
ar
X

iv
:1

11
0.

06
85

v1
 [

cs
.D

M
]

 4
 O

ct
 2

01
1

Energy Aware Scheduling for Weighted Completion Time and

Weighted Tardiness

Rodrigo A. Carrasco ∗ Garud Iyengar † Cliff Stein ‡

May 2011, v.arXiv 4.6

Abstract

The ever increasing adoption of mobile devices with limited energy storage capacity, on
the one hand, and more awareness of the environmental impact of massive data centres and
server pools, on the other hand, have both led to an increased interest in energy management
algorithms.

The main contribution of this paper is to present several new constant factor approximation
algorithms for energy aware scheduling problems where the objective is to minimize weighted
completion time plus the cost of the energy consumed, in the one machine non-preemptive
setting, while allowing release dates and deadlines.Unlike previous known algorithms these new
algorithms can handle general job-dependent energy cost functions, extending the application
of these algorithms to settings outside the typical CPU-energy one. These new settings include
problems where in addition, or instead, of energy costs we also have maintenance costs, wear and
tear, replacement costs, etc., which in general depend on the speed at which the machine runs
but also depend on the types of jobs processed. Our algorithms also extend to approximating
weighted tardiness plus energy cost, an inherently more difficult problem that has not been
addressed in the literature.

Keywords: energy aware scheduling, approximation algorithms, α-points, weighted tardiness

∗rac2159@columbia.edu. Department of Industrial Engineering & Operations Research, Columbia University,
Mudd 313, 500W 120th Street, New York, NY 10027. Research partially supported by NSF grants CCF-0728733 and
CCF-0915681, and Fulbright/Conicyt Chile Scholarship.

†
garud@ieor.columbia.edu. Department of Industrial Engineering & Operations Research, Columbia University,

Mudd 314, 500W 120th Street, New York, NY 10027. Research partially supported by NSF grant DMS-1016571,
ONR grant N000140310514, and DOE grant DE-FG02-08ER25856.

‡
cliff@ieor.columbia.edu. Department of Industrial Engineering & Operations Research, Columbia University,

Mudd 326,500W 120th Street, New York, NY 10027. Research partially supported by NSF grants CCF-0728733 and
CCF-0915681.

http://arxiv.org/abs/1110.0685v1

Energy Aware Scheduling v.arXiv 4.6 Carrasco, Iyengar, Stein

1 Introduction

Managing energy consumption is a problem of critical interest throughout the world and throughout
various industries. Computing devices use a large amount of energy, both in individual devices such
as laptops and PDAs and also in large industrial uses such as datacenters. For example, Google
states that the servers in its datacenter, which are much more efficient than the average industry
server, consume 1kJ per query on average [1]. In January 2011, just in the US, there were an average
more than 400 million queries per day [2], and thus the total amount of energy consumed was 44.5
million kWh, equivalent to more than 4, 000 average US households [3]. Furthermore, CPUs account
for 50-60% of a typical computer’s energy consumption [4], making CPU energy management very
important. When scheduling on such devices, it is important not only to consider the relevant
quality of service (QoS) metrics such as makespan or weighted completion time, but also to take
energy consumption into account. Most modern CPUs can be run at multiple speeds; the lower
the speed, the less energy used, and the relationship is device-dependent, but typically superlinear.
The technique of scheduling while controlling the speed of the processor is known as speed scaling.

Starting with the work of Yao, Demers, and Shenker [25], there has by now been tens of papers
studying scheduling problems in which energy consumption is taken into account. (See, for example,
the surveys by Irani and Pruhs [19] and that by Albers [4]). There are three main settings for energy
aware scheduling problem: optimizing a QoS metric with an energy budget [22, 23], minimizing
energy subject to a QoS constraint [7, 10, 11, 25], or optimizing some convex combination of a
scheduling objective and energy consumption [5, 6, 9, 12]. Underlying the latter setting, which is in
the one we will focus in this work, is an assumption that both energy and time can be (implicitly)
converted into a common unit, such as dollars.

1.1 Our results

In this paper we consider two commonly studied scheduling metrics, weighted completion time
and weighted tardiness, that have not received attention in the energy aware scheduling literature.
Given a schedule in which job i with weight wi, release time ri, and deadline di is completed
at time Ci, the total weighted completion time is

∑

iwiCi. The tardiness of a job is zero if it
is completed before its deadline and otherwise equal to the amount by which it misses, that is,
Ti = max{0, Ci − di} and total weighted tardiness is

∑

wiTi. For both these metrics, we consider
the non-preemptive, off-line problem on one machine, and allow arbitrary precedence constraints.
For the weighted completion time we allow arbitrary release dates as well. We consider a metric
that is a convex combination of our scheduling metric and energy cost. We are not aware of any
previous work on energy aware scheduling algorithms for these metrics. There is a rich literature
on minimizing weighted completion time in the absence of energy concerns (e.g. [20, 21, 24]), but
we are aware of only one result about weighted tardiness in the absence of energy concerns in the
speed scaling/resource augmentation literature [8], where a 2-machine, 24-speed 4-approximation
algorithm is presented. Weighted tardiness, in particular, is difficult to analyze because, in contrast
to most scheduling objectives, it is a non-linear function of completion time.

In our work we consider a more general model of energy cost than has previously been used.
The most common energy model assumes that the rate at which power is consumed is a polynomial
function of speed of the form P (s) = sβ for some constant β; typical values of β are 2 or 3. Some
recent work[6, 9] uses a more general power function with minimum regularity conditions, like non-
negativity, but in all the cases the power function does not depend on the job. Furthermore, most
energy aware algorithms assume cost functions that are closely related to energy consumption;
however, in practice the actual energy cost is not simply a function of energy consumption, it
is a complicated function of discounts, pricing, time of consumption, etc. We consider a more

1

Energy Aware Scheduling v.arXiv 4.6 Carrasco, Iyengar, Stein

general class of cost functions that are only restricted to be non-negative and can be different for
different jobs. Because we allow job-dependent energy costs, our algorithms can be used outside
the CPU-energy setting, where energy cost generally are job independent, and can be applied to
more general problems that have additional speed-associated costs. Examples of these costs are
maintenance costs, wear and tear of parts, failure rates, etc. all of which not only depend on
the speed at which the machine runs, but also the job being processed. We are not aware of any
other work that allows such general costs. For the weighted tardiness case we require an additional
regularity condition on the energy cost functions that allows us to control its rate of growth.

Our paper contains several results for different scheduling problems, we state here the most
general results:

Theorem 1.1. Given n jobs with precedence constraints and release dates and a general non-
negative energy cost function, there is an O(1)-approximation algorithm for the problem of non-
preemptively minimizing a convex combination of weighted completion time and energy cost.

Theorem 1.2. Given n jobs with precedence constraints and deadlines and a general non-negative
energy cost function, there is an O(1)-approximation algorithm for the problem of non-preemptively
minimizing a convex combination of weighted tardiness and energy cost.

The constants in the O(1) are modest. Consider the case where we are given a set of speeds
S = {σ1, . . . , σm}, at which the machine can run, with σj ≤ (1+ δ)σj−1, and some ǫ > 0. Then the
algorithm for the weighted completion time setting has a 4(1+ ǫ)(1+ δ)-approximation ratio when
only precedence constraints exist, and (3 + 2

√
2)(1 + ǫ)(1 + δ)-approximation ratio when release

dates are added. The algorithm for the weighted tardiness setting has a 4β(1 + ǫ)β−1(1 + δ)β−1-
approximation ratio even with arbitrary precedence constraints, where β controls the growth of the
energy cost function.

1.2 Our Methodology

The problem of minimizing weighted completion time in the combinatorial setting has been well-
studied. The work of Phillips, Stein, and Wein [20] and Hall, Schulz, Shmoys, and Wein [17, 18]
introduced the idea of α-points, and these have been used in much of the subsequent work. The
idea is that one first formulates a time-indexed integer program in which decision variable xit is 1
if job i completes at time t, and then solves its linear programming relaxation. From the solution
to the relaxation, one computes the α-point of each job, that is, the earliest time at which an α

fraction of the job has completed in the relaxation. The exact interpretation of when an α fraction
completes depends upon the particular problem. One uses these α-points to infer an order on the
jobs and then runs the jobs non-preemptively, respecting that order. There are many variants and
extensions of these technique including choosing α randomly [13, 14] or choosing a different α for
each job [15]. This technique has led to small constant factor approximation algorithms for many
weighted completion time scheduling problems [24].

The time-indexed integer program (IP) formulations for this problem are not typically of poly-
nomial size. However, the interval-indexed IP, introduced in [18], in which time is divided into
geometrically increasing intervals and jobs are assigned to intervals rather than individual time
slots, is of polynomial size. By using this linear program one obtains a polynomial sized linear
program from which it is still possible to apply the ideas of α-points while suffering only a small
additional degradation of the approximation ratio.

In this paper, we extend the interval-indexed IP to handle speed scaling and then design new
α-point based rounding algorithms to obtain the resulting schedules. In doing so we introduce the
new concept of α-speeds. We assume, in Sections 2, 3, and 4, that we have a discrete set of m

2

Energy Aware Scheduling v.arXiv 4.6 Carrasco, Iyengar, Stein

allowable speeds S = {σj}, and that the rate of power consumption is a polynomial function of the
speed. In Section 5.3 we describe how to remove these assumptions. Although the time-indexed
IPs are easier to explain, due to limited space, we will describe only the interval-indexed linear
programs in this paper. In our interval-indexed IP, a variable xijt is 1 if job i runs at speed σj and
completes in interval t. We can then extend the standard interval-indexed integer programming
formulation to take the extra dimension of speed into account (see Section 2 for details). Once
we have solved its linear program (LP) relaxation, we need to now determine both an α-point and
α-speed. The key insight is that by “summarizing” each dimension appropriately, we are able to
make the correct choice for the other dimension. At a high level, we first choose the α-point by
“collapsing” all pieces of a job that complete in the LP in interval t (these pieces have different
speeds), being especially careful with the last interval, where we may have to choose only some of
the speeds. We then use only the pieces of the job that complete before the α-point to choose the
speed, where the speed is chosen by collapsing the time dimension and then interpreting the result
as a probability mass function (pmf), where the probability that the job is run at speed σj depends
on the total amount of processing done at that speed. We then define the concept of α-speeds,
which is related to the expected value under this pmf, and run the job at this speed (see Section 3
for more details). We combine this new rounding method with extensions of the more traditional
methods for dealing with precedence constraints and release dates to obtain our algorithms.

For weighted tardiness, we emphasize again that not much is known about approximating this
problem, even in the absence of energy concerns. For this problem, we are able to use the same
interval-indexed linear program, with the objective function modified to tardiness. Because the
linear program is interval indexed, the non-linear objective function is not a problem. After the
solving the linear program, we are able to show that with only a constant factor increase in energy
(over the lower bound from the linear program), we obtain only a constant factor (over the linear
program) increase in tardiness. Implicit in this analysis is the fact that jobs that receive 0 tardiness
in the linear program will receive 0 tardiness in our solution; in some sense the speed scaling makes
accomplishing this easier than in the combinatorial setting. We note that our weighted tardiness
algorithms does not work in the presence of release dates, as release dates may stop us from being
able to keep jobs with 0 tardiness in the LP at 0 tardiness in the schedule.

Finally, in Section 5, we show how to extend our results for the weighted completion and
weighted tardiness scheduling metrics to general energy cost functions. We also show how to
extend our results to the setting where continuous speeds are used and not just a discrete set S,
while maintaining the same approximation ratio.

2 Problem Formulation

2.1 Problem Setting

We are given n jobs, where job i has a processing requirement of ρi ∈ N+ machine cycles, release
time ri, and an associated positive weight wi. Let si denote the speed at which job i runs on the
machine and Ci denote its completion time. Let Π = {π(1), . . . , π(n)} denote the order in which
the jobs are processed, i.e. π(k) = i implies that job i is the k-th job to be processed. Then
Cπ(i) = max{rπ(i), Cπ(i−1)} +

ρπ(i)

sπ(i)
is the completion time of the i-th job to be processed, with

Cπ(0) = 0. We do not allow preemption.
Let S = {σ1, . . . , σm}, be the set of possible speeds at which the machine can run. We will

assume that σj+1 ≤ (1 + δ)σj , for some δ > 0. This is a natural assumption because actual speed
scaling achieved in CPUs is done via frequency multipliers or dividers. Although a discrete set of
speeds is probably the most common case for CPUs, in Section 5.3 we show that our algorithm has
the same approximation ratio when a continuous set of speeds is used.

3

Energy Aware Scheduling v.arXiv 4.6 Carrasco, Iyengar, Stein

Let Ei(si) denote the energy cost of running job i at speed si. For simplicity we initially consider

Ei(si) = viρis
β−1
i , where β ≥ 2 and vi are known constants. As indicated earlier, an energy cost

function of this form is the standard model for these problems, although our model is more general
because the energy cost function is job-dependent. In Section 5 we show that our algorithms also
work for a much larger class of job-dependent energy cost functions.

The objective is to compute a feasible schedule (Π,C), consisting of an order Π and completion
times C, possibly subject to precedence and/or release date constraints, and the vector of job
speeds s = {s1, . . . , sn} ∈ R

n
+ that minimizes the total cost,

f(Π, s) =

n
∑

i=1

[

viρis
β−1
i + wπ(i)Cπ(i)

]

, (2.1)

Since this function is convex we can assume, w.l.o.g., that each job runs at a constant speed.
For convenience we will use an extended version of the notation of Graham et al. [16] to refer

to the different energy aware scheduling problems, i.e. 1|ri, prec|
∑

Ei(si) +
∑

wiCi, will refer to
the problem setting with 1 machine, with ri release dates, precedence constraints, and the weighted
completion time as the scheduling performance metric. Similarly, the 1|ri, prec|

∑

Ei(si) +
∑

wiTi

will refer to the same setting, but with tardiness as the scheduling performance metric. In all of
them Ei(si) indicates that the energy cost is also added as a performance metric.

2.2 Interval-Indexed Formulation

We now modify and extend the interval-indexed formulation proposed by Hall et al. [18] to accom-
modate speeds and energy cost.

The interval-indexed formulation divides the time horizon into geometrically increasing inter-
vals, and the completion time of each job is assigned to one of these intervals. Since the completion
times are not associated to a specific time, the completion times are not precisely known but are
lower bounded. By controlling the growth of each interval one can obtain a sufficiently tight bound.

The problem formulation is as follows. We divide the time horizon into the following geometri-
cally increasing intervals: [κ, κ], (κ, (1 + ǫ)κ], ((1 + ǫ)κ, (1 + ǫ)2κ], . . ., where ǫ > 0 is an arbitrary
small constant, and κ = ρmin

σmax
denotes the smallest interval size that will hold at least one whole job.

We define interval It = (τt−1, τt], with τ0 = κ and τt = κ(1 + ǫ)t−1. The interval index ranges over
{1, . . . , T}, with T = min{⌈t⌉ : κ(1+ ǫ)t−1 ≥ maxni=1 ri+

∑n
i=1

ρi
σ1
}; and thus, we have a polynomial

number of indices t.
Let

xijt =

{

1, if job i runs at a speed σj and completes in the time interval It = (τt−1, τt]
0, otherwise

.(2.2)

By using the lower bounds τt−1 of each time interval It, a lower bound to (2.1) is written as,

min
x

n
∑

i=1

m
∑

j=1

T
∑

t=1

(

viρiσ
β−1
j + wiτt−1

)

xijt. (2.3)

The following are the constraints required for the 1|ri, prec|
∑

Ei(si) +
∑

wiCi problem:

1. Each job must finish in a unique time interval and speed; therefore for i = {1, . . . , n}:
m
∑

j=1

T
∑

t=1

xijt = 1. (2.4)

4

Energy Aware Scheduling v.arXiv 4.6 Carrasco, Iyengar, Stein

2. Since only one job can be processed at any given time, the total processing time of jobs up
to time interval It must be at most τt units. Thus, for t = {1, . . . , T}:

n
∑

i=1

m
∑

j=1

t
∑

u=1

ρi

σj
xiju ≤ τt. (2.5)

3. Job i running at speed σj requires ρi
σj

time units to be processed, and considering that its

release time is ri, then for i = {1, . . . , n}, j = {1, . . . ,m}, and t = {1, . . . , T}:

xijt = 0, if τt < ri +
ρi

σj
. (2.6)

4. For i = {1, . . . , n} and t = {1, . . . , T}:

xit ∈ {0, 1}. (2.7)

5. The precedence constraint i1 ≺ i2 implies that job i2 cannot finish in an interval earlier than
i1. Therefore for every i1 ≺ i2 constraint we have that for t = {1, . . . , T}:

m
∑

j=1

t
∑

u=1

xi1ju ≥
m
∑

j=1

t
∑

u=1

xi2ju. (2.8)

It is important to note that this integer program only provides a lower bound for (2.1); in fact
its optimal solution may not be schedulable, since constraints (2.5) do not imply that only one job
can be processed at a single time, they only bound the total amount of work in ∪tIt.

3 Approximation Algorithm for Weighted Completion Time

We now describe the approximation algorithm for the weighted completion time, called Schedule
by α-intervals and α-speeds (SAIAS) which is displayed in Figure 3.1.

Let x̄ijt denote the optimal solution of the linear relaxation of the integer program (2.3)-(2.8),
in which we change constraints (2.7) for xijt ≥ 0. In step 1 of the algorithm we compute the optimal
solution x̄ and in step 2, given 0 ≤ α ≤ 1, we compute the α-interval of job i, which is defined as,

ταi = min







τ :

m
∑

j=1

τ
∑

u=1

x̄iju ≥ α







. (3.1)

Schedule by α-intervals and α-speeds (SAIAS)

Inputs: set of jobs, α ∈ (0, 1), ǫ > 0, set of speeds S = {σ1, . . . , σm}.
1 Compute an optimal solution x̄ to the linear relaxation (2.3)-(2.8).
2 Compute the α-intervals τα and the sets Jt.
3 Compute an order Πα that has the sets Jt ordered in non-decreasing values of t and the

jobs within each set in a manner consistent with the precedence constraints.
4 Compute the α-speeds sα

5 Round down each sαi to the nearest speed in S and run job i at this rounded speed, s̄αi .
6 Set the i-th job to start at time max{rπ(i), C̄α

π(i−1)}, where C̄α
π(i−1) is the completion

time of the previous job using the rounded α-speeds, and C̄α
π(0) = 0.

7 return speeds s̄α and schedule (Πα, C̄α).

Figure 3.1: Schedule by α-intervals and α-speeds

5

Energy Aware Scheduling v.arXiv 4.6 Carrasco, Iyengar, Stein

Since several jobs may finish in the same interval, let Jt denote the set of jobs that finish in
interval It, Jt = {i : ταi = t}, and we use these sets to determine the order Πα as described in step
3.

Next, in step 4, we compute the α-speeds as follows. Since
∑m

j=1

∑ταi
u=1 x̄iju ≥ α, we define

auxiliary variable {x̃ijt} as:

x̃ijt =











x̄ijt, t < ταi

max
{

min
{

x̄ijταi , α−
∑j−1

l=1 x̄ilταi − βi

}

, 0
}

, t = ταi

0, t > ταi

, (3.2)

where βi =
∑m

j=1

∑ταi −1
u=1 x̄iju < α. Note that with this auxiliary variable

∑m
j=1

∑ταi
u=1 x̃iju = α. This

is a key step that allows us to truncate the fractional solution so that for every job i, the sum of x̃ijt
up to time interval ταi for each speed j can be interpreted as a probability mass function. We define
this probability mass function (pmf) µi = (µi1, . . . , µim) on the set of speeds S = {σ1, . . . , σm} as

µij =
1

α

ταi
∑

u=1

x̃iju. (3.3)

Let ŝi define a random variable distributed according to the pmf µi, i.e. µij = P(ŝi = σj).
Then, the α-speed of job i, sαi , is defined as follows:

1

sαi
= E

[

1

ŝi

]

=
m
∑

j=1

µij

σj
⇒ sαi =

1

E

[

1
ŝi

] . (3.4)

We define the α-speeds using the reciprocal of the speeds since the completion times are pro-
portional to the reciprocals instead of the speeds, and we need to bound completion times in the
analysis of the algorithm.

Next, in step 5, because the α-speeds sαi do not necessarily belong to the set of possible speeds
S we round them down to s̄αi , which is the nearest speed in the set such that s̄αi ≤ sαi . The following
lemma bounds the error introduced by this rounding.

Lemma 3.1. The cost of the solution with the rounded down speeds s̄α is at most (1+ δ) times the
cost of the solution using the α-speeds sα.

Proof. The energy cost function Ei(si) is increasing so rounding down does not increase the energy
cost, but the completion time is now larger. Let Cα

i be the completion time of job i when the
speeds sα are used and C̄α

i when the rounded ones s̄α are used. Since the speeds are reduced at
most by (1 + δ), then (1 + δ)s̄i

α ≥ sαi , and we have that,

C̄α
i = max{ri, C̄α

i−1}+
ρ

s̄αi
≤ (1 + δ)

(

max{ri, Cα
i−1}+

ρ

sαi

)

= (1 + δ)Cα
i , (3.5)

which implies that
∑n

i=1wiC̄
α
i ≤ (1 + δ)

∑n
i=1wiC

α
i and proves the lemma.

Finally, in steps 6 and 7 we compute the completion times given the calculated speeds and
return the set of speeds s̄α and the schedule (Πα, C̄α).

We now analyse this algorithm’s performance for different energy aware scheduling problems.
In the following subsections we will assume w.l.o.g. that τα1 ≤ τα2 ≤ . . . ταn .

6

Energy Aware Scheduling v.arXiv 4.6 Carrasco, Iyengar, Stein

3.1 Single Machine Problem with Precedence Constraints

We first need to prove that the output of the SAIAS algorithm is indeed feasible.

Lemma 3.2. If i1 ≺ i2, then constraint (2.8) implies that ταi1 ≤ ταi2 .

Proof. Evaluating the LP constraint (2.8) corresponding to i1 ≺ i2, for t = ταi2 , we have that,

m
∑

j=1

ταi2
∑

u=1

xi1ju ≥
m
∑

j=1

ταi2
∑

u=1

xi2ju ≥ α,

where the last inequality follows from the definition of ταi2 . The chain of inequalities implies that
∑m

j=1

∑ταi2
u=1 xi1ju ≥ α, so ταi1 ≤ ταi2 .

Since the SAIAS algorithm schedules jobs by first ordering the sets Jt in increasing order of t, and
then orders the jobs within each set in a way that is consistent with the precedence constraints, by
Lemma 3.2 it follows that the SAIAS algorithm preserves the precedence constraints, and, therefore,
the output of the algorithm is feasible. Next, we can prove the following result.

Theorem 3.1. The SAIAS algorithm with α = 1
2 is a 4(1 + ǫ)(1 + δ)-approximation algorithm for

the 1|prec|∑Ei(si) +
∑

wiCi problem, with Ei(si) = viρis
β−1
i .

Proof. Let x∗ijt denote an optimal solution to the integer problem (2.3)-(2.8), x̄ijt the fractional
solution of its linear relaxation, and x̃iju the auxiliary variables calculated for the SAIAS algorithm.

Since in (2.3) the completion time for jobs completed in interval It is τt−1, it follows that,

n
∑

i=1

m
∑

j=1

T
∑

t=1

(

viρiσ
β−1
j + wiτt−1

)

x̄ijt ≤
n
∑

i=1

m
∑

j=1

T
∑

t=1

viρiσ
β−1
j x∗ijt +

n
∑

i=1

wiC
∗
i . (3.6)

The energy terms of the algorithm’s solution are bounded as follows,

viρi(s
α
i)

β−1 = viρi

(

1

sαi

)−(β−1)

= viρi

(

E

[

1

ŝi

])−(β−1)

≤ viρiE

[

(

1

ŝi

)−(β−1)
]

= viρiE
[

ŝ
β−1
i

]

= viρi

m
∑

j=1

µijσ
β−1
j , (3.7)

where the inequality follows from Jensen’s Inequality applied to the convex function 1
sβ−1 . Using

the definition of µij in (3.3) and given that 0 ≤ α ≤ 1, ǫ > 0, and x̃ijt ≤ x̄ijt, it follows that,

viρi(s
α
i)

β−1 ≤ viρi

α

m
∑

j=1

ταi
∑

u=1

σ
β−1
j x̃iju ≤ (1 + ǫ)

α(1 − α)
viρi

m
∑

j=1

T
∑

u=1

σ
β−1
j x̄iju. (3.8)

Since there are no release date constraints there is no idle time between jobs,

Cα
i =

i
∑

j=1

ρj

sαj
=

i
∑

j=1

ρjE

[

1

ŝj

]

=
1

α

i
∑

j=1

m
∑

l=1

ταj
∑

u=1

ρj

σl
x̃jlu ≤ 1

α

n
∑

j=1

m
∑

l=1

ταi
∑

u=1

ρj

σl
x̄jlu, (3.9)

and from constraint (2.5) for t = ταi we get, Cα
i ≤ 1

α
τταi .

7

Energy Aware Scheduling v.arXiv 4.6 Carrasco, Iyengar, Stein

Let C̄i =
∑m

j=1

∑T
t=1 τt−1x̄ijt denote the optimal fractional completion time given by the optimal

solution of the relaxed linear program (2.3)-(2.6). Since it is possible that
∑m

j=1

∑ταi
t=1 x̄ijt > α; we

define X
(1)
i = α−∑m

j=1

∑ταi −1
t=1 x̄ijt and X

(2)
i =

∑m
j=1

∑ταi
t=1 x̄ijt−α, thus X

(1)
i +X

(2)
i =

∑m
j=1 x̄ijταi ,

and we can rewrite

C̄i =
m
∑

j=1

ταi −1
∑

t=1

τt−1x̄ijt + τταi −1X
(1)
i + τταi −1X

(2)
i +

m
∑

j=1

T
∑

t=ταi +1

τt−1x̄ijt, (3.10)

and eliminating the lower terms of the previous sum we get that,

C̄i ≥ τταi −1X
(2)
i +

m
∑

j=1

T
∑

t=ταi +1

τt−1x̄ijt ≥ τταi −1X
(2)
i +

m
∑

j=1

T
∑

t=ταi +1

τταi −1x̄ijt = τταi −1(1− α). (3.11)

Because τταi = (1 + ǫ)τταi −1, from (3.9) and (3.11) we get that Cα
i ≤ (1+ǫ)

α(1−α) C̄i ⇒
∑n

i=1 wiC
α
i ≤

(1+ǫ)
α(1−α)

∑n
i=1wiC̄i. From this, (3.6) and (3.8) it follows that,

n
∑

i=1

viρi(s
α
i)

β−1 +

n
∑

i=1

wiC
α
i ≤ (1 + ǫ)

α(1 − α)





n
∑

i=1

m
∑

j=1

T
∑

t=1

viρiσ
β−1
j x∗ijt +

n
∑

i=1

wiC
∗
i



 , (3.12)

and we set α = argmin0≤α≤1

{

1
α(1−α)

}

= 1
2 , to minimize the bound. By Lemma 3.1, which bounds

the final rounding error, we get the desired approximation ratio.

3.2 Single Machine Problem with Precedence and Release Date Constraints

We now analyse the case with precedence constraints and release dates. Release dates makes the
problem somewhat harder since they can introduce idle times between jobs.

Theorem 3.2. The SAIAS algorithm with α =
√
2− 1 is a (3 + 2

√
2)(1 + ǫ)(1 + δ)-approximation

algorithm for the 1|ri, prec|
∑

Ei(si) +
∑

wiCi problem, with Ei(si) = viρis
β−1
i .

Proof. The bound for the energy terms computed in equation (3.7) are still valid when there is idle
time between jobs, we have that,

viρi(s
α
i)

β−1 ≤ (1 + ǫ)

α(1− α)
viρi

m
∑

j=1

T
∑

u=1

σ
β−1
j x̄iju ≤ (1 + ǫ)(1 + α)

α(1 − α)
viρi

m
∑

j=1

T
∑

u=1

σ
β−1
j x̄iju. (3.13)

When bounding the completion time Cα
i , given the sorting done in step 3 of the SAIAS algo-

rithm, now one has to consider all the jobs up to the ones in set Jταi , and thus,

Cα
i ≤ max

j∈{J1,...,Jτα
i
}
rj +

∑

j∈{J1,...,Jτα
i
}

ρj

sαj
. (3.14)

Since all jobs that have been at least partially processed up to time interval It need to be
released before τt, it follows that maxj∈{J1,...,Jτα

i
} rj ≤ τταi . On the other hand, we also have that,

∑

j∈{J1,...,Jτα
i
}

ρj

sαj
=

1

α

∑

j∈{J1,...,Jτα
i
}

m
∑

l=1

ταj
∑

u=1

ρj

σl
x̃jlu ≤ 1

α

n
∑

j=1

m
∑

l=1

ταi
∑

u=1

ρj

σl
x̄jlu ≤ 1

α
τταi , (3.15)

8

Energy Aware Scheduling v.arXiv 4.6 Carrasco, Iyengar, Stein

where the last inequality follows from constraint (2.5) with t = ταi . Thus, Cα
i ≤ (1+α)

α
τταi . Since

C̄i =
∑m

j=1

∑T
t=1 τt−1x̄ijt, (3.11) is still valid and because τταi = (1 + ǫ)τταi −1, we get,

Cα
i ≤ (1 + ǫ)(1 + α)

α(1 − α)
C̄i ⇒

n
∑

i=1

wiC
α
i ≤ (1 + ǫ)(1 + α)

α(1 − α)

n
∑

i=1

wiC̄i. (3.16)

Finally, from (3.13) and (3.16) it follows that,

n
∑

i=1

viρi(s
α
i)

β−1 +
n
∑

i=1

wiC
α
i ≤ (1 + ǫ)(1 + α)

α(1 − α)





n
∑

i=1

m
∑

j=1

T
∑

t=1

viρiσ
β−1
j x∗ijt +

n
∑

i=1

wiC
∗
i



 , (3.17)

and by setting α = argmin0≤α≤1

{

(1+α)
α(1−α)

}

=
√
2 − 1, and again using Lemma 3.1 to bound the

speed-rounding error, we get the required approximation ratio.

If no precedence constraints and release dates exist, there are two versions of this problem that
can be optimally solved in polynomial time: when all weights wi are equal, and when all jobs are
of the same size (i.e. ρi = ρ, ∀i) and all jobs have the same energy cost function. For these cases
we have the following result:

Theorem 3.3. If wi = w, ∀i or ρiv
1
β

i = ξ, ∀i then the order Π is optimal if

wπ(i)

ρπ(i)v
1
β

π(i)

≥
wπ(i+1)

ρπ(i+1)v
1
β

π(i+1)

, ∀i ∈ {1, . . . , n− 1}.

Proof. For simplicity we will define ξi ≡ ρiv
1
k

i , q = k−1
k

, and K ≡ k

(k−1)
k−1
k

. First, dual formulation

of problem (2.1) with no precedence or release date constraints is given by,

min
π

F (π) = min
π

n
∑

i=1

K ξπ(i)





n
∑

j=i

wπ(j)





q

. (3.18)

We now prove both cases by contradiction using the dual formulation.
When wi = w, ∀i, Theorem 3.3 implies that in the optimal order ξπ(i+1) ≥ ξπ(i). By contradic-

tion, let π be an optimal order such that for some index k, ξπ(k+1) < ξπ(k). For this order the total
cost is

F (π) =

n
∑

i=1

K ξπ(i)





n
∑

j=i

w





q

=

n
∑

i=1

K ξπ(i) ((n− i+ 1)w)q ,

= K wq







ξπ(k)(n− k + 1)q + ξπ(k+1)(n − k)q +

n
∑

i=1; i 6=k,k+1

ξπ(i)(n− i+ 1)q







.

Let πk define the order where we switch jobs k and k + 1 from order π, i.e. πk(k) = π(k + 1)
and πk(k + 1) = π(k). Given this order we have that

F (π)− F (πk) = K wq
{

ξπ(k)(n− k + 1)q + ξπ(k+1)(n − k)q − ξπ(k+1)(n− k + 1)q − ξπ(k)(n− k)q
}

,

= K wq
{

(n − k + 1)q(ξπ(k) − ξπ(k+1))− (n− k)q(ξπ(k) − ξπ(k+1))
}

,

= K wq
{(

ξπ(k) − ξπ(k+1)

)

((n− k + 1)q − (n− k)q)
}

.

9

Energy Aware Scheduling v.arXiv 4.6 Carrasco, Iyengar, Stein

By our initial assumption the first term is positive (since ξπ(k+1) < ξπ(k)) and the second one is
always positive, hence F (π)− F (πk) > 0 which is a contradiction, since that implies that πk has a
smaller cost.

For the case when ξi = ξ, ∀i, Theorem 3.3 implies that an order π is optimal then wπ(i) ≥
wπ(i+1). Let π be an optimal order such that for some index k, wπ(k) < wπ(k+1). The total cost for
this solution is

F (π) =

n
∑

i=1

K ξ





n
∑

j=i

wπ(i)





q

= K ξ







k
∑

i=1





n
∑

j=i

wπ(i)





q

+





n
∑

j=k+1

wπ(i)





q

+

n
∑

i=k+2





n
∑

j=i

wπ(i)





q





,

= K ξ







k
∑

i=1





n
∑

j=i

wπ(i)





q

+



wπ(k+1) +
n
∑

j=k+2

wπ(i)





q

+
n
∑

i=k+2





n
∑

j=i

wπ(i)





q





.

Let πk define the order where we switch jobs k and k + 1 from order π. Given this new order
we have

F (π)− F (πk) = K ξ









wπ(k+1) +

n
∑

j=k+2

wπ(i)





q

−



wπ(k) +

n
∑

j=k+2

wπ(i)





q





> 0,

since wπ(k+1) > wπ(k) by our initial assumption, which is a contradiction since this result implies
that order πk has a lower cost.

4 Extension to the Weighted Tardiness Problem

In this section we extend our results to the weighted tardiness setting. We still allow for arbitrary
precedence constraints but no release dates. In this case, each job i also has a deadline di. The
tardiness Ti of job i is defined as Ti = max{0, Ci − di}, and the objective function is now given by,

g(Π, s) =

n
∑

i=1

viρis
β−1
i +

n
∑

i=1

wπ(i)

(

Cπ(i) − dπ(i)
)+

. (4.1)

We now formulate the problem using a modification of the interval-and-speed-indexed formula-
tion presented in Section 2. Because the completion time can be bounded by

∑m
j=1

∑T
t=1 τt−1xijt,

we can bound (4.1) from below by the following optimization problem,

min
x

n
∑

i=1

m
∑

j=1

T
∑

t=1

(

viρiσ
β−1
j + wi (τt−1 − di)

+
)

xijt, (4.2)

together with constraints (2.4)-(2.8) from the interval-indexed formulation. Note that although the
objective (4.1) is non-linear, because we have a interval-indexed formulation, (4.2) is linear.

We approximately solve (4.1) using the Schedule by α-intervals and α-speeds for Tardi-
ness (SAIAS-T) Algorithm displayed in Figure 4.1. The main difference with the SAIAS algorithm,
is that in step 4 we scale up the α-speeds. This scaling makes the completion time of the relaxed LP
comparable to the completion time of the algorithm’s output, and thus jobs that have 0 tardiness
in the LP also have 0 tardiness in our algorithm. If we rounded speeds down, jobs with 0 tardiness
in the LP could, at a lower speed, miss their deadline, and thus the approximation ratio could be
arbitrary large.

We now analyse the algorithm assuming w.l.o.g. that τα1 ≤ τα2 ≤ . . . ≤ ταn . Since Lemma
3.2 remains valid, arguments identical to those in Section 2 show that the output of the SAIAS-
T algorithm is feasible; thus, we have the following theorem:

10

Energy Aware Scheduling v.arXiv 4.6 Carrasco, Iyengar, Stein

Schedule by α-intervals and α-speeds for Tardiness (SAIAS-T)

Inputs: set of jobs, α ∈ (0, 1), ǫ > 0, γ > 1, set of speeds S = {σ1, . . . , σm}.
1 Compute an optimal solution x̄ to the linear relaxation (4.2), (2.4)-(2.8).
2 Compute the α-intervals τα and the sets Jt as in the SAIAS algorithm.
3 Compute an order Πα that has the sets Jt ordered in non-decreasing values of t and the

jobs within each set in a manner consistent with the precedence constraints.
4 Compute the α-speeds sα and scale each sαi to s̃αi = γsαi .
5 Round up each s̃αi to the next speed in S, s̄αi and run each job i at this new speed.
6 Set the i-th job to start at time max{rπ(i), C̄α

π(i−1)}, where C̄α
π(i−1) is the completion

time of the previous job using the rounded α-speeds, and C̄α
π(0) = 0.

7 return speeds s̄α and schedule (Πα, C̄α).

Figure 4.1: Schedule by α-intervals and α-speeds for Tardiness Algorithm

Theorem 4.1. The SAIAS-T algorithm with γ = (1+ǫ)
α(1−α) and α = 1

2 is a 4β(1 + ǫ)β−1(1 + δ)β−1-

approximation algorithm for the 1|prec|∑Ei(si) +
∑

wiTi problem, with Ei(si) = viρis
β−1
i .

Proof. Let C̄i =
∑m

j=1

∑T
t=1 τt−1x̄ijt denote the optimal fractional completion time of the relaxed

linear program. (C̄i − di)
+ is a lower bound for the optimal tardiness (C∗

i − di)
+, since

∑

jt(τt−1 −
di)

+x̄ijt ≥ (C̄i − di)
+. Thus,

n
∑

i=1

m
∑

j=1

T
∑

t=1

viρiσ
β−1
j x̄ijt +

n
∑

i=1

wi

(

C̄i − di
)+ ≤

n
∑

i=1

m
∑

j=1

T
∑

t=1

viρiσ
β−1
j x∗ijt +

n
∑

i=1

wi (C
∗
i − di)

+
. (4.3)

Let C̃α
i denote the completion time of job i using speeds s̃α and Cα

i the one using speeds sα.
Because there are no release date constraints, there is no idle time in between jobs; therefore,

C̃α
i =

i
∑

j=1

ρj

s̃αj
=

1

γ

i
∑

j=1

ρj

sαj
=

1

γ
Cα
i . (4.4)

Since (3.9) remains valid, it follows that Cα
i ≤ (1+ǫ)

α(1−α) C̄i ⇒ C̃α
i ≤ 1

γ
(1+ǫ)
α(1−α) C̄i. The key step is

that by setting γ = (1+ǫ)
α(1−α) , which makes the two completion times comparable, we have that,

n
∑

i=1

wi

(

C̃α
i − di

)+
≤

n
∑

i=1

wi

(

1

γ

(1 + ǫ)

α(1− α)
C̄i − di

)+

=
n
∑

i=1

wi

(

C̄i − di
)+

. (4.5)

The energy term is bounded in a manner analogous to (3.8):

viρi(s̃
α
i)

β−1 = γβ−1viρi(s
α
i)

β−1 ≤ (1 + ǫ)β−1

(α(1 − α))β
viρi

m
∑

j=1

T
∑

t=1

σ
β−1
j x̄ijt, (4.6)

where the last inequality follows from (3.8) that remains valid.
From (4.3), (4.6), and (4.5) it follows that,

n
∑

i=1

viρi(s̃
α
i)

β−1 +

n
∑

i=1

wi

(

C̃α
i − di

)+
≤ (1 + ǫ)β−1

(α(1− α))β





n
∑

i=1

m
∑

j=1

T
∑

t=1

viρiσ
β−1
j x∗ijt +

n
∑

i=1

wi (C
∗
i − di)

+



 .

11

Energy Aware Scheduling v.arXiv 4.6 Carrasco, Iyengar, Stein

Because speeds are rounded up, the completion times, and thus the tardiness can only improve,
whereas the energy cost increases. Since at most we speed up each job by a factor (1+ δ), we have
that,

Ei(s̄
α
i) ≤ Ei ((1 + δ)sαi) = (1 + δ)β−1Ei(s

α
i) ⇒

n
∑

i=1

Ei(s̄
α
i) ≤ (1 + δ)β−1

n
∑

i=1

Ei(s
α
i). (4.7)

The approximation ratio follows from setting α = argmin0≤α≤1

{

1
(α(1−α))β

}

= 1
2 . Clearly we

could use (1+ǫ)β−1

αβ(1−α)β−1 in (4.6) to compute a tighter bound, but the resulting expression is not as

simple.

We are not able to extend this algorithm for the 1|ri|
∑

Ei(si) +
∑

wiTi problem, since it is
based on speed scaling to make sure that jobs are finished within a desired time interval. When
release dates are present, we do not see how to arbitrarily reduce the completion times.

5 Extension to General Energy Cost Functions

In this section we consider the extension to general energy cost functions, as opposed to simply
energy consumption. We begin by considering discrete speeds, as in the previous sections, but in
Section 5.3 we will relax this requirement.

Managers of data centres are clearly interested in the energy cost metric, since they need to
balance the penalty for violating the service level agreements with the cost of energy. The energy
price curves for industrial consumers are often quite complicated because of energy contracts,
discounts, real time pricing etc.; therefore it is very important to consider general cost functions
in the scheduling model. Hence, in this section we use Ei(si) as the general energy cost function
of running job i at speed si. We will require that Ei(si) is non-negative, just as in [6, 9], but no
other requirements are needed for the weighted completion time setting. For the weighted tardiness
setting we will require an additional regularity condition that bounds the growth of the energy cost
function.

Since in practice the processor speed can be dynamically changed during the course of a job,
one can replace the general cost function by its lower convex envelope. Hence, without loss of
generality, we can assume that Ei(si) is convex. Furthermore, since the machine can only run at
the speeds in S, we can also consider that Ei(s) is linear in between these speeds. Hence, for every
s ∈ [σj, σj+1] such that s = λσj+(1−λ)σj+1, with λ ∈ [0, 1], then Ei(s) = λEi(σj)+(1−λ)Ei(σj+1).

Note that for bounding the energy cost terms in the weighted completion time setting, we only
used the fact that the energy consumption function Ei(s) = viρis

β−1 is convex. Thus, the previous
bounds extend to our more general class of functions Ei(s). In the weighted tardiness case we
required also a bound on the growth of the energy cost function, which we will address in Section
5.2.

5.1 Weighted Completion Time Problem with General Energy Cost

The objective function (2.3) is extended as follows,

min
x

n
∑

i=1

m
∑

j=1

T
∑

t=1

(Ei(σj) + wiτt−1) xijt, (5.1)

where Ei(σj) are just coefficients. Given that we only change the energy cost related terms, all the
completion time related bounds computed previously are still valid.

12

Energy Aware Scheduling v.arXiv 4.6 Carrasco, Iyengar, Stein

The only modification required is in the rounding procedure at the end of the SAIAS algorithm,
where it was done by rounding down the α-speeds. Now instead we will round them up or down
such that Ei(s̄αi) ≤ Ei(sαi), which is always possible since Ei(si) is linear in between the speeds in S.
With this change Lemma 3.1 remains valid and we can extend the algorithm to our general energy
cost functions.

Theorem 5.1. The SAIAS algorithm with α = 1
2 is a 4(1 + ǫ)(1 + δ)-approximation algorithm for

the 1|prec|
∑

Ei(si) +
∑

wiCi problem, for all general non-negative energy cost functions Ei(s).
Proof. Because Ei(σ), i = {1, . . . , n} are convex functions, (3.7) remains valid since Ei(sαi) =
Ei(E[ŝi]) ≤ E[Ei(ŝi)] =

∑m
j=1 µijEi(σj), and thus, from the definition of µij, and from 0 ≤ α ≤ 1,

ǫ > 0, and x̃ijt ≤ x̄ijt,

n
∑

i=1

Ei(sαi) ≤
1

α

n
∑

i=1

m
∑

j=1

ταi
∑

t=1

Ei(σj)x̃ijt ≤
(1 + ǫ)

α(1− α)

n
∑

i=1

m
∑

j=1

T
∑

t=1

Ei(σj)x̄ijt. (5.2)

The proof follows since the bounds for the completion time in Theorem 3.1 remain valid, as
well as Lemma 3.1.

By the same argument we also have that,

Theorem 5.2. The SAIAS algorithm with α =
√
2− 1 is a (3 + 2

√
2)(1 + ǫ)(1 + δ)-approximation

algorithm for the 1|ri, prec|
∑ Ei(si) +

∑

wiCi problem, for all general non-negative energy cost
functions Ei(s).
5.2 Weighted Tardiness Problem with General Energy Cost

We replace the energy term in (4.2) with the general energy cost term to obtain the new objective

min
x

n
∑

i=1

m
∑

j=1

T
∑

t=1

(

Ei(σj) +wi (τt−1 − di)
+)xijt. (5.3)

Since the SAIAS-T algorithm speeds up the jobs, we need to add the following regularity
condition for the energy cost functions Ei(σ) in order to obtain performance bounds:

Assumption 5.1. ∃β ∈ N
+, such that Ei(γσi) ≤ γβ−1Ei(σi), ∀γ ≥ 1.

Theorem 5.3. The SAIAS-T algorithm with γ = (1+ǫ)
α(1−α) and α = 1

2 , is a 4β(1 + ǫ)β−1(1 + δ)β−1-

approximation algorithm for the 1|prec|∑ Ei(si)+
∑

wiTi problem, for all non-negative energy cost
functions Ei(s) that satisfy Assumption 5.1.

Proof. As before, all the completion time related bounds (4.4) and (4.5) remain valid, so only a
bound analogous to (4.6) is needed. From Assumption 5.1 it follows that,

Ei(s̃αi) ≤ γβ−1Ei(sαi) ≤
(1 + ǫ)β−1

αβ(1− α)β

m
∑

j=1

T
∑

t=1

Ei(σj)x̄ijt. (5.4)

Thus, from (4.5) it follows that,

n
∑

i=1

Ei(s̃αi) +
n
∑

i=1

wi

(

C̃α
i − di

)+
≤ (1 + ǫ)β−1

αβ(1− α)β





n
∑

i=1

m
∑

j=1

T
∑

t=1

Ei(σj)x∗ijt +
n
∑

i=1

wi (C
∗
i − di)

+



 .

Since we are rounding speeds up, equation (4.7) remains valid and thus taking α = 1
2 completes

the proof.

13

Energy Aware Scheduling v.arXiv 4.6 Carrasco, Iyengar, Stein

5.3 Continuous Speeds

As commented previously, our algorithms are also applicable for the case when a continuous set
of speeds is possible. In this case we modify the SAIAS and SAIAS-T algorithms, eliminating the
rounding step required at the end of each algorithm.

When the operating range of the machine is given, i.e. the speed limits σmin and σmax, since
our IP requires a speed index, we need to quantize the set [σmin, σmax] in m different speeds. We
can do this by setting σ1 = σmin, and as before we define speed σj = (1 + δ)σj−1, for some δ > 0,
making sure that σm ≥ σmax in order to cover the whole operating range. Just by rounding as
described in Section 5.1 for the weighted completion time setting and rounding up for the weighted
tardiness setting we can prove the following lemma:

Lemma 5.1. The optimal solution for the IP (2.3)-(2.8) is at most (1 + δ) times the optimal
solution of the energy aware problem in the weighted completion time and continuous speed setting,
and the optimal solution for the IP (4.2), (2.4)-(2.8) is at most (1+δ)β−1 times the optimal solution
of the energy aware problem in the weighted tardiness and continuous speed setting.

The proof is similar to Lemma 3.1 for the weighted completion time and similar to equation
(4.7) for the weighted tardiness setting.

Since there is no additional rounding at the end of the algorithm, using Lemma 5.1 we get the
same approximation ratios as in Theorems 5.1, 5.2, and 5.3.

When the operating range of the machine is not given, and we are interested in determining
a set S that covers the optimal speeds from the continuous case, we need the following additional
regularity condition on the energy cost functions: ∃ξ < ∞ such that Ej(si) is increasing ∀si ≥ ξ. It
is easy to prove that this is a necessary and sufficient conditions for the problem to be well defined,
and thus we can compute σmin and σmax such that the optimal speeds s∗i ∈ [σmin, σmax], for all
i. Then we can apply the same procedure as before to quantize and build the set of speeds, and
proceed to compute an approximate solution.

6 Conclusion

In this work we described new techniques for developing constant approximation algorithms for
energy aware scheduling problems with very general job-dependent energy cost functions, that
work on both discrete and continuous speed sets. Furthermore, we present the first algorithm, to
the best of our knowledge, that tackles the energy aware weighted tardiness setting, even in the
presence of arbitrary precedence constraints.

We believe that our methodology, which extends the idea of α-points to the energy aware setting
by developing the α-speeds concept, should have many more applications. We suspect that, via
techniques such as using randomly chosen values of α or using different α values for different jobs,
we could obtain tighter bounds, and also that these techniques could be extended to other settings,
such as multiple parallel machines among others.

References

[1] Google Datacentre Webpage. http://goo.gl/44nDs, 2009.

[2] Comscore May 2011 Ranking. http://goo.gl/HuXOp, 2011.

[3] US Department of Energy. http://www.oe.energy.gov/information center/faq.htm,
2011.

[4] Albers, S. Algorithms for Energy Saving, vol. 5760 of Lecture Notes in Computer Science.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2009, pp. 173–186.

14

Energy Aware Scheduling v.arXiv 4.6 Carrasco, Iyengar, Stein

[5] Albers, S., and Fujiwara, H. Energy-efficient algorithms for flow time minimization. ACM
Transactions on Algorithms 3, 4 (Nov. 2007), 49–es.

[6] Andrew, L. L., Wierman, A., and Tang, A. Optimal speed scaling under arbitrary power
functions. ACM SIGMETRICS Performance Evaluation Review 37, 2 (Oct. 2009), 39.

[7] Bansal, N., Bunde, D., Chan, H. L., and Pruhs, K. R. Average rate speed scaling.
In Proceedings of the 8th Latin American conference on Theoretical informatics (Dec. 2008),
Springer-Verlag, pp. 240–251.

[8] Bansal, N., Chan, H. L., Khandekar, R., Pruhs, K. R., Stein, C., and Schieber,
B. Non-preemptive min-sum scheduling with resource augmentation. Small (2007).

[9] Bansal, N., Chan, H. L., and Pruhs, K. R. Speed scaling with an arbitrary power func-
tion. In Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms
(2009), Society for Industrial and Applied Mathematics, pp. 693–701.

[10] Bansal, N., Kimbrel, T., and Pruhs, K. R. Dynamic speed scaling to manage energy
and temperature. Energy (2004).

[11] Bansal, N., Kimbrel, T., and Pruhs, K. R. Speed scaling to manage energy and tem-
perature. Journal of the ACM (JACM) 54, 1 (Mar. 2007), 3.

[12] Bansal, N., Pruhs, K. R., and Stein, C. Speed scaling for weighted flow time. In
Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms (2007),
vol. pages, Society for Industrial and Applied Mathematics, p. 813.

[13] Chekuri, C., Motwani, R., Natarajan, B., and Stein, C. Approximation Techniques
for Average Completion Time Scheduling. SIAM Journal on Computing 31, 1 (2001), 146.

[14] Goemans, M. X. Improved approximation algorthims for scheduling with release dates.
ACM-SIAM symposium on Discrete algorithms (1997), 591–598.

[15] Goemans, M. X., Queyranne, M., Schulz, A. S., Skutella, M., and Wang, Y. Single
Machine Scheduling with Release Dates. SIAM Journal on Discrete Mathematics 15, 2 (2002),
165.

[16] Graham, R., Lawler, E. L., Lenstra, J. K., and Rinnooy Kan, A. H. G. Optimization
and approximation in deterministic sequencing and scheduling: a survey. Discrete optimization
5 (1979), 287–326.

[17] Hall, L. A., Schulz, A. S., Shmoys, D. B., and Wein, J. Scheduling to Minimize Average
Completion Time : Off-line and On-line Approximation Algorithms. Industrial Engineering
22, 3 (1997), 513–544.

[18] Hall, L. A., Shmoys, D. B., and Wein, J. Scheduling to minimize average completion
time: Off-line and on-line algorithms. Mathematics of Operations Research 22 (1997), 513–544.

[19] Irani, S., and Pruhs, K. R. Algorithmic problems in power management. ACM SIGACT
News 36, 2 (June 2005), 63.

[20] Phillips, C. A., Stein, C., and Wein, J. Minimizing average completion time in the
presence of release dates. Mathematical Programming 82, 1-2 (June 1998), 199–223.

15

Energy Aware Scheduling v.arXiv 4.6 Carrasco, Iyengar, Stein

[21] Pinedo, M. Scheduling: Theory, Algorithms, and Systems, 3rd ed. Springer New York, New
York, NY, 2008.

[22] Pruhs, K. R., Stee, R., and Uthaisombut, P. Speed Scaling of Tasks with Precedence
Constraints. Theory of Computing Systems 43, 1 (Oct. 2007), 67–80.

[23] Pruhs, K. R., Uthaisombut, P., and Woeginger, G. Getting the best response for your
erg. ACM Transactions on Algorithms 4, 3 (June 2008), 1–17.

[24] Skutella, M. List Scheduling in Order of α-Points on a Single Machine, vol. 3484 of Lecture
Notes in Computer Science. Springer Berlin Heidelberg, Berlin, Heidelberg, 2006, pp. 250–291.

[25] Yao, F., Demers, A., and Shenker, S. A scheduling model for reduced CPU energy. In
Proceedings of IEEE 36th Annual Foundations of Computer Science (1995), IEEE Comput.
Soc. Press, pp. 374–382.

16

	1 Introduction
	1.1 Our results
	1.2 Our Methodology

	2 Problem Formulation
	2.1 Problem Setting
	2.2 Interval-Indexed Formulation

	3 Approximation Algorithm for Weighted Completion Time
	3.1 Single Machine Problem with Precedence Constraints
	3.2 Single Machine Problem with Precedence and Release Date Constraints

	4 Extension to the Weighted Tardiness Problem
	5 Extension to General Energy Cost Functions
	5.1 Weighted Completion Time Problem with General Energy Cost
	5.2 Weighted Tardiness Problem with General Energy Cost
	5.3 Continuous Speeds

	6 Conclusion

