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A Branch-and-Cut Algorithm for an Assembly Routing Problem

Masoud Chitsaz, Jean-Francois Cordeau, Raf Jans

HEC Montréal and GERAD, 3000 Chemin de la Céte-Sainte-Catherine, Montréal, H3T 2A7 Canada

Abstract

We consider an integrated planning problem that combines production, inventory and inbound
transportation decisions in a context where several suppliers each provide a subset of the com-
ponents necessary for the production of a final product at a central plant. We provide a mixed
integer programming formulation of the problem and propose several families of valid inequalities
to strengthen the linear programming relaxation. We propose two new algorithms to separate the
subtour elimination constraints for fractional solutions. The inequalities and separation procedures
are used in a branch-and-cut algorithm. Computational experiments on a large set of generated
test instances show that both the valid inequalities and the new separation procedures significantly
improve the performance of the branch-and-cut algorithm.

Keywords: logistics, assembly routing problem, valid inequalities, subtour elimination

constraints separation, branch-and-cut, integrated production and routing

1. Introduction

The literature on integrated planning in manufacturing industries highlights a significant po-
tential for cost savings in the supply chain by combining production and transportation decisions
(Viswanathan and Mathur 1997, Fumero and Vercellis 1999, Chen and Vairaktarakis 2005, Archetti
and Speranza 2016). The problem of simultaneously planning the production at a plant and the
outbound delivery routing is known in the literature as the production routing problem (PRP)
(Archetti et al. 2011, Adulyasak et al. 2015). When the production plan at the plant is given
and the decisions concern only the inventory and route planning, the problem is referred to as the

inventory routing problem (IRP) (Andersson et al. 2010, Coelho et al. 2013). There exist many
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models and solution algorithms for these two problems. In contrast, few studies have considered the
integration of production planning with inbound transportation for the collection of components
from suppliers to assemble a final product.

When the assembly plant is responsible for organizing the inbound transportation of the various
components, significant gains can be achieved by integrating production planning with inbound
transportation (Carter and Ferrin 1996). Automotive industry examples are studied in Blumenfeld
et al. (1987) and Florian et al. (2011) for US and German manufacturers. Fernie and Sparks (2004)
indicate that in the retail industry the logistics system should be effectively integrated with the
suppliers. More specifically, they highlight the need for the optimization and management of the
entire supply chain of retailers to be a single entity to obtain cost reduction advantages and service
enhancements. Closing the supply chain loop is another example where the collection of the end-
of-life products should be coordinated with the disassembly planning (Guide and Van Wassenhove
2009).

We study the assembly routing problem (ARP) which considers a joint planning problem with
a central plant that produces a final product to satisfy a dynamic but deterministic demand.
The plant collects the necessary components from several suppliers, each providing a subset of
the components. The plant coordinates the scheduling of the production as well as the routing
decisions and shipment quantities from the suppliers. The aim is to minimize the total costs of
production, inventory and routing subject to several types of capacity constraints. The planning is
done over a finite and discrete time horizon. The quantities available at the suppliers are assumed
to be known in advance. The plant has a limited capacity for the production and no backlogging
or stockouts are allowed. Both the plant and the suppliers can carry inventory. The plant has
separate and capacitated inbound and outbound storage areas for the incoming components from
suppliers and for the final product, respectively. Each supplier has a global storage capacity for its
own components. The plant manages a limited fleet of capacitated vehicles to handle the shipment
of components from the suppliers to the plant. Similar to the basic variants of the IRP and PRP,
we do not allow a supplier to be visited by more than one vehicle in a specific period (i.e., no split
pickups).

Some studies in the literature consider the optimization of the inbound transportation and

inventory decisions without taking the production planning at the central plant into account. Pop-



ken (1994) and Berman and Wang (2006) study a single-period inbound logistics problem. They
consider a multicommodity network with the origin (suppliers), destination (plant), and transship-
ment terminal nodes. The origin-destination commodity flows are supposed to be optimally routed
through this network using at most one terminal node. The cost function includes the transporta-
tion and pipeline inventory costs for all supplier-plant pairs. The optimization of the inventory
decisions together with the explicit inbound vehicle routes through multiple planning periods is
studied in Moin et al. (2011) and Mjirda et al. (2014). Considering the automotive parts supply
chain, these studies investigate the case of a single assembly plant for which multiple suppliers each
provide a distinct part type.

A number of studies investigate the coordination of the inbound vehicle routes with the produc-
tion rate in a just-in-time (JIT) environment where no end-period inventory exists in the planning
horizon. Vaidyanathan et al. (1999) and Satoglu and Sahin (2013) study the parts delivery to an
assembly line with the objective of minimizing the material handling equipment requirements in a
central warehouse. Qu et al. (1999) and Sindhuchao et al. (2005) study the joint replenishment of
multiple items in an inbound material-collection system for a central warehouse under the assump-
tion of an infinite planning horizon. Chuah and Yingling (2005), Ohlmann et al. (2007), Stacey
et al. (2007) and Natarajarathinam et al. (2012) consider a JIT supply pickup problem for an
automotive assembly plant to minimize the inventory and transportation costs. Jiang et al. (2010)
study a similar problem taking the storage space limit into account. Yiicel et al. (2013) consider
the problem of transporting specimens from different sites to the central processing facility of a
clinical testing company. Lamsal et al. (2016) study a sugarcane harvest logistics problem in Brazil
that requires the continuous operation of the production mill. Therefore, the inbound flow of raw
material should never terminate.

One observes that the ARP includes a lot-sizing substructure with additional inventory con-
straints together with the distribution routing decisions in each period. Similar to the ARP, an
inventory substructure exists in the uncapacitated lot-sizing problem (LSP) with inventory bounds
which is well-studied in the literature. This problem was first introduced by Love (1973). Atamtiirk
and Kiiciikyavuz (2008) propose an O(n?) dynamic programming algorithm. Van Den Heuvel and
Wagelmans (2008) show that the problem is equivalent to the LSP with a remanufacturing option,

the LSP with production time windows, and the LSP with cumulative capacities. Di Summa and



Wolsey (2010) consider a variable upper bound on the initial inventory and give valid inequalities
and extended formulations to describe the convex hull. More recently, Hwang and van den Heuvel
(2012) and Phouratsamay et al. (2018) study this problem and propose polynomial and pseudo-
polynomial algorithms for different cost structures. Akbalik et al. (2015) study the multi-item LSP
with stationary production capacity, time-dependent inventory bounds and concave costs as well as
a global capacitated storage space for all the items. They show that the problem is NP-hard even
when each item has stationary and identical production cost and capacity over periods. Also, other
integrated problems such as the IRP (Archetti et al. 2007, Solyali and Siiral 2011, Avella et al.
2015), maritime IRP (Agra et al. 2013), and PRP (Archetti et al. 2011, Adulyasak et al. 2014)
consider bounded inventory in the problem structure. Even though these integrated problems all
show some similarities with respect to the inventory structure, they possess a very different lot siz-
ing structure. More specifically, the IRP and PRP have a distribution structure, whereas the ARP
is based on an assembly structure. Furthermore, another difference is that the ARP considered in
this paper takes into account a given rate of supply at the suppliers.

To the best of our knowledge, there are two papers that studied a problem close to the one
being addressed in this paper. A general case with multiple components and products is introduced
by Hein and Almeder (2016). The authors consider two scenarios. In the first scenario, the plant
is allowed to keep the components in stock while in the second scenario, which represents a JIT
environment, the components that arrive at the plant must be used immediately in production.
They examine both scenarios under the traditional sequential planning approach and under the
integrated approach. In the sequential planning process, an LSP is solved first to obtain the
production plan for the final product. Then, in the second step, they solve an IRP for the first
scenario and one vehicle routing problem (VRP) for each period in the second scenario. The
computational experiments are performed on randomly generated instances with either 4 suppliers,
8 components, 3 final products, and 5 periods or 6 suppliers, 12 components, 4 final products, and
10 periods. They report cost savings of up to 12% with the integrated planning approach compared
to the classical sequential approach. According to this study, one may expect a higher potential
for cost savings in the JIT scenario when applying the integrated approach. Because the authors
did not consider the holding cost at the suppliers in their study, the integrated decision making

is entirely focused on the costs associated with the plant. This is appropriate when the suppliers



and the assembly plant are separate organizations and the assembly plant is not concerned with
the inventory costs at the suppliers.

In the case where both the suppliers and the assembly plant belong to the same firm, one
should ideally take into account the suppliers’ inventory costs and capacities in the integrated
decision making process. Chitsaz et al. (2019) study the case with multiple components and one
final product but consider the inventory costs and storage capacity of the suppliers as well as a
component storage area at the plant. They assume that every supplier provides a unique compo-
nent. Consequently, a one-to-one relationship exists between the suppliers and components. The
authors develop a three-phase decomposition-based matheuristic that iteratively solves different
subproblems. They apply their algorithm not only to the ARP, but also to the IRP and the
PRP with the same parameter setting. The computational experiments show that this algorithm
returns high quality solutions for the ARP instances and outperforms existing heuristics on large-
scale multi-vehicle instances of the IRP and PRP. The algorithm finds new best-known solutions
to many standard test instances of these two problems.

We extend the model of Chitsaz et al. (2019) to consider the case where each supplier may
provide a subset of the components necessary for the final product and some components can be
obtained from more than one supplier. This is the first contribution of this paper. Second, we
develop several new valid inequalities to strengthen the linear programming (LP) relaxation of the
mixed integer programming formulation of the problem. Although several of the proposed inequal-
ities are inspired from existing lot-sizing inequalities, a novelty is that some of the inequalities use
the known supply instead of the known demand. Third, we present novel algorithms to efficiently
separate the subtour elimination constraints for the LP solutions that contain fractional routes,
which can be adapted for other vehicle routing problems with the same feature. The inequalities
and separation procedures are used in a branch-and-cut algorithm (BC). We generate a large test
bed consisting of small to large instances with diverse ranges for the number of suppliers, products
and planning periods. Finally, we analyze the impact of each class of valid inequalities on the value
of the LP relaxation and on the final solution. Our extensive computational experiments show that
both the valid inequalities and the new separation procedures notably enhance the performance of
the branch-and-cut algorithm.

The remainder of the paper is organized as follows. We formally define the ARP and express



it mathematically in Section 2. Section 3 is devoted to the presentation of the inequalities and to
the proof of their validity. In Section 4, we present the upper bound generation procedure. To
separate the subtour elimination constraints for our multi-period VRP, we present two heuristic
algorithms in Section 5. The generation of the test instances and computational experiments are

presented in Section 6. Finally, Section 7 concludes the paper.

2. Problem Definition and Mathematical Formulation

We consider a many-to-one assembly system with n suppliers represented by the set N =
{1,...,n}. The planning horizon includes [ discrete time periods forming the set 7' = {1,..,1}.
To produce the final product, k distinct components, represented by the set K = {1,...,k}, are
required. We extend the basic ARP introduced in Chitsaz et al. (2019) by assuming that each
supplier ¢ may provide a subset of the components K; C K, where K = UKZ Moreover, each
component k can be provided by a subset of suppliers N C N, where N :ZU Ny. We define the
problem on a complete undirected graph with the node set N* = N U {0}, Wl];ere 0 represents the
plant, and the edge set E = {(i,5) : 5,5 € NT,i < j}. We let K = K U {0} represent the set
of all items, where 0 represents the final product. The suppliers as well as the central plant each
have a global storage area for the components and may have some component inventory at hand
at the beginning of the planning horizon. Moreover, the central plant has a separate storage space
for the final product. A fleet of m homogeneous vehicles, each with a capacity of @, is available to
transport the components from the suppliers to the plant.

The decisions to make include whether or not to produce the final product and the quantity to
be produced at the plant in each period, the supplier visit schedule and order in each vehicle route,
and the shipment quantities from the suppliers to the plant. The manufacturing plant needs to
minimize the production, inventory and transportation costs simultaneously for the entire planning
horizon. The complete list of notations is presented in Table 1.

A compact formulation for the ARP can be written as the following M 4rp model:

(Magp) min» (Upt +fyet Y hoklowe+ Y > hili + Y Cij$ijt> (1)

teT keK+ iEN keK; (i,j)€E
s.t.

Inot—1+pi =di +Iooy VEE€T (2)
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Table 1: ARP notation list

Sets:

NT Set of nodes, NT = {0, ...,n}, where 0 represents the plant, and N = NT\ {0} represents the set of suppliers.
E Set of edges, E = {(4,7) : 4,5 € NT,i < j}.

K Set of components indexed by k € {1,...,|K|}. We let K+ = K U {0}.

K; Set of available components at supplier ¢ € N, K; C K.

Ny, Set of suppliers that provide component k € K, N, C N.

T Set of time periods, indexed by t € T = {1, .., l}.

E(S) Set of edges (,) € E such that 4,5 € S, where S C N1 is a given set of nodes.

5(S) Set of edges incident to a node set S, §(S) ={(4,j) e E:1€S,5¢ Sori¢ S,j € S}.

Decision variables:

Pt Production quantity in period t at the plant.

Yt Equal to 1 if there is production at the plant in period ¢, 0 otherwise.

Lt Inventory of component k € K; at supplier ¢ € IV at the end of period ¢.

ITowt Inventory of component or final product k € K+ at the plant at the end of period t.

Tijt Number of times a vehicle traverses the edge (i,j) € F in period t.

Zit Equal to 1 if node i € N is visited in period ¢, 0 otherwise.

20t Number of vehicles dispatched from the plant in period ¢.

dikt Shipment quantity of component k € K from node ¢ € N to the plant in period ¢.

Parameters:

fiu Fixed setup and unit production costs, respectively.

hik Unit holding cost of item k at the plant or at supplier i« € N+.

Cij Transportation cost between nodes i and j, (4,j) € E.

m Fleet size.

c,Q Production and vehicle capacity, respectively.

Sikt Supply of component k € K at node i € Ny in period t.

Sikt,t; ~ Cumulative supply of component k € K at node i € Nj, from period ¢1 to period t2 (inclusive), t1,t2 €
T, t1 < ta.

b Unit size of component k € K.

dt Demand for the final product at the plant in period t.

dtqty Cumulative demand for the final product at the plant from period ¢; to period ¢2 (inclusive), t1,t2 € T,t1 <
to.

L; Global inventory capacity at supplier ¢ € N for the components k € K.

L Global inventory capacity at the plant for the components k € K.

Lo Inventory capacity at the plant for the final product.

Iiko Initial inventory of component k € K available at supplier ¢ € Ny.

Ioko Initial inventory of component or final product k € KT available at the plant.

Toks—1+ Y, Gike = pe + Toke
1EN

Lig g1+ Sikt = Qire + Lige
vt < Cyy

Ioot < Lo

Z brloge < L
keK

> bplig < Li
keK;

200 <m

> brgine < Qzir

keK;

Vke K,VteT

Vie N,Vk € K;,Nt €T
VieT
VteT

VteT

Vie NVieT

VteT

Vie NVieT



Y mjp =2z Vie NT,VteT (11)

(4,")€6()
Q Z Tijr < Z (int - Z kaikt) VSCN,|S|>2,vteT (12)
(i,)EE(S) =5 keK;
>0, €01}, 20 €Z Wt eT (13)
It >0 VE€e KT WteT (14)
Liptsgine >0 Vi€ NVk € KVt €T (15)
v €{0,1} V(i,j) € E:i£0VteT (16)
zoit € {0,1,2},2;, € {0,1} Vie N,VteT. (17)

The objective function (1) minimizes the total production, setup, inventory, and transportation
costs. The inventory costs include both component inventories at the suppliers and at the plant, as
well as the final product at the plant. The set of constraints (2) ensures the final product inventory
flow while constraints (3) do the same for each component at the plant. Constraints (4) guarantee
the inventory flow balance for each component at each supplier. Constraints (5) force a setup at
the plant in each period where production takes place. They also impose a maximum limit on
the production quantity. Constraints (6) consider the storage capacity of the final product at the
plant. Constraints (7) impose the shared storage capacity of the components at the plant. The
shared storage capacity of components at each supplier is enforced by constraints (8). Constraints
(9) impose the limit on the fleet size. Constraints (10) force a vehicle visit whenever components
are shipped from a certain node to the plant. The total component shipment quantity from each
supplier in each period will also be limited by the vehicle capacity. Constraints (11) are the degree
constraints. Constraints (12) are the subtour elimination constraints (SEC). These constraints are
the modified version of the VRP capacity-cuts (Toth and Vigo 2001, Iori et al. 2007). They require
each route to be connected to the plant and the total shipments on each route to not exceed the
vehicle capacity. There exists an exponential number of these constraints. They are referred to in
the literature as generalized fractional subtour elimination constraints (GFSEC) (Adulyasak et al.

2014). Constraints (13)-(17) are domain constraints.



3. Strengthening the LP Relaxation Bound

We present valid inequalities to improve the LP relaxation of M sgp. Moreover, we present the
links between these inequalities and related polyhedral studies in the literature. The polyhedral
structure of the LSP and VRP has been researched extensively. Barany et al. (1984) give a com-
plete linear description of the convex hull of the solutions for the uncapacitated LSP. Pochet (1988),
Miller et al. (2000), and Atamtiirk and Mufioz (2004) present inequalities for the capacitated LSP
with unlimited storage capacity. Atamtiirk and Kiiglikyavuz (2005) investigate the polyhedral
structure of the lot-sizing problem with inventory bounds and fixed costs. The polyhedral study of
multiechelon LSP with intermediate demands is given in Zhang et al. (2012). The uncapacitated
LSP is a special case of fixed charge network design (Van Roy and Wolsey 1985). Gendron et al.
(1999) and Kiicitkyavuz (2005) study polyhedral approaches for capacitated multicommodity net-
work design and fixed-charge network flow problems, respectively. Chouman et al. (2016) present
cut-set-based inequalities for multicommodity capacitated fixed-charge network design problems.
Similarly, many polyhedral studies are presented in the literature for different variants of the VRP.
Cornuejols and Harche (1993) and Ralphs et al. (2003) study the capacitated variant and Belenguer
et al. (2000) investigate the split delivery VRP.

Three classes of valid inequalities are presented to improve the LP relaxation bound for the
M arp model. The first class contains (1,5, WW)-type inequalities. The second one concerns the
bounds on the variables. We present the proof of the propositions in Section 1 of the online
supplementary material. The last class includes general inequalities for the ARP. Propositions
1, 2 and 7 present inequalities derived from the particular structure of the underlying LSP for
each component k (Pochet and Wolsey 2006). These inequalities take advantage of the aggregated
available inventory of each component k at the suppliers (that provide component k) and the

production plant for each period t € T.

3.1. (1,S,WW)-type inequalities

The (1,5) inequalities were introduced in Barany et al. (1984) and provide the convex hull of the
single-item uncapacitated LSP. In the (I, S) inequalities, [ refers to a period (I < |T'|) where T is the
number of periods, and S is a subset of periods {1, ...,l} not necessarily connected (S C {1,...,1})
such as periods {1,3,7} when [ = 10. For a numerical example, we refer to Pochet and Wolsey

(2006), pp. 122-123. Although there is an exponential number of these constraints for a general cost
9



structure, Pochet and Wolsey (1994) showed that under the Wagner-Whitin (WW) cost condition
it is sufficient to consider only O(I?) inequalities to describe the convex hull of the single item
uncapacitated lot-sizing problem which are referred to as (I, S, WW) inequalities. The WW non-
speculative cost structure requires the sum of unit production and inventory costs in every period
to be larger than or equal to the unit production cost in the next period. Therefore, when the unit
production costs are the same for all periods, the WW cost condition holds because the inventory
costs are nonnegative. We first present the known (I, S, WW) inequalities applied to the lot-sizing
structure (2) and (5):

to to
Y pe <Toos + Y desye Vi, to € Toty < to. (18)
e=t1 e=t1

These inequalities link the production and setup variables at the plant with the predetermined
downstream demand in order to improve the LP relaxation lower bound. Next, we derive three
new families of valid inequalities for the ARP. The new inequalities are inspired from the standard
(1, S, WW) inequalities, but present some novelties. In Proposition 1, we develop new inequalities
that link the production and setup variables at the plant with the known upstream supply. The
structure of the proof (given in Section 1 of the online supplementary material) follows a similar
structure as for the (I, 5) inequalities (Pochet and Wolsey 2006), but with an inverted logic as
it takes into account the known supply at the suppliers. Moreover, in Propositions 2 and 3 we
propose new inequalities linking the shipment quantities and node visit variables with the given
supply and demand, respectively. The novelty in the structure of these constraints is that, for a
given period, the shipment variables are defined for each supplier-component combination, whereas
the supplier visit variables are only related to the supplier. There is no setup-type constraint in
the model that directly links each component shipment variable to its supplier visit variable. This

is different from a traditional lot-sizing structure.

Proposition 1. Inequalities

to t2
> pe STokt1+ Y Likt—1+ Y D sikieve Yk € KVt ty € Tty <t (19)

e=t] 1€ Nk, e=t1 1€ Ny

are valid for the Mgrp.

Notice that although both inequalities (18) and (19) provide bounds on the total production

quantities, the first set of inequalities considers the cumulative demand and the remaining product

10



inventory at the last period (¢2) while the second set of inequalities takes the cumulative component

supply and the available inventory at the beginning of the first period (1) into account.

Proposition 2. Inequalities

to to
> ke < Tiky—1+ Y Siktrezic Vi € N,k € Ky, Vit ty € Toty <t (20)
e=t1 e=t1

are valid for the M agrp.

Proposition 3. Inequalities

to to
DD ke < Toot, + Tokts + Y dety Y zie Yk € K, Vty,tg € T,y <t (21)
e:t1 iENk 8:t1 ieNk

are valid for the Msgrp.

Both inequalities (20) and (21) provide bounds on the total shipment quantities. The first
set of inequalities considers the cumulative component supply and the available inventory at the
beginning of the first period (¢1) at each supplier while the second set of inequalities takes the
cumulative demand and the remaining product and component inventory at the plant in the last

period (¢2) into account.

3.2. Bounds on variables

The bounds we propose in this subsection are linked to the cut-set type inequalities. Atamtiirk
and Kiiciikyavuz (2005) observe that (1,S) inequalities may not cut off fractional LP extreme solu-
tions for lot-sizing with inventory bounds and fixed costs if for the subset of periods S incoming or
outgoing inventory is at capacity. They introduce cut-set type inequalities to enforce one produc-
tion setup for a certain number of periods. We introduce inequalities that are both a generalization
and an extension of the cut-set type inequalities. We generalize the cut-set type inequalities to
provide integer lower bounds on the number of required production setups from period e = 1 to
t € T (Proposition 4). We further extend these cut-set type inequalities to enforce integer lower
bounds on the number of vehicles dispatched (Proposition 5), and supplier visits from period e = 1
to t € T' (Propositions 6-7).

Let Q;; (measured in required space) be a parameter equal to the sum of cumulative supply of
components and the initial inventory of the components at supplier ¢« minus its available storage

capacity, i.e.,

11



Qit = Y pex, br(Sik1e + Liko) — Li-

Proposition 4. Inequalities

t
<>y VEET (22)
e=1

max {0> d1e — Tooo, (D e i bkoro + D ey max{0, Qi} — L)/ > ek bk}
min{C, maxeeqq,. y{de} + Lo}

are valid for M agp.
Notice that ),y bx in the last expression of the LHS of the inequalities (22) represents the
total required space by the components which are required to produce one unit of the final product.

Next, we present valid inequalities for the lower bound on the total number of necessary vehicles

dispatched from period e =1 to t.

Proposition 5. Inequalities

t
’722 max{ Z bk maX{O, dlt — IOOO — Iok;o}, Z max{O, ta}}—‘ < Z 20e ViteT (23)

keK i€EN e=1

are valid for M agp.

Next, we present valid inequalities for a lower bound on the total number of necessary node

visits from period e = 1 to t in the following proposition.

Proposition 6. Inequalities

max{0, Q;; } -‘

t
{ <>z VieNVteT
min {Q, Li + maxeeqn,. A per, UkSike}s D e re, Ok(Liko + Sz'k;lt)}

e=1

(24)

are valid for M agp.

At any supplier, when the initial inventories plus the cumulative supply of components in the
first ¢ periods exceed the storage capacity, inequalities (24) provide a lower bound on the number of
required visits to that supplier during these periods. The cumulative shipments from the supplier
in the first ¢ periods is limited first by the vehicle capacity, second by the available storage plus
the maximum total component supply in any of those periods, and third by the sum of the initial

inventories and the total supply of all components during these periods.

12



Proposition 7. Inequalities

max{0, dis — Iooo — loro}

min {%, maxien, {lio + Siklt}}

t
<D ze VEEKNVeT (25)
e=1i{ENg

are valid for M arp.

For the periods whose cumulative demand cannot be satisfied from the initial product inventory
and in the case where the initial inventory of a given component is not sufficient for the production,
inequalities (25) force visits to the nodes which supply that specific component. The cumulative
shipments of a component from any of the associated suppliers in the first ¢ periods is limited not
only by the vehicle capacity but also by the maximum of the initial inventory of that component
plus the total supply of the component from those suppliers in the same periods. It is possible to
state inequalities (24)-(25) for the edge variables (z;;;) instead of node visits (z;). This leads to

identical constraints due to the degree constraints (11).

3.8. General inequalities

Without the SECs (12) added a priori to the model (e.g., as in the case of a BC algorithm), it
may happen that the plant would not be connected to the other visited nodes in certain periods. In
these cases, the following inequalities impose a positive value on the number of dispatched vehicles

and hence on the degree of the plant if any node is visited in the same period:
zip < zor Vie N,VteT. (26)

Another type of SEC is Dantzig-Fulkerson-Johnson (DFJ), which can be represented for the

M srp as follows:

Y i< zi—za VSCN,|S|>2Vee S, VteT. (27)
(i.4)€E(S) i€s

DFJ inequalities are referred to in the literature as connectivity constraints (Laporte 1986), infeasible-
path constraints (Ascheuer et al. 2000, Iori et al. 2007), or clique constraints (Bektag and Gouveia
2014). They were first proposed by Dantzig et al. (1954) for the travelling salesman problem
(TSP). These inequalities imply that the number of edges that can be chosen from the set of all
edges with both endpoints in a subset of nodes S cannot be more than |S| — 1. The cardinality of

these inequalities is exponential and thus they cannot be added a priori to the model in practical
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applications. Both GFSECs and DFJs can be added to the model at the same time. Observe that
DFJs do not impose the vehicle capacity. Archetti et al. (2007) and Archetti et al. (2018) employ
DFJ constraints for the IRP, and Archetti et al. (2011) and Adulyasak et al. (2014) use them for

the PRP. The following inequalities enforce node visits for each edge traversal:
Tijt <z and Tijt < Zjt V(’L,]) S E(N),Vt eT. (28)

Inequalities (26) and (28) are used by Archetti et al. (2007) for the IRP, and by Archetti et al.
(2011) and Adulyasak et al. (2014) for the PRP. Inequalities (28) are special cases of DFJs for node
pairs (Gendreau et al. 1998), which can be added to the model a priori due to their polynomial

cardinality.

4. Generating Upper Bounds

We adapted the unified matheuristic proposed in Chitsaz et al. (2019) and applied it to the
generalized ARP, where each supplier provides a subset of the components, to obtain high quality
feasible solutions as well as cutoff values that can be used to prune branches in our BC algorithm.
This matheuristic (CCJ-DH) works by decomposing the problem into three separate subproblems
and solving them iteratively. The first subproblem is a special LSP which determines a setup
schedule with an approximation of the total transportation cost using the number of dispatched
vehicles. The second subproblem returns node visits and shipment quantities. The latter employs
another approximation of the total transportation cost using the node visit transportation cost.
Finally, the third subproblem considers a separate VRP for each period t¢.

The solutions of the routing subproblems are used to update the node visit cost approximation
in the second subproblem for the next iteration. This procedure is repeated to reach a local
optimum. Then, a change in the setup schedule is imposed to explore other parts of the feasible
solution space and diversify the search. The algorithm uses diversification constraints (Fischetti
et al. 2004) to generate both new setup schedules using the first subproblem, and new node visit
patterns using the second subproblem. The method terminates when a stopping condition is met.

We present the detailed adaptation of CCJ-DH in Section 2 of the online supplementary material.
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5. Separating Fractional Multi-Period Subtour Elimination Constraints

Subtour elimination constraints (12) belong to the family of capacity-cut constraints (CCC)
which were developed for the capacitated VRP (Toth and Vigo 2001, Iori et al. 2007). The RHS of
these constraints represents the number of vehicles required to serve the subset of nodes for which
the inequality is applied. Depending on how the RHS is computed, different classes of this set of
constraints can be obtained. The direct use of the fractional RHS results in the fractional capacity
inequalities. This class of capacity constraints can be separated by solving a series of max-flow or
min-cut problems in polynomial time (Semet et al. 2014). The next three classes of CCCs need
specific algorithms and their separation is known to be NP-complete (Augerat 1995). When the
RHS is rounded up, one obtains the rounded capacity inequalities. Using the optimal value of the
bin-packing problem (where the weights of the items are equal to the shipment sizes and the bin
capacity is equivalent to the vehicle capacity) in the RHS results in the weak capacity inequalities.
Finally, computing the minimum number of required vehicles results in global capacity constraints
and gives the tightest form.

Unlike the other types of CCCs, the quantities in the RHS of GFSECs are not given parameters
but node visit (z;;) and shipment quantity (g;x;) variables. For the non-vehicle index formulations
of the IRP and the PRP, GFSECs are necessary to maintain the vehicle capacity of each route.
To the best of our knowledge, there is no exact algorithm to separate GFSECs in polynomial time
and it is not known whether separating GFSECs is NP-hard or not. Instead, a weak form of
them (with z; = 1) is usually separated using separation procedures designed for the TSP and
VRP CCCs. Most of the BC algorithms in the IRP and the PRP literature use the separation
procedure of Padberg and Rinaldi (1991) or heuristics that are included in the CVRPSEP package
of Lysgaard et al. (2004). The procedures of Padberg and Rinaldi (1991) and Lysgaard et al. (2004)
were originally developed for the TSP and the VRP, respectively. The algorithm of Padberg and
Rinaldi (1991) is used by Archetti et al. (2007, 2011), Solyali and Siiral (2011), Avella et al. (2015)
and Archetti et al. (2018). The CVRPSEP package is used by Adulyasak et al. (2014). If a violated
inequality is found by one of these procedures, one has to check whether the corresponding GFSEC
is violated or not (Solyali and Siiral 2011). In Section 3 of the online supplementary material, we
present two examples for the LP solutions to the routing problem containing fractional values

for the node visit (z;;) and edge traversal (z;;;) variables. One example shows the case where a

15



non-violated subtour elimination constraint is returned. The other example demonstrates the case
where a violated subtour elimination constraint cannot be identified when the weak GFSEC is
separated.

The separation problem for GFSECs in the ARP is to find a subset of nodes S C N with
cardinality greater than or equal to 2 (|.S| > 2) for which the corresponding constraint is violated
by the fractional solution. In each period ¢, the non-zero z* and z* values of the optimal LP
solution form a subgraph G*(N*, E'). Each node in G* has a shipment volume of ), i, bk In
order to define the separation problem, let the binary variable v; be equal to 1 if and only if node
i € N' is selected and binary variable w;; be equal to 1 if and only if edge (i,j) € E' is chosen.
We formulate the GFSECs separation problem for each period t as follows:

(S&rspe) min Z (Qzj — Z bk )vi — Q Z TjjWij (29)
iEN? keK; (i,j)EE(Nt)

s.t.

> =2 (30)

iENt
wij <v; V(i j) € E" (31)
wij < vj V(i,j) € B (32)
v, wij € {0,1} Vi € N V(i,j) € E". (33)

Since G? is defined for (i,j) € E', it may not be a complete subgraph nor a connected one.
Observe that any feasible solution to this problem which has a strictly negative value returns one or
more violated GFSECs. Notice that unlike the separation problem for the VRP CCCs, this problem
is independent of the plant’s (depot’s) adjacent edges (xo;). Moreover, the problem StGFS BC 18
separable over the disconnected elements of the subgraph of period ¢, as was first implemented by
Laporte et al. (1985) for the VRP under capacity and distance constraints.

To separate violated GFSECs with fractional node degrees, we propose two heuristics which
can also be adapted for other vehicle routing problems. We define e = (i, j.) € E!, the index
of edges in the subgraph edge set of period ¢. We initialize sets (1, ...,{}g¢| indexed by €, and
populate each Q. with edge € € E. We define ®(£2,) as the set of nodes corresponding to all the
edges in Q. Let C; = Qz}, — X ek, bkgjy, represent the node cost and C° = Q> (; syep(nt) Thj
the edge gain. The first algorithm (Algorithm .41) finds violated GFSECs (for each period t) by
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adding to set € the edge e which has the least marginal cost (C;, + C;, — C¢), not necessarily a
negative cost, at each iteration. We only check for e > € to force every initial set {2, to deal with
a different subset of edges. Otherwise, different sets eventually may end up with the same result.

Notice that the last set, {2g¢|, will not examine other edges.

Algorithm 1: GFSEC Separation Procedure: Al

1: Initialize |E?| sets Q, for all € € E*
2: for all e € {1, ...,|F'|} do
3: forallee E'\Q.,e>e do

4: e* = argmin.{C;, +C;, —C°}

5: Qe +— Q. U{e*}

6: if ®(Q.) introduces a violated GFSEC and ®(£.) is not found yet then
7 Add ®(£,) to the list of violated GFSECs

8: end if

9: end for

10: end for

11: return the list of violated GFSECs

The second algorithm (Algorithm .A2) has a similar structure as A1 with the difference that
it terminates the search procedure for each set {2 when the set returns the first violated GFSEC
and then proceeds to the next set. Moreover, Algorithm 42 does not accept the node sets which
have (node) overlap with the violated GFSECs found earlier in the current call of the algorithm.
Because every violated GFSEC needs to have at least two nodes, there is an explicit upper bound

of |[N*|/2 on the number of violated GFSECs that A2 returns for each period t.

6. Computational Experiments

The experiments were performed on the Calcul Québec computing infrastructure with Intel
Xeon X5650 @ 2.67 GHz processors and a memory limit of 25 GB. The BC procedure is imple-
mented in C++ using the CPLEX 12.6 callable library. All experiments are performed in sequential
form using one thread. The algorithm applies the valid inequalities at the root node and adds GF-
SECs and DFJs at each node of the search tree as cutting planes whenever they are violated by
more than 0.1 unit. To separate GFSECs, we either use CVRPSEP, Al or A2. When a violated
GFSEC is found, the BC method also adds the corresponding DFJ. In our experiments we set a
time limit of one hour both for the BC and for CCJ-DH. We run the BC experiments with and
without the CCJ-DH cutoff values to measure the performance of both methods in providing upper

bounds.
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We introduce a diverse set of instances to better study and evaluate the performance of the
BC. We present the test bed generation procedure for the ARP in Section 6.1. We analyze the
performance of CCJ-DH on the new instances in Section 6.2. We report the sensitivity analysis of
the effect of valid inequalities on the LP relaxation of the M rp model, and the performance of
the BC in Section 6.3. The performance analysis of the BC with different separation procedures
is presented in Section 6.4. In Section 4 of the online supplementary material, we report the
performance of the BC on the existing large instances of Chitsaz et al. (2019) and compare our

results with the two lower bounding methods presented in that paper.

6.1. ARP Tests Instances

Two out of three ARP data sets introduced in Chitsaz et al. (2019) include instances with
50 and 100 suppliers, all with 6 periods. Therefore, they are too large to be solved by our exact
algorithm. Moreover, those instances only consider the case where every supplier provides a unique
component. To cover the general case of the ARP presented in this paper, and to test the BC on
different sizes of instances, we generated three new classes of instances. The first class includes
instances where each supplier provides a unique component type. The second class represents
the case where each supplier provides a subset of components. The third class corresponds to
the situation in which one single component is offered by all suppliers. Each class includes data
sets with five different planning horizons ranging from 4 to 12 periods with a step of two. For
each planning horizon we consider eight different numbers of suppliers, increasing by steps of 3.
For each combination of the number of planning periods and suppliers we randomly generated
five instances. Overall, 600 instances are generated for three classes, five planning horizons, eight
numbers of suppliers, and five instances per category. As a result, the test bed includes small to
large size instances. The rest of the specifications for the ARP instances are developed similar
to the practices of Archetti et al. (2011) for the PRP. Table 2 presents an overview of the ARP

instance parameters.

6.2. Performance of the Heuristic

Table 3 shows the performance of the adapted CCJ-DH on different classes of the new ARP
instances compared to the BC when using the best-bound node selection strategy and algorithm

Al for separating fractional subtours, and with the imposed time limit of one hour. The second
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Table 2: ARP test instances*

Class 1 2 3
Number of instances 200 200 200
Number of periods: [ 4 to 12
Number of suppliers: n (for I = 4) 18 to 39
Number of suppliers: n (for I = 6) 15 to 36
Number of suppliers: n (for I = 8) 12 to 33
Number of suppliers: n (for | = 10) 9 to 30
Number of suppliers: n (for | = 12) 6 to 27
Number of components: &k n 0.4n 1
Number of vehicles: m UL}
Vehicle capacity: @ 2max; L;
Demand (final product): d¢ = d Constant and UDRITT[50, 100]
Production capacity: C UDRI'[d, 3d]
Component supply: s;xt = Sik Constant and UDRIT[5,0.5d]
Component size: by UDRIT[1, 2]
Plant inventory capacity for final product: Lo UDRI[2d, 3d]
Plant inventory capacity for components: L dien Li

Supplier inventory capacity: L;
Plant initial inventory of final product: Ipgo
Plant initial inventory of components: Ipxg

>ker; 0k (Liko + 254x)
UDRITT[0, 1.5d]
UDRITT [T, ;1 + 0.5d)]

Supplier initial inventory: I;xo UDRI*|0, d
Unit production cost: u hoo/5
Production setup cost: f 150u

UDRITT S, ¢ i hoks 1.5 2 c k¢ hok]
max; h;k

Plant unit final product holding cost: hgo
Plant unit component holding cost: hgg
Supplier unit holding cost for each component: h;g UDRITT[l, 5]
Supplier and plant x,y coordinates UDRIT[0, 1000]
Travel distance SAH
Unit transportation cost 1

* Adapted from Chitsaz et al. (2019)
U I = max{0,1(d — EiENk s;k) — Iooo}, ¥ Unlimited, T Uniformly Distributed Random Integer,
1 Similar to Archetti et al. (2011)

column in this table presents the number of instances (#). The rest of the columns show the
number of best upper bounds (#BUB) found by CCJ-DH, the average solution time (CPU), and
the gaps of the heuristic solution with respect to the upper bound (Gap UB) and lower bound
(Gap LB) obtained by the BC, respectively. The results highlight the fact that the instances of
the second class need significantly more computing time. In these instances, each supplier provides
multiple components. There are consequently more shipment variables (g;x:), which results in a
larger lot-sizing part compared to the instances in the two other classes. For the instances that are
not solved to optimality by BC (larger instances), the matheuristic finds 122 best upper bounds
(BUB) out of 161 instances (all classes). For these instances, CCJ-DH is able to improve the UBs
found by the BC by 59%, 62.2% and 15.5% on average for the instances in the first, second and
third class, respectively. For the instances solved to optimality, the heuristic provides high quality

solutions within 1.2%, 1.2% and 1.6% of the optimal solution for the first, second and third class,

respectively.
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Table 3: Summary of the CCJ-DH results

Data Set # #BUB CPU Gap UB' (%) Gap LB! (%)
Class 1
Not Optimal 51 43 248.9 -59.04 2.74
Optimal 149 1 119.6 1.19 1.19
Total 200 44 152.6 -14.17 1.59
Class 2
Not Optimal 81 66  2963.1 -62.24 3.62
Optimal 119 4 1786.3 1.22 1.22
Total 200 70 2262.9 -24.48 2.2
Class 3
Not Optimal 29 13 90.8 -15.54 2.86
Optimal 171 5 44.1 1.55 1.55
Total 200 18 50.9 -0.93 1.74

f Gap UB = (UBCCJ,DH - UBB(;) / UBBC
¥ Gap LB = (UBcos—pu - LBpe) / LBpe

6.3. Analysis of Valid Inequalities

To evaluate the effect of applying valid inequalities, we solve the LP relaxation of the M agrp
model where the SECs (12) are relaxed. We present in Table 4 the average LP solution times and
values when no valid inequality is added to the model (None), and compare it with the cases where
known valid inequalities (Known) from the literature (i.e., (18), (26)-(27)), or all valid inequalities
(All) (i.e., (18)-(27)) are added to the model. Each row in this table shows the results for a period-
supplier size combination. For the ease of comparison, the LP solution values are presented as
a percentage of the BUB (LP%) for each instance. The average LP solution values without the
valid inequalities vary in the range 63% to 65.9% for different classes and this range increases to
70.8% to 76.9% when the known inequalities are added and further to 88.7% to 90.2% with all
valid inequalities added to the model. This is a significant improvement which is obtained at the
expense of longer LP solution times. The average CPU times grow by a factor of 34, 22 and 10
for the instances in the first, second and third class, respectively when comparing the formulation
without the valid inequalities to the formulation with all inequalities. We present details on the
average LP solution values with and without considering each valid inequality type in the model
in Section 5 of the online supplementary material.

We also compare the effect of the valid inequalities on the BC performance. In Table 5, we
report a summary of the results on the performance of the BC when the default or the best-bound
node selection strategies are employed, and either no inequality (None), only known inequalities

(Known) or all inequalities (All) are applied. In all of these experiments we used algorithm .41 to
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separate SECs (12) and (27). This table presents the number of optimal solutions (#Opt), CPU
time, the average lower bound values as a percentage of the upper bound obtained by the BC
without applying the CCJ-DH cutoffs (%UB) and as a percentage of the BUB (%BUB) for each
BC scenario and each class. To calculate the BUB for each BC scenario, we considered the upper
bounds obtained by either that BC scenario or CCJ-DH.

The results indicate that the BC returns better results, in terms of the number of optimal
solutions, average solution time, and optimality gap, when all inequalities are applied and the
best-bound node selection strategy is selected. The BC returns better %UB with the default node
selection strategy on all classes of instances. This highlights the fact that without applying CCJ-
DH cutoffs, the default node selection strategy performs better than the best-bound. By comparing
%UB and %BUB for each node selection strategy and each class, one observes the effect of applying
CCJ-DH cutoffs within the BC. The best-bound node selection strategy results in better average
lower bounds and consequently better results for %BUB.

On the instances of the first class, applying all inequalities and the best-bound node selection
strategy enables the BC to obtain 149 (out of 200) optimal solutions in an average of 1422 seconds
compared to 52 optimal solutions when known inequalities are employed, and only 8 optimal
solutions when no valid inequality is considered. On the harder instances of the second class,
the BC finds 119 optimal solutions within the time limit when all inequalities are added to the
model while it is able to find 64 optimal solutions with known inequalities and only 5 optimal
solutions without the valid inequalities. The same difference in the performance of the BC exists
on the instances of the third class where 171 optimal solutions are found with all valid inequalities
compared to 107 optimal solutions with known inequalities, and 14 optimal solutions without the
valid inequalities. Overall, compared to the cases with no or only known inequalities, using all
inequalities in BC with both node selection strategies notably increases the number of optimal
solutions and significantly improves the %UB and %BUB for all classes. These results show that
our new valid inequalities make a substantial difference in the success of the BC.

The detailed results for the same scenarios of the BC are presented in Tables 6 and 7. Similarly,
in all of these experiments we used algorithm A1 to separate SECs (12) and (27). These tables
present CPU, %UB, and %BUB for every period-supplier combination group of each instance class.

The number of instances (out of five) that are not solved to optimality is specified in parentheses
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within the %BUB figures.

Table 5: Summary of the results of the BC with the default and the best-bound node selection strategies, and with
and without the valid inequalities on different instance classes*

Node Valid Class 1 Class 2 Class 3

Selection Ineq. Size #Opt CPU %UB %BUB Size #Opt CPU %UB %BUB Size #Opt CPU %UB %BUB

Default None 200 11 3157  69.6 96.7 200 5 3234 654 95.2 200 22 3045  79.6 95.9
Known 200 51 2576 86.3 96.8 200 44 2729 839 95.2 200 107 1912 96.1 97.5
All 200 103 1980 91.2 99 200 69 2420 85 97.9 200 155 1205  98.3 99.5

Best-Bound None 200 8 3207 56.5 97.3 200 5 3260  36.9 96.3 200 14 3098  64.5 96.6
Known 200 52 2578  57.3 97.3 200 64 2418  61.8 96.3 200 107 1872 89.8 98.1
All 200 149 1422 84.7 99.4 200 119 1976 744 98.7 200 171 938 974 99.8

* Separation procedure used for all BC scenarios: algorithm A1

Size: Number of instances, None: With no inequality, Known: With known inequalities (18), (26) and (27),
All: With all inequalities (18)-(27)

6.4. Analysis of Different Separation Procedures

In Table 8, we present the performance of the BC with all valid inequalities added when the
CVRPSEP package, Al and A2 are applied to separate SECs (12) and (27). We used the best-
bound node selection strategy for all these experiments. In this table we report CPU, %BUB
and the number of instances that are not solved to optimality (inside the parentheses) for each
combination of the period-supplier setting. One observes that both of our separation procedures
outperform the CVRPSEP package by enabling the BC to find more optimal solutions within the
time limit. The results in this table suggest that the BC is capable of closing the optimality gap
for many more period-supplier combinations in each class with a better solution time when it uses
Al and A2 compared to when it employs the CVRPSEP package. Furthermore, the BC with .42
is performing better on larger instances compared to the case with Al. This is why we use A2 in
our BC when we apply it to solve the large ARP instances of Chitsaz et al. (2019) presented in
Section 4 of the online supplementary material. The BC is capable of solving instances with up to
4 periods and 33 nodes, 6 periods and 30 nodes, 8 periods and 27 nodes, 10 periods and 24 nodes,
and 12 periods and 21 nodes within the time limit.

Moreover, in Table 9 we present more details on the BC performance. For each SEC separation
procedure and for each class, this table shows #Opt, the average number of explored nodes in
the search tree (#Node), the average number of added GFSECs (GFS), the average amount of
violation for the added GFSECs (AVEFS) | the average number of added DFJs (DFJ), the average
amount of violation for the added DFJs (AVPFY) and information about the number of cuts

that are added automatically by CPLEX: cover cuts (Cover), flow cover cuts (Flow), clique cuts
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Table 6: Detailed results of the BC with the best-bound node selection strategy, and with and without the valid inequalities*
Class 1

Set CPU %UB %BUB CPU %UB %BUB CPU %BUB

I/n None Known All None Known All None Known All Known Known All None Known All None  Known All None Known All
4/18 2778 1782 265 984  99.7 100  99.1¢  99.7() 100 2214.9 99.1 100 98.10)  99.1» 100 1483.2 549 100 99 100 100
4/21 3296 1558 317 777 984 100 98.20) 9.3 100 1582.5 99.8 100 97.60)  99.8» 100 22379 699 100 98.20) 100 100
4/24 3294 3299 750 91.3  70.8 100 97.80)  97.60) 100 3026.1 96.9 100 97.40)  97.9@ 100 32974 126.1 100 98.7) 100 100
4/27 3295 2943 741 887 937 100 97.70)  98.50) 100 2687.4 96.6 100 97.40)  97.2(4) 100 3292.8  346.4 100 98.20) 100 100
4/30 3295 3295 812 76 574 100 97.80)  97.6® 100 3298.1 798 100 97100 95700 100 32915 2153.4 100 98.20)  99.4(» 100
4/33 3295 3295 1374 80.6 468 998 97.70)  96.80)  99.8(1) 3297.9 60.1 999 970 94.50) 99,90 32948 1829 100 97.20)  99.22) 100
4/36 3292 3296 2663 39.5 323 756 96.50) 97 98.8(1) 3296.2 413 797 95900 94400 99.13) 32932  3183.6 99.1  9540)  96.7(0  99.5(1)
4/39 3295 3202 2716 41 19 481 9530 9540) 97504 3204.4 332 65 94200 91500 97.50) 32984 2793.9 99.3  93.80) 950 99.3(D)
6/15 3296 996 450 97.9  99.9 100 99.40)  99.9() 100 963.6 99.9 100 97.50)  99.9() 100 29554 1002.5 100 99.24  99.8(1) 100
6/18 3295 2675 562 91.8  98.2 100 980 98.90) 100 2134.9 97.7 100 97200 98.1®) 100 3293.6  467.3 100 98.50) 100 100
6/21 3295 3290 830 65.6 100 96.70) 970 100 3297.7 952 100 96.80)  96.40) 100 3295 13517 100 970 99.8» 100
6/24 3297 3297 1050 41.7 57 100 97.60)  96.70) 100 3296.3 358  99.9  96.70) 94400 99.9() 32944 1724.6 100 960 97.53 100
6/27 3296 3295 1092 629 369 100 97.80)  95.70) 100 32954  3295.3 571 99.8  96.60) 95200 99.8()  3296.2 1530.5 100 9580 99.7() 100
6/30 3293 3296 1639 409 397 995 97200 9640) 9952 3296.5 3296.4 53 711 95500 9240) 9774 3297 2098.8 100 9540 98.82 100
6/33 3296 3295 3297 454 324 463 96100 95200 98.10) 32959 3295.9 5.7 30 94300 90.80) 97100 32947 3297.3 19487 344 914 998 95400 9570 998
6/36 3297 3294 3297 401 248 345 94200 93200 96.70) 32926 32955 202 242 93700  9240)  96.8%) 3297.7 3295.1 2665.7 30.2  86.1 97.6 946 9350 98,64
8/12 3295 117 78 795 100 100  99.30) 100 100 3297.2 4401 100 100 98.30) 100 100 2683.7 6928  663.7 99.6 100 100  99.64 100 100
8/15 3296 978 252 765  99.9 100 98.8()  99.9() 100 32938 893 100 100 97.50) 100 100 32047 1875 2721 97.8 100 100 98.10) 100 100
8/18 3297 2712 962  66.6 88 100 98100 98414 100 32941 2886 778 100 97200 98.3@W 100 32924 17359 2921 778 994 100 97.50)  99.7() 100
8/21 3295 3293 1037 51.1 333 100 9740 97.20) 100 3294.2  2805.9 938 100 97.50) 98(4) 100 3297.7 27057 652  80.6 971 100 97.20)  98.6() 100
8/24 3295 3295 1141 568  27.6 100 9740  96.80) 100 32924 3293.7 53.3 786 96500  9540)  98.3@ 32938 25935 10534 47.1 757 100 9570 97.33) 100
8/27 3293 3296 1807 30 257 100 96.80) 9570 100 3299.2 3297 422 462 95700 94.80)  97.40) 32938 24575 11963 50.8  77.8  99.9 96.30)  98.20)  99.9(1)
8/30 3297 3295 2850 324 381 577 95800 94400 987() 32973 32985 12.8 206 95100 93200 96.40) 32063 3221.5 1828.6 11.1 40 639 9460 9643 98,6
8/33 3297 3293 3296 147 128 131 9340 9380  9644) 32935 3296 12 19.6 93100 92200 9590) 32954 3292.6 28049 279 744 975 94100 96.10) 993"
10/9 2738 208 237 99.7 100 100 99.76) 100 100 32966 935 1207 95.6 100 100 97.50) 100 100 961.8 6719 86 99.8 998 100 99.81  99.8(1) 100
10/12 3293 724 437 595 981 100  99.10)  99.6() 100 32966 1625 2745 729 100 100  97.40) 100 100 32044 679.7  275.2 789 999 100 9810  99.9() 100
10/15 3293 2831 511 652 95 100 97.70)  99.33) 100 32967 5134 15224 17.3 100 100  97.7¢) 100 100 3204 7779 4677 978 100 100  97.9%) 100 100
10/18 3297 3296 745 59.8 389 100 97.30) 9750 100 32925 31724 19146 84  97.7 100 994 100 32049 25483 6155 584  99.8 100 9620 99.8() 100
10/21 3297 3296 1104 59 52.8 100 970 970) 100 32052 2805.3 29444 0 785  79.5 97.7()  98.6()  3296.6 3294.5 817.1 502 947 100 9440 96.10) 100
10/24 3296 3297 2477  30.5 9.8 702 9660 9560 9892 32955 32979 32935 0 82 278 92.90)  97.40) 32979 2692.3 11646 153 937 100 93.90)  94.7() 100
10/27 3291 3294 3073 28.7 281 375 947 95100 9720 3296  3292.6 32923 0 0 0 93.3® 9180 95100 3293.8 32925 2403.7 228 943 995 950  96.30) 9952
10/30 3298 3296 3294 7.4 6.8 135 94100 94300 97.20)  3296.2 3297.8 32937 5.4 54 239 92300 91.30) 95300 3294 32943 27554 0 357 829 93700 9400 98.8®)
12/6 1241 6 10 999 100 100 99.91) 100 100 1889.7 88 175 100 100 100 100 100 100 15544 48 148 996 100 100 99.7% 100 100
12/9 2906 354 281 59.8 100 100 994 100 100 32921 1552 3175 57.6 100 100  97.40) 100 100 3297.6 1289 1446 991 100 100  99.29) 100 100
12/12 3293 140 606 364 100 100  98.90) 100 100 32924 2142 5622 512 100 100  97.6® 100 100 32934 3034 3132 91 100 100  97.9) 100 100
12/15 3295 2727 686 60 7 100 98200 99.4@) 100 32022 13819 19027 0 80 80  97.20 99701 9970 32929 2663.8 860.8 76.9 98 100 96.30)  98.76) 100
12/18 3295 3298 969 322 41 100 97.90)  97.6®) 100 3203.6 26427 25814 0 40 60 96.6) 98 98.9?)  3296.6 2067.8 1061.7 77.5 986 100 96.10)  99.6) 100
12/21 3297 3296 2686 41.2 376 100 97.90) 970) 1000 32965 3298.1 3296.1 9.2 29 265 9620 96.30)  97.20) 32948 3024.3 18371 25 95 100 94.40)  96.64 1001
12/24 3295 3296 3206 34 208 668 96.50) 95 98.8() 32932 32069 3296.5 15.2 0 25.5  94.40) 92700 9550) 32963 3293.7 23753 215 252 797 93.6®% 936  98.90)
12/27 3297 3294 3295 0 88 256 94100 9440 970) 32963 3290.9 32936 7.6 7.6 77 930 91.90)  94.80) 3295  3294.3 3297.2 138 568 775 93.10) 9380 9330
Total 3207 2578 1422 56.5  57.3 847 97.3019) 9730148 99401 3260 24177 1975.6 369 618 744 96.309) 9630139 9871 30977 1871.8 9384 645  89.8 974 96.6(1%0) 98.109%) 99.8(29)

* Separation procedure used for all BC scenarios: algorithm A1
1/n: Number of periods/number of suppliers, None: With no inequality, Known: With known inequalities (18), (26) and (27), All: With all inequalities (18)-(27)
The numbers in parentheses present the number of instances out of five that are not solved to optimality within the time limit
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Table 8: Performance of the BC with different separation procedures*

Class 1 Class 2 Class 3

Set CVRPSEP Al A2 CVRPSEP Al A2 CVRPSEP Al A2

I/n CPU %BUB CPU %BUB CPU %BUB CPU %BUB CPU %BUB CPU %BUB CPU %BUB CPU %BUB CPU %BUB
4/18 1446 99.90D 265 100 444 100 1304 99.8() 623 100 830  99.90 80 100 28 100 29 100
4/21 959 99.6® 317 100 123 100 832 99.8) 893 100 990 1000 236 100 152 100 84 100
4/24 1981 99.7® 750 100 942 100 2089 99.73) 1156 100 1277 10000 48 100 30 100 29 100
4/27 1984 99.9@ 741 100 190 100 1472 1009 587 100 617 100 137 100 73 100 42 100
4/30 2500 99.5(4) 812 100 311 100 1838 99.4 1494 100 1187 1000 530 100 294 100 247 100
4/33 2876 994G 1374  99.8M 772 9950 2726 98.8®) 2179 99.90) 2054 99.7® 399 100 510 100 94 100
4/36 3298 97.5 2663 98.8% 2715 99.1(M 2901 98.2(M 2343 99.13) 1821 99.3® 1059 99.7M 1229 99.5(D 743 99.6(1)
4/39 3298 96.20) 2716 97.5() 2230 98.7) 3294 96.90) 3204 97.50) 3298 98.8®) 1669 99 1407 99.3(D 983  99.5(1)
6/15 755  99.90) 450 100 724 1000 1557 99.8) 424 100 252 100 697 1000) 286 100 487 100
6/18 1976  99.6) 562 100 483 100 1363 99.90 818 100 946 99.90) 296 100 101 100 105 100
6/21 3295 98.1) 830 100 974 100 2673 99.2() 1515 100 1539 100 2034 99.8) 222 100 257 100
6/24 3106  99.7 1050 100 1445 99.90 3078 99.2(H 2320 99.90) 2519 99.83) 2855 99.4(% 312 100 273 100
6/27 2848  99.2( 1092 100 805 100 2765 98.63) 2293 99.8(D 1530 99.2(10 1847 99.9?) 420 100 124 100
6/30 2510 98.7W 1639 9953 1517 99.2) 2854 96.3() 2862 97.7%) 2740 97.7() 2120 99.2) 606 100 241 100
6/33 3297  97.90) 3297 98.10) 3298 98.40) 3298 95805 3204 97.10) 3296 97.20 3297  99) 1949 99.8 1148 99.9()
6/36 3295 9580 3297 96.70) 3293 97.30) 3297 96.40) 3297 96.80) 3297 97.20 2639 98.2() 2666 98.6() 2032 99.6(>)
8/12 176 100 78 100 80 100 882 99.90 570 100 327 100 777 10000 664 100 973 100
8/15 520 100 252 100 175 100 1640 99.7® 1074 100 1100 99.90) 1073 1000 272 100 229 100
8/18 2029 99.53) 962 100 1076 99.90 2188 99.7® 1446 100 1358 99.71) 1135 100 292 100 218 100
8/21 2977  99.1@W 1037 100 845 100 2366 99.44) 1591 100 1785 1000 2475  99B3) 652 100 709 100
8/24 2305 98.23) 1141 100 793 100 3295 97.40) 3138 98.34W 2994 984 2856 99 1053 100 1145 99.9()
8/27 3296 984 1807 100 1767 99.7M) 3297 9570) 3297 97.40) 3295 97.40%) 1542 99.3M 1196 99.9D 1045 99.9()
8/30 3297 9800 2850 987 2843  99W) 3296 96(® 3296 96.40) 3297 96.5) 2725 96.9) 1829 98.6% 1863 99.3(>
8/33 3297 9540 3206 9640 3208 97.200 3296 95 3297 9590) 3298 96.20 3291 97.3%) 2805 99.3() 2288 99.4(3)
10/9 415 100 237 100 471 100 489 100 121 100 516 100 209 100 86 100 120 100
10/12 697 100 437 100 716 100 795 99.90 275 100 273 100 322 100 275 100 222 100
10/15 1503 99.8) 511 100 290 100 2641 99.3?) 1522 100 1374 1000 746 99.9D 468 100 726 100
10/18 2803 987 745 100 602 100 2520 99.74) 1915 100 2468 99.9?®) 2858 100 615 100 652 100
10/21 2728 97.8% 1104 100 978 100 2914 98.1¢0 2944 98.6(H 2895 98.6%) 2221 98.5() 817 100 568 100
10/24 3296  97.500 2477 98.9® 2130 99.2) 3292 97.1) 3294 97.40) 3204  98G) 1802 99.7(1) 1165 100 594 100
10/27 3297 9600 3073 97.2® 2775 97.7() 3204 93.60) 32092 95.10) 3208 95300 3250 99.1¢D) 2404 99.5) 2391  99.6()
10/30 3297  96.10) 3294 97.20) 3208 97.4(® 3298 94.3%) 3204 9530 3298 95100 3294 96.90%) 2755 98.8) 1866 99.3()
12/6 24 100 10 100 13 100 18 100 17 100 22 100 14 100 15 100 12 100
12/9 862 1000 281 100 399 100 777 997 318 100 246 100 804 100 145 100 196 100
12/12 925 9990 606 100 312 100 891 100 562 100 538 100 492 100 313 100 378 100
12/15 1510  99.7() 686 100 420 100 2607 98.6%) 1903 99.7(D 2542 99.5(0 2992 99.3) 861 100 822 100
12/18 2610  99.7® 969 100 824 100 2841 97.6() 2581 98.91) 2613 98.4() 2754 98.24) 1062 100 844 100
12/21 3069 994 2686 100D 2142  99.90) 3292 964 3296 97.20) 3208 970 3297 97200 1837 1000 1910 100
12/24 3297 97400 3206 98.8(Y 3063 98.9®) 3204 93.6(® 3296 9553 3295 95200 3206 95.3%) 2375 98.93) 2440 98.40)
12/27 3295 95700 3295  97() 3208  97() 3300 92.30) 3294 94.80) 3298 9470) 3291 96.10) 3297 98.30) 3119 98.4%
Total 2264 98.6122) 1422 99.46D 1322 99.502 2347 980129 1976 98.76V 1973 98.7%%) 1688 99.143) 938 99.89 06  99.8029)

* Best-bound node selection strategy is used for all these experiments

/n: Number of periods/number of suppliers,

The numbers in parentheses present the number of instances that are not solved to optimality within the time limit
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Table 9: Summary of added SECs and CPLEX cuts for different classes of instances when different separation
procedures are applied*
Sep Class Size #Opt #Node GFS AVGFS  DFJ  AVPF/  Cover Flow Clique MIR Path ImplBd ZeroHalf LiftProj
CVRPSEP 1 200 78 7016 5613 0.4 34323 0.62 1722 2542 192 7459 261  69.9 295.9 17.8
2 200 s 2898 209.1 0.4 1607.3 0.75 156.1  628.5 1.4 2010.5 89 377.4 151.7 24.4

3 200 117 4452 562.3 0.42  4753.7 0.76 1204 2322 3.3 661.1 2.2 68.4 137.7 22.2
Total 600 272 4768 442.2 0.41 3252.6 0.71 149.5 373.8 7.9 1146.4  39.5 173.6 194.4 21.5

Al 1 200 149 3940 981.2 0.29 4528 0.4 96.6 133.1 16.1 349.8 8 44.1 93.2 16.2
2200 119 2295  1024.9 0.24 3958.7 0.37 99.6  359.9 1.3 1034.8 39.3  253.7 68.3 17.5

3 200 171 1887 748.9 0.22 3839.1 0.42 56.5 114.1 3.3 359 0.8 39.7 45.4 13.4

Total 600 439 2707 918.3 0.25  4108.6 0.4 84.3  202.4 6.9 581.2 16 112.5 69 15.7

A2 1 200 148 5013 432.1 0.21 1473 0.44 127.8 187.6 18.1 510.3  13.2 58.2 168 14.7
2200 105 1962 349.3 0.18 1148.5 0.43 110 419.1 1.4 1320.2 45.2 304.4 79.6 17.6

3200 174 2047 305.9 0.19 1481.8 0.48 782 1735 3.3 535.9 1 50.1 70.5 13.5

Total 600 427 3007 362.4 0.2 1367.7 0.45 105.3  260.1 7.6 788.8  19.8 137.5 106 15.3

# Bost-bound node selection strategy 15 used for all these experiments

Sep: Scparation procedure
(Clique), mixed integer rounding cuts (MIR), flow path cuts (Path), implied bound cuts (ImplBd),
zero-half cuts (ZeroHalf), and lift-and-project cuts (LiftProj). The results indicate that for each
class the BC has to explore many more nodes and finds fewer optimal solutions when it employs
the CVRPSEP package compared to when it uses one of the proposed separation procedures.
Another observation is that the average violation amount of the SECs (both GFSECs and DFJs)
found by the CVRPSEP package is higher than the ones found by the other separation procedures.
The reason is that CVRPSEP is not able to find violated SECs in the initial stages of the search
tree because the node visit values are small in a fractional solution. In other words, because
the CVRPSEP package is not effective on the initial fractional solutions, the BC explores more
different node visit patterns within the search tree. The same is also true for other types of cuts
that are generated by CPLEX. Overall, the performance of the BC when it uses one of the proposed
separation algorithms, A1 or A2, is better than when it employs CVRPSEP.

The results in Tables 5-9 indicate that instances in the second class are generally harder and it
takes longer for the BC method to solve them (higher average CPUs and lower %UB and %BUB).
Within the specified time limit, the BC obtains fewer optimal solutions for the instances in this
class compared to when it is applied to the instances in the first and the third class. Instances in
the third class are relatively easier to solve compared to the other ones. The BC method obtains
the largest number of optimal solutions and lowest average gaps for the instances in this class

within the smallest average solution time.
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7. Summary

We generalized the assumptions of the assembly routing problem (ARP) to the case where
each supplier may provide a subset of the components necessary for production. We presented
a mixed integer linear programming model for this problem. We also developed many randomly
generated test instances for this problem, for which we obtained good quality upper bounds by
adapting the matheuristic of Chitsaz et al. (2019). To solve the problem to optimality, we proposed
several types of valid inequalities and analyzed their performance with respect to the LP solution
value of the model. Based on the valid inequalities, we proposed a branch-and-cut algorithm and
performed extensive experiments to analyze different aspects of the algorithm. In addition, we
have developed two algorithms to separate multi-period fractional capacity cut constraints and
compared their efficiency with the state-of-the-art separation procedures of Lysgaard et al. (2004)
for the single-period VRPs.

Our extensive computational experiments indicate that applying our newly developed valid
inequalities significantly improves the performance of the branch-and-cut algorithm. Furthermore,
the performance of the branch-and-cut algorithm is substantially enhanced when it employs any
of our new separation procedures compared to the case when it uses the separation procedures
offered in Lysgaard et al. (2004).

An interesting avenue for future research on the ARP is to compare different reformulations.
The ARP is an integrated problem that considers lot-sizing (with an assembly structure) and
capacitated vehicle routing problems at the same time. Beside the standard formulation for the
LSP, it is possible to consider echelon stock, facility location, and shortest path, among others
(Pochet and Wolsey 2006). Available formulations for the VRP (Toth and Vigo 2014) are standard,
single-/two-/multi-commodity formulations as well as path-based formulations. These result in a

large number of promising possibilities to present reformulations for the ARP.
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Online Supplementary Material
A Branch-and-Cut Algorithm for an Assembly Routing Problem

1. Proofs

Proposition 1. Inequalities

to to
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e=t1 iEN,, e=t1 iEN},
are valid for the M sgrp.

to
e=t1

Proof. The inequalities for yYe = 0 are trivial because Z?:tl pe = 0. Otherwise, let 6 be the

last period in which the production setup is performed, i.e., § = max.{t; < e < ta|ye = 1}. Then,

to 0
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The first four equations follow from the definition of 6, constraints (3), constraints (4), and the
definition of s;x¢,+,, respectively. The first inequality holds due to the non-negativity of inventory

variables. The next equation is valid because yg = 1. The last inequality holds because the .

variables are nonnegative. d

Proposition 2. Inequalities

to to
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are valid for the M agrp.

Proof. If ZtQ zie = 0, then the supplier ¢ will not be visited during periods ¢; to t3. Therefore, for

e=t1

t2
e=t1

these periods no shipment is possible (> 2, ¢;xe = 0) and inequalities (20) are satisfied. Otherwise,
let 6 be the last period in which the supplier i will be visited, i.e., § = max.{t; < e < ta|z,e = 1}.

Then,

to 0
Z Qike = Z Qike

e=t1 e=t1
0
= (Like—1 — Like + Sike)
e=t1
= Ligt,—1 — Liko + Siktr0
< Ligti—1 + Sikt10
= Ligt,—1 + Sikt10%i0

to
< Lig -1+ § SiktyeZie-

e=t
The first three equations hold due to the definition of #, constraints (4), and the definition of S;x¢,+,,
respectively. The first inequality is valid because of the non-negativity of inventory variables. The
next equality is valid for the reason that z;y = 1. The last inequality holds because the z;. variables

are nonnegative. [

Proposition 3. Inequalities

to to
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e=t1 €Ny, e=t1  ieN,

are valid for the M sgrp.

Proof. If Z?:tl ZieNk zie = 0, then no visit to the suppliers ¢ € N will be made during periods t;
to to and hence no shipment of component £ is possible during this period (Z';Q:tl Yic Ny, Qike = 0).
Then, inequalities (21) are satisfied because the left-hand-side (LHS) will be equal to zero and the
inventory variables in the right-hand-side (RHS) are nonnegative. Otherwise, let 6 be the first

period in which at least one node i € Ny is visited, i.e., § = min.{t; < e < t9| ZieNk Zie > 1}.



Then,

to to
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The first four equations follow from the definition of 6, constraints (3), constraints (2), and the
definition of di+,, respectively. The first inequality holds due to the non-negativity of inven-
tory variables. The next inequality is valid because at least one node is visited in period 6, i.e.,
Y ic N, 29 = 1. The last inequality is valid since the z;e variables are nonnegative. The last equa-
tion holds due to the assumption that 6 is the first period in which at least one node i € Ny is

visited. O

Lemma 1. Inequalities

t
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Proof. We have
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where the inequality follows from the storage capacity constraints (8), and the equations hold due

t
e=1

to the definition of s;x¢,, and constraints (4), respectively. Because only a strictly positive Qj;

triggers the shipment to the plant, we obtain:

max{0, Q;} < 3¢, > kek, Oklike-

Proposition 4. Inequalities
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are valid for M agp.

Proof. We first obtain two lower bounds on the cumulative production from period 1 to ¢.

t

t
> pe = (de+ Iooe — Too.e—1)
e=1

e=1
= dyt + Toot — Tooo

> di¢ — Iooo-

The first and the second equations hold because of constraints (2), and the definition of dy,y,,
respectively. The inequality is valid due to the non-negativity of the inventory variables. Moreover,

t

t
Dbk pe=> bk > (Toke1—Toke + D dike)

keK e=1 keK e=1 1E€N,
t
= beloro— > bedore + D D Y bidike
keK keK iEN e=1 ke K;
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The first equation follows from constraints (3). The second equation is obtained by rearranging
the terms. The inequality holds based on the component storage capacity at the suppliers and
Lemma 1. Next, we determine two upper bounds on the cumulative production from period 1

to t. The cumulative production amount forces a minimum number of production setups due to

5



production capacity constraints (5): 22:1 pe < C 22:1 Ye. Then, we present another expression

for the minimum number of required production setups:

t t
Zpe < Z(de + IOOe)ye
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< Z o GI?IE,}X, {d + I[)Oe }ye

t
= d + I e e
eel?fx’ { 00 }Z_:y
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The first inequality is valid since p; = dt + Ioor — loot—1 < dt + Igot, and the fact that y = 0 forces

pt = 0. The second inequality and the equation hold trivially. The last inequality is valid because

of the product storage capacity (Lg). Combining the two parts of the proof, we obtain:
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Proposition 5. Inequalities
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are valid for M arp.

Proof. We obtain the first expression as follows:
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The first inequality is valid since the LHS is the total capacity of the dispatched vehicles from
period e = 1 to ¢, and the RHS is the total shipped amount over the same periods, all components
and all suppliers. The first equation follows from constraints (3), and by replacing the p; variables
using constraints (2). The second equation is valid due to the definition of dy,+,. The second

inequality holds due to the non-negativity of inventory variables. Next, we have

Z Qz0e > Z DD brdike

e=1ieN keK;

> " max{0, Qir},

1EN
where the first inequality is valid because of the total fleet capacity, and the second inequality

follows from Lemma 1. O

Proposition 6. Inequalities

t
<>z VieNVteTl
e=1

max{0, Q;: } -‘

Llin {Q7 Li + maxeeqr,. oA pex, bkSike}s X _rerc, Ok (Liko + Siklt)}
(24)

are valid for M Agrp.

Proof. Based on Lemma 1 we know that

max{0, Q;} < 3!, > ke, Ukike-

Now, we present upper bounds on the cumulative shipments from node ¢ during period 1 to ¢t. The
vehicle capacity constraints (10) provide the first upper bound: 22:1 > kek,; bedike < Q 22:1 Zie.
Next, we have

t

Z Y bidike <Y (Li+ Y bysike)zie

e=1keK; e=1 keK;
t
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e'e 1, ot
e=1
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Where the first inequality follows from ), K, OkGie < Li + Yok K, bksike which is valid due to
constraints (4) and (8), and the fact that z;; = 0 forces » ;- brgire = 0. The second inequality
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and the equation hold trivially. Moreover, we have
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Where the first inequality is valid for the reason that qre < Iizo + Sikie which is valid due to

constraints (4), the definition of six,s,, and the fact that z;; = 0 forces D bkgire = 0. The
second inequality holds trivially. The first equation follows from max,/ ¢ {1,...,t}{5ik1e/} = s;51¢- The

second equation holds trivially. Consequently, we obtain

t
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Proof. We have

t
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which can be obtained by replacing p; using constraints (2) in constraints (3), and the non-

negativity of the inventory variables. Next, we have

t t
De=1 ZieNk Qike = % De=1 ZieNk Zie,



which is valid due to brg;r; < Qz;;. Furthermore, we have

¢ ¢
DN ke < Tiko + sikre) Y Zie
e=1

iEN, e=1 iEN,
t
< E max { Iyxo + Sirk1s} § Zie
A i’ €Ny
1EN e=1

t
= Z,,Hé%i{fz"ko + Sirkit} Z Z Zie-

1ENE e=1

Where the first inequality comes from constraints (4), and by checking for 2221 zie = 0 and

22:1 zie > 1. The second inequality and the equation are valid trivially. Finally, we obtain

t
max{0, di; — Tooo — Toko} < > D Gike
e=1 iENk

t
< min {2, ?el%},f{liko + Siklt}} Z Z Zie-

e=1 iGNk



2. Adaptation of CCJ-DH

In this section, we present the adaptation of CCJ-DH (Chitsaz et al. 2019) to the generalized
version of the ARP. The algorithm decomposes the problem into three distinct subproblems. The

framework of the heuristic is presented in Figure 1.

I
I
Subproblem 1. Make pro- :
duction setup (y:) decision !
I
|

~
Subproblem 2. Make production volume (p;),
node visit (z;), and
shipment quantity (q;:) decisions

Update node

visit cost (o)

Subproblem 3. Make routing (xj;:) decisions

Intensification

Figure 1: CCJ-DH framework

The first subproblem returns a setup schedule. It uses an approximate transportation cost
based on the number of vehicles dispatched from the plant. This results in the following objective

function:

minz (upt + fye + Z hok Lokt + Z Z hirLige + UOtZOt) (26)

teT keK+ 1€EN k€K,

where o is the cost of each vehicle dispatch. This objective function does not include any routing
decision and hence constraints (11)-(12) become redundant. To impose the aggregate fleet capacity
in the first subproblem, the algorithm adds the following constraints to constraints (3)-(10), and
(13)-(15):

D braine < Qe VEET. (27)

1€EN kEK;

After solving this subproblem using CPLEX, the algorithm fixes the setup schedule and uses it as
a given parameter in the second subproblem.
The second subproblem returns node visit and shipment quantity decisions. The algorithm

employs another approximation of the transportation cost in the objective function based on the
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cost associated with visiting each supplier (node). This results in the following objective function:
minz (upt + Z howIokt + Z Z hir it + Z critzit) (28)

teT ke K+ iEN kEK; i€EN
where o;; represents the node visit cost estimation. Similarly as in the first subproblem, this
subproblem ignores the routing decisions. To enforce the vehicle capacity and to make sure that
the shipments can be packed into the available vehicles, the algorithm considers the following

constraints as well as constraints (3)-(8), (10), and (14)-(15) in the second subproblem:

DY brgiee < MmQ  VteT. (29)

iEN k€K,

Here, \y = 1 — % is a parameter. CCJ-DH solves this subproblem using CPLEX. Having the
node visit and the shipment quantity decisions fixed for each time period, the algorithm solves one
capacitated VRP for each period as the third subproblem. CCJ-DH uses the tabu search heuristic
of Cordeau et al. (1997) to solve the VRPs.

To intensify the search, CCJ-DH updates the node visit cost estimates (o) for the next it-
eration. The algorithm uses two estimation mechanisms. The first mechanism is the cheapest
insertion cost among all existing routes. The second mechanism splits the cost of each route (in
each period) over its nodes proportional to their direct shipment cost. In this mechanism, if a
node is not visited in a certain period, the algorithm considers the direct shipment cost as the
estimated cost for that node. CCJ-DH switches between these two mechanisms after using each
for 7 consecutive iterations.

To diversify the search, the algorithm adds a local branching type cut (Fischetti et al. 2004) to
the set of constraints in the first subproblem in order to consider a new setup schedule. The stopping
condition for the overall algorithm is a maximum of 200 intensification iterations. To perform
a diversification, CCJ-DH considers two stopping conditions: a maximum of 80 intensification

iterations, or 60 intensification iterations without incumbent solution improvement.
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3. Examples for Fractionally Violated and Non-Violated Subtours

Figure 2 shows an example where CVRPSEP returns a violated VRP CCC which is a non-
violated ARP GFSEC in the ARP (or the IRP and the PRP). Figure 3 shows an example for the
case that a fractionally violated GFSEC or DFJ in the ARP (or the IRP and the PRP) cannot be
found if the node visit variables (z;;) are not considered.

Figure 2: A violated VRP CCC which is a non-violated GFSEC.

z;:l,q;:20 2 153:1

3 zg :O47,q§ =25

x4y = 0.35 Vehicle capacity (Q) = 100

Plant

Violated VRP subtour, S = {1,2,3}: 14+1+0.05=2.05>|S|—-1=[3]—-1=2

LHS =Q Z ;cjj: 100 * (1 + 1 + 0.05) = 205
(i,5)EE(S)
RHS = > (Qz] — > brajp) = 100 (1+1+40.7) — (15 + 20 + 25) = 210
i€s kEK;

LHS < RHS Satisfied (non-violated) fractional ARP GFSEC

Figure 3: Violated ARP GFSEC and DFJ which is a non-violated VRP CCC and DFJ.

z3 =0.9,q5 =10 2 z;s =0.9

z453 = 0.9 Vehicle capacity (Q) = 30

Non-violated VRP DFJ, S = {1,2,3}: 0.9+4+09402=2=[S|-1=[3|—-1=2
Non-violated VRP CCC:

LHS=Q > aj;= 30x(0.9+0.9+0.2) =60
(i,5)EE(S)
RHS = > (Q— > brqjy) = 3% (30—10) =60

i€S kEK;
LHS = RHS Satisfied (non-violated) fractional VRP CCC
Violated ARP DFJ, S = {1,2,3}: 0.9+09+02=2> (2] +25 +23)— 2] =(1+094+1)—-1=1.9
LHS > RHS Violated fractional ARP DFJ

Violated ARP GFSEC: S = {1,2,3} : LHS =Q Y =}, = 30x(0.940.9+0.2) =60

(,5)€EE(S)
RHS = > (Qz] — > brajp) = 30%(1+0.9+1)— (10+ 10+ 10) = 57
i€s kEK;

LHS > RHS Violated fractional ARP GFSEC
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4. Results on the Large ARP Instances of Chitsaz et al. (2019)

Chitsaz et al. (2019) presented two lower bounding methods for the ARP. The first method
(BC-T) is a truncated BC with a time limit of 12 hours. BC-T uses the best-bound node selec-
tion strategy. It adds inequalities (26) and (28) a priori to the model, and SECs (12) and (27)
dynamically through the search using the CVRPSEP package for separation. The second method
(MIP-CP) relaxes SECs (12) from the model and solves the resulting MIP. Then, it iteratively
adds the violated SECs (12) as cutting planes for the resulting integral subtours and re-solves the
new MIP. A time limit of five hours is set for this method.

In Table 10, we present the performance of CCJ-DH, BC-T, and MIP-CP, and compare them
with our BC. In these experiments, the BC uses all inequalities and implements algorithm 42 to
separate SECs. Two branching node selection strategies are examined: balanced between optimal-
ity and feasibility (default) or the best-bound node selection. Because BC-T is able to solve the
small instances with 14 suppliers in the first set (MV-C1) to optimality in a very short time, we
did not apply our BC to these instances. Columns four to six present the results for CCJ-DH:
CPU, #BUB, and the average solution value as a percentage of the best lower bound obtained by
the BC method (%BLB). Columns 7 to 11 show the results for BC-T: CPU, #BUB, the number
of best lower bounds (#BLB), %UB, and %BUB. Columns 12 to 14 show the results for MIP-CP
which only generates lower bounds: CPU, #BLB, and %BUB. Columns 15 to 19, and 20 to 24
include similar results as columns 7 to 11 for the BC of this paper with the default and with the
best-bound node selection strategies, respectively.

Columns under #BUB and %UB for the BC-T and our BC methods reflect the results without
considering the CCJ-DH cutoffs. The comparison of columns under %UB and %BUB for each of
the BC-T and our BC methods shows the effectiveness of CCJ-DH in finding upper bounds for
these large instances. Most of the BUBs for the instances with n = 50 and all of the BUBs for
the instances with n = 100 are obtained by CCJ-DH. BC-T is unable to find upper bounds for the
instances with n = 100. Therefore, it returns zero under column %UB in all four classes of these
instances. Our BC with the best-bound node selection strategy is performing better than with
the default node selection strategy. Moreover, it outperforms the two other methods presented in
Chitsaz et al. (2019), both in terms of number of BLBs, and %BUBs.

Finally, we present more details on the performance of our BC with the default and with the
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Table 10: Comparison of the BC performance with the lower bounding methods presented in Chitsaz et al. (2019)

Chitsaz et al. (2019)

BC (This paper)

CCJ-DH BC-T MIP-CP Default Best-Bound
n Class Size CPU #BUB %BLB CPU' #BUB #BLB %UB %BUB CPU' #BLB %BUB CPU't #BUB #BLB %UB %BUB CPU!l #BUB #BLB %UB %BUB
50 1 120 602.8 116 99 43200 2 0 52 98.3 18000 0 97.9 3600 1 0 47.6 98.6 3600 1 120 23 99
2 120 5924 112 99 43200 7 1 52.1 98.5 18000 0 97.9 3600 0 1 40.6 98.6 3600 1 118 23.7 99
3 120 467.8 119 96.2 43200 1 0 35.4 93.9 18000 0 91.7 3600 0 2 29.5 94.6 3600 0 118 10.1 96.2
4 120 9144 109 99.3 43200 10 1 72.6 99 18000 24 99 3600 1 0 51.3 98.9 3600 0 95 24 99.3
Total 480  644.4 456 98.3 43200 20 2 53 97.4 18000 24 96.6 3600 2 3 42.3 97.7 3600 2 451 20.2 98.4
100 1 120 2966.6 120 97.9 43200 0 9 0 97.1 18000 4 97.3 3600 0 25 14 97.1 3600 0 82 3.4 97.9
2 120 2931.6 120 97.9 43200 0 8 0 97.1 18000 2 97.3 3600 0 15 2.6 97.4 3600 0 95 2.6 97.9
3 120 1971.3 120 91.4 43200 0 8 0 89.7 18000 1 89.2 3600 0 26 0.3 90.5 3600 0 85 0 91.3
4 120 4212.6 120 98.6 43200 0 14 0 97.4 18000 46 98.3 3600 0 9 2.5 97.7 3600 0 51 2.6 98.5
Total 480  3020.5 480 96.5 43200 0 39 0 95.3 18000 53 95.5 3600 0 75 1.7 95.7 3600 0 313 2.2 96.4
Total 960 18324 936 97.4 43200 20 41 26.5 96.4 18000 7 96.1 3600 2 78 22 96.7 3600 2 764 11.2 97.4

Size: Number of instances, T Time limit = 12 hours and maximum 30 GB memory, ¥ Time limit = 5 hours and maximum 30 GB memory, 11 Time limit = one hour and maximum 25 GB memory
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best-bound node selection strategies in Table 11. In this table we present #Node, GFS, AVGFS,

DFJ, and AVPFJ_ Although within the default node selection strategy the BC explores more

nodes, the best-bound strategy returns better lower bounds. Another interesting observation is

that the method with the default node selection strategy applies more GFSECs and DFJs with

almost the same average violation on the instances with n = 50. This reflects the fact that the

method with the default node selection strategy explores some nodes that do not contribute much

to improve the lower bound.

Table 11: Summary of the results of the BC on the large ARP instances of Chitsaz et al. (2019) with different node

selection strategies

Node Selection n Class Size %UB %BUB #Node GFS AVGIS DRJ AvDPH/
Default 50 1 120 47.6 98.6 2014.3 1625 0.21 6039 0.4
50 2 120 40.6 98.6 17789 1533 021 5666 0.4
50 3 120 29.5 94.6 1547 1814  0.21 5882  0.39
50 4 120  51.3 98.9 2434.6 1069 0.22 5640 0.48
Total 480 423 97.7 1944.2 1510 0.21 5806 0.42
100 1 120 1.4 97.1 4.6 1939 0.28 3549 0.37
100 2 120 2.6 97.4 5.3 2032 0.28 3728 0.36
100 3 120 0.3 90.5 0.6 2263 0.25 3859 0.32
100 4 120 2.5 97.7 35.8 1346 0.32 3429 0.48
Total 480 1.7 95.7 11.5 1896  0.28 3641  0.38
Best-Bound 50 1 120 23 99 987.1 1160 0.22 3907 0.39
50 2 120 23.7 99 1070.1 1146 0.22 4047 0.39
50 3 120  10.1 96.2 653 1336 0.22 3760 0.37
50 4 120 24 99.3 2255.2 700 0.24 3969 0.5
Total 480  20.2 98.4 1242.1 1085 0.23 3921 0.41
100 1 120 3.4 97.9 1.7 1921 0.28 3668 0.38
100 2 120 2.6 97.9 1.3 2098 0.28 3730 0.37
100 3 120 0 91.3 0.1 2140 0.26 3970 0.33
100 4 120 2.6 98.5 22.6 1442 0.32 3664 0.48
Total 480 2.2 96.4 6.4 1899  0.28 3757  0.39

Size: Number of instances, Time limit = 1 hour
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5. Detailed Results on Effect of Valid Inequalities

Each type of valid inequality introduced in Section 3 of the main paper has a different effect on
the LP relaxation value and solution time of the M 4rp model. To evaluate the effect of applying
different inequality types, we performed a sensitivity analysis considering different scenarios. We
consider the effect on the LP solution value when only one inequality type is added to the model.
Also, we evaluate the effect when all types of valid inequalities but one are added. Furthermore,
we consider the cases where no valid inequality (None), known valid inequalities (Known) from
the literature (i.e., (18), (26), and (28)), or all valid inequalities (All) (i.e., (18)-(26), and (28))
are added to the model. Similar to the results presented in Table 4, we present the obtained
lower bound as a percentage of the best upper bound found by the BC method or CCJ-DH.
Tables 12, 13 and 14 present the results for each class of instances. Each column number in these
tables refers to the associated valid inequality type number presented in Section 3 of the paper.
For the first class of instances, inequalities (18), (21) and (24) have the greatest impact. For the
second and third classes of instances, inequalities (18), (22) and (24) show the largest LP solution

value improvements.

16



Table 12: Effect of individual valid inequality types on average LP solution value as a percentage of BUB (class 1)

Including only one type Excluding only one type
Set (LS, WW)-type Var Bnd Gen Ineq (LS, WW)-type Var Bnd Gen Ineq
C/l/n  Size None (18) (19) (20) (21) (22) (23) (24) (25) (26) (28) Known (18) (19) (20) (21) (22) (23) (24) (25) (26) (28) Al

1/4/18 5 60.4 69.6 66.3 66.1 66.1 655 62 674 604 604 60.7 699 828 862 844 849 844 8 852 86.6 86.6 842 86.6
1/4/21 5 572 699 60.8 609 615 64.6 59.8 63.1 57.3 57.3 57.6 703 776 86.1 844 849 825 853 853 86.3 86.3 841 86.3
1/4/24 5 56.5 685 61 61 619 62 587 63 56.5 56.5 56.8 689 786 85.6 84.2 848 832 85.6 85.3 86.3 86.3 83.6 86.3
1/4/27 5 59.1 70.1 624 634 64 651 609 651 59.1 59.1 593 704 785 859 846 854 833 858 856 86.6 86.6 84.7 86.6
1/4/30 5 62.1 763 652 656 66.1 689 63.1 684 621 621 623 76.6 80.6 90.8 89.9 90.1 87.1 90.7 894 91 91 889 91
1/4/33 5 61 734 643 654 658 674 627 679 61 61 612 73.7 808 89.2 832 88.6 86 89 88 89.7 89.7 832 89.7
1/4/36 5 61.2 723 66.7 66.2 669 66 622 676 61.2 61.2 61.4 725 821 875 857 862 8 874 86.9 879 879 859 87.9
1/4/39 5 53.9 63.7 582 584 592 61.9 57 594 539 54 544 642 784 824 813 82 796 823 822 833 833 804 833
1/6/15 5 675 79.1 713 70.8 722 711 70.1 722 675 67.6 678 79.5 8.9 923 91.2 904 91.1 91 913 924 924 898 924
1/6/18 5 65.8 74 67.8 702 727 683 68 724 658 658 66.1 742 838 89 87.7 86.2 87.8 87.7 87.7 89 89 87 89
1/6/21 5 56.4 72 634 60.7 618 61.7 58 62.7 56.4 56.4 56.7 724 793 86.6 85.7 85.8 853 86.9 86.1 874 874 854 874
1/6/24 5 60.3 74 639 648 673 655 624 66.1 60.3 60.4 606 743 814 899 884 87 87.7 894 894 90 90 88 90
1/6/27 5 63.5 762 67.3 679 692 67.9 646 69.8 635 63.5 63.7 764 827 90.7 89.9 893 892 91.1 89.9 91.3 913 89 913
1/6/30 5 60.5 743 656 656 674 644 625 665 60.5 60.5 609 747 827 89.6 87.9 87 89 89.1 89.2 89.8 89.8 87.1 89.8
1/6/33 5 55.9 692 61.3 60.8 658 61.1 588 619 559 56 562 69.7 821 86.9 86.7 85.1 858 872 86.8 8 87.8 862 88
1/6/36 5 54 73.6 59.8 588 60.1 60.7 56.8 60.9 54 542 54.3 74 TT.7 89.7 881 873 87.6 89 8.5 89.7 89.7 875 89.7
1/8/12 5 69.7 79 721 729 756 724 72 743 69.7 69.8 70 79.3 858 91.6 909 89.1 904 90.6 908 91.7 91.7 89.9 91.7
1/8/15 5 689 79.1 70.6 72 744 726 702 742 69.1 69 693 795 844 912 91 89.8 89.6 91.4 89.6 91.5 91.5 89.6 91.5
1/8/18 5 64.6 789 681 675 713 68 664 68.7 64.7 64.7 649 793 824 922 914 887 903 91.8 91.4 922 921 90.2 92.2
1/8/21 5 62.7 753 682 66.7 674 657 63.7 674 627 627 628 755 80.6 86.9 86.6 86.7 874 882 87.7 884 883 86.9 88.4
1/8/24 5 654 775 731 70 702 68.5 673 704 654 655 656 777 86 89.8 88.3 88.7 89.9 903 89.9 904 90.3 832 904
1/8/27 5 66.6 79.7 71.3 70.5 709 69.5 682 719 66.6 66.7 66.9 80 84.1 90.8 89.7 89.7 90.7 91 90.1 91.2 91.2 894 91.2
1/8/30 5 61.3 738 628 646 694 652 63.7 669 614 61.4 618 745 808 89.5 89.1 86.9 87.7 89.2 834 89.7 89.6 86.8 89.7
1/8/33 5 63 741 69.1 66.9 681 66.2 64.7 678 63 63 633 744 823 8 8.1 851 86.6 8 862 86.9 869 848 86.9
1/10/9 5 67 827 682 69.2 725 712 683 712 673 671 673 831 81.8 933 932 91 922 933 921 935 934 92.1 935
1/10/12 5 67.3 783 687 704 741 711 689 718 674 674 678 788 841 91.8 914 89 901 91.9 90.9 92 919 895 92
1/10/15 5 64.5 79 679 675 686 67.7 66.1 69 646 64.6 648 794 796 89.9 89.7 888 89.6 90.5 89.8 90.7 90.5 89.1 90.7
1/10/18 5 68.2 80.6 71.8 719 718 71 69.1 732 682 682 683 808 822 903 894 899 90.1 90.6 90 90.8 90.7 894 90.8
1/10/21 5 673 805 712 711 725 70 683 722 673 67.3 674 80.7 831 91.7 904 89.1 90.7 91.6 91 91.7 91.6 90.3 9L.7
1/10/24 5 64.2 76.7 69.1 68.2 694 69.3 66.2 69.6 642 64.3 64.4 s 834 894 887 881 89 894 89 899 899 881 89.9
1/10/27 5 64.6 745 67.8 68.7 705 66.8 674 69.2 646 64.7 649 749 814 875 8.1 853 87.1 864 87.5 87.8 87.8 86.2 87.8
1/10/30 5 628 74 659 67.7 696 655 654 683 628 628 631 744 81.6 87.8 86.7 85.7 87.6 86.8 87.6 882 882 86.1 88.2
1/12/6 5 712 83 731 742 746 744 731 758 712 TL3 714 833 846 93 922 91.8 926 928 921 931 93 914 93.1
1/12/9 5 63.8 756 674 68.1 709 66.1 66 68.7 638 63.8 64.1 76 822 882 87.1 86 88.1 87.5 87.7 885 885 86.8 88.5
1/12/12 5 61 781 635 64 682 65 623 66.1 61.2 61 61.3 784 782 90.7 90.4 888 894 91 90  91.1 91 894 91.1
1/12/15 5 66.2 822 69.7 69.2 69.7 70.3 67.1 709 663 66.3 665 824 81.6 927 92 91.8 91.5 929 91.7 93 929 912 93
1/12/18 5 68.6 804 718 718 72 72 69.7 73.6 68.7 686 688 80.7 8.5 90.9 90.5 90.6 90.8 91.5 90.3 91.6 91.6 89.5 91.6
1/12/21 5 639 74 659 678 70.6 684 646 689 644 64 644 745 818 87.2 86.7 86.7 86.1 87.8 86.5 87.9 87.7 86.1 87.9
1/12/24 5 66.2 793 704 69.5 723 686 66.8 702 662 66.2 66.4 79.5 821 89.5 89.5 87.6 90.2 90.5 90.1 90.6 90.5 88.8 90.6
1/12/27 5 56.8 77.1 61.7 60.6 655 628 585 61.9 57.1 57 574 77.7 796 904 902 8 902 90.9 90.3 91.1 90.8 889 9I.1

Total 200 63 757 66.9 66.9 687 67.3 64.8 684 63.1 63.1 633 761 818 89.3 884 87.7 88.1 89.2 83.7 89.7 89.7 87.7 89.7
Note. C/l/n: Class/Number of periods/Number of suppliers, Var Bnd: Bounds on the variables, Gen Ineq: General inequalities
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Table 13: Effect of individual valid inequality types on average LP solution value as a percentage of BUB (class 2)

Including only one type Excluding only one type
Set (LS, WW)-type Var Bnd Gen Ineq (LS, WW)-type Var Bnd Gen Ineq

C/l/n  Size None (18) (19) (20) (21) (22) (23) (24) (25) (26) (28) Known (18) (19) (20) (21) (22) (23) (24) (25) (26) (28) Al
2/4/18 5 719 819 719 749 72 766 727 785 719 719 72 82 85.9 92.8 91.8 927 91.2 924 87.8 928 92.7 91.7 92.8
2/4/21 5 69 76.9 69 715 69.2 756 70.7 751 69 69.1 69.2 7.2 85.1 89.7 88.6 89.6 86.3 89.1 856 89.7 89.6 88.6 89.7
2/4/24 5 646 787 64.6 679 65 717 65.7 715 64.6 64.7 648 789 82 913 90.2 91.1 89 90.8 86.4 91.3 91.2 89.7 913
2/4/27 5 66.7 81.3 66.7 70.1 66.9 73.7 67.7 73 66.7 66.7 66.8 81.5 83.1 929 91.7 928 90.7 92.5 88.7 929 92.8 91.7 929
2/4/30 5 68.7 80.8 68.7 725 689 746 69.7 759 68.7 687 689  80.9 85 926 91.3 92.6 912 924 879 926 926 91.4 926
2/4/33 5 694 80.6 69.4 734 69.6 751 70.3 76.2 694 69.4 69.5 80.7 85.3 923 90.7 922 91 92 87.8 923 922 91.1 923
2/4/36 5 656 775 65.6 704 657 711 67.6 733 65.6 657 658 77.8 837 9L.7 89.9 91.7 90.1 90.7 87.1 91.7 91.7 90.2 9L.7
2/4/39 5 55.2  70.3 582 609 559 649 56.7 62.6 552 552 554 70.6 79.2 883 852 884 8 879 849 884 884 86.7 884
2/6/15 5 729 822 729 771 731 768 742 77T 729 729 73 824  85.6 927 90.3 927 911 922 904 927 927 915 927
2/6/18 5 63.1 776 63.1 68.1 633 689 64.6 684 63.1 63.1 63.3 7.9 79.8 90.6 879 90.6 88.6 90.1 871 90.6 90.6 88.6 90.6
2/6/21 5 731 793 731 773 732 764 746 784 731 731 732 795 862 909 884 90.8 89.3 90.2 87.8 90.9 90.8 89.5 90.9
2/6/24 5 72.8 84 728 758 728 765 745 762 728 728 729 84.2 84.1 932 91.5 932 91.6 921 90.8 93.2 932 922 932
2/6/27 5  56.7 758 57 641 57.8 62.7 57.8 63.1 56.8 56.8 569 761 751 89.7 86 89.7 884 89.3 869 89.7 89.5 87.9 89.7
2/6/30 5  59.8 733 615 662 606 67 61.8 66.1 59.8 59.8 60 73.7 81.8 902 86.4 90.2 87.8 89.8 87.6 90.3 90.2 88 90.3
2/6/33 5 59.4 764 594 663 60 654 61.1 65 59.4 59.5 59.6 76.7 77.7 90.7 87 90.6 888 90.1 885 90.7 904 88.6 90.7
2/6/36 5 538 754 54.1 615 542 61.3 554 61.8 53.8 538 539 756 755 91.8 831 91.7 90.1 91.3 881 91.8 91.6 89.9 91.8
2/8/12 5 73.7 838 737 768 73.8 76.6 752 76.8 73.7 73.7 739 84 83.6 921 90.2 92 90.8 91.2 90.1 921 92 911 921
2/8/15 5 711 834 711 749 712 757 725 745 711 712 712 835 833 926 902 926 91.1 919 90.5 92.6 92.6 91.7 92.6
2/8/18 5 76.4 827 764 80.3 765 79.9 77.1 803 764 764 76.6 82.9 87.8 922 89.5 922 909 919 89.6 922 922 90.9 92.2
2/8/21 5 63 777 631 67 635 723 656 68 631 632 633 782 826 902 88.6 90.2 832 89.1 87.9 90.2 90.1 88.6 90.2
2/8/24 5 58 73.1 585 64.8 59 669 59.7 643 581 58 58.1 73.4 78.5 88.7 854 88.7 853 885 86.7 88.7 88.6 87.5 88.7
2/8/27 5 523 70.8 53.3 60.6 534 623 546 609 524 524 526 711 784 90.1 86.1 90.1 87.7 89.5 87.2 90.1 89.9 87.5 90.1
2/8/30 5 60.6 79.2 60.6 66.7 61 67.1 61.8 66.4 60.6 60.6 60.7 79.4 776 91.9 & 919 90.1 91.8 89.7 919 91.8 90.5 91.9
2/8/33 5 638 793 639 69.1 641 713 653 684 63.8 638 639 79.6 818 91.9 837 919 90.2 91.1 89.6 91.9 91.9 90.1 91.9
2/10/9 5 69.6 799 696 75 69.7 723 70.8 73.6 69.6 69.6 69.8 80.1 81.7 90.6 872 90.6 89.5 89.9 889 90.6 90.6 89.2 90.6
2/10/12 5 62 737 62 67.6 626 709 63.7 688 62 621 623 741 825 883 862 883 858 83 8.5 833 882 86.1 833
2/10/15 5 60.8 77 622 67.7 61.5 69.5 61.6 67 60.8 60.8 61 7.2 81.1 899 86.6 90.1 889 90 88 90.1 899 882 90.1
2/10/18 5 518 70 526 61.7 53.1 59.8 52.8 60.7 519 519 521 704 764 90.6 856 90.6 87.6 90.5 87.8 90.6 90.5 87.3 90.6
2/10/21 5 65 79 65 71.3 653 71.6 662 70.1 65 65.1 65.1 79.2 81.7 90.8 87 90.8 89.6 904 894 90.8 90.7 89.6 90.8
2/10/24 5 59 741 60.2 68.1 59.4 651 60.7 659 59 59.1 59.3 745 79.8 90.8 849 90.8 90 90.4 89.1 90.8 90.7 88.4 90.8
2/10/27 5 622 773 622 68 624 66.5 64 671 622 622 624 77.6 772 89.8 86.6 89.8 88.2 88.7 87.8 89.8 89.8 883 89.8
2/10/30 5 52,6 65.6 56.4 56.7 543 60.5 55.6 583 527 529 53 66.2 73 81 804 825 79.6 819 80.6 825 824 8L.1 825
2/12/6 5 70.5 79.5 70.5 757 706 733 724 743 705 70.6 70.8 79.7 824 89.3 86.2 89.3 88.7 881 87.8 89.3 89.3 882 89.3
2/12/9 5 687 775 69.5 748 69 735 705 73.1 687 687 689 77.7 841 89.8 859 898 88.8 838 882 89.8 89.8 884 89.8
2/12/12 5 65.2 76 65.7 73 65.8 699 659 71.6 652 652 653 76.1 81.8 89.1 85.2 89.2 88.6 89.1 874 89.3 89.2 87.7 89.3
2/12/15 5 553 738 581 644 565 612 56.6 624 554 554 55.6 74 77.3 90.6 853 90.6 89.5 90.5 885 90.6 90.3 87.4 90.6
2/12/18 5 524 716 528 549 532 685 56.2 57.6 528 53 528 724 777 854 85 854 813 849 832 854 851 84.7 854
2/12/21 5 52.5 62 53.7 58 54.5 644 555 605 529 528 529 62.5 78.8 829 80.6 828 784 824 791 829 826 804 829
2/12/24 5 56,5 735 56.6 651 57.8 63.7 58.2 64 566 56.6 56.7 73.6 762 882 846 882 865 881 86.6 832 88 86.9 832
2/12/27 5 54.6 729 56.9 645 559 63.2 55.6 624 54.7 54.6 54.7 73.1 775 89.5 842 89.6 888 89.5 884 89.6 894 87.6 89.6

Total 200 63 76.6 63.6 68.6 636 69.6 64.6 69 63.1 63.1 632 76.9 81 902 874 90.2 833 89.7 87.5 90.2 90.1 88.6 90.2
Note. C/l/n: Class/Number of periods/Number of suppliers, Var Bnd: Bounds on the variables, Gen Ineq: General inequalities
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Table 14: Effect of individual valid inequality types on average LP solution value as a percentage of BUB (class 3)

Including only one type Excluding only one type
Set (LS, WW)-type Var Bnd Gen Ineq (LS, WW)-type Var Bnd Gen Ineq
C/l/n  Size None (18) (19) (20) (21) (22) (23) (24) (25) (26) (28) Known (18) (19) (20) (21) (22) (23) (24) (25) (26) (28) Al

3/4/18 5 68.1 704 681 688 681 743 699 821 681 683 683 709 919 925 924 925 88 92 779 925 925 90.2 925
3/4/21 5 66.5 684 66.5 66.8 66.6 746 684 782 66.6 66.7 669 689 8.8 90.6 90.5 90.6 835 89.9 78 90.6 90.5 88.1 90.6
3/4/24 5 64.7 681 64.7 658 647 764 66.1 773 64.7 649 65 68.5 91.5 929 927 929 8 925 81.1 929 928 91.6 929
3/4/27 5 65.3 67.6 653 66.1 653 782 66.2 784 653 654 655 68 94.3 943 942 943 83.6 942 80.6 943 941 922 94.3
3/4/30 5 67 705 67 672 67 774 686 794 67 67.1 673 71 92.6 939 939 939 8.5 931 812 939 939 921 93.9
3/4/33 5 64.6 683 64.6 652 64.6 739 66.3 785 64.6 64.8 649 689 916 929 928 929 8.9 925 784 929 929 89.9 929
3/4/36 5 61.5 668 61.5 62.1 61.7 71.6 65.6 759 61.7 62 622 678 91.5 923 921 923 86.6 903 781 923 923 90.2 923
3/4/39 5 46.1 53.5 46.1 482 46.2 622 48 66.7 46.2 46.2 464 539 87.1 88.7 884 887 781 8 69.6 887 885 857 88.7
3/6/15 5 704 735 704 712 705 768 722 813 704 70.6 70.8 74 91 92 919 92 87.7 914 812 92 919 902 92
3/6/18 5 69.3 729 69.3 704 693 754 703 79.5 693 694 695 732 89 899 89.6 899 86.4 895 79.6 89.9 89.7 87.2 89.9
3/6/21 5 63.6 69 63.6 655 63.7 70.8 65.6 742 63.7 63.8 639 69.6 869 882 87.7 882 8.1 875 77.8 882 87.7 849 88.2
3/6/24 5 65.9 683 659 675 66 729 671 759 66 66 66.3 68.8 831 884 882 884 834 881 T7.8 884 882 843 884
3/6/27 5 67.3 716 673 68 674 764 689 781 674 674 675 719 904 91 90.7 91 855 90.5 80.1 91 91 887 91
3/6/30 5 60.9 67 609 623 61 746 62 T71.8 61 61  61.1 67.3 893 90.5 90.2 90.5 81.7 90.5 792 90.5 90 879 90.5
3/6/33 5 65.5 68 65.5 66.7 65.5 72.6 69.2 73.2 655 659 66.1 69 864 87.1 86.6 87.1 81.6 854 799 87.1 86.5 84.6 87.1
3/6/36 5 60.3 69.5 60.3 61.9 604 732 63.1 69.2 604 60.5 609 702 869 89.3 887 89.3 831 884 813 89.3 89.1 86.5 89.3
3/8/12 5 734 742 734 749 735 785 774 811 735 73.7 738 749 90.7 91 91 91 864 894 846 91 91 89.6 91
3/8/15 5 65.8 723 658 67.1 658 756 67.1 747 658 658 659 727 87 89.3 89.2 89.3 837 89 8.1 89.3 89.2 87.7 89.3
3/8/18 5 715 759 715 732 716 766 734 79.1 716 716 718 763 87.6 89.8 89.3 89.8 869 89.5 832 89.8 89.7 87.6 89.8
3/8/21 5 67.7 70.7 67.7 68.8 67.8 751 69.9 748 67.8 67.8 68 711 8.5 879 87.6 879 82 87.3 808 87.9 87.7 855 8.9
3/8/24 5 63.5 676 63.5 653 635 702 649 732 635 63.6 639 681 841 853 851 853 815 8.1 76 853 853 821 853
3/8/27 5 715 743 715 72 715 77T 739 791 715 71.6 717 747 883 893 89 893 8.6 8.7 817 89.3 892 87.2 89.3
3/8/30 5 706 744 70.6 714 70.6 758 716 782 706 70.6 708 748 863 88 87.8 88 849 87.8 802 8 879 86.1 88
3/8/33 5 654 73 654 66.5 655 734 66.5 732 654 655 65.6 733 842 874 872 874 838 873 79.7 874 87 85.6 874
3/10/9 5 66 719 66 67.8 66.2 742 715 722 66.1 66.5 66.5 73 85.7 83.8 883 888 835 86.5 854 888 888 87.7 888
3/10/12 5 64.2 699 642 669 643 70.9 66.8 724 643 644 647 706 836 8.8 8 8.8 828 847 80.3 85.8 853 83.8 858
3/10/15 5 673 734 673 692 674 733 694 75 674 674 676 738 845 874 87 874 847 869 81.2 874 873 854 874
3/10/18 5 63 675 63 647 63.1 689 654 714 63 63.1 632 679 82 84 835 84 80.6 837 762 84 836 817 84
3/10/21 5 65.7 672 65.7 67.6 658 70.8 685 739 657 659 66 67.7 849 856 852 856 81.2 8.2 779 856 85.6 823 85.6
3/10/24 5 65.8 69.9 658 67.5 659 721 676 738 658 659 66.1 703 842 86.1 85.7 86.1 82 8.1 79 8.1 8 83.8 86.1
3/10/27 5 67.7 718 67.7 69.7 67.8 73.7 683 764 67.8 67.8 679 721 85.3 87.1 86.8 87.1 834 87.1 79.2 87.1 869 849 87.1
3/10/30 5 66.3 721 66.3 67.7 664 742 68.1 734 663 664 66.5 725 85 86.9 86.4 86.9 829 867 80.1 869 86.8 8 86.9
3/12/6 5 704 74 704 728 705 744 723 786 704 705 706 743 861 882 88 882 857 87.7 81.8 882 88 86.6 88.2
3/12/9 5 69.5 738 695 71 695 75 70.7 76 695 69.5 69.7 741 8.3 876 874 876 84 872 815 87.6 874 851 87.6
3/12/12 5 67.6 71.7 676 70.1 679 725 704 744 67.7 679 679 722 838 8.8 8.3 8.8 8 8.3 8 8.8 857 842 858
3/12/15 5 68.7 713 687 70.3 688 733 70.8 748 68.7 688 69 71.8 832 845 842 845 813 839 794 845 844 823 845
3/12/18 5 65.7 70.1 65.7 67.6 658 73.7 682 T7L.7 658 658 66.2 70.8 845 862 8 86.2 809 859 814 86.2 857 832 86.2
3/12/21 5 652 70.1 652 67.6 653 70.5 66.9 73.5 652 653 654 704 835 858 854 858 831 8.7 79 858 854 829 858
3/12/24 5 66.3 719 66.3 684 663 72 694 744 663 66.5 66.5 724 843 874 87.3 874 842 86.1 80.9 874 873 859 874
3/12/27 5 60.1 688 60.1 629 60.7 70.2 625 682 60.2 60.3 60.8 69.7 832 86.9 86.5 86.9 81.8 86.3 809 86.9 86.7 845 86.9

Total 200 65.9 703 659 674 66 73.6 68 753 659 66.1 662 70.8 87.1 88.7 88.4 887 837 881 79.9 887 885 864 887
Note. C/l/n: Class/Number of periods/Number of suppliers, Var Bnd: Bounds on the variables, Gen Ineq: General inequalities
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Highlights

e We study integrated production, inventory and inbound transport planning problem

The suppliers each provide a subset of the components necessary for the production

We provide a mixed integer programming formulation of the problem
e We propose several families of valid inequalities to strengthen the formulation

e We generate a large test bed consisting of small to large instances

We analyze the impact of each family of valid inequalities





