trivially. Consequently, we obtain

max{0,Qit} ≤
t∑

e=1

∑
k∈Ki

bkqike

≤ min
{
Q,Li + max

e∈{1,...,t}
{
∑
k∈Ki

bksike},
∑
k∈Ki

bk(Iik0 + sik1t)
} t∑
e=1

zie.

Proposition 7. Inequalities⌈
max{0, d1t − I000 − I0k0}

min
{Q
bk
,maxi∈Nk

{Iik0 + sik1t}
}⌉ ≤ t∑

e=1

∑
i∈Nk

zie ∀k ∈ K,∀t ∈ T (25)

are valid for MARP .

Proof. We have

d1t − I000 − I0k0 ≤
∑t

e=1

∑
i∈Nk

qike,

which can be obtained by replacing pt using constraints (2) in constraints (3), and the non-

negativity of the inventory variables. Next, we have∑t
e=1

∑
i∈Nk

qike ≤ Q
bk

∑t
e=1

∑
i∈Nk

zie,

8



which is valid due to bkqikt ≤ Qzit. Furthermore, we have

∑
i∈Nk

t∑
e=1

qike ≤
∑
i∈Nk

(Iik0 + sik1t)

t∑
e=1

zie

≤
∑
i∈Nk

max
i′∈Nk

{Ii′k0 + si′k1t}
t∑

e=1

zie

= max
i′∈Nk

{Ii′k0 + si′k1t}
∑
i∈Nk

t∑
e=1

zie.

Where the first inequality comes from constraints (4), and by checking for
∑t

e=1 zie = 0 and∑t
e=1 zie ≥ 1. The second inequality and the equation are valid trivially. Finally, we obtain

max{0, d1t − I000 − I0k0} ≤
t∑

e=1

∑
i∈Nk

qike

≤ min
{Q
bk
,max
i∈Nk

{Iik0 + sik1t}
} t∑
e=1

∑
i∈Nk

zie.
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2. Adaptation of CCJ-DH

In this section, we present the adaptation of CCJ-DH (Chitsaz et al. 2019) to the generalized

version of the ARP. The algorithm decomposes the problem into three distinct subproblems. The

framework of the heuristic is presented in Figure 1.

Figure 1: CCJ-DH framework

The first subproblem returns a setup schedule. It uses an approximate transportation cost

based on the number of vehicles dispatched from the plant. This results in the following objective

function:

min
∑
t∈T

(
upt + fyt +

∑
k∈K+

h0kI0kt +
∑
i∈N

∑
k∈Ki

hikIikt + σ0tz0t

)
(26)

where σ0t is the cost of each vehicle dispatch. This objective function does not include any routing

decision and hence constraints (11)-(12) become redundant. To impose the aggregate fleet capacity

in the first subproblem, the algorithm adds the following constraints to constraints (3)-(10), and

(13)-(15): ∑
i∈N

∑
k∈Ki

bkqikt ≤ Qz0t ∀t ∈ T. (27)

After solving this subproblem using CPLEX, the algorithm fixes the setup schedule and uses it as

a given parameter in the second subproblem.

The second subproblem returns node visit and shipment quantity decisions. The algorithm

employs another approximation of the transportation cost in the objective function based on the

10



cost associated with visiting each supplier (node). This results in the following objective function:

min
∑
t∈T

(
upt +

∑
k∈K+

h0kI0kt +
∑
i∈N

∑
k∈Ki

hikIikt +
∑
i∈N

σitzit

)
(28)

where σit represents the node visit cost estimation. Similarly as in the first subproblem, this

subproblem ignores the routing decisions. To enforce the vehicle capacity and to make sure that

the shipments can be packed into the available vehicles, the algorithm considers the following

constraints as well as constraints (3)-(8), (10), and (14)-(15) in the second subproblem:

∑
i∈N

∑
k∈Ki

bkqikt ≤ λtmQ ∀t ∈ T. (29)

Here, λt = 1 − 2
n is a parameter. CCJ-DH solves this subproblem using CPLEX. Having the

node visit and the shipment quantity decisions fixed for each time period, the algorithm solves one

capacitated VRP for each period as the third subproblem. CCJ-DH uses the tabu search heuristic

of Cordeau et al. (1997) to solve the VRPs.

To intensify the search, CCJ-DH updates the node visit cost estimates (σit) for the next it-

eration. The algorithm uses two estimation mechanisms. The first mechanism is the cheapest

insertion cost among all existing routes. The second mechanism splits the cost of each route (in

each period) over its nodes proportional to their direct shipment cost. In this mechanism, if a

node is not visited in a certain period, the algorithm considers the direct shipment cost as the

estimated cost for that node. CCJ-DH switches between these two mechanisms after using each

for 7 consecutive iterations.

To diversify the search, the algorithm adds a local branching type cut (Fischetti et al. 2004) to

the set of constraints in the first subproblem in order to consider a new setup schedule. The stopping

condition for the overall algorithm is a maximum of 200 intensification iterations. To perform

a diversification, CCJ-DH considers two stopping conditions: a maximum of 80 intensification

iterations, or 60 intensification iterations without incumbent solution improvement.

11



3. Examples for Fractionally Violated and Non-Violated Subtours

Figure 2 shows an example where CVRPSEP returns a violated VRP CCC which is a non-

violated ARP GFSEC in the ARP (or the IRP and the PRP). Figure 3 shows an example for the

case that a fractionally violated GFSEC or DFJ in the ARP (or the IRP and the PRP) cannot be

found if the node visit variables (zit) are not considered.

Figure 2: A violated VRP CCC which is a non-violated GFSEC.

Plant

z∗1 = 1, q∗1 = 15 1

z∗2 = 1, q∗2 = 20 2

3 z∗3 = 0.7, q∗3 = 25

x∗03 = 0.35 Vehicle capacity (Q) = 100

x∗01 = 0.95

x∗12 = 1 x∗13 = 0.05

x∗23 = 1

Violated VRP subtour, S = {1, 2, 3} : 1 + 1 + 0.05 = 2.05 > |S| − 1 = |3| − 1 = 2

LHS = Q
∑

(i,j)∈E(S)

x
∗
ij = 100 ∗ (1 + 1 + 0.05) = 205

RHS =
∑
i∈S

(Qz
∗
i −

∑
k∈Ki

bkq
∗
ik) = 100 ∗ (1 + 1 + 0.7)− (15 + 20 + 25) = 210

LHS < RHS Satisfied (non-violated) fractional ARP GFSEC

Figure 3: Violated ARP GFSEC and DFJ which is a non-violated VRP CCC and DFJ.

Plant

z∗1 = 1, q∗1 = 10 1

z∗2 = 0.9, q∗2 = 10 2

3 z∗3 = 1, q∗3 = 10

x∗03 = 0.9 Vehicle capacity (Q) = 30

x∗01 = 0.9

x∗12 = 0.9 x∗13 = 0.2

x∗23 = 0.9

Non-violated VRP DFJ, S = {1, 2, 3} : 0.9 + 0.9 + 0.2 = 2 = |S| − 1 = |3| − 1 = 2

Non-violated VRP CCC:

LHS = Q
∑

(i,j)∈E(S)

x
∗
ij = 30 ∗ (0.9 + 0.9 + 0.2) = 60

RHS =
∑
i∈S

(Q−
∑

k∈Ki

bkq
∗
ik) = 3 ∗ (30− 10) = 60

LHS = RHS Satisfied (non-violated) fractional VRP CCC

Violated ARP DFJ, S = {1, 2, 3} : 0.9 + 0.9 + 0.2 = 2 > (z
∗
1 + z

∗
2 + z

∗
3 )− z

∗
1 = (1 + 0.9 + 1)− 1 = 1.9

LHS > RHS Violated fractional ARP DFJ

Violated ARP GFSEC: S = {1, 2, 3} : LHS = Q
∑

(i,j)∈E(S)

x
∗
ij = 30 ∗ (0.9 + 0.9 + 0.2) = 60

RHS =
∑
i∈S

(Qz
∗
i −

∑
k∈Ki

bkq
∗
ik) = 30 ∗ (1 + 0.9 + 1)− (10 + 10 + 10) = 57

LHS > RHS Violated fractional ARP GFSEC
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4. Results on the Large ARP Instances of Chitsaz et al. (2019)

Chitsaz et al. (2019) presented two lower bounding methods for the ARP. The first method

(BC-T) is a truncated BC with a time limit of 12 hours. BC-T uses the best-bound node selec-

tion strategy. It adds inequalities (26) and (28) a priori to the model, and SECs (12) and (27)

dynamically through the search using the CVRPSEP package for separation. The second method

(MIP-CP) relaxes SECs (12) from the model and solves the resulting MIP. Then, it iteratively

adds the violated SECs (12) as cutting planes for the resulting integral subtours and re-solves the

new MIP. A time limit of five hours is set for this method.

In Table 10, we present the performance of CCJ-DH, BC-T, and MIP-CP, and compare them

with our BC. In these experiments, the BC uses all inequalities and implements algorithm A2 to

separate SECs. Two branching node selection strategies are examined: balanced between optimal-

ity and feasibility (default) or the best-bound node selection. Because BC-T is able to solve the

small instances with 14 suppliers in the first set (MV-C1) to optimality in a very short time, we

did not apply our BC to these instances. Columns four to six present the results for CCJ-DH:

CPU, #BUB, and the average solution value as a percentage of the best lower bound obtained by

the BC method (%BLB). Columns 7 to 11 show the results for BC-T: CPU, #BUB, the number

of best lower bounds (#BLB), %UB, and %BUB. Columns 12 to 14 show the results for MIP-CP

which only generates lower bounds: CPU, #BLB, and %BUB. Columns 15 to 19, and 20 to 24

include similar results as columns 7 to 11 for the BC of this paper with the default and with the

best-bound node selection strategies, respectively.

Columns under #BUB and %UB for the BC-T and our BC methods reflect the results without

considering the CCJ-DH cutoffs. The comparison of columns under %UB and %BUB for each of

the BC-T and our BC methods shows the effectiveness of CCJ-DH in finding upper bounds for

these large instances. Most of the BUBs for the instances with n = 50 and all of the BUBs for

the instances with n = 100 are obtained by CCJ-DH. BC-T is unable to find upper bounds for the

instances with n = 100. Therefore, it returns zero under column %UB in all four classes of these

instances. Our BC with the best-bound node selection strategy is performing better than with

the default node selection strategy. Moreover, it outperforms the two other methods presented in

Chitsaz et al. (2019), both in terms of number of BLBs, and %BUBs.

Finally, we present more details on the performance of our BC with the default and with the
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best-bound node selection strategies in Table 11. In this table we present #Node, GFS, AVGFS ,

DFJ, and AVDFJ . Although within the default node selection strategy the BC explores more

nodes, the best-bound strategy returns better lower bounds. Another interesting observation is

that the method with the default node selection strategy applies more GFSECs and DFJs with

almost the same average violation on the instances with n = 50. This reflects the fact that the

method with the default node selection strategy explores some nodes that do not contribute much

to improve the lower bound.

Table 11: Summary of the results of the BC on the large ARP instances of Chitsaz et al. (2019) with different node
selection strategies

Node Selection n Class Size %UB %BUB #Node GFS AVGFS DFJ AVDFJ

Default 50 1 120 47.6 98.6 2014.3 1625 0.21 6039 0.4
50 2 120 40.6 98.6 1778.9 1533 0.21 5666 0.4
50 3 120 29.5 94.6 1547 1814 0.21 5882 0.39
50 4 120 51.3 98.9 2434.6 1069 0.22 5640 0.48

Total 480 42.3 97.7 1944.2 1510 0.21 5806 0.42

100 1 120 1.4 97.1 4.6 1939 0.28 3549 0.37
100 2 120 2.6 97.4 5.3 2032 0.28 3728 0.36
100 3 120 0.3 90.5 0.6 2263 0.25 3859 0.32
100 4 120 2.5 97.7 35.8 1346 0.32 3429 0.48

Total 480 1.7 95.7 11.5 1896 0.28 3641 0.38

Best-Bound 50 1 120 23 99 987.1 1160 0.22 3907 0.39
50 2 120 23.7 99 1070.1 1146 0.22 4047 0.39
50 3 120 10.1 96.2 653 1336 0.22 3760 0.37
50 4 120 24 99.3 2255.2 700 0.24 3969 0.5

Total 480 20.2 98.4 1242.1 1085 0.23 3921 0.41

100 1 120 3.4 97.9 1.7 1921 0.28 3668 0.38
100 2 120 2.6 97.9 1.3 2098 0.28 3730 0.37
100 3 120 0 91.3 0.1 2140 0.26 3970 0.33
100 4 120 2.6 98.5 22.6 1442 0.32 3664 0.48

Total 480 2.2 96.4 6.4 1899 0.28 3757 0.39

Size: Number of instances, Time limit = 1 hour
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5. Detailed Results on Effect of Valid Inequalities

Each type of valid inequality introduced in Section 3 of the main paper has a different effect on

the LP relaxation value and solution time of the MARP model. To evaluate the effect of applying

different inequality types, we performed a sensitivity analysis considering different scenarios. We

consider the effect on the LP solution value when only one inequality type is added to the model.

Also, we evaluate the effect when all types of valid inequalities but one are added. Furthermore,

we consider the cases where no valid inequality (None), known valid inequalities (Known) from

the literature (i.e., (18), (26), and (28)), or all valid inequalities (All) (i.e., (18)-(26), and (28))

are added to the model. Similar to the results presented in Table 4, we present the obtained

lower bound as a percentage of the best upper bound found by the BC method or CCJ-DH.

Tables 12, 13 and 14 present the results for each class of instances. Each column number in these

tables refers to the associated valid inequality type number presented in Section 3 of the paper.

For the first class of instances, inequalities (18), (21) and (24) have the greatest impact. For the

second and third classes of instances, inequalities (18), (22) and (24) show the largest LP solution

value improvements.
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Table 12: Effect of individual valid inequality types on average LP solution value as a percentage of BUB (class 1)
Including only one type Excluding only one type

Set (l,S,WW)-type Var Bnd Gen Ineq (l,S,WW)-type Var Bnd Gen Ineq

C/l/n Size None (18) (19) (20) (21) (22) (23) (24) (25) (26) (28) Known (18) (19) (20) (21) (22) (23) (24) (25) (26) (28) All

1/4/18 5 60.4 69.6 66.3 66.1 66.1 65.5 62 67.4 60.4 60.4 60.7 69.9 82.8 86.2 84.4 84.9 84.4 86 85.2 86.6 86.6 84.2 86.6
1/4/21 5 57.2 69.9 60.8 60.9 61.5 64.6 59.8 63.1 57.3 57.3 57.6 70.3 77.6 86.1 84.4 84.9 82.5 85.3 85.3 86.3 86.3 84.1 86.3
1/4/24 5 56.5 68.5 61 61 61.9 62 58.7 63 56.5 56.5 56.8 68.9 78.6 85.6 84.2 84.8 83.2 85.6 85.3 86.3 86.3 83.6 86.3
1/4/27 5 59.1 70.1 62.4 63.4 64 65.1 60.9 65.1 59.1 59.1 59.3 70.4 78.5 85.9 84.6 85.4 83.3 85.8 85.6 86.6 86.6 84.7 86.6
1/4/30 5 62.1 76.3 65.2 65.6 66.1 68.9 63.1 68.4 62.1 62.1 62.3 76.6 80.6 90.8 89.9 90.1 87.1 90.7 89.4 91 91 88.9 91
1/4/33 5 61 73.4 64.3 65.4 65.8 67.4 62.7 67.9 61 61 61.2 73.7 80.8 89.2 88.2 88.6 86 89 88 89.7 89.7 88.2 89.7
1/4/36 5 61.2 72.3 66.7 66.2 66.9 66 62.2 67.6 61.2 61.2 61.4 72.5 82.1 87.5 85.7 86.2 85 87.4 86.9 87.9 87.9 85.9 87.9
1/4/39 5 53.9 63.7 58.2 58.4 59.2 61.9 57 59.4 53.9 54 54.4 64.2 78.4 82.4 81.3 82 79.6 82.3 82.2 83.3 83.3 80.4 83.3

1/6/15 5 67.5 79.1 71.3 70.8 72.2 71.1 70.1 72.2 67.5 67.6 67.8 79.5 85.9 92.3 91.2 90.4 91.1 91 91.3 92.4 92.4 89.8 92.4
1/6/18 5 65.8 74 67.8 70.2 72.7 68.3 68 72.4 65.8 65.8 66.1 74.2 83.8 89 87.7 86.2 87.8 87.7 87.7 89 89 87 89
1/6/21 5 56.4 72 63.4 60.7 61.8 61.7 58 62.7 56.4 56.4 56.7 72.4 79.3 86.6 85.7 85.8 85.3 86.9 86.1 87.4 87.4 85.4 87.4
1/6/24 5 60.3 74 63.9 64.8 67.3 65.5 62.4 66.1 60.3 60.4 60.6 74.3 81.4 89.9 88.4 87 87.7 89.4 89.4 90 90 88 90
1/6/27 5 63.5 76.2 67.3 67.9 69.2 67.9 64.6 69.8 63.5 63.5 63.7 76.4 82.7 90.7 89.9 89.3 89.2 91.1 89.9 91.3 91.3 89 91.3
1/6/30 5 60.5 74.3 65.6 65.6 67.4 64.4 62.5 66.5 60.5 60.5 60.9 74.7 82.7 89.6 87.9 87 89 89.1 89.2 89.8 89.8 87.1 89.8
1/6/33 5 55.9 69.2 61.3 60.8 65.8 61.1 58.8 61.9 55.9 56 56.2 69.7 82.1 86.9 86.7 85.1 85.8 87.2 86.8 88 87.8 86.2 88
1/6/36 5 54 73.6 59.8 58.8 60.1 60.7 56.8 60.9 54 54.2 54.3 74 77.7 89.7 88.1 87.3 87.6 89 88.5 89.7 89.7 87.5 89.7

1/8/12 5 69.7 79 72.1 72.9 75.6 72.4 72 74.3 69.7 69.8 70 79.3 85.8 91.6 90.9 89.1 90.4 90.6 90.8 91.7 91.7 89.9 91.7
1/8/15 5 68.9 79.1 70.6 72 74.4 72.6 70.2 74.2 69.1 69 69.3 79.5 84.4 91.2 91 89.8 89.6 91.4 89.6 91.5 91.5 89.6 91.5
1/8/18 5 64.6 78.9 68.1 67.5 71.3 68 66.4 68.7 64.7 64.7 64.9 79.3 82.4 92.2 91.4 88.7 90.3 91.8 91.4 92.2 92.1 90.2 92.2
1/8/21 5 62.7 75.3 68.2 66.7 67.4 65.7 63.7 67.4 62.7 62.7 62.8 75.5 80.6 86.9 86.6 86.7 87.4 88.2 87.7 88.4 88.3 86.9 88.4
1/8/24 5 65.4 77.5 73.1 70 70.2 68.5 67.3 70.4 65.4 65.5 65.6 77.7 86 89.8 88.3 88.7 89.9 90.3 89.9 90.4 90.3 88.2 90.4
1/8/27 5 66.6 79.7 71.3 70.5 70.9 69.5 68.2 71.9 66.6 66.7 66.9 80 84.1 90.8 89.7 89.7 90.7 91 90.1 91.2 91.2 89.4 91.2
1/8/30 5 61.3 73.8 62.8 64.6 69.4 65.2 63.7 66.9 61.4 61.4 61.8 74.5 80.8 89.5 89.1 86.9 87.7 89.2 88.4 89.7 89.6 86.8 89.7
1/8/33 5 63 74.1 69.1 66.9 68.1 66.2 64.7 67.8 63 63 63.3 74.4 82.3 86 85.1 85.1 86.6 86 86.2 86.9 86.9 84.8 86.9

1/10/9 5 67 82.7 68.2 69.2 72.5 71.2 68.3 71.2 67.3 67.1 67.3 83.1 81.8 93.3 93.2 91 92.2 93.3 92.1 93.5 93.4 92.1 93.5
1/10/12 5 67.3 78.3 68.7 70.4 74.1 71.1 68.9 71.8 67.4 67.4 67.8 78.8 84.1 91.8 91.4 89 90.1 91.9 90.9 92 91.9 89.5 92
1/10/15 5 64.5 79 67.9 67.5 68.6 67.7 66.1 69 64.6 64.6 64.8 79.4 79.6 89.9 89.7 88.8 89.6 90.5 89.8 90.7 90.5 89.1 90.7
1/10/18 5 68.2 80.6 71.8 71.9 71.8 71 69.1 73.2 68.2 68.2 68.3 80.8 82.2 90.3 89.4 89.9 90.1 90.6 90 90.8 90.7 89.4 90.8
1/10/21 5 67.3 80.5 71.2 71.1 72.5 70 68.3 72.2 67.3 67.3 67.4 80.7 83.1 91.7 90.4 89.1 90.7 91.6 91 91.7 91.6 90.3 91.7
1/10/24 5 64.2 76.7 69.1 68.2 69.4 69.3 66.2 69.6 64.2 64.3 64.4 77 83.4 89.4 88.7 88.1 89 89.4 89 89.9 89.9 88.1 89.9
1/10/27 5 64.6 74.5 67.8 68.7 70.5 66.8 67.4 69.2 64.6 64.7 64.9 74.9 81.4 87.5 86.1 85.3 87.1 86.4 87.5 87.8 87.8 86.2 87.8
1/10/30 5 62.8 74 65.9 67.7 69.6 65.5 65.4 68.3 62.8 62.8 63.1 74.4 81.6 87.8 86.7 85.7 87.6 86.8 87.6 88.2 88.2 86.1 88.2

1/12/6 5 71.2 83 73.1 74.2 74.6 74.4 73.1 75.8 71.2 71.3 71.4 83.3 84.6 93 92.2 91.8 92.6 92.8 92.1 93.1 93 91.4 93.1
1/12/9 5 63.8 75.6 67.4 68.1 70.9 66.1 66 68.7 63.8 63.8 64.1 76 82.2 88.2 87.1 86 88.1 87.5 87.7 88.5 88.5 86.8 88.5
1/12/12 5 61 78.1 63.5 64 68.2 65 62.3 66.1 61.2 61 61.3 78.4 78.2 90.7 90.4 88.8 89.4 91 90 91.1 91 89.4 91.1
1/12/15 5 66.2 82.2 69.7 69.2 69.7 70.3 67.1 70.9 66.3 66.3 66.5 82.4 81.6 92.7 92 91.8 91.5 92.9 91.7 93 92.9 91.2 93
1/12/18 5 68.6 80.4 71.8 71.8 72 72 69.7 73.6 68.7 68.6 68.8 80.7 83.5 90.9 90.5 90.6 90.8 91.5 90.3 91.6 91.6 89.5 91.6
1/12/21 5 63.9 74 65.9 67.8 70.6 68.4 64.6 68.9 64.4 64 64.4 74.5 81.8 87.2 86.7 86.7 86.1 87.8 86.5 87.9 87.7 86.1 87.9
1/12/24 5 66.2 79.3 70.4 69.5 72.3 68.6 66.8 70.2 66.2 66.2 66.4 79.5 82.1 89.5 89.5 87.6 90.2 90.5 90.1 90.6 90.5 88.8 90.6
1/12/27 5 56.8 77.1 61.7 60.6 65.5 62.8 58.5 61.9 57.1 57 57.4 77.7 79.6 90.4 90.2 88 90.2 90.9 90.3 91.1 90.8 88.9 91.1

Total 200 63 75.7 66.9 66.9 68.7 67.3 64.8 68.4 63.1 63.1 63.3 76.1 81.8 89.3 88.4 87.7 88.1 89.2 88.7 89.7 89.7 87.7 89.7

Note. C/l/n: Class/Number of periods/Number of suppliers, Var Bnd: Bounds on the variables, Gen Ineq: General inequalities

17



Table 13: Effect of individual valid inequality types on average LP solution value as a percentage of BUB (class 2)
Including only one type Excluding only one type

Set (l,S,WW)-type Var Bnd Gen Ineq (l,S,WW)-type Var Bnd Gen Ineq

C/l/n Size None (18) (19) (20) (21) (22) (23) (24) (25) (26) (28) Known (18) (19) (20) (21) (22) (23) (24) (25) (26) (28) All

2/4/18 5 71.9 81.9 71.9 74.9 72 76.6 72.7 78.5 71.9 71.9 72 82 85.9 92.8 91.8 92.7 91.2 92.4 87.8 92.8 92.7 91.7 92.8
2/4/21 5 69 76.9 69 71.5 69.2 75.6 70.7 75.1 69 69.1 69.2 77.2 85.1 89.7 88.6 89.6 86.3 89.1 85.6 89.7 89.6 88.6 89.7
2/4/24 5 64.6 78.7 64.6 67.9 65 71.7 65.7 71.5 64.6 64.7 64.8 78.9 82 91.3 90.2 91.1 89 90.8 86.4 91.3 91.2 89.7 91.3
2/4/27 5 66.7 81.3 66.7 70.1 66.9 73.7 67.7 73 66.7 66.7 66.8 81.5 83.1 92.9 91.7 92.8 90.7 92.5 88.7 92.9 92.8 91.7 92.9
2/4/30 5 68.7 80.8 68.7 72.5 68.9 74.6 69.7 75.9 68.7 68.7 68.9 80.9 85 92.6 91.3 92.6 91.2 92.4 87.9 92.6 92.6 91.4 92.6
2/4/33 5 69.4 80.6 69.4 73.4 69.6 75.1 70.3 76.2 69.4 69.4 69.5 80.7 85.3 92.3 90.7 92.2 91 92 87.8 92.3 92.2 91.1 92.3
2/4/36 5 65.6 77.5 65.6 70.4 65.7 71.1 67.6 73.3 65.6 65.7 65.8 77.8 83.7 91.7 89.9 91.7 90.1 90.7 87.1 91.7 91.7 90.2 91.7
2/4/39 5 55.2 70.3 58.2 60.9 55.9 64.9 56.7 62.6 55.2 55.2 55.4 70.6 79.2 88.3 85.2 88.4 85 87.9 84.9 88.4 88.4 86.7 88.4

2/6/15 5 72.9 82.2 72.9 77.1 73.1 76.8 74.2 77 72.9 72.9 73 82.4 85.6 92.7 90.3 92.7 91.1 92.2 90.4 92.7 92.7 91.5 92.7
2/6/18 5 63.1 77.6 63.1 68.1 63.3 68.9 64.6 68.4 63.1 63.1 63.3 77.9 79.8 90.6 87.9 90.6 88.6 90.1 87.1 90.6 90.6 88.6 90.6
2/6/21 5 73.1 79.3 73.1 77.3 73.2 76.4 74.6 78.4 73.1 73.1 73.2 79.5 86.2 90.9 88.4 90.8 89.3 90.2 87.8 90.9 90.8 89.5 90.9
2/6/24 5 72.8 84 72.8 75.8 72.8 76.5 74.5 76.2 72.8 72.8 72.9 84.2 84.1 93.2 91.5 93.2 91.6 92.1 90.8 93.2 93.2 92.2 93.2
2/6/27 5 56.7 75.8 57 64.1 57.8 62.7 57.8 63.1 56.8 56.8 56.9 76.1 75.1 89.7 86 89.7 88.4 89.3 86.9 89.7 89.5 87.9 89.7
2/6/30 5 59.8 73.3 61.5 66.2 60.6 67 61.8 66.1 59.8 59.8 60 73.7 81.8 90.2 86.4 90.2 87.8 89.8 87.6 90.3 90.2 88 90.3
2/6/33 5 59.4 76.4 59.4 66.3 60 65.4 61.1 65 59.4 59.5 59.6 76.7 77.7 90.7 87 90.6 88.8 90.1 88.5 90.7 90.4 88.6 90.7
2/6/36 5 53.8 75.4 54.1 61.5 54.2 61.3 55.4 61.8 53.8 53.8 53.9 75.6 75.5 91.8 88.1 91.7 90.1 91.3 88.1 91.8 91.6 89.9 91.8

2/8/12 5 73.7 83.8 73.7 76.8 73.8 76.6 75.2 76.8 73.7 73.7 73.9 84 83.6 92.1 90.2 92 90.8 91.2 90.1 92.1 92 91.1 92.1
2/8/15 5 71.1 83.4 71.1 74.9 71.2 75.7 72.5 74.5 71.1 71.2 71.2 83.5 83.3 92.6 90.2 92.6 91.1 91.9 90.5 92.6 92.6 91.7 92.6
2/8/18 5 76.4 82.7 76.4 80.3 76.5 79.9 77.1 80.3 76.4 76.4 76.6 82.9 87.8 92.2 89.5 92.2 90.9 91.9 89.6 92.2 92.2 90.9 92.2
2/8/21 5 63 77.7 63.1 67 63.5 72.3 65.6 68 63.1 63.2 63.3 78.2 82.6 90.2 88.6 90.2 88.2 89.1 87.9 90.2 90.1 88.6 90.2
2/8/24 5 58 73.1 58.5 64.8 59 66.9 59.7 64.3 58.1 58 58.1 73.4 78.5 88.7 85.4 88.7 85.3 88.5 86.7 88.7 88.6 87.5 88.7
2/8/27 5 52.3 70.8 53.3 60.6 53.4 62.3 54.6 60.9 52.4 52.4 52.6 71.1 78.4 90.1 86.1 90.1 87.7 89.5 87.2 90.1 89.9 87.5 90.1
2/8/30 5 60.6 79.2 60.6 66.7 61 67.1 61.8 66.4 60.6 60.6 60.7 79.4 77.6 91.9 89 91.9 90.1 91.8 89.7 91.9 91.8 90.5 91.9
2/8/33 5 63.8 79.3 63.9 69.1 64.1 71.3 65.3 68.4 63.8 63.8 63.9 79.6 81.8 91.9 88.7 91.9 90.2 91.1 89.6 91.9 91.9 90.1 91.9

2/10/9 5 69.6 79.9 69.6 75 69.7 72.3 70.8 73.6 69.6 69.6 69.8 80.1 81.7 90.6 87.2 90.6 89.5 89.9 88.9 90.6 90.6 89.2 90.6
2/10/12 5 62 73.7 62 67.6 62.6 70.9 63.7 68.8 62 62.1 62.3 74.1 82.5 88.3 86.2 88.3 85.8 88 85.5 88.3 88.2 86.1 88.3
2/10/15 5 60.8 77 62.2 67.7 61.5 69.5 61.6 67 60.8 60.8 61 77.2 81.1 89.9 86.6 90.1 88.9 90 88 90.1 89.9 88.2 90.1
2/10/18 5 51.8 70 52.6 61.7 53.1 59.8 52.8 60.7 51.9 51.9 52.1 70.4 76.4 90.6 85.6 90.6 87.6 90.5 87.8 90.6 90.5 87.3 90.6
2/10/21 5 65 79 65 71.3 65.3 71.6 66.2 70.1 65 65.1 65.1 79.2 81.7 90.8 87 90.8 89.6 90.4 89.4 90.8 90.7 89.6 90.8
2/10/24 5 59 74.1 60.2 68.1 59.4 65.1 60.7 65.9 59 59.1 59.3 74.5 79.8 90.8 84.9 90.8 90 90.4 89.1 90.8 90.7 88.4 90.8
2/10/27 5 62.2 77.3 62.2 68 62.4 66.5 64 67.1 62.2 62.2 62.4 77.6 77.2 89.8 86.6 89.8 88.2 88.7 87.8 89.8 89.8 88.3 89.8
2/10/30 5 52.6 65.6 56.4 56.7 54.3 60.5 55.6 58.3 52.7 52.9 53 66.2 73 81 80.4 82.5 79.6 81.9 80.6 82.5 82.4 81.1 82.5

2/12/6 5 70.5 79.5 70.5 75.7 70.6 73.3 72.4 74.3 70.5 70.6 70.8 79.7 82.4 89.3 86.2 89.3 88.7 88.1 87.8 89.3 89.3 88.2 89.3
2/12/9 5 68.7 77.5 69.5 74.8 69 73.5 70.5 73.1 68.7 68.7 68.9 77.7 84.1 89.8 85.9 89.8 88.8 88.8 88.2 89.8 89.8 88.4 89.8
2/12/12 5 65.2 76 65.7 73 65.8 69.9 65.9 71.6 65.2 65.2 65.3 76.1 81.8 89.1 85.2 89.2 88.6 89.1 87.4 89.3 89.2 87.7 89.3
2/12/15 5 55.3 73.8 58.1 64.4 56.5 61.2 56.6 62.4 55.4 55.4 55.6 74 77.3 90.6 85.3 90.6 89.5 90.5 88.5 90.6 90.3 87.4 90.6
2/12/18 5 52.4 71.6 52.8 54.9 53.2 68.5 56.2 57.6 52.8 53 52.8 72.4 77.7 85.4 85 85.4 81.3 84.9 83.2 85.4 85.1 84.7 85.4
2/12/21 5 52.5 62 53.7 58 54.5 64.4 55.5 60.5 52.9 52.8 52.9 62.5 78.8 82.9 80.6 82.8 78.4 82.4 79.1 82.9 82.6 80.4 82.9
2/12/24 5 56.5 73.5 56.6 65.1 57.8 63.7 58.2 64 56.6 56.6 56.7 73.6 76.2 88.2 84.6 88.2 86.5 88.1 86.6 88.2 88 86.9 88.2
2/12/27 5 54.6 72.9 56.9 64.5 55.9 63.2 55.6 62.4 54.7 54.6 54.7 73.1 77.5 89.5 84.2 89.6 88.8 89.5 88.4 89.6 89.4 87.6 89.6

Total 200 63 76.6 63.6 68.6 63.6 69.6 64.6 69 63.1 63.1 63.2 76.9 81 90.2 87.4 90.2 88.3 89.7 87.5 90.2 90.1 88.6 90.2

Note. C/l/n: Class/Number of periods/Number of suppliers, Var Bnd: Bounds on the variables, Gen Ineq: General inequalities
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Table 14: Effect of individual valid inequality types on average LP solution value as a percentage of BUB (class 3)
Including only one type Excluding only one type

Set (l,S,WW)-type Var Bnd Gen Ineq (l,S,WW)-type Var Bnd Gen Ineq

C/l/n Size None (18) (19) (20) (21) (22) (23) (24) (25) (26) (28) Known (18) (19) (20) (21) (22) (23) (24) (25) (26) (28) All

3/4/18 5 68.1 70.4 68.1 68.8 68.1 74.3 69.9 82.1 68.1 68.3 68.3 70.9 91.9 92.5 92.4 92.5 88 92 77.9 92.5 92.5 90.2 92.5
3/4/21 5 66.5 68.4 66.5 66.8 66.6 74.6 68.4 78.2 66.6 66.7 66.9 68.9 89.8 90.6 90.5 90.6 83.5 89.9 78 90.6 90.5 88.1 90.6
3/4/24 5 64.7 68.1 64.7 65.8 64.7 76.4 66.1 77.3 64.7 64.9 65 68.5 91.5 92.9 92.7 92.9 83 92.5 81.1 92.9 92.8 91.6 92.9
3/4/27 5 65.3 67.6 65.3 66.1 65.3 78.2 66.2 78.4 65.3 65.4 65.5 68 94.3 94.3 94.2 94.3 83.6 94.2 80.6 94.3 94.1 92.2 94.3
3/4/30 5 67 70.5 67 67.2 67 77.4 68.6 79.4 67 67.1 67.3 71 92.6 93.9 93.9 93.9 85.5 93.1 81.2 93.9 93.9 92.1 93.9
3/4/33 5 64.6 68.3 64.6 65.2 64.6 73.9 66.3 78.5 64.6 64.8 64.9 68.9 91.6 92.9 92.8 92.9 85.9 92.5 78.4 92.9 92.9 89.9 92.9
3/4/36 5 61.5 66.8 61.5 62.1 61.7 71.6 65.6 75.9 61.7 62 62.2 67.8 91.5 92.3 92.1 92.3 86.6 90.3 78.1 92.3 92.3 90.2 92.3
3/4/39 5 46.1 53.5 46.1 48.2 46.2 62.2 48 66.7 46.2 46.2 46.4 53.9 87.1 88.7 88.4 88.7 78.1 88 69.6 88.7 88.5 85.7 88.7

3/6/15 5 70.4 73.5 70.4 71.2 70.5 76.8 72.2 81.3 70.4 70.6 70.8 74 91 92 91.9 92 87.7 91.4 81.2 92 91.9 90.2 92
3/6/18 5 69.3 72.9 69.3 70.4 69.3 75.4 70.3 79.5 69.3 69.4 69.5 73.2 89 89.9 89.6 89.9 86.4 89.5 79.6 89.9 89.7 87.2 89.9
3/6/21 5 63.6 69 63.6 65.5 63.7 70.8 65.6 74.2 63.7 63.8 63.9 69.6 86.9 88.2 87.7 88.2 85.1 87.5 77.8 88.2 87.7 84.9 88.2
3/6/24 5 65.9 68.3 65.9 67.5 66 72.9 67.1 75.9 66 66 66.3 68.8 88.1 88.4 88.2 88.4 83.4 88.1 77.8 88.4 88.2 84.3 88.4
3/6/27 5 67.3 71.6 67.3 68 67.4 76.4 68.9 78.1 67.4 67.4 67.5 71.9 90.4 91 90.7 91 85.5 90.5 80.1 91 91 88.7 91
3/6/30 5 60.9 67 60.9 62.3 61 74.6 62 71.8 61 61 61.1 67.3 89.3 90.5 90.2 90.5 81.7 90.5 79.2 90.5 90 87.9 90.5
3/6/33 5 65.5 68 65.5 66.7 65.5 72.6 69.2 73.2 65.5 65.9 66.1 69 86.4 87.1 86.6 87.1 81.6 85.4 79.9 87.1 86.5 84.6 87.1
3/6/36 5 60.3 69.5 60.3 61.9 60.4 73.2 63.1 69.2 60.4 60.5 60.9 70.2 86.9 89.3 88.7 89.3 83.1 88.4 81.3 89.3 89.1 86.5 89.3

3/8/12 5 73.4 74.2 73.4 74.9 73.5 78.5 77.4 81.1 73.5 73.7 73.8 74.9 90.7 91 91 91 86.4 89.4 84.6 91 91 89.6 91
3/8/15 5 65.8 72.3 65.8 67.1 65.8 75.6 67.1 74.7 65.8 65.8 65.9 72.7 87 89.3 89.2 89.3 83.7 89 81.1 89.3 89.2 87.7 89.3
3/8/18 5 71.5 75.9 71.5 73.2 71.6 76.6 73.4 79.1 71.6 71.6 71.8 76.3 87.6 89.8 89.3 89.8 86.9 89.5 83.2 89.8 89.7 87.6 89.8
3/8/21 5 67.7 70.7 67.7 68.8 67.8 75.1 69.9 74.8 67.8 67.8 68 71.1 86.5 87.9 87.6 87.9 82 87.3 80.8 87.9 87.7 85.5 87.9
3/8/24 5 63.5 67.6 63.5 65.3 63.5 70.2 64.9 73.2 63.5 63.6 63.9 68.1 84.1 85.3 85.1 85.3 81.5 85.1 76 85.3 85.3 82.1 85.3
3/8/27 5 71.5 74.3 71.5 72 71.5 77 73.9 79.1 71.5 71.6 71.7 74.7 88.3 89.3 89 89.3 85.6 88.7 81.7 89.3 89.2 87.2 89.3
3/8/30 5 70.6 74.4 70.6 71.4 70.6 75.8 71.6 78.2 70.6 70.6 70.8 74.8 86.3 88 87.8 88 84.9 87.8 80.2 88 87.9 86.1 88
3/8/33 5 65.4 73 65.4 66.5 65.5 73.4 66.5 73.2 65.4 65.5 65.6 73.3 84.2 87.4 87.2 87.4 83.8 87.3 79.7 87.4 87 85.6 87.4

3/10/9 5 66 71.9 66 67.8 66.2 74.2 71.5 72.2 66.1 66.5 66.5 73 85.7 88.8 88.3 88.8 83.5 86.5 85.4 88.8 88.8 87.7 88.8
3/10/12 5 64.2 69.9 64.2 66.9 64.3 70.9 66.8 72.4 64.3 64.4 64.7 70.6 83.6 85.8 85 85.8 82.8 84.7 80.3 85.8 85.3 83.8 85.8
3/10/15 5 67.3 73.4 67.3 69.2 67.4 73.3 69.4 75 67.4 67.4 67.6 73.8 84.5 87.4 87 87.4 84.7 86.9 81.2 87.4 87.3 85.4 87.4
3/10/18 5 63 67.5 63 64.7 63.1 68.9 65.4 71.4 63 63.1 63.2 67.9 82 84 83.5 84 80.6 83.7 76.2 84 83.6 81.7 84
3/10/21 5 65.7 67.2 65.7 67.6 65.8 70.8 68.5 73.9 65.7 65.9 66 67.7 84.9 85.6 85.2 85.6 81.2 85.2 77.9 85.6 85.6 82.3 85.6
3/10/24 5 65.8 69.9 65.8 67.5 65.9 72.1 67.6 73.8 65.8 65.9 66.1 70.3 84.2 86.1 85.7 86.1 82 86.1 79 86.1 86 83.8 86.1
3/10/27 5 67.7 71.8 67.7 69.7 67.8 73.7 68.3 76.4 67.8 67.8 67.9 72.1 85.3 87.1 86.8 87.1 83.4 87.1 79.2 87.1 86.9 84.9 87.1
3/10/30 5 66.3 72.1 66.3 67.7 66.4 74.2 68.1 73.4 66.3 66.4 66.5 72.5 85 86.9 86.4 86.9 82.9 86.7 80.1 86.9 86.8 85 86.9

3/12/6 5 70.4 74 70.4 72.8 70.5 74.4 72.3 78.6 70.4 70.5 70.6 74.3 86.1 88.2 88 88.2 85.7 87.7 81.8 88.2 88 86.6 88.2
3/12/9 5 69.5 73.8 69.5 71 69.5 75 70.7 76 69.5 69.5 69.7 74.1 85.3 87.6 87.4 87.6 84 87.2 81.5 87.6 87.4 85.1 87.6
3/12/12 5 67.6 71.7 67.6 70.1 67.9 72.5 70.4 74.4 67.7 67.9 67.9 72.2 83.8 85.8 85.3 85.8 83 85.3 81 85.8 85.7 84.2 85.8
3/12/15 5 68.7 71.3 68.7 70.3 68.8 73.3 70.8 74.8 68.7 68.8 69 71.8 83.2 84.5 84.2 84.5 81.3 83.9 79.4 84.5 84.4 82.3 84.5
3/12/18 5 65.7 70.1 65.7 67.6 65.8 73.7 68.2 71.7 65.8 65.8 66.2 70.8 84.5 86.2 86 86.2 80.9 85.9 81.4 86.2 85.7 83.2 86.2
3/12/21 5 65.2 70.1 65.2 67.6 65.3 70.5 66.9 73.5 65.2 65.3 65.4 70.4 83.5 85.8 85.4 85.8 83.1 85.7 79 85.8 85.4 82.9 85.8
3/12/24 5 66.3 71.9 66.3 68.4 66.3 72 69.4 74.4 66.3 66.5 66.5 72.4 84.3 87.4 87.3 87.4 84.2 86.1 80.9 87.4 87.3 85.9 87.4
3/12/27 5 60.1 68.8 60.1 62.9 60.7 70.2 62.5 68.2 60.2 60.3 60.8 69.7 83.2 86.9 86.5 86.9 81.8 86.3 80.9 86.9 86.7 84.5 86.9

Total 200 65.9 70.3 65.9 67.4 66 73.6 68 75.3 65.9 66.1 66.2 70.8 87.1 88.7 88.4 88.7 83.7 88.1 79.9 88.7 88.5 86.4 88.7

Note. C/l/n: Class/Number of periods/Number of suppliers, Var Bnd: Bounds on the variables, Gen Ineq: General inequalities
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Highlights

• We study integrated production, inventory and inbound transport planning problem

• The suppliers each provide a subset of the components necessary for the production

• We provide a mixed integer programming formulation of the problem

• We propose several families of valid inequalities to strengthen the formulation

• We generate a large test bed consisting of small to large instances

• We analyze the impact of each family of valid inequalities




