

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Nov 28, 2024

A matheuristic for the driver scheduling problem with staff cars

Perumal, Shyam S.G.; Larsen, Jesper; Lusby, Richard M.; Riis, Morten; Sørensen, Kasper S.

Published in:
European Journal of Operational Research

Link to article, DOI:
10.1016/j.ejor.2018.11.011

Publication date:
2019

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Perumal, S. S. G., Larsen, J., Lusby, R. M., Riis, M., & Sørensen, K. S. (2019). A matheuristic for the driver
scheduling problem with staff cars. European Journal of Operational Research, 275(1), 280-294.
https://doi.org/10.1016/j.ejor.2018.11.011

https://doi.org/10.1016/j.ejor.2018.11.011
https://orbit.dtu.dk/en/publications/6f8b959f-5d8a-4fad-9f1d-8f43bf90176e
https://doi.org/10.1016/j.ejor.2018.11.011

A matheuristic for the driver scheduling problem with staff

cars

Shyam S. G. Perumal1,2, Jesper Larsen2, Richard M. Lusby2, Morten Riis1, and
Kasper S. Sørensen3

1Qampo ApS, Aarhus Denmark
2Department of Management Engineering, Technical University of Denmark, Kgs.

Lyngby, Denmark
3Trapeze Group Europe A/S, Aarhus, Denmark

November 7, 2019

Abstract

In the public bus transport industry, it is estimated that the cost of a driver schedule accounts
for approximately 60% of a transport company’s operational expenses. Hence, it is important for
transport companies to minimize the overall cost of driver schedules. A duty is defined as the
work of a driver for a day and the driver scheduling problem (DSP) is concerned with finding an
optimal set of driver duties to cover a set of timetabled bus trips. Numerous labor regulations
and other practical conditions enforce drivers to travel within the city network to designated
bus stops to start/end duty, to take a break or to takeover a bus from another driver. This
paper focuses on the driver scheduling problem with staff cars (DSPSC), where staff cars can
be utilized by the drivers to fulfill their travel activities. However, staff cars should always be
returned to the depot and can perform multiple round trips during the day. The problem is
restricted by the number of cars available at the depot. We present a matheuristic for solving the
DSPSC and the proposed method is tested on instances from Danish and Swedish companies. A
comparison with a state-of-the-art mixed integer programming (MIP) solver indicates that the
matheuristic provides better solutions, with comparable computation times, for 6 out of 10 large
instances. For instances that have more than 6 staff cars and 1200 bus trips, the improvement is
13-15% on average.
Keywords: Transportation, Driver scheduling problem, Heuristics

1 Introduction

Growing populations in cities worldwide demand well-organized public transport systems that prevent
long travel times, traffic congestion, road accidents and pollution. Public transport systems are
considered to be the backbone of sustainable urban development. The passengers expect a high
level of service; i.e., the transport system should be accessible, comfortable, affordable and it should
be possible to reach destinations quickly. The objective of transport companies is to provide high
quality service to the passengers while minimizing their overall operational cost (Desaulniers and
Hickman [2007]; Ibarra-Rojas et al. [2015]). Transport companies are constantly faced with the
challenge of planning for cities with large scale transport systems. Government and EU policies, labor
regulations and other practical conditions further challenge transport companies to efficiently utilize
their resources. As a consequence, over the years, there has been an increase in the development of
decision support tools based on mathematical programming approaches to aid transport companies
in planning (Desrochers and Soumis [1989]; Wren et al. [2003]; Smith and Wren [1988]; Lourenço et al.

1

[2001]). Typically, the transport planning process involves solving several planning subproblems as it
is too complex to solve the entire planning problem in one integrated step. The planning subproblems
include Timetabling, the Vehicle Scheduling Problem (VSP), the Driver Scheduling Problem (DSP)
and the Driver Rostering Problem (DRP). Public authorities often define the timetabled trips, where
the arrival and departure times at all bus stops in a city network are determined. The timetabled
trips are utilized by transport companies to schedule their buses and drivers. The VSP assigns buses
to the timetabled trips such that every trip is covered by a bus and the objective is to minimize
the operational cost based on bus usage. A bus typically covers a sequence of trips from the time it
leaves the depot until it returns to the depot. A driver duty is defined as the work of a driver for a
day and the DSP is concerned with finding an optimal set of duties that covers all bus trips. Given a
set of generic duties over a certain time horizon, e.g. a month, the DRP assigns these duties to the
available drivers.

In the DSP, transport companies have to plan driver schedules based on known bus schedules. In
most cases, the bus schedules are different on weekdays, weekends and holidays. Hence, transport
companies need to create driver schedule for each of these bus schedules. While determining the driver
schedule, companies must consider two important aspects: minimizing the cost and ensuring feasibility
of driver duties with respect to various labor regulations. Most commonly, the cost comprises of
wages paid to the drivers, which is known to be more than the operational expenses of buses. It is
estimated that the cost of a driver schedule accounts for approximately 60% of a transport company’s
operational expenses. Hence, a small improvement in the cost of driver schedule can lead to large
savings. For a Danish transport company with over 600 drivers, it was shown that a reduction in cost
of 1.2% represents 2-2.5 million DKK in savings in a year. Furthermore, the transport companies
have to strictly abide by the labor rules and regulations. The three most common rules that apply
for all transport companies are maximum working time for a driver, minimum/maximum number of
breaks, and maximum time between breaks. These rules forbid the driver from driving a bus over
a prolonged period and allow the driver to have sufficient breaks during the day. Hence, a driver
may cover only a few consecutive bus trips before the driver takes a break or is relieved of duty.
Another important condition for transport companies is the computation time required to build
a driver schedule. Planning departments of transport companies with their experience in the bus
transport industry and knowledge of the city network take three to four weeks to manually create
a new driver schedule. A decision support tool based on mathematical programming approaches
potentially eliminates the resources and the time required to plan. Therefore, a decision support tool
that provides optimal or near-optimal solutions in quick computation time would assist transport
companies to create and operate efficient transport systems.

Transport companies must also consider other practical limitations in the city network during
the planning process. These limitations are concerned with the characteristics of the bus stops.
Only at certain bus stops can the driver be allowed to sign on/off duty or to handover the bus to
another driver. Furthermore, the driver is allowed to have a break only at certain bus stops, which
is dependent on the availability of facilities such as restroom and canteen. Figure 1 illustrates an
example of a duty where the driver covers a few trips. As it can be seen in the figure, the driver
usually has to travel during the day of work within the city network to sign on/off duty, visit a bus
stop where taking a break is allowed or takeover a bus from another driver. If the distance between
the bus stops is short, then the driver can travel by foot. The driver can also travel as a passenger on
a bus to designated bus stops. However, in some cases, a bus stop can only be reached feasibly with
use of a car. Transport companies usually have a fleet of cars, which are defined as staff cars that
the drivers could utilize. A driver, as part of his/her travel activity, usually takes a staff car from
the depot to visit another bus stop and parks the staff car at the visited bus stop. Another driver
may utilize the parked car from the same bus stop and drive it back to the depot as part of his/her
travel activity during the duty. A round staff car trip is defined as the combination of a departure
trip from the depot and an arrival trip to the depot. A staff car can perform multiple round trips
during the day; however, a staff car should always be returned to the depot and only the limited
cars that are available at the transport company’s fleet can be used to fulfill the travel activities of

2

the drivers. Simultaneously, scheduling the drivers and the staff cars for the drivers gives rise to the
driver scheduling problem with staff cars (DSPSC), which is an extension of the DSP. Such problems
have not been reported in the Operations Research (OR) literature to the best of our knowledge.
The DSP is a very complex problem, similar structured problems have been proven to be NP-hard
problems (Fischetti et al. [1987]), and the DSPSC adds further complexity to the DSP.

18:0417:25

Trip 22

6:25 6:50

Trip 2

7:00 7:44

Trip 3

7:50 8:35

Trip 4

8:45 9:04

Trip 5

5:47

Trip 1Bus 1

Time

Bus 3

10:25 10:50
Trip 52

11:15 11:34

Duty sign-on bus
stop

Longbreak bus
stop

Duty sign-off bus
stop

Travel

Travel Travel

Trip 53

Figure 1: The figure illustrates an example of a duty where the driver covers a few trips of two
buses. The red vertical lines represent the bus stops that the driver can handover/takeover the bus
to/from another driver. The red circles indicate the bus stops that the driver visits during the duty
to sign on/off or take a break.

Heuristic algorithms that are designed by combining metaheuristics and mathematical program-
ming techniques are known as matheuristics (Boschetti et al. [2009]). In this paper, we propose a
matheuristic for solving the DSPSC. A mixed integer programming (MIP) model, exact method, is
embedded in an adaptive large neighborhood search (ALNS) heuristic. Large neighborhood search
(LNS) was proposed by Shaw [1998] and the author applied the heuristic to vehicle routing problems.
LNS is based on a local search framework such as simulated annealing (SA) or hill climber, where an
initial solution is gradually improved by iteratively destroying and repairing the solution using a
destroy and a repair method respectively. ALNS was proposed by Røpke and Pisinger [2006] where
multiple destroy and repair methods are defined within the same search. Each destroy and repair
method is assigned a weight that controls the selection of the particular method during the search.
Problems, such as the DSP, where Dantzig-Wolfe Decomposition has been used with success are
good candidates for LNS and ALNS heuristics (Pisinger and Røpke [2010]). Exact approaches are
known to be highly effective for small to medium sized instances of hard problems but are inefficient
for large instances; hence, heuristics are commonly used in practice (Jourdan et al. [2009]; Blum
et al. [2011]). However, metaheuristics based on a local search framework are often ineffective for
highly constrained problems where feasible areas of the solution space are disconnected (Dumitrescu
and Stützle [2003]). Muller et al. [2012] designed a matheuristic based on ALNS for solving the lot
sizing problem (LSP) with setup times. The authors’ motivation for using a MIP model for the repair
phase of the ALNS heuristic was that it could tackle the challenges of constructing and exploring a
neighborhood of a given solution. MIP models can be very effective for exploring large neighborhoods
within a local search procedure and guide the search to move between feasible regions of the solution
space (Jourdan et al. [2009]). Since the DSPSC is considered to be a tightly constrained problem,
where even finding a feasible solution could be challenging, the matheuristic approach is viewed as a

3

powerful optimization method for solving it. In 2009, Jourdan et al. [2009] stated that there has been
an increase in number of works carried out on matheuristic approaches. The approach’s ability to
simultaneously exploit advantages of heuristics and exact methods has led to obtaining best solutions
for most practical problems.

Trapeze Group Europe A/S (TGE) is an international provider of decision support tools within
planning and operations for both public and private transport companies. Real-life instances of the
DSPSC from a Danish and a Swedish transport company were acquired from TGE’s system for this
paper. Since DSPSC is a very realistic problem, this paper primarily contributes to research areas
within traditional DSP and within applications of OR techniques for improving efficiency of transport
systems.

This paper is organized as follows. Section 2 gives a description of the existing literature related to
the DSP. In Section 3 we provide a formal description of the DSPSC with the help of a mathematical
model. Section 4 introduces the proposed matheuristic framework for solving the DSPSC. The section
also gives an outline of a greedy heuristic that provides an initial solution. Section 5 details the
computational study based on experimental tests performed on instances from Danish and Swedish
transport companies. Finally, Section 6 concludes the paper and addresses future directions of research.
We also briefly discuss the challenges of integrating mathematical programming approaches such as
the proposed matheuristic into decision support tools.

2 Related Literature

Common formulations of the DSP are based on set partitioning/covering problem (SCP), where
the formulation is used as a duty selection module with the selected duties covering all bus trips at
minimum cost (Ibarra-Rojas et al. [2015]). To find the optimal solution, all the feasible duties have
to be considered in the SCP formulation. Due to potentially being a large number of possible duties,
the formulation is intractable by exhaustive enumeration techniques. Some authors, e.g.-Smith and
Wren [1988] and Wren et al. [2003], have considered reducing the number of duties being generated
before solving the SCP. Smith and Wren [1988] heuristically generate a feasible subset of duties
for the SCP. The SCP is solved by relaxing the integrality constraints and an integer solution is
found using a branch-and-bound algorithm. The algorithm terminates when the current integer
solution is within 0.5% of the integer optimum. The authors had developed the method as part of a
commercial software system and reported some of the experiments run on the system. The largest
instance included 309 constraints (bus trips), 4892 variables (duties) in the SCP formulation and
the best integer solution was found in 238 seconds. Similar to Smith and Wren [1988], Wren et al.
[2003] solve the SCP by considering only a subset of feasible duties. A large set of potential driver
duties is generated and refined by heuristic procedures. The authors focused more on combining
theory and practice to create a user-friendly and flexible system. Portugal et al. [2009] presented SCP
based models that were developed in collaboration with planners and end-users of several transport
companies in Portugal. The authors aimed at developing models to produce solutions that could be
applied in real situations and, hence solution quality was not the only criteria for evaluating models.
The authors tested instances with up to 347 bus trips and 23305 duties in the SCP formulation.

Exact approaches such as Branch & Price, where SCP implicitly considers all the possible duties,
are commonly used in the literature for generating duties. Desrochers and Soumis [1989] devised
a column generation method for solving real-life instance of a transport company operating in an
American city that had a fleet of 25 buses. The resulting SCP formulation had 167 bus trips. However,
solving large scale instances of the DSP by column generation approaches is notorious for being
computationally expensive due to the need to solve resource constrained shortest path problem
(RCSPP) at every iteration (Wren et al. [2003]; Ibarra-Rojas et al. [2015]). Yunes et al. [2005] devised
a hybrid column generation approach that used constraint programming (CP) to generated feasible
duties. The authors also reported that solving the RCSPP by dynamic programming techniques
suggested by Desrochers and Soumis [1989] was computationally inefficient for large instances. The
authors tested the two aforementioned methods on instances from a bus company in the city of Belo

4

Horizonte, Brazil. The sizes of the instances varied from 10 to 210 bus trips. The column generation
algorithm based on dynamic programming could not solve instances more than 90 trips within a time
limit of 24 hours. It was reported that 90% of the total computation time, on average, was spent
on solving the RCSPP. However, the column generation based on CP was able to solve the largest
instance of 210 trips in less than 15 hours. Mauri and Lorena [2007] applied a metaheuristic method
known as the population training algorithm (PTA), a derivation of the genetic algorithm (GA), as
part of the column generation framework to generate feasible duties. The authors tested the method
on randomly generated instances that were based on real problems of a Brazilian transport company
and the sizes of the instances varied from 25 to 500 bus trips. The authors compared the proposed
method to a SA approach and the results for the largest instance indicated that the proposed method
was faster than the SA approach by a factor 20 with an improvement of 0.15% in solution quality.
Li et al. [2015] proposed a column generation approach that is based on a hyper-heuristic, which is
similar to the idea of having multiple repair heuristics in a ALNS. The authors generate all feasible
duties for a given instance and several heuristics (local search, swap heuristic and greedy based
heuristic) are devised to select a subset of feasible duties at each iteration of the column generation
framework. In the method proposed by Li et al. [2015], the hyper-heuristic evaluates the different
heuristics based on their selection of duties that contribute to the improvement of the objective at
each iteration of the column generation framework. The authors tested the method with instances
provided by Mauri and Lorena [2007] and the largest instance with 500 bus trips had a total of 8.4
million feasible duties. The column generation based on hyper-heuristics yielded solutions that, on
average, had a gap of 2.12% from the best known solutions, which were provided by the method
proposed by Mauri and Lorena [2007]. However, for the largest instance, the hyper heuristic was
faster by a factor 1.63.

Heuristic approaches, if designed well, are known to provide good solutions in reasonable compu-
tation time for large scale problems. Lourenço et al. [2001] proposed multiobjective metaheuristics for
solving real-life instances of the DSP. In most formulations of the DSP, the objective is to minimize
cost of driver duties. However, in practice, different transport companies take several objectives into
account while planning. Hence, the authors solved the DSP involving multiple objectives such as
minimizing total number of duties, minimizing number of bus changes and minimizing number of
over-covered bus trips. A large number of duties that comply with the labor regulations and the
transport companies’ rules is heuristically generated for the SCP formulation. The SCP is solved by
metaheuristic methods tabu search (TS) and GA. The authors also devised a greedy randomized
adaptive search procedure (GRASP) for solving a subroutine of the TS and GA. The proposed
methods were tested on instances with up to 348 bus trips and 74000 duties in the SCP formulation.
The devised GA provided solutions that were comparable to that of linear programming (LP) based
algorithm. For the largest instance, the computation time of the GA was approximately 5 times
shorter than that of the LP based method. Similarly, Li and Kwan [2003] solved the DSP by GA.
The authors tested the algorithm on instances with up to 1873 trips and 50000 duties in the SCP
formulation. The proposed method was able to solve the largest instance in 1350 seconds, which had
a gap of 3.89% from the best known solution provided by a MIP solver with a computation time of
more than 10 hours. De Leone et al. [2011a] devised a GRASP for solving the DSP for instances with
up to 161 bus trips from a Italian transport company. The proposed method was compared with an
exact method that uses a MIP solver to solve the SCP model with up to 2 million feasible duties.
The results showed that the exact method took more than 3 hours to find a feasible integer solution
for the largest instance, whereas the GRASP was able to provide a solution in one minute that
was almost 30% better than the first feasible solution provided by the exact method. The authors,
De Leone et al. [2011b], also compared the devised GRASP heuristic to a hybrid of GRASP and
variable neighborhood search (VNS). The results indicated that the hybrid version provided improved
solutions with comparable computation times. For the largest instance, improvement was found to be
5.2%. Ma et al. [2016] proposed a VNS heuristic for solving the DSP with instances from a transport
company in Beijing, China that had up to 501 bus trips. The authors compared solutions from the
proposed method to that of the solutions manually created by the planners in the company. For the

5

largest instance, the VNS heuristic provided, on average, an improvement of 6% with a computation
time of 22 minutes, whereas almost five hours was taken to create the manual plan.

Most of the works published in the literature have aimed at developing methods to solve large
sized instances of the DSP, which include complexities that arise in practice. Since the DSP is a
highly relevant problem in the public transport industry, some have considered implementing the
methods as part of a commercial software system. However, none of the published works address the
DSPSC. Several researchers in the 1980s ((Ball et al. [1983]; Darby-Dowman et al. [1988])) recognized
the need to integrate the VSP and the DSP (IVDSP), where scheduling of buses and drivers are
simultaneously carried out. The integration of the two scheduling problems could lead to further cost
reductions and efficiency gains for transport systems (Freling et al. [2003]). However, the IVDSP
has received very little attention in the literature due to its increased complexity of formulating and
handling large real-life instances that require immense computation times to be solved (Borndörfer
et al. [2008]; Huisman et al. [2005]). Combining lagrangian relaxation and column generation have
commonly been used to integrate the problems, e.g. - Huisman et al. [2005], and the IVDSP is
known to be a growing area of research. By introducing the DSPSC, we believe that there will be
implications on the IVDSP, which has to be studied further.

3 Problem Description and Mathematical Modelling

This section presents the mathematical model which serves as the formal description of the problem.
Let T be the set of bus trips that need to be covered and let D be the set of all valid duties that
comply with the labor regulations and the company’s operational rules. Each d ∈ D is checked to see
if it requires one or more staff cars as part of its travel activities and all car travels are grouped into
set C. Let N denote the set of nodes that drivers could visit using a staff car and r ∈ N is denoted
as the car depot. Each car travel, i ∈ C has a departure node ki, an arrival node li, departure time
ui and arrival time vi. A departure car travel is defined as a car travel that departs from depot r.
Set of departure car travels is denoted as Ć ⊂ C, where ki = r, li = n ∈ N\{r} and i ∈ Ć. Similarly,
an arrival car travel is defined as a car travel that arrives at depot r. Set of arrival car travels is
denoted as Ĉ ⊂ C, where ki = n ∈ N\{r}, li = r and i ∈ Ĉ. The cost or paid time associated with
duty d ∈ D is represented as cd. Binary matrix A is defined, where atd is 1 if duty d ∈ D is covering
bus trip t ∈ T and 0 otherwise. Another binary matrix G is defined, where gid is 1 if duty d ∈ D
utilizes car travel i ∈ C and 0 otherwise. We define a car match as a combination of a departure car
travel from the depot and an arrival car travel to the depot to form one round trip as depicted in
Figure 2. Binary matrix H is defined, where hij indicates whether two car travels can be matched as

one round trip, i.e. li = kj , vi ≤ uj , i ∈ Ć and j ∈ Ĉ. The time a staff car is idle at a node other
than the depot is defined as car idle time. To simplify the car matches notation, we define H as the
set of all car matches, i.e. H = {(i, j) | hij = 1}.

Four decision variables are defined in the mathematical model. Binary variable xd indicates if
duty d ∈ D is selected or not and binary variable yt indicates if a bus trip t ∈ T remains uncovered
or not. A penalty of β is incurred if a bus trip is uncovered. Binary variable zi indicates if car travel
i ∈ C is used or not and binary variable sij indicates if car travel i ∈ Ć is matched with car travel

j ∈ Ĉ to form one round trip. The maximum number of staff cars that is available at the depot is
denoted as Q. As depicted in Figure 3, a staff car can perform multiple round trips during the day.
To estimate the number of staff cars that are being used at a particular time, we define O as the set
of all departure times of a staff car from the depot, i.e. {ui} where i ∈ Ć, and Po as the set of all
possible car matches that are active at time o,

Po = {(i, j) | (i, j) ∈ H ∧ ui ≤ o ∧ vj ≥ o} ∀o ∈ O (1)

6

Duty !

Car travel "
$

Time

Car idle time

#$
Duty %

Car travel &

'()(

'*)*

('*−)()

Figure 2: Staff Car Match. Car travel i of duty d departs from depot r to node n and car travel j
of duty w arrives at depot r from node n. The idle time of the staff car at node n is calculated as
(uj − vi). The figure illustrates an example of a round trip.

The mathematical formulation of the DSPSC is as follows,

Minimize
∑
d∈D

cd · xd + β
∑
t∈T

yt (2)

subject to: ∑
d∈D

atd · xd + yt ≥ 1 ∀t ∈ T (3)∑
d∈D

gid · xd ≤ zi ·M ∀i ∈ C (4)∑
d∈D

gid · xd ≥ zi ∀i ∈ C (5)∑
j∈Ĉ

hij · sij = zi ∀i ∈ Ć (6)

∑
i∈Ć

hij · sij = zi ∀j ∈ Ĉ (7)

∑
(i,j)∈Po

sij ≤ Q ∀o ∈ O (8)

xd ∈ {0, 1} ∀d ∈ D (9)

yt ∈ {0, 1} ∀t ∈ T (10)

zi ∈ {0, 1} ∀i ∈ C (11)

sij ∈ {0, 1} ∀i ∈ Ć, ∀j ∈ Ĉ (12)

The objective (2) is to minimize the overall cost of driver duties and the penalty for leaving a
bus trip uncovered. Constraints (3) ensure that a bus trip is covered by at least one duty or is left
uncovered. Constraints (4) ensure that a car travel is selected if it is utilized by one or more duties
in the final schedule. M is a large number and can be set as the seating capacity of the staff cars.
Constraints (5) ensure that a car travel is not selected if none of the duties in the final schedule utilize
it. Constraints (6) together with constraints (7) ensure that a selected departure car travel from the

7

Time

Car Match

Staff Car 1

Staff Car 2

Staff Car 3

!"
Duty #

Car travel $
Duty %

Car travel &

'" '(!(
) *)*

Figure 3: Staff Car Schedule. The final schedule of a staff car can consist of one or more car matches.
Staff cars 1 and 2 in the figure illustrate an example of multiple round trips being performed.

depot is matched with an arrival car travel to the depot to form one round car trip. Constraints (8)
ensure that at all times during the day the number of staff cars being utilized is not more than the
maximum number of staff cars available at the depot.

4 Solution Method

4.1 Greedy heuristic

To construct an initial solution, a basic greedy heuristic is implemented. A duty is selected based on
a evaluation function and added to the solution at each iteration of the greedy heuristic. For the
DSPSC, two evaluation functions are applied; one for selecting duties and an another for selecting car
matches. The duties are evaluated based on a function ∆ and we determine ∆d = cd+β(Id−Jd+Kd),
where Id is the number of trips covered by duty d that are already covered in the solution, Jd is the
number of trips covered by duty d that are not covered in the solution and Kd is the number of cars
travels used by duty d (i.e.

∑
i∈C gid). At each iteration, the values of Id and Jd are adapted based

on the trips being covered in the solution and duty with minimum ∆d is the best candidate to be
added to the solution. The newly inserted duty potentially involves car travels and they have to be
matched. For instance, duty d might have a departure car travel from depot r to node n and hence
would need a matching car travel that would return the car from node n to depot r to form one
complete round trip. In the greedy heuristic, the matching car travel is selected based on minimum
idle time of the staff car at node n ∈ N\{r}. By returning the staff car quickly back to the depot, it
has the possibility of being used for multiple round trips. Hence, improving the utilization of the
staff cars is the underlying motivation for minimizing car idle time.

The greedy heuristic procedure is shown in Algorithm 1. At each iteration of the greedy heuristic,
a candidate list, q, of duties is created and added to the solution s. E in Line 5 denotes the set
of unmatched car travels in the s and is updated (Line 20) when car travels are matched or new
unmatched car travels are added to s. For each i ∈ E, all its matching car travels, i.e all the car
travels that would form a round car trip with car travel i, are collected in set F . From set F , car
travel j that forms a round car trip with minimum car idle time, carIdleTime(i, j), is selected (Line
10). Set G consists of all the duties with car travel j (Line 11) and duty w = arg minw∈G(∆w) is
selected (Line 12) and added to q (Line 13). In some cases during the advancement of the heuristic,
it might select a duty with a car travel that cannot be matched. In such circumstances, the heuristic
removes the selected duty from D, empties q and is forced to select the next best duty in terms of ∆

8

(Line 15 - Line 17). The loop (Line 6 - Line 21) terminates when no more unmatched car travels
exist in the partial solution, i.e. set E is empty.

The greedy heuristic terminates when all the bus trips have been covered and all the car travels in
s have been matched. Even though the heuristic tries to improve the utilization of a staff car through
function carIdleTime(), it cannot control the number of cars being used. Hence, the greedy heuristic
often builds an initial solution which does not satisfy the maximum number of cars condition.

Algorithm 1: Greedy heuristic

1 Initialization: s← ∅, q ← ∅;
2 while stop criterion not met do
3 d← arg mind∈D(∆d);
4 q ← q ∪ {d};
5 Set E = {i | gid = 1, i ∈ C};
6 while E 6= ∅ do
7 for i ∈ E do
8 Set F = {j | (i, j) ∈ H, j ∈ C};
9 if F 6= ∅ then

10 j ← arg minj∈F (carIdleTime(i, j));

11 Set G = {w | gjw = 1, w ∈ D};
12 w ← arg minw∈ G(∆w);
13 q ← q ∪ {w};
14 else
15 D ← D − {d};
16 q ← ∅;
17 go to 3;

18 end

19 end
20 Update E;

21 end
22 s← s ∪ q;
23 q ← ∅;
24 end
25 return s

4.2 Matheuristic

In our matheuristic setting, the mathematical model described in Section 3 is embedded in an ALNS
framework to obtain high-quality solutions in reasonable computation time.

A neighborhood is defined as the set of neighboring solutions of a current solution and a local
search procedure iteratively moves the current solution to a neighboring solution. In LNS, the
neighboring solutions could be reached by applying a destroy method and then a repair method to
the current solution. Hence, the neighborhood is implicitly defined by the destroy and repair methods.
In ALNS, multiple destroy and repair methods are applied and hence different neighborhoods can be
explored within the same search. Each of the destroy and repair methods is assigned a modifiable
weight which is updated based on the performances of the methods during the course of the search.
Røpke and Pisinger [2006] state that not all destroy and repair methods perform equally well and
that, for example, one method might be very well-suited for one type of instance and another method
might be well-suited for another instance. The diverse and robust nature of the ALNS heuristic has
led to its gain in popularity in recent years and has been applied to a large selection of different
optimization problems. Some applications include the capacitated arc-routing problem (Laporte

9

et al. [2010]), the vehicle routing problem (Pisinger and Røpke [2007]) and the patient admission
scheduling problem (Lusby et al. [2016]).

Algorithm 2: Adaptive Large Neighborhood search

1 Initialization: s← InitialSolution(), s∗ ← s;
2 ρ ← InitializeMethodWeights();
3 while stop criteria not met do
4 Select destroy and repair methods µ ∈ τ− and γ ∈ τ+ using ρ;
5 s′ ← Destroy(s, µ) ;
6 s′ ← Repair(s′, γ) ;
7 if Accept(s, s′) then
8 s← s′;
9 end

10 if f(s′) < f(s∗) then
11 s∗ ← s′;
12 end
13 ρ ← UpdateMethodWeights();

14 end
15 return s∗

Algorithm 2 outlines the ALNS procedure where s denotes the current solution, s′ is the neighboring
solution and s∗ is the best solution. The set of all destroy methods is denoted as τ− and the set of
repair methods is denoted as τ+. As shown in Line 4, at each iteration of the heuristic a destroy
method µ ∈ τ− and a repair method γ ∈ τ+ are selected to perform an operation on the current
solution. The selection of the methods are dependent on the weights of the methods, ρµ and ργ ,
which are dynamically updated during the execution of the heuristic. Well-performing methods have
a high weight and thus would have a higher probability of being selected. The probability of a destroy
method being selected is determined as,

ζµ =
ρµ∑
l∈τ− ρ

l
∀µ ∈ τ− (13)

Similarly, the probability of selecting a repair method is determined as,

ζγ =
ργ∑
l∈τ+ ρl

∀γ ∈ τ+ (14)

The selection of the destroy and the repair method is made based on a roulette wheel principle
using the probabilities calculated in Equations (13) and (14). The entire search is divided into nseg
segments and each segment is defined by niter iterations. At the end of each segment, the weights of
the methods are updated, as shown in Line 13. For each destroy method µ ∈ τ− and repair method
γ ∈ τ+, Ωµ and Ωγ define the accumulated score. The number of times a destroy method and a repair
method have been selected during a segment is given by νµ and νγ respectively. At each iteration of
the heuristic, a score of ψ is awarded to the chosen destroy and repair method and added to Ωµ and
Ωγ . The score is given based on the quality of the solution obtained and could be one of ψ1, ψ2, ψ3 or
ψ4. The description of the score parameters is shown in Table 1, where ψ1 > ψ2 > ψ3 > ψ4. The
weights of destroy and repair methods are initialized to 1 and after each segment, the weights are
updated as follows,

ρµ = (1− λ) · ρµ + λ · Ωµ

νµ
∀µ ∈ τ− (15)

10

ργ = (1− λ) · ργ + λ · Ωγ

νγ
∀γ ∈ τ+ (16)

At the start of each segment, Ωµ, Ωγ , νµ and νγ are set to 0. λ ∈ [0, 1] is known as the reaction
factor which controls the changes in weights. If λ = 1 then the roulette wheel selection is only based
on the scores of the most recent segment and if λ = 0 then the weights are kept constant at the
initial level. The past performances of the methods are taken into account when 0 < λ < 1. The
weight of a method remains unchanged if it was not selected in the segment.

Score(ψ) Description

ψ1 if the new solution is a new best solution
ψ2 if the new solution is better than the current solution
ψ3 if the new solution is accepted
ψ4 if the new solution is rejected

Table 1: Score parameters for ALNS

Shaw [1998] proposed a hill climber accept criterion in a LNS framework where only improving
solutions are accepted. This acceptance criterion, however, has the tendency to get trapped in a
local optimum. To diversify the search, solutions that are worse than the current solution should be
accepted occasionally. Hence, a score of ψ3 is rewarded to methods that are able to visit unexplored
solution spaces. One approach of introducing diversification to the search procedure is the simulated
annealing (SA) acceptance criterion which has been successfully used in an ALNS framework by some
authors(see eg. Røpke and Pisinger [2006] and Lusby et al. [2016]). Given a current solution s, a

worse solution s′ is accepted with a probability of exp−f(s′)− f(s)

θ
, where θ > 0 is the temperature.

The heuristic starts with an initial temperature, θ = θstart, and this is gradually decreased during
the course of the heuristic with the aid of a cooling factor α ∈ (0, 1). The temperature is decreased
to θ = θ · α at the end of each segment. During the last iterations of the ALNS, worse solutions
are unlikely to be accepted and hence the framework behaves like a hill climber. Similar to authors
Røpke and Pisinger [2006], we determine θstart based on the problem instance at hand, i.e. θstart is
set such that a solution ω% worse than the initial solution is accepted with probability 0.5. In our
case, the initial solution is obtained from the greedy heuristic for the DSPSC described in Section
4.1. However, the greedy heuristic does not ensure feasibility with respect to the number of staff cars
being used. In order to avoid setting θstart too large, the penalty incurred for violating the maximum
number of staff cars constraint (8) is disregarded. The heuristic terminates when it has performed
nseg segments.

Because the greedy heuristic often results in an infeasible solution, the ALNS heuristic is restarted
when it reaches the first feasible solution. When restarting the heuristic, the weights of the methods
are also reinitialized and θstart is recalculated based on the first feasible solution. However during the
execution of the heuristic, we allow it to visit infeasible regions of the solution space. It is believed
that local search heuristics often have difficulties in moving from one promising area of the solution
space to another in tightly constrained problems (Røpke and Pisinger [2006]). To tackle this, some
authors, e.g.- Cordeau et al. [2001] and Lourenço et al. [2001], allow the search to visit infeasible
solutions by relaxing some constraints. Similarly, in addition to the maximum number of staff cars
constraint (8), we relax the car matching constraints (6) and (7) to allow for unmatched car travels
in the solution; however, a penalty is added to the objective function when a car travel is unmatched.

4.2.1 Destroy Methods

Given a solution, let D̄, C̄ and H̄ denote the set of duties, car travels and car matches in the solution
respectively. Sets D′ , C′ and H′ denote the duties, car travels and car matches not in the solution.
For the DSPSC, we propose three destroy methods and these are as follows,

11

1. Random removal of duties
To diversify the search, random duties are removed from D̄ and the set of removed duties
is denoted as DR. The number of duties to be removed, |DR|, is controlled by the degree
of destruction parameter, ξ, and is determined as 1 ≤ |DR| ≤ ξ · |D̄|. The car travels to
be removed from the solution are dependent on the duties removed from the solution, i.e.
CR = {i | gid = 1, i ∈ C̄, d ∈ DR}, and the car matches to be removed are determined as
HR = {(i, j) | (i, j) ∈ H̄ ∧ (i ∈ CR ∨ j ∈ CR)}. In most cases, when car travels and car
matches are removed from the solution, the destroyed solution consists of unmatched car travels.
For instance, a car travel i is in the solution but its matching car travel j was removed from
the solution. The set of unmatched car travels in the destroyed solution is represented as
CU = {i | (i, j) ∈ HR, i ∈ C̄, j ∈ CR}.

2. Worst removal of duties
The function ∆, as described in Section 4.1, prefers duties that cover many of the bus trips with
minimum overcoverage and car travels. Hence, as part of intensification strategy, duty d given by
arg maxd∈D̄(∆d) is likely to be removed from the solution. Duties in the solution, D̄, are sorted
in descending order of ∆d. The duties to be removed are determined as, DR = DR ∪ D̄[qB · |D̄|]
where q is a random number in the interval [0,1) and B ≥ 1 is a degree of randomization param-
eter that controls the randomness in the selection of the duties. A low value of B corresponds
to random selection of duties and a high value corresponds to selecting duty with highest ∆d

value. The number of duties to be removed, |DR| is determined in the similar manner as the
random removal of duties using the ξ parameter.

3. Random removal of car travel matches
The aforementioned destroy methods do not specifically target the car schedule in the solution
where there are probably a larger number of staff cars being used than strictly required. The
methods leave partial car matches in the solution and hence do no guarantee making significant
changes in the car schedule. To address this issue, car matches in the solution, H̄, are randomly
selected and removed from the solution with the objective of reducing the number of cars. The
set of car matches to be removed is denoted as HR = {(i, j) | (i, j) ∈ H̄} and is also controlled
by the degree of destruction parameter such as 1 ≤ |HR| ≤ ξ · |H̄|.
CR is defined as the set of all car travels in HR and DR is defined as the set of duties in solution
that contain removed car travels, i.e. DR = {d | gid = 1, i ∈ CR, d ∈ D̄}.

The removed duties, car travels and car matches, DR, CR and HR, are added to D′ , C′ and H′

respectively.

4.2.2 Repair Methods

The repair methods of the ALNS are mainly intended to be fast heuristics; simple greedy insertion
and regret heuristics have regularly been applied as repair methods (Pisinger and Røpke [2007]; Lusby
et al. [2016]). The DSPSC is a very tightly constrained problem where exploring a neighborhood for
a feasible solution could be a challenge. To tackle the challenge of finding feasible solutions for the lot
sizing problem, Muller et al. [2012] used a MIP solver for repairing solution. Similarly, we use a MIP
solver (ILOG CPLEX) as part of the repair phase of the heuristic. Muller et al. [2012] define two
MIP based repair methods and differentiate them by either fixing or bounding the variables based on
their values in the destroyed solution. However, in our approach, we differentiate the repair methods
by the neighborhood defined for the MIP solver. The variables in the destroyed solution, given by D̄,
C̄ and H̄, are used as a starting solution for the MIP solver but are set as “free” variables. The repair
methods reduce the search space by defining the neighborhoods, DN , CN and HN , for the MIP solver

12

which is capable of exploring numerous solutions within the defined neighborhood. Consequently, the
repair methods are evaluated based on the quality of the constructed neighborhoods.

By solving a restricted subproblem, the MIP solver helps the local search to move from the current
solution to a neighboring solution and the new improved solution determines the neighborhood that
will be defined by the local search. Limiting the number of branch nodes to be explored or the time
permitted for the MIP solver were suggested by Muller et al. [2012] in order to speed up the solution
process. We keep a time limit, ntime, and the solution generated by the MIP solver is used to evaluate
the repair methods.

After a solution has been destroyed, there are unmatched car travels, CU , and uncovered bus trips,
T U = {t |

∑
d∈D̄ atd = 0, t ∈ T } in the solution. Hence, we define a repair method that constructs a

neighborhood to focus primarily on covering the uncovered bus trips in the solution and another
repair method that focuses on matching the unmatched car travels in the solution. The descriptions
of the repair methods are as follows,

1. Neighborhood defined by duties that cover the uncovered bus trips
Given a set of uncovered bus trips in the solution, T U , the neighborhood is formally defined as
the set of duties that cover at least one of the trips as shown in Equation (17).

DN = {d |
∑
t∈T U

atd ≥ 1, d ∈ D
′
} (17)

Depending on the duties in the neighborhood, the set of car travels in the neighborhood is
defined as CN = {i | gid = 1, i ∈ C′ , d ∈ DN} and subsequently the neighborhood car matches
as HN = {(i, j) | (i, j) ∈ H′ , i ∈ CN , j ∈ CN}.

2. Neighborhood defined by duties that match with the unmatched car travels
Given a set of unmatched car travels in the solution, CU , we denote CM as the set of car travels
from C′ that can match with the unmatched car travels. For instance, car travel j ∈ C′ can
match with unmatched car travel i ∈ C̄, i.e (i, j) ∈ H′ . Consequently, the set is defined as
CM = {j | (i, j) ∈ H′ , i ∈ C̄, j ∈ C′}. Therefore, the neighborhood is defined as the set of
duties that contain one or more car travels that can match with the unmatched car travels in
the solution as shown in Equation (18). The car travels and car matches in the neighborhood
are defined based on DN in similar manner as the previously described repair neighborhood.

DN = {d | gid = 1, d ∈ D
′
, i ∈ CM} (18)

The size of the neighborhood, DN , depends on the impact of the destroy methods and in most
instances, destroying even a small fraction of the current solution creates a large neighborhood. For
the DSP, Lourenço et al. [2001] considered a candidate list strategy where duties were evaluated
based on a penalized cost and only duties with a cost less than or equal to the average cost were
inserted in the candidate list. Similarly, we create a duty candidate list, where only the best ηduty
duties in terms of ∆d, where d ∈ DN , are considered. The candidate list makes the subproblem
tractable for the MIP solver and provides solutions in quick computation time. The size of HN could
also potentially be quite large and hence the size of the neighborhood is controlled by carIdleTime()
of car matches. For example, the staff car match candidate list only considers matches that are less
than a maximum car idle time (ηcar) of 120 minutes, i.e. carIdleTime(i, j) ≤ 120 where (i, j) ∈ HN .
The matheuristic procedure is shown in Algorithm 3.

5 Computational Study

5.1 Instances

Table 2 provides an overview of the test instances obtained from a Danish and a Swedish transport
company. SE1 OP represents the instances from the Swedish company and the instances from the

13

Algorithm 3: Matheuristic

1 Initialization: s← GreedyAlgorithm(), s∗ ← s;
2 θ ← CalculateInitialTemperature(s, ω);
3 ρ ← InitializeMethodWeights();
4 Ω ← InitializeMethodScores();
5 ν ← InitializeMethodAttempts();
6 for κ← 1, nseg do
7 for η ← 1, niter do
8 Select destroy and repair methods µ ∈ τ− and γ ∈ τ+ using ρ;
9 s′ ←Destroy(s, µ, ξ, B);

10 s′ ←Repair(s′, γ, ηduty, ηcar, ntime); // Solve using MIP solver

11 δ ← f(s′)− f(s);

12 if δ < 0 or exp
−δ
θ
> random[0, 1) then

13 s← s′;
14 end
15 if f(s′) < f(s∗) then
16 s∗ ← s′;
17 end
18 Ω ←UpdateMethodScores(ψ);
19 ν ← UpdateMethodAttempts();

20 end
21 ρ ← UpdateMethodWeights(Ω, ν , λ);
22 Ω ← ResetMethodScores();
23 ν ← ResetMethodAttempts();
24 θ ← θ · α;

25 end
26 return s∗

Danish company are represented by DK1 OP and DK2 OP. Instances SE1 OP5, DK1 OP6 and
DK2 OP9 are known to be the complete instances that were used to extract other instances. The
three complete instances are highlighted in light gray in Table 2. The instances were categorized into
small, medium and large sized instances so that the matheuristic could be tested for a wide range of
instances. Some of the instances are larger than what one would find currently in the literature. The
instances are available at http://doi.org/10.5281/zenodo.1442661.

Table 2 shows that all instances involve the use of staff cars. In the DSP, travels by foot for short
distances and bus travels are commonly allowed. A bus travel usually occurs when the driver is a
passenger on another bus to reach a designated bus stop and the set covering constraints (3) allow
drivers to use bus travels. One could argue that staff cars may not be needed if bus stops could
be reached by bus or by foot. To analyze the importance of staff cars, the small and medium sized
instances are tested with and without car travels. It was found that all bus trips could be covered
when staff cars are put into use. However, when the instances do not involve car travels, it was
found that, on an average, 41% of the bus trips could not be covered. The labor rules such as the
minimum number of breaks and maximum time between breaks highly influence the feasibility of
driver duties. Moreover, due to limitations in the city network where breaks are allowed only at a
few bus stops, drivers have to travel between bus stops to have sufficient breaks during the day. Car
travel is the most suitable option that allows drivers to reach bus stops in a timely manner and it is,
hence, argued that staff cars are often necessary to generate feasible driver duties.

The mathematical formulation (2) - (12) solves the DSPSC using an integrated approach where
the drivers and the staff cars are scheduled simultaneously. Another method of solving the DSPSC is
by a sequential approach, where the DSP is solved first and independent of the staff car problem.

14

http://doi.org/10.5281/zenodo.1442661

Category Instance |T | |D| |C| |H| Q

Small

SE1 OP1 44 1239 91 345 4
SE1 OP2 39 8880 100 391 1
DK1 OP1 23 754 65 148 1
DK2 OP1 73 1789 140 781 1
DK1 OP2 84 7660 149 2621 2
DK2 OP2 96 18370 280 4134 1

Medium

SE1 OP3 131 39683 294 3081 4
DK1 OP3 152 41908 302 8176 2
SE1 OP4 217 193652 501 8372 5
DK1 OP4 279 195972 710 17744 4
DK2 OP3 305 86703 753 20330 3

Large

SE1 OP5 293 621508 731 12293 6
DK1 OP5 384 686499 1149 34558 5
DK2 OP4 649 511803 1514 64238 4
DK2 OP5 840 686370 1862 77778 5
DK2 OP6 924 752705 2141 91371 6
DK1 OP6 571 1205058 1746 50023 6
DK2 OP7 1211 1015011 2852 150205 8
DK2 OP8 1414 1187194 3512 189671 12
DK2 OP9 1769 1738055 4560 267506 16
DK2 OP10 1769 1738055 4560 267506 15

Table 2: Size of test instances. |T | represents the number of bus trips, |D| represents the number of
duties generated, |C| represents the number of number of car travels, |H| represents the number of
car matches and Q represents the number of staff cars at the depot.

After solving the DSP, car travels in the final set of duties are chosen as the input for the staff car
problem, which is concerned with finding a feasible set of car matches that respect the number of
staff cars available at the depot. The small and medium sized instances are solved by integrated
and sequential approaches using a MIP solver. Table 3 compares the two approaches and the results
show that the sequential approach is superior to the integrated approach in terms of total paid time
for drivers, where the average improvement for small and medium sized instances are 5.31% and
2.13% respectively. However, the sequential approach often leads to infeasible solutions with the
medium sized instances having, on an average, 10 unmatched car travels out of 47. The integrated
approach provides feasible solutions; however, the computation time required to solve the DSPSC
is significantly larger than that of the sequential approach. For example, the integrated approach
did not find the optimal solution in 10 hours for the medium sized instance DK2 OP3, whereas
only 18 seconds were required by the sequential approach. This computational study shows that
simultaneously scheduling the drivers and the staff cars is a highly complex problem that often
requires long computation times. Due to the computational advantage of the sequential approach, it
can be considered for solving the DSPSC with alternative services. For example, taxis can be used by
transport companies to fulfill the unmatched car travels in the solution. Transport companies would
have to consider the commercial viability of using taxis to fulfill such car travels without losing much
of the 2.13% savings made by the sequential approach for medium sized instances. However, the
vehicle policies of companies we work with do not allow for any outsourced services and the drivers
are required to use the staff cars. Hence, the DSPSC only considers solving the problem with a given
number of staff cars at the depot and the work carried out in this paper does not consider alternative
services.

15

Category Instance
Integrated Sequential

solution gap(%) |C̄| |CU | time (sec) solution gap(%) |C̄| |CU | time (sec)

Small

SE1 OP1 4883 0.00 24 0 0.39 4473 0.00 26 2 0.08
SE1 OP2 3144 0.00 4 0 0.66 2925 0.00 8 6 0.07
DK1 OP1 1914 0.00 12 0 0.08 1914 0.00 12 0 0.02
DK2 OP1 3120 0.00 22 0 0.72 2945 0.00 4 4 0.03
DK1 OP2 5867 0.00 26 0 1.7 5867 0.00 25 1 0.24
DK2 OP2 2795 0.00 20 0 105.75 2494 0.00 4 4 0.16

Medium

SE1 OP3 10925 0.00 30 0 265.06 10700 0.00 30 8 2.05
DK1 OP3 10927 0.00 54 0 62.23 10890 0.00 51 7 1.66
SE1 OP4 17861 1.36 46 0 36000.55 17424 0.00 44 12 14.16
DK1 OP4 20253 0.00 88 0 4282.08 20226 0.00 80 6 18.69
DK2 OP3 12641 2.32 40 0 36000.59 11925 0.00 28 16 17.58

Table 3: Comparison between integrated and sequential approaches. |C̄| represents the number of car
travels in the final solutions and |CU | represents the number of unmatched car travels in the solution.

5.2 Parameter setup

The number of segments, nseg, is set to 50 and the number of iterations to be performed in each
segment, niter, is 15. For the SA accept criterion, θstart is calculated such that a solution 5% (ω)

worse than f(s) is accepted with probability 0.5, i.e θstart =
−f(s) ∗ 0.05

log 0.5
, and α is set to 0.8. Table

4 shows the results for different values of α. The average number of solutions accepted in the SA
framework decreases as α is decreased. The solution quality is determined by calculating the average
gap between the solutions obtained from the matheuristic and the best known solution obtained from
the MIP solver.

α 0.99 0.9 0.8 0.7

Avg. accepted solutions 107.8 67.4 40 23.8
Avg. gap(%) -1.03 -2.23 -2.51 -2.02

Table 4: Test results for parameter α.

The score parameters of the matheuristic are ψ1 = 25, ψ2 = 15, ψ3 = 5 and ψ4 = 0, and the
reaction factor λ is set to 0.1. For the destroy methods, the degree of destruction parameter, ξ, is set
to 0.2, 0.1 and 0.025 for small, medium and large instances respectively. The degree of randomization
B for the worst removal is set to 4. The time limit ntime of the MIP solver in the repair methods is
set to 0.5, 2 and 3 seconds for small, medium and large instances respectively. For setting ηduty and
ηcar, tests were performed on a Danish (DK2 OP9) and a Swedish instance (SE1 OP5). Table 5
shows that the size of the neighborhood varies depending on the problem instance and on the applied
repair method. Parameter ηduty was tested with different values as shown in Table 6, where it can
be seen that the average size of HN increases as ηduty is increased. The chosen value for parameter
ηduty is 6000 and parameter ηcar is adapted based on the size of HN . If |HN | ≥ 14000, which is the
approximate average from Table 6, then ηCar is set to 120 else it is set to 180.

Instance Repair method 1 Repair method 2

DK2 OP9 117227.67 149249.63
SE1 OP5 40072.08 31851.04

Table 5: Average size of DN defined by the repair methods.

16

Instance
ηduty

5000 6000 7000

DK2 OP9 20636.87 22320.3 24381.63
SE1 OP5 5538.86 5939.23 6226.83

Table 6: Average size of HN for different values of parameter ηduty.

5.3 Performance of destroy and repair methods

Instances SE1 OP5 and DK2 OP9 are tested with different combinations of destroy and repair
methods of the matheuristic as shown in Table 7. Each combination or strategy is tested 5 times on
the instances and Table 7 reports the average of the 5 runs. An observation made from the study
is that strategies involving repair method 2 comparatively provide weaker solutions and, in some
cases, do not yield feasible solutions within the iteration limit of the matheuristic. Repair method
1 consistently performs well when combined with the destroy methods. Figures 4 and 5 show an
example of how the weights of the repair and destroy methods progressed during the execution of
the matheuristic for the instances from the Swedish and Danish transport companies. The figures
illustrate that the neighborhood based on the uncovered bus trips (repair method 1) outperforms the
neighborhood based on unmatched car travels (repair method 2). For DK2 OP9 instance, it was
observed that strategies with repair method 2 often created a large neighborhood that increased the
computation time required for defining the duty candidate list ηduty. Hence, the computation time
for strategies with repair method 2 was, on average, 1.5 times longer than that of the strategies with
repair method 1. Moreover, since repair method 2 does not consider the uncovered bus trips in the
destroyed solution, it appears to define an ineffective neighborhood. Repair method 2 was initially
developed for diversifying the search space; however, the results clearly indicate that the method
does not aid the matheuristic much in improving the solution quality. Thus, it is decided to remove
repair method 2 from the matheuristic setup.

Instance Strategy Avg. gap (%) Avg. time (sec)

SE1 OP5

Destroy method 1, Repair method 1 5.35 2355.27
Destroy method 2, Repair method 1 5.89 1728.54
Destroy method 3, Repair method 1 4.64 3350.43

All destroy methods, Repair method 1 3.69 2245.61
Destroy method 1, Repair method 2 inf 2567.84
Destroy method 2, Repair method 2 inf 2933.47
Destroy method 3, Repair method 2 15.09 1452.27

All destroy methods, Repair method 2 inf 2312.02
All destroy methods, all repair methods 4.26 2192.77

DK2 OP9

Destroy method 1, Repair method 1 -1.21 4879.65
Destroy method 2, Repair method 1 -1.8 3962.99
Destroy method 3, Repair method 1 -1.78 4213.43

All destroy methods, Repair method 1 -2.69 4435.53
Destroy method 1, Repair method 2 6.41 7070.09
Destroy method 2, Repair method 2 8.23 7933.52
Destroy method 3, Repair method 2 4.08 6180.8

All destroy methods, Repair method 2 3.56 6567.9
All destroy methods, all repair methods -1.67 5078.36

Table 7: Performance of destroy and repair methods. The results are based on an average of 5
runs and ’inf’ indicates that a feasible solution could not be found within the iteration limit of the
matheuristic in any one of the runs.

17

0

1

2

3

4

5

6

7

8

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750

W
eig

ht

Iteration

Random removal of duties Worst removal of duties Random removal of car travel matches

(a) Destroy methods

0

1

2

3

4

5

6

7

8

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750

W
eig

ht

Iteration

Neighborhood duties based on uncovered trips Neighborhood duties based on unmatched car travels

(b) Repair methods

Figure 4: An example of performance of destroy and methods for an instance from Swedish transport
company. (x-axis shows the iteration number and y-axis shows the weight of the methods.)

5.4 Results

The solutions obtained from the MIP solver (ILOG CPLEX 12.8) are used as benchmarks to evaluate
the performance of the matheuristic. The instances are solved by the MIP solver on an Intel Xeon
E5-2680 v2 @ 2.80GHz with 128 GB memory and the results from using single thread and multi
threads (10 threads) are reported in Table 8. The time limit of the MIP solver is 36,000 seconds (10
hours). Due to practical limitations of extracting data from TGE’s integrated system, the matheuristic
could not be tested on the machine that was used to provide the benchmark solutions. Table 9 shows
the summary of the results from the matheuristic that was tested on an Intel core i5-5287U @ 2.9
GHz machine with 16 GB memory. The matheuristic is implemented in Java and has been run 10
times for each instance and the results are calculated as the average of the 10 runs.

For single thread applications, the processor used to test the matheuristic is comparable to the
processor used to run the MIP solver in terms of speed1. However, the overall CPU benchmarks
reveal that the processor used for the MIP solver is approximately 3.4 times faster than the processor

1According to CPUbenchmark, the processor used to run the MIP solver has a single thread rating of 1810, whereas
the single thread rating of the processor used to test the matheuristic is 1847.

18

https://www.cpubenchmark.net

0

2

4

6

8

10

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750

W
eig

ht

Iteration

Random removal of duties Worst removal of duties Random removal of car travel matches

(a) Destroy methods

0

2

4

6

8

10

12

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750

W
eig

ht

Iteration

Neighborhood duties based on uncovered trips Neighborhood duties based on unmatched car travels

(b) Repair methods

Figure 5: An example of performance of destroy and methods for an instance from Danish transport
company. (x-axis shows the iteration number and y-axis shows the weight of the methods.)

used to test the matheuristic2. The results in Table 8 and Table 9 are reported as observed. The best
solution obtained from running the MIP solver single and multi threaded is used to evaluate the
performance of the matheuristic. In most cases, the MIP solver provided best solutions in the multi
thread environment. For two instances (DK2 OP6 and DK2 OP7), the best solutions are obtained
in the single thread environment.

The small instances are solved to optimality with ease by the MIP solver. The matheuristic
achieves comparable results for all small instances except one (DK2 OP2), which has an average
gap of 2.33% from the optimal solution. For medium sized instances, the MIP solver fails to prove
optimality for two instances (SE1 OP4 and DK2 OP3) within the time limit (10 hours); however,
the integrality gap is very small (< 1%). The matheuristic provides solutions less than 2.5% from
optimality for instances with optimal solutions. For the two instances that could not be solved to
optimality, the gaps are found to be 3.72% and 5.93% respectively. For large instances, the MIP solver
could prove optimality for only one instance (DK1 OP5) and the integrality gap for large instances of
DK2 OP (DK2 OP7 to DK2 OP10) is quite large, an average gap of 14.89%. The matheuristic finds
improved solutions for 4 out of the 10 large instances and the improvement is found to be 0.28 to

2The overall CPU rating of the processor used for the MIP solver is 15752 while that of the mathheuristic is 4681.

19

6.95% on average. Moreover, the time taken to obtain these solutions are less than 80 minutes. One
of the major drawbacks of the heuristic is that it does not provide any lower bound (LB) information
that could be used to evaluate the quality of the improved solutions. However, by considering the LB
information provided by the MIP solver, it is estimated that the 4 improved instances are around 11
to 12.77% from the optimal solution. Table 9 also shows the average time taken by the matheuristic
to find the first feasible solution. With the aid of the greedy heuristic (Algorithm 1), feasible solutions
for large instances are found in the range of 37 seconds to 14 minutes.

Category Instance
MIP (single thread) MIP (multi thread)

solution gap(%) time (sec) solution gap(%) time (sec)

Small

SE1 OP1 4883 0.00 0.38 4883 0.00 0.33
SE1 OP2 3144 0.00 0.79 3144 0.00 0.44
DK1 OP1 1914 0.00 0.09 1914 0.00 0.11
DK2 OP1 3120 0.00 0.99 3120 0.00 0.49
DK1 OP2 5867 0.00 1.28 5867 0.00 1.1
DK2 OP2 2795 0.00 127.72 2795 0.00 40.35

Medium

SE1 OP3 10925 0.00 488.64 10925 0.00 130.31
DK1 OP3 10927 0.00 178.42 10927 0.00 48.21
SE1 OP4 17765 0.8 36000.2 17765 0.43 36005
DK1 OP4 20253 0.00 5476.36 20253 0.00 1002.92
DK2 OP3 12650 2.83 36000.3 12466 0.91 36003.9

Large

SE1 OP5 23833 2.01 36000.4 23506 0.25 36004
DK1 OP5 27773 0.00 7604.25 27773 0.00 3687.24
DK2 OP4 26606 14.71 36000.5 25347 10.63 36002
DK2 OP5 36568 15.4 36002 35056 11.75 36002.9
DK2 OP6 39081 10.72 36003.4 39743 12.2 36003.5
DK1 OP6 42713 1.8 36000.2 42348 0.92 36005.7
DK2 OP7 57507 11.27 36003.6 63053 19.03 36005.7
DK2 OP8 76733 16.61 36010.5 74222 13.63 36009.3
DK2 OP9 96603 21.14 36014.3 90094 15.46 36021.7
DK2 OP10 97374 22.16 36017.6 94247 19.19 36013.2

Table 8: Results from the MIP solver.

Since the processors used for testing the two methods are different and their computation times
vary, it is difficult to directly compare their performances. Hence, the MIP solver is tested with a
time limit of 2 hours, which is comparable to the computation times of the matheuristic and Table
10 compares the results of the matheuristic to that of the MIP solver. The matheuristic outperforms
the MIP solver for 6 out of the 10 large instances and the improvement is found to be 7 to 15% on
average.

5.5 Sensitivity analysis

The matheuristic involves 14 parameters and finding the optimal values of parameters for each
instance is a very tedious and time consuming process. In this paper, we chose a common set of
parameter values for each category that was based on the sizes of the instances. However, it is believed
that the structure and the characteristics of the instances also have to be considered when tuning the
parameters. For the largest category, Swedish (SE1 OP5) and Danish (DK2 OP9) instances were
taken as the training instances and parameter ηcar was adapted such that if |HN | ≥ 14000 then it was
set to 120 otherwise it was set to 180. Hence, the matheuristic is over-fitted for the aforementioned
instances and is potentially prone to a large deviation in performance for an unseen test instance,
which may possess different characteristics. To analyze the sensitivity of the matheuristic, we tested
DK2 OP9 instance with different threshold values of |HN | and values of ηcar as shown in Table 11.

20

Category Instance
Gap (%) Time (sec)

best worst avg. avg.
avg. to find

first feasible solution

Small

SE1 OP1 0.00 0.1 0.02 60.08 0.18
SE1 OP2 0.00 3.63 0.36 134.13 0.26
DK1 OP1 0.00 0.00 0.00 22.89 0.14
DK2 OP1 0.00 4.26 0.43 53.76 0.19
DK1 OP2 0.00 0.55 0.05 310.61 1.13
DK2 OP2 0.11 6.69 2.33 341.29 4.00

Medium

SE1 OP3 0.61 3.73 2.33 883.29 7.75
DK1 OP3 0.66 3.39 1.93 1715.3 3.85
SE1 OP4 2.86 4.85 3.72 2576.29 112.19
DK1 OP4 0.78 1.68 1.25 1708.71 10.94
DK2 OP3 3.87 9.04 5.93 2092.41 16.35

Large

SE1 OP5 2.72 4.51 3.91 2383.63 137.35
DK1 OP5 3.91 5.53 4.48 1870.26 36.88
DK2 OP4 1.08 5.23 3.47 2334.22 63.38
DK2 OP5 -1.92 2.49 0.25 2704.05 120.55
DK2 OP6 -0.09 2.11 1.28 3414.22 812.76
DK1 OP6 3.53 5.86 4.32 2440.03 151.53
DK2 OP7 -0.76 0.57 -0.28 3389.88 176.25
DK2 OP8 -4.26 -3.2 -3.77 4197.76 658.68
DK2 OP9 -3.48 -1.63 -2.69 4700.99 433.54
DK2 OP10 -8.17 -5.68 -6.95 4726.6 475.82

Table 9: Results from the matheuristic.

The best known solution provided by the MIP solver is used to calculate the average gap (%) of
solutions yielded by different settings. The results show that the performance of the matheuristic
deteriorates with increase in threshold value of |HN | and value of ηcar, which indicate that the
matheuristic is sensitive to parameter values.

6 Conclusion

In this paper, we have introduced the DSPSC and presented a matheuristic to solve the problem.
Computational study with real-life instances from Denmark and Sweden revealed that small and
medium sized instances were solved with ease by the MIP solver. However, for larger instances
with more than 6 cars and 1200 bus trips, the integrality gap on average was around 14.89%. The
matheuristic provided better solutions, with comparable computation times, for 6 out of the 10 large
instances. On larger instances, the improvement is approximately 13-15% on average.

Therefore, in most cases, the proposed method is superior than an approach based on solving
the problem as a MIP problem for large instances in terms of solution quality and computation
time. However, integrating the matheuristic as part of a decision support tool could be a challenging
task. For solving the DSP, other practical conditions may exist such as maximum number of duties,
maximum/minimum average working time of the duties and occasionally the objective is to minimize
the total number of duties rather than minimizing the cost. Hence, in addition to solution quality
and computation time, the transport industry demands a flexible decision support tool that allows
for analyzing various scenarios, which will be beneficial during the planning process. Consequently,
the devised matheuristic should have the ability to adapt to the diverse requirements from the users
of the decision support tool. Since the users of the tool generally have limited knowledge of OR,
user-friendliness is considered to be another key factor for successful integration of heuristics into
decision support tools. The work carried out in this paper aimed at testing the matheuristic for

21

Category Instance
MIP (multi thread) Matheuristic

solution gap(%) time (sec) avg. gap(%) avg. time(sec)

Medium

SE1 OP3 10925 0.00 130.31 2.33 883.29
DK1 OP3 10927 0.00 48.21 1.93 1715.3
SE1 OP4 17836 1.27 7200.4 3.31 2576.29
DK1 OP4 20253 0.00 1002.92 1.25 1708.71
DK2 OP3 12554 1.99 7200.34 5.19 2092.41

Large

SE1 OP5 23631 1.18 7201.98 3.36 2383.63
DK1 OP5 27773 0.00 3687.24 4.48 1870.26
DK2 OP4 25875 19.85 7201.69 1.36 2334.22
DK2 OP5 37651 17.95 7203.34 -6.66 2704.05
DK2 OP6 43492 12.57 7203.33 -8.99 3414.22
DK1 OP6 42394 1.07 7204.23 4.21 2440.03
DK2 OP7 65658 22.27 7205.68 -12.66 3389.88
DK2 OP8 83117 23.81 7206.42 -14.07 4197.76
DK2 OP9 102831 26.88 7215.21 -14.74 4700.99
DK2 OP10 102844 26.92 7213.6 -14.72 4726.6

Table 10: Comparison of results from the MIP solver and results from the matheuristic.

|HN | ≥
10000 12000 14000 16000 18000 20000

ηcar

60 -2.34 -2.7 -1.83 -1.85 -1.51 -1.01
90 -2.74 -2.77 -2.04 -1.45 -1.16 -1.02
120 -2.73 -2.71 -2.52 -1.42 -1.4 0.43
150 -2.36 -2.21 -1.36 -1.29 0.63 1.59
180 -1.44 -1.61 -1.03 2.29 3.75 3.8

Table 11: Sensitivity analysis of the matheuristic for different threshold values of |HN | and values
of ηcar.

a wide variety of problems from Danish and Swedish transport companies and creating a set of
parameter values for each category. However, if a new set of problems with varying sizes is given, it
may possess different characteristics. Parameter tuning is considered to be a time consuming and
tedious process, and approaches such as F-RaceBirattari et al. [2010] have been addressed in the
literature for automatic parameter configuration. Furthermore, problem-dependent knowledge may
still be needed to make the heuristic effective and perform consistently, which requires highly skilled
practitioners. In conclusion, the need to design flexible and user-friendly heuristics is considered as a
primary challenge for real-life implementation and could, hence, be seen as future areas of research.

The DSPSC is a practical problem with many variations and we hope to inspire other researchers
in the area of vehicle and driver scheduling. One interesting variation of the problem, which is of
significant importance to the transport industry, is a car routing problem that could have cars visiting
multiple nodes, rather than a single node, before returning to the depot.

Acknowledgement

This work was supported by the Innovation Fund Denmark [grant number 5189-00128B]. The authors
would like to thank the three anonymous referees for their valuable suggestions.

22

References

References

M. Ball, L. Bodin, and R. Dial. A matching based heuristic for scheduling mass transit crews and
vehicles. Transportation Science, 17(1):4–31, 1983. ISSN 15265447, 00411655. doi: 10.1287/trsc.17.
1.4.

M. Birattari, Z. Yuan, P. Balaprakash, and T. Stützle. F-race and iterated f-race: An overview.
Experimental Methods for the Analysis of Optimization Algorithms, pages 311–336, 2010.

C. Blum, J. Puchinger, G. R. Raidl, and A. Roli. Hybrid metaheuristics in combinatorial optimization:
A survey. Applied Soft Computing, 11:4135–4151, 2011.

R. Borndörfer, A. Löbel, and S. Weider. A bundle method for integrated multi-depot vehicle and
duty scheduling in public transit. Lecture Notes in Economics and Mathematical Systems, 600:
3–24, 2008. ISSN 21969957, 00758442.

M. A. Boschetti, V. Maniezzo, M. Roffilli, and A. Bolufe Roehler. Matheuristics: Optimization,
simulation and control. Lecture Notes in Computer Science, 5818:171–177, 2009.

J.-F. Cordeau, G. Laporte, and A. Mercier. A unified tabu search heuristic for vehicle routing
problems with time windows. Journal of the Operational Research Society, 52:928–936, 2001.

K. Darby-Dowman, J. K. Jachnik, R. L. Lewis, and G. Mitra. Integrated decision support systems for
urban transport scheduling: discussion of implementation and experience. Computer-aided Transit
Scheduling. Proceedings of the Fourth International Workshop on Computer-aided Scheduling of
Public Transport, pages 226–239, 1988.

R. De Leone, P. Festa, and E. Marchitto. A bus driver scheduling problem: a new mathematical
model and a grasp approximate solution. Journal of Heuristics, 17:441–466, 2011a.

R. De Leone, P. Festa, and E. Marchitto. Solving a bus driver scheduling problem with randomized
multistart heuristics. International Transactions in Operational Research, 18(6):707–727, 2011b.
ISSN 14753995, 09696016. doi: 10.1111/j.1475-3995.2011.00827.x.

G. Desaulniers and M. D. Hickman. Public transit. In Handbook in Operations Research and
Management Science, volume 14, pages 69–127. Elsevier, 2007.

M. Desrochers and F. Soumis. A column generation approach to the urban transit crew scheduling
problem. Transportation Science, 23(1):1–13, 1989.

I. Dumitrescu and T. Stützle. Combinations of local search and exact algorithms. Lecture Notes in
Computer Science, 2611:211–223, 2003.

M. Fischetti, S. Martello, and P. Toth. The fixed job schedule problem with spread-time constraints.
Operations Research, 35(6):849–858, 1987.

R. Freling, D. Huisman, and A. Wagelmans. Models and algorithms for integration of vehicle
and crew scheduling. Journal of Scheduling, 6(1):63–85, 2003. ISSN 10991425, 10946136. doi:
10.1023/A:1022287504028.

D. Huisman, R. Freling, and A. Wagelmans. Multiple-depot integrated vehicle and crew scheduling.
Transportation Science, 39(4):491–502, 2005. ISSN 15265447, 00411655. doi: 10.1287/trsc.1040.0104.

O. Ibarra-Rojas, F. Delgado, R. Giesen, and J. Muñoz. Planning, operation, and control of bus
transport systems: A literature review. Transportation Research Part B, 77:38–75, 2015.

23

L. Jourdan, M. Basseur, and E.-G. Talbi. Hybridizing exact methods and metaheuristics: A taxonomy.
European Journal of Operational Research, 199:620–629, 2009.

G. Laporte, R. Musmanno, and F. Vocaturo. An adaptive large neighborhood search heuristic for the
capacitated arc-routing problem with stochastic demands. Transportation Science, 44(1):125–135,
2010.

H. Li, Y. Wang, S. Li, and S. Li. A column generation based hyper-heuristic to the bus driver
scheduling problem. Discrete Dynamics in Nature and Society, 2015:1–10, 2015. ISSN 1607887x,
10260226. doi: 10.1155/2015/638104.

J. Li and R. S. Kwan. A fuzzy genetic algorithm for driver scheduling. European Journal of
Operational Research, 147:334–344, 2003.

H. R. Lourenço, J. P. Paixão, and R. Portugal. Multiobjective metaheuristics for the bus driver
scheduling problem. Transportation Science, 35(3):331–343, 2001.

R. M. Lusby, M. Schwierz, M. R. Troels, and J. Larsen. An adaptive large neighborhood search
procedure applied to the dynamic patient admission scheduling problem. Artificial Intelligence in
Medicine, 74:21–31, 2016.

J. Ma, A. A. Ceder, Y. Yang, T. Liu, and W. Guan. A case study of beijing bus crew scheduling: a
variable neighborhood-based approach. Journal of Advanced Transportation, 50(4):434–445, 2016.
ISSN 20423195, 01976729. doi: 10.1002/atr.1333.

G. Mauri and L. Lorena. A new hybrid heuristic for driver scheduling. International Journal of Hybrid
Intelligent Systems, 4(1):39–47, 2007. ISSN 18758819, 14485869. doi: 10.3233/HIS-2007-4105.

L. F. Muller, S. Spoorendonk, and D. Pisinger. A hybrid adaptive large neighborhood search heuristic
for lot-sizing with setup times. European Journal of Operational Research, 218:614–623, 2012.

D. Pisinger and S. Røpke. A general heuristic for vehicle routing problems. Computers & Operations
Research, 34:2403–2435, 2007.

D. Pisinger and S. Røpke. Large neighborhood search. In M. Gendreau (Ed.), Handbook of
Metaheuristics, 2nd ed., pages 399–420. Springer, 2010.

R. Portugal, H. R. Lourenço, and J. P. Paixão. Driver scheduling problem modelling. Public Transport,
1(2):103–120, 2009. ISSN 16137159, 1866749x. doi: 10.1007/s12469-008-0007-0.

S. Røpke and D. Pisinger. An adaptive large neighborhood search heuristic for the pickup and
delivery problem with time windows. Transportation Science, 40(4):455–472, 2006.

P. Shaw. Using constraint programming and local search methods to solve vehicle routing problems.
In CP ’98 Proceedings of the 4th International Conference on Principles and Practice of Constraint
Programming, pages 417–431, 1998.

B. M. Smith and A. Wren. A bus crew scheduling system using a set covering formulation. Trans-
portation Research Part A, 22(2):97–108, 1988.

A. Wren, S. Fores, A. Kwan, R. Kwan, M. Parker, and L. Proll. A flexible system for scheduling
drivers. Journal of Scheduling, 6:437–455, 2003.

T. Yunes, A. Moura, and C. de Souza. Hybrid column generation approaches for urban transit crew
management problems. Transportation Science, 39(2):273–288, 2005. ISSN 15265447, 00411655.
doi: 10.1287/trsc.1030.0078.

24

