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Abstract

This paper introduces a very general discrete covering location model that accounts for

uncertainty and time-dependent aspects. A MILP formulation is proposed for the problem.

Afterwards, it is observed that most of the models existing in the literature related with covering

location can be considered as particular cases of this formulation. In order to tackle large

instances of this problem a Lagrangian relaxation based heuristic is developed. A computational

study is addressed to check the potentials and limits of the formulation and some variants

proposed for the problem, as well as to evaluate the heuristic. Finally, different measures to

report the relevance of considering a multi-period stochastic setting are studied.

Keywords: Location, covering, discrete optimization, multi-period facility location, Lagrangian

relaxation

1 Introduction

A covering location problem consists of deciding where to locate a set of facilities/equipments in such

a way that a set of demand points can be reached or served within some previously defined time or

distance; in that case, a demand point is referred to as covered. When the set of potential locations

for the facilities is discrete, we are facing a discrete covering location problem. This is the case

we focus in this work. Some reviews of covering location problems can be found in Schilling et al.

[1993], Berman et al. [2010], Snyder [2011], Farahani et al. [2012], and Garćıa and Maŕın [2015].
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Like for many other problems, the use of optimization techniques in the context of covering

facility location calls for an a priori development of mathematical models. In this respect, two main

modeling frameworks can be found in the literature depending on the objective of the problem:

the set covering location problem (SCP) and the maximal covering location problem (MCLP).

The former was initially introduced by Toregas et al. [1971] and aims at minimizing the total cost

associated with the installed facilities that guarantees the coverage of all demand points. The latter

was initially proposed by Church and ReVelle [1974] and consists of locating a certain number of

facilities maximizing the resulting coverage.

One interesting and relevant feature of covering location problems is that they can be applied

to different areas. Such applications often regard the location of emergency or surveillance facilities

such as ambulances, fire fighting bases, or surveillance points. In such a case, by covering the

“demand points” with a set of facilities we are ensuring that a certain response level is guaranteed

upon the occurrence of an event. The SCP has been applied to deployment of emergency services

[Toregas et al., 1971] and to the analysis of markets [Storbeck, 1988]. On the other hand, the

MCLP has been applied, for instance, to cluster and discriminant analysis [Chung, 1986]. Overall,

the flexibility provided by covering location problems explains why they have been deeply studied.

For further details, the reader can refer to the reviews by Schilling et al. [1993] and Caprara et al.

[2000] and to the references therein.

In this paper we aim at bringing further the comprehensiveness of the optimization models

in use when it comes to discrete covering location problems. With this purpose, we extend the

general modeling framework proposed by Garćıa and Maŕın [2015] in order to capture two features

(alone or combined) of practical relevance: time-dependency of aspects such as demand and costs in

addition to the uncertainty that often underlies the parameters of the problem. It is worth noticing

that the model proposed by Garćıa and Maŕın [2015] is already very general since it unifies, among

others, the set covering location problem and the maximal covering location problem. Nevertheless,

the extension we propose in this paper has that unified version as a particular case. We note that

it is not our purpose in this work to study a specific problem that can be directly applied to some

practical situation (although we do not deny that either). Instead, we are investigating a broad

family of problems under a common “umbrella”, i.e., we focus on a general problem that includes

as particular cases many problems of practical relevance. Accordingly, all the developments we

propose are directly applicable to all those particular cases.

We consider a finite planning horizon that is partitioned into several time-periods (not neces-

sarily of the same length). In each period, multiple facilities/equipments can be opened or closed

in each location at the expenses of the corresponding costs. We assume that in each period it is

desirable to cover each customer by at least a certain number of facilities/equipments. If coverage

goes beyond the minimum threshold, some benefit is achieved; otherwise we have a penalty for

uncovered demand. Both the benefits and penalties are assumed to be time-dependent. We also

consider the case in which the demand points covered by each potential location may change over

time. This is relevant since the covering capability of some facilities may depend not only on the
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distance but also on other features such as the traveling time (it is often not the same in the winter

with snow on the roads as in the summer with dry roads), visibility (e.g., in a forest across the

year), aging of equipment rendering less coverage over time, et cetera.

The second relevant feature that we capture in this work is uncertainty. We assume that

uncertainty is associated with the demand for coverage and also with the capability of a facility

to cover the demand points. Moreover, we assume that uncertainty can be captured by a random

vector with a finite support that has a joint probability distribution function known in advance. If

the support of the random vector is not finite, we may have to resort to some sampling (and thus

approximate) method that nonetheless will require the resolution of a problem such as the one we

are considering. Each realization of the underlying random vector will be referred to as a scenario.

In other words, a scenario fully specifies all the uncertain parameters.

With the purpose of gathering time and uncertainty as additional dimensions in covering facility

location we propose a two-stage stochastic programming model. The ex ante or first-stage decisions

are associated with the definition of a location plan to be implemented throughout the planning

horizon. The ex post or second-stage decisions are dependent on how uncertainty is “revealed” and

include the definition of a coverage level for each demand point that, in turn, allows the evaluation

of the corresponding costs. The goal is to minimize the total expected cost, which includes the

cost associated with the facilities (opening/closing/operation) and the total expected penalty for

coverage shortage minus the total benefit for coverage surplus.

As our computational experiments show, hardly can the model we propose be tackled by a

general-purpose solver when it comes to solving medium- or large sized instances. For that reason,

in addition to a contribution in terms of the mathematical model proposed, we develop a Lagrangian

relaxation based heuristic. We handle the Lagrangian dual using subgradient optimization. In each

iteration, a feasible solution for the problem is derived.

When it comes to capturing features such as the existence of time-dependent parameters or

uncertainty, one relevant question is related with the advantages of considering a more complex

optimization model instead of a simplified one (e.g., static or deterministic). An answer can be

given by two distinct measures: the Expected Value of Perfect Information (EVPI), and the Value

of Multi-period Solution (VMS). The first (see for instance, Correia and Saldanha-da-Gama 2015

for a discussion in the context of facility location problems) represents the maximum amount that

the decision maker is willing to pay to get perfect information about the future. The larger the

observed value the more relevant may be to deal with uncertainty. The latter measure was first

introduced by Alumur et al. [2012] and formalized afterwards by Nickel and Saldanha-da-Gama

[2015]. It looks into an approximate static solution and evaluates it in the multi-period model.

By doing so, we get an indication in terms of the relevance of explicitly considering a multi-period

setting.

As it was mentioned above, the model introduced in this work takes as a starting point the

general model proposed by Garćıa and Maŕın [2015]. We refer the reader to that book chapter for

an overview in terms of the existing literature on deterministic and static covering facility location
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problems.

Multi-period problems in the context of covering facility location have been recently revisited by

Seyedhosseini et al. [2016], who included a specific section on dynamic covering location problems.

The authors describe the problems and optimization models existing in the literature such as

those introduced by Gunawardane [1982] and that will also be generalized in the current work.

Additionally, the above-mentioned review paper quotes the works by Gendreau et al. [2001] and

Rajagopalan et al. [2008]. The former proposes a dynamic covering location model for real time

ambulance relocation. The objective is to maximize the proportion of demand covered by at least

two vehicles within a certain radius minus a relocation cost. The latter focuses on ambulance

allocation in certain time clusters to meet some coverage requirements.

Another type of problem in the context of covering location problems is the one proposed by

Colombo et al. [2016], which maximizes the demand coverage given a set of demand points that

require different types of service. Before that, Zarandi et al. [2013] had introduced a multi-period

MCLP. In that problem the number of centers to be opened throughout the entire planning horizon

is restricted.

It must be noted that none of the works cited above address uncertainty in the context of

multi-period covering location problems. To the best of the authors’ knowledge, the only work

doing so is due to Vatsa and Jayaswal [2016], who investigate a multi-period maximal covering

model with server uncertainty. The authors adopt a robust optimization approach. In our case, as

explained before, we are adopting a stochastic programming modeling framework, which allows us

to explicitly embed a probability distribution in our models as a way for capturing uncertainty.

In summary, the contribution of this paper is to provide a very general model of a covering loca-

tion problem capturing uncertainty and time-dependent aspects. This model includes as particular

cases many of the models studied in the literature. In addition, a specific Lagrangian relaxation

based heuristic has been developed for solving medium or large sized instances of this problem.

The remainder of this paper is organized as follows. In Section 2, we provide all the details

related with our general problem and we introduce an optimization model for it. Section 3 is

devoted to the development of a Lagrangian relaxation based heuristic that provides both lower

and upper bounds on the optimal solutions. The numerical experiments conducted with the models

and methodologies proposed in this paper are reported and discussed in Section 4. Finally, the

paper ends with an overview of the work done.

2 Modeling framework

We consider a general multi-period stochastic covering facility location problem. The problem

consists of making a decision for a planning horizon of finite length that is divided into several time

periods. A set of potential locations for the facilities is given as well as a set of demand points that

must be desirably covered throughout the planning horizon. In order to consider a more general

setting, we assume that in each location we can install more than one facility/equipment. However

we consider a limit for the number of facilities in each location and we assume that in each time

4



period there is a limit for the total number of facilities installed across all locations.

It is often the case that we need to make decisions for systems that are already operating. We

consider that this may also be the case and thus we assume that in some locations we may have

some facilities currently operating.

Opening or closing a facility during the planning horizon will suppose the payment of some

costs. Besides, we assume that the opening of a facility always occurs at the beginning of a time

period and the closing always occurs at the end of the period. In addition to that, we consider that

operating a facility also incurs a cost. In what follows, we will claim that a facility is opened at

the beginning of some period t if this facility is not operating in time period t− 1, but it operates

in t. Equivalently, we will claim that a facility is closed at the end of period t if it is operating in t

but it is not in t+ 1.

We assume that uncertainty is associated both with the covering capability of each pair (i, j),

with i denoting a potential facility location and j a demand point, and with the minimum threshold

for the coverage of each demand point in each time period. We consider unit-demand customers,

that is, our goal is simply to define a plan for covering the customers in the best possible way. We

suppose that a benefit (that is also uncertain) is associated with coverage surplus (i.e. the num-

ber of facilities/equipments covering a demand point above a minimum threshold) and a penalty

(again subject to uncertainty) is associated with the coverage shortage (i.e. the number of facili-

ties/equipments in shortage for a demand point with respect to the minimum threshold).

Finally, we consider that uncertainty can be captured by a finite set of scenarios each having a

probability assumed known in advance. Moreover, we consider that one scenario fully specifies all

the stochastic quantities.

The decisions to make are twofold: the first-stage decisions that include the opening/closing

plan for all locations throughout the planning horizon and the second-stage decisions that help

accounting for the total benefit and penalty achieved by the covering plan.

Next, we introduce the relevant notation to be used hereafter.

Sets:

T = {1, . . . , T}, set of periods in the planning horizon.

I = {1, . . . ,m}, set of potential location for the facilities.

J = {1, . . . , n}, set of demand points.

S = {1, . . . , S}, set of scenarios.

Deterministic costs:

oit, cost of opening a facility at i ∈ I at the beginning of time period t ∈ T .

cit, cost of closing a facility at i ∈ I at the end of time period t ∈ T \ {T}.

fit, cost of operating a facility at i ∈ I during period t ∈ T .

Other deterministic parameters:

ei, maximum number of facilities/equipments that can be operating in location i ∈ I.
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pt, maximum number of facilities/equipments that can be operating in time period

t ∈ T .

ȳi0, number of facilities that are open at location i ∈ I before the beginning of the

planning horizon.

Stochastic (scenario-dependent) parameters

asijt, (binary) parameter indicating whether location i ∈ I can cover demand point

j ∈ J in time period t ∈ T under scenario s ∈ S.

bsjt, minimum number of facilities/equipments requested to cover demand point j ∈ J

in period t ∈ T under scenario s ∈ S.

dsjkt, marginal benefit for covering demand point j ∈ J with a surplus of at least k

facilities in period t ∈ T under scenario s ∈ S.

hsjkt, marginal penalty for a shortage of at least k facilities in the coverage of demand

point j ∈ J in period t ∈ T under scenario s ∈ S.

πs, probability that scenario s ∈ S occurs. We assume that πs > 0 for s ∈ S and
∑

s∈S πs = 1.

Auxiliary sets:

Ks
jt = {1, . . . , pt− bsjt}, with pt − bsjt representing the maximum surplus in terms of

coverage that we may observe in demand point j ∈ J in

period t ∈ T under scenario s ∈ S.

K ′s
jt = {1, . . . , bsjt}, with bsjt standing for the maximum shortage in terms of cov-

erage that we may observe in demand point j ∈ J in period

t ∈ T under scenario s ∈ S.

In the model proposed next, we are accounting for the total (expected) cost. Accordingly, the

benefit for coverage surplus will be treated as a negative cost. For this reason, in addition to the

above notation we consider

gsjkt = −dsjkt, the negative marginal cost representing the (marginal) benefit ac-

counted for by dsjkt.

In our work, the costs g and h are being looked at as marginal variations in the cost for having

one extra facility in surplus or shortage. For instance, suppose that at some demand point j in

some period t and scenario s we have a surplus of 2 facilities/equipments. In this case, we assume

the corresponding “cost” to be gsj1t + gsj2t. This means that gsj2t can be looked at as the increase

in the “cost” for going from one to two surplus facilities. If the surplus becomes 3 then the “cost”

would be gsj1t + gsj2t + gsj3t. Hence, an increase of one surplus facility when we have already two

surplus facilities renders an increase in the benefit of gsj3t.

We assume that for each demand point j ∈ J , each period t ∈ T and scenario s ∈ S

gsj1t ≤ gsj2t ≤ . . . ≤ gsj|Ks
jt|t

≤ 0
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and

0 ≤ hsj1t ≤ hsj2t ≤ . . . ≤ hsj|K ′s
jt|t

.

In other words, we are assuming non-increasing marginal benefit (for surplus) and a non-

decreasing marginal penalty (for shortage). We believe that this is the case that holds in practice:

the marginal benefit of having a larger surplus decreases when the number of surplus facilities in-

creases; the marginal penalty for having shortage of facilities increases with the number of facilities

in shortage.

An integer programming model can be presented for our problem considering the following five

sets of decision variables:

zit = Number of facilities opened in site i ∈ I at the beginning of period t ∈ T .

z′it = Number of facilities closed in location i ∈ I at the end of period t ∈ T \ {T}.

yit = Number of facilities operating in location i ∈ I in period t ∈ T .

ws
jkt =





1, if demand point j is covered by at least bsjt + k facilities in period t

and scenario s,

0, otherwise,

with j ∈ J, k ∈ Ks
jt, t ∈ T , s ∈ S.

vsjkt =





1, if demand point j is covered by at most bsjt − k facilities in period t

and scenario s,

0, otherwise,

with j ∈ J, k ∈ K ′s
jt, t ∈ T , s ∈ S.

Finally, we can write the following integer programming model that we denote by

(GMSCLP), i.e, General Multi-period Stochastic Covering Location Problem:

min
∑

i∈I

∑

t∈T

oitzit +
∑

i∈I

∑

t∈T \{T}

citz
′
it +

∑

i∈I

∑

t∈T

fityit

+
∑

s∈S

πs



∑

t∈T

∑

j∈J

∑

k∈Ks
jt

gsjktw
s
jkt +

∑

t∈T

∑

j∈J

∑

k∈K ′s
jt

hsjktv
s
jkt


 (1)

s.t.
∑

i∈I

yit ≤ pt, t ∈ T , (2)

yi1 = zi1 + ȳi0, i ∈ I, (3)

yit = yi,t−1 + zit − z′i,t−1, i ∈ I, t ∈ T \ {1}, (4)
∑

i∈I

asijtyit = bsjt +
∑

k∈Ks
jt

ws
jkt −

∑

k∈K
′s
jt

vsjkt, j ∈ J, t ∈ T , s ∈ S, (5)

ws
j1t + vsj1t ≤ 1, j ∈ J, t ∈ T , s ∈ S, (6)

ws
jkt ≤ ws

j1t, j ∈ J, t ∈ T , s ∈ S, k = 2, . . . , |Ks
jt|, (7)
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vsjkt ≤ vsj1t, j ∈ J, t ∈ T , s ∈ S, k = 2, . . . , |K
′s
jt |, (8)

yit ∈ {0, . . . , ei}, i ∈ I, t ∈ T , (9)

zit ∈ {0, . . . , ei}, i ∈ I, t ∈ T , (10)

z′it ∈ {0, . . . , ei}, i ∈ I, t ∈ T \ {T}, (11)

ws
jkt ∈ {0, 1}, j ∈ J, k ∈ Ks

jt, t ∈ T , s ∈ S, (12)

vsjkt ∈ {0, 1}, j ∈ J, k ∈ K ′s
jt, t ∈ T , s ∈ S. (13)

In this model, the objective function (1) quantifies the total cost for opening, closing and

operating the facilities (first line) plus the total expected benefit plus penalty associated with the

actual coverage of the demand points. Constraints (2) restrict the number of operating centers to

pt, for each t ∈ T and constraints (3)–(4) establish the relationship between y -, z- and z′-variables.

From a stochastic programming point of view, the above constraints together with the domain

constraints (9)–(11) are actually the so-called first-stage constraints in the sense that they only

relate the first-stage decision variables. The left hand side of constraints (5) accounts the number

of open facilities that cover a given customer j in a given scenario s and period t; then the right

hand side of the equality aims to compare this amount with the minimum request bsjt, in order to

ensure that both the v- and w-variables take their correct values. Additional constraints (6)–(8)

are required to make either all the v-variables or all the w-variables (or all of them) take value 0.

The fact that the costs gsjkt (respectively hsjkt) are increasingly sorted guarantees the correctness of

the solution. Finally, constraints (9)–(13) define the domain of the decision variables.

Using the standard terminology in Stochastic Programming (see, e.g., Birge and Louveaux

2011) the above model is the so-called extensive form of the deterministic equivalent since we

are explicitly considering a (deterministic) model that gathers the first-stage decision and the

second stage decision for every possible scenario (the scenarios are extensively considered). In

practice, only one second stage decision (out of all found by the model) is implemented—the one

corresponding to the scenario eventually observed.

A close look into the decision variables shows that we can write the y-variables as function of

the z- and z′-variables. In fact, we have:

yit = ȳi0 +
t∑

τ=1

ziτ −
t−1∑

τ=1

z′iτ , i ∈ I, t ∈ T .

Accordingly, we can derive the following alternative model that we denote by (GMSCLP′):

min
∑

i∈I

∑

t∈T

oitzit +
∑

i∈I

∑

t∈T \{T}

citz
′
it +

∑

i∈I

∑

t∈T

fit

[
ȳi0 +

t∑

τ=1

ziτ −
t−1∑

τ=1

z′iτ

]

+
∑

s∈S

πs



∑

t∈T

∑

j∈J

∑

k∈Ks
jt

gsjktw
s
jkt +

∑

t∈T

∑

j∈J

∑

k∈K
′s
jt

hsjktv
s
jkt


 (14)

s.t. (6)− (8), (10)− (13),
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∑

i∈I

(
t∑

τ=1

ziτ −
t−1∑

τ=1

z′iτ

)
≤ pt −

∑

i∈I

ȳi0, t ∈ T , (15)

∑

i∈I

asijt

(
ȳi0 +

t∑

τ=1

ziτ −
t−1∑

τ=1

z′iτ

)
=

= bsjt +
∑

k∈Ks
jt

ws
jkt −

∑

k∈K ′s
jt

vsjkt, j ∈ J, t ∈ T , s ∈ S, (16)

ȳi0 +

t∑

τ=1

ziτ −
t−1∑

τ=1

z′iτ ≤ ei, i ∈ I, t ∈ T , (17)

ȳi0 +

t∑

τ=1

ziτ −
t−1∑

τ=1

z′iτ ≥ 0, i ∈ I, t ∈ T . (18)

Equivalently, the objective function can be expressed as:

∑

i∈I

∑

t∈T

(
oit +

T∑

τ=t

fiτ

)
zit +

∑

i∈I

∑

t∈T \{T}

(
cit −

T∑

τ=t+1

fiτ

)
z′it +

∑

i∈I

∑

t∈T

fitȳi0

+
∑

s∈S

πs



∑

t∈T

∑

j∈J

∑

k∈Ks
jt

gsjktw
s
jkt +

∑

t∈T

∑

j∈J

∑

k∈K ′s
jt

hsjktv
s
jkt


 .

Remark 2.1 It is worth noticing that constraints (6)–(8) can be replaced by other sets of con-

straints, such as

∑

k∈Ks
jt

ws
jkt ≤ (1− vsj1t)(pt − bsjt), j ∈ J, t ∈ T , s ∈ S, (19)

vsjkt ≤ vsj1t, j ∈ J, t ∈ T , s ∈ S, k = 2, . . . , |K ′s
jt|. (20)

or alternatively

∑

k∈K
′s
jt

vsjkt ≤ (1− ws
j1t)b

s
jt, j ∈ J, t ∈ T , s ∈ S, (21)

ws
jkt ≤ ws

j1t, j ∈ J, t ∈ T , s ∈ S, k = 2, . . . , |Ks
jt|. (22)

These two sets of constraints are weaker than (6)–(8). In fact, (19) can be obtained from the

aggregated version of constraints (7) by summing up k and, by (6), replacing the resulting right-

hand side, i.e., (pt − bsjt)w
s
j1t by (pt − bsjt)(1− vsj1t). Analogously we can argue for (21). Moreover,

the two sets of constraints together with (7) and (8) respectively, analogously to (6)– (8), make

either the v-variables or the w-variables (or all of them) take value 0. However, the number of

constraints they involve is smaller. We have addressed preliminary computations showing that

constraints (19)–(20) and (21)–(22) are ineffective regarding CPU times and, as expected, in terms

of the linear relaxation bounds.

�
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2.1 The particular cases

Although an extensive literature can be found on covering location problems, not many works

focus a multi-period or stochastic nature that some of these problems may have. In this section

we describe how the model (GMSCLP) generalizes most of the models presented in the literature,

which shows the generality of the modeling framework we have just proposed.

Since model (GMSCLP) was built upon the deterministic and static (single-period) case (COV)

proposed by Garćıa and Maŕın [2015], it immediately generalizes that model as well as all the

particular cases found in that book chapter, such as the SCP, the weighted SCP, the redundant

covering location problem, et cetera.

Model (GMSCLP) reduces to the model (COV) from Garćıa and Maŕın [2015] if we set T = {1},

S = {1}, π1 = 1, and ȳi0 = 0 for i ∈ I. In this case, z- and z′- variables are not necessary; only

y-variables are needed to decide whether some facilities are opened in location i or not. Specifically,

the parameters that adapt our formulation to (COV) are:

oi1 = 0, ci1 = 0, fi1 = fi, for i ∈ I; p1 = p;

b1j1 = bj , K
1
j1 = Kj ;

g1jk1 = gjk for j ∈ J, k ∈ K1
j1 = Kj for j ∈ J ; and

K
′1
j1 = ∅ for j ∈ J .

Additionally, we note that model (COV) does not capture the case in which a demand point j

is covered by less than bj facilities. Consequently, we have that K ′
j = ∅ for j ∈ J and h vector is

not considered in this model.

Concerning existing multi-period covering facility location problems, we have already quoted

the paper by Gunawardane [1982], where different problems and models are investigated. Our

general formulation also generalizes the models proposed in that work as we show next.

Since all the problems studied in the above-mentioned paper are deterministic, they can be

looked at as single-scenario problems, i.e, we have S = {1} with π1 = 1. Thus, for the sake of

simplicity in terms of notation, in the following particularizations, index s is omitted.

To start with, it is important to note that if we take Kjt = K
′

jt = ∅, then we can replace the

equalities in constraints (5) by inequalities yielding

∑

i∈I

aijtyit ≥ bjt, j ∈ J, t ∈ T . (23)

In some of the models proposed by Gunawardane [1982], facilities cannot be closed during the

planning horizon. This can be handled in our model by assigning a very large value (M) to the

closing costs (cit). In this way, we ensure that facilities can only be opened during the planning

horizon. Similarly, when centers cannot be opened, the same value M is assigned to opening costs

(oit).

Next, we detail how our model can be particularized to get the most general multi-period models

proposed by Gunawardane [1982].

• GDSCLP—General Dynamic Set Covering Location Problem.

10



For this problem, in some (empty) potential locations (Io ⊂ I) we can open facilities during

the planning horizon; in the other locations (Ic ⊂ I) we have a facility operating that can be

closed during the planning horizon. These two sets do not overlap. For each t ∈ T , a subset

of customers Jt ⊂ J must be covered.

To adapt model (GMSCLP) we can remove w- and v-variables. Constraints (5) are replaced

by constraints (23). For the remaining parameters we set: Kjt = K ′
jt = ∅, fit = 1, pt = m,

ei = 1, for i ∈ I, j ∈ J , t ∈ T . Besides, oit = M for i ∈ Ic and oit=0 otherwise for t ∈ T .

Similarly, cit = M for i ∈ Io and cit = 0 otherwise. Finally, bjt = 1 for j ∈ Jt, t ∈ T and

bjt = 0 for j /∈ Jt, t ∈ T .

• DMCLP2—Dynamic Maximum Covering Location Problem 2.

This problem is a multi-period maximum covering location problem which minimizes the

weighted sum of demand points that are not covered in each time period plus the opening

and closing costs in each period. Each weight (γjt) is the cost of demand point j when it is

not covered in period t. In this case, the facilities can be opened or closed during the planning

horizon.

To model this problem using our general formulation we set Kjt = {1} and gj1t = γjt for

j ∈ J , t ∈ T . Constraints (5) are replaced by

∑

i∈I

aijtyit ≥ wj1t, j ∈ J, t ∈ T . (24)

For the remaining parameters, oit = ot, cit = ct, fit = 0, K ′
jt = ∅, pt = pt, bjt = 0 and ei = 1

for i ∈ I, j ∈ J , t ∈ T . To obtain the same objective value as in the original model, constant

−
∑

j∈J

∑
t∈T gj1t must be added to the objective value.

In tables 13 and 14 of the Appendix we summarize the constraints and parameters, respectively,

used to adapt (GMSCLP) to the models described above. We also include in the Appendix the

analysis of the remaining models proposed in Gunawardane [1982].

The general problem we are investigating in this work is NP-hard since it contains as special

cases some well-known NP-hard problems (e.g. the MCLP—see Megiddo et al. 1983). As our

computational experiments reported in Section 4 show, only for small instances of the problem

can we expect a general-purpose solver to be effective for tackling them. This motivates the

developments we propose next.

3 A Lagrangian relaxation based procedure

In this section we develop a Lagrangian relaxation based algorithm for finding (hopefully) high

quality feasible solutions to the general problem introduced in the previous section.

In the methodological developments proposed in this section, we consider model (GMSCLP′).

In particular, we note that y-variables will not be used.

11



We start by relaxing the covering constraints (16) in a Lagrangian fashion by considering mul-

tipliers αs
jt ∈ R. By doing so, we obtain the following relaxed problem, defined for each vector α

that we denote by (LRα),

min
∑

i∈I

∑

t∈T

(
oit +

T∑

τ=t

fiτ

)
zit +

∑

i∈I

∑

t∈T \{T}

(
cit −

T∑

τ=t+1

fiτ

)
z′it +

∑

i∈I

∑

t∈T

fitȳi0 +
∑

s∈S

πs



∑

t∈T

∑

j∈J

∑

k∈Ks
jt

gsjktw
s
jkt +

∑

t∈T

∑

j∈J

∑

k∈K
′s
jt

hsjktv
s
jkt


+

∑

j∈J

∑

t∈T

∑

s∈S

αs
jt

(
∑

i∈I

asijt

(
ȳi0 +

t∑

τ=1

ziτ −
t−1∑

τ=1

z′iτ

))
+

∑

j∈J

∑

t∈T

∑

s∈S

αs
jt


−bsjt −

∑

k∈Ks
jt

ws
jkt +

∑

k∈K
′s
jt

vsjkt




s.t. (6)− (8), (10)− (13), (15), (17), (18).

In turn, this model can be split in two subproblems, denoted by (LR1α) and (LR2α) as follows:

(LR1α) min
∑

i∈I

∑

t∈T


oit +

T∑

τ=t

(fiτ +
∑

j∈J

∑

s∈S

αs
jτa

s
ijτ )


 zit +

∑

i∈I

∑

t∈T \{T}


cit −

T∑

τ=t+1

(fiτ +
∑

j∈J

∑

s∈S

αs
jτa

s
ijτ )


 z′it +

∑

i∈I

∑

t∈T

(fit +
∑

j∈J

∑

s∈S

αs
jta

s
ijt)ȳi0

s.t. (10), (11), (15), (17), (18).

(LR2α) min
∑

j∈J

∑

t∈T

∑

s∈S

∑

k∈Ks
jt

(πsg
s
jkt − αs

jt)w
s
jkt +

∑

j∈J

∑

t∈T

∑

s∈S

∑

k∈K
′s
jt

(πsh
s
jkt + αs

jt)v
s
jkt

−
∑

j∈J

∑

t∈T

∑

s∈S

αs
jtb

s
jt

s.t. (6)− (8), (12), (13).

The subproblem (LR1α) has the integrality property, as shown next. As a consequence, the

linear programming relaxation yields the optimal objective value of this subproblem.

Proposition 3.1 Subproblem (LR1α) has the integrality property.

Proof: To prove this result, we show that coefficient matrix of constraints for (LR1α), denoted by

12



A, is totally unimodular (TU). The matrix form of this problem is given by

B1 {

B2





B3








T T . . . T −T′ −T′ . . . −T′

T Θ . . . Θ −T′ Θ′ . . . Θ′

Θ T . . . Θ Θ′ −T′ . . . Θ′

...
...

. . .
...

...
...

. . .
...

Θ Θ . . . T Θ′ Θ′ . . . −T′

−T Θ . . . Θ T′ Θ′ . . . Θ′

Θ −T . . . Θ Θ′ T′ . . . Θ′

...
...

. . .
...

...
...

. . .
...

Θ Θ . . . −T Θ′ Θ′ . . . T′







z1

z2
...

zm

z′1

z′2
...

z′m




6




p

e′1

e′2
...

e′m

y′
1

y′
2

...

y′
m




where

• T =

1

2

3
...

T

1 2 3 . . . T


1 0 0 . . . 0

1 1 0 . . . 0

1 1 1 . . . 0
...

...
...

. . .
...

1 1 1 . . . 1




, T′ =

1

2

3
...

T

1 2 3 . . . T − 1


0 0 0 . . . 0

1 0 0 . . . 0

1 1 0 . . . 0
...

...
...

. . .
...

1 1 1 . . . 1




.

• Θ and Θ′ are T × T and T × (T − 1) null matrices, respectively.

• zi =




zi1
...

ziT


 for i ∈ I, z′i =




z′i1
...

z′iT


 for i ∈ I, p =




p1 −
∑

i∈I ȳi0
...

pT −
∑

i∈I ȳi0


 integer.

• e′i =




ei − ȳi0
...

ei − ȳi0


 is a vector of T integer components with identical value for i ∈ I.

• y′
i =




ȳi0
...

ȳi0


 is a vector of T integer components with identical value for i ∈ I.

Observe that row-block B1 is related with the family of constraints (15), B2 with (17) and B3

with (18). In order to prove that A is TU, applying Prop. 2.1 in Nemhauser and Wolsey [1999],

we can remove the row-block B3 because it may be obtained by duplicating the row-block B2 and

multiplying all its elements by −1.
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Furthermore, T = (1|T′) where 1 is a column vector of T components with value 1. Conse-

quently, matrix 


−T′ −T′ . . . −T′

−T′ Θ′ . . . Θ′

Θ′ −T′ . . . Θ′

...
...

. . .
...

Θ′ Θ′ . . . −T′




is the result of multiplying by −1 matrix

A′ = (a′ij) =




T T . . . T

T Θ . . . Θ

Θ T . . . Θ
...

...
. . .

...

Θ Θ . . . T




}A′
0 = {1, . . . , T}

}A′
1 = {T + 1, . . . , 2T}

}A′
2 = {2T + 1, . . . , 3T}

...

}A′
m = {mT + 1, . . . , (m+ 1)T}

and removing columns 1,m+ 1, . . . , (T − 1)m+ 1.

Therefore, in order to conclude the proof of this proposition it is only needed to prove that A′

is TU.

By [Nemhauser and Wolsey, 1999, Theorem 2.7], A′ is TU if and only if for every subset R of

rows of A′ it is possible to find a partition R = R1 ∪R2 such that
∣∣∣∣∣∣

∑

i∈R1

a′ij −
∑

i∈R2

a′ij

∣∣∣∣∣∣
≤ 1, for each column j of A′.

Let R = R′
0 ∪ . . . ∪ R′

m be a subset of rows of A′, such that R′
i =

{
ki1, . . . , ki|R′

i|

}
⊆ A′

i :=

{iT + 1, . . . , (i+ 1)T} for i ∈ {0, . . . ,m}, with kij ≤ ki,j+1 for j ∈ {1, . . . , |R′
i| − 1}. Let

R′′
i = {kij ∈ R′

i : with j even},

R′′′
i = {kij ∈ R′

i : with j odd}.

Note that it can be the case that R′
i = R′′

i = R′′′
i = ∅ for some values of i.

We have then that, for every i = 0, . . . ,m and every column j of A′, vector (a′ℓj)ℓ∈R′
i
will have

one of the shapes (0, . . . , 0), (0, . . . , 0, 1, . . . , 1) or (1, . . . , 1). The first case is trivial, thus we will

restrict out attention to the second and third cases. Let fij be the position of the first 1 in these

types of vectors. If fij is odd, the sum
∑

ℓ∈R′′′
i

a′ℓj −
∑

ℓ∈R′′
i

a′ℓj (25)

will take value 1 if the number of addends (given by |R′
i|) is odd or 0 if |R′

i| is even. Similarly, if

fij is even, (25) will take value -1 if |R′
i| is even and 0 if |R′

i| is odd. Therefore

∑

ℓ∈R′′′
i

a′ℓj −
∑

ℓ∈R′′
i

a′ℓj ∈





{−1, 0} if |R′
i| is even,

{0, 1} if |R′
i| is odd.

(26)
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Hence, consider the following partition,

R1 = R′′′
0 ∪

m⋃

i=1

|R′
0
|+|R′

i
| even

R′′
i ∪

m⋃

i=1

|R′
0
|+|R′

i
| odd

R′′′
i ,

R2 = R′′
0 ∪

m⋃

i=1,

|R′
0
|+|R′

i
| even

R′′′
i ∪

m⋃

i=1

|R′
0
|+|R′

i
| odd

R′′
i .

In order to get the value of the sum

∑

ℓ∈R1

a′ℓj −
∑

ℓ∈R2

a′ℓj (27)

for a given column j of A′, we observe that all the 1s in a given column j will correspond to only

two row-blocks: R′
0 and any other R′

s. We distinguish four cases:

|R′
0| is even and |R′s| is even. In this case R1 = R′′′

0 ∪ R′′
s , R2 = R′′

0 ∪ R′′′
s and (27) can be

calculated as

(
∑

ℓ∈R′′′
0

a′ℓj −
∑

ℓ∈R′′
0

a′ℓj)− (
∑

ℓ∈R′′′
s

a′ℓj −
∑

ℓ∈R′′
s

a′ℓj).

Using (26), the contribution of both blocks will be 0 or -1. Hence, the difference will be then

in the set {−1, 0, 1}.

|R′
0| is even and |R′s| is odd. In this case R1 = R′′′

0 ∪R′′′
s , R2 = R′′

0 ∪R′′
s and (27) is

(
∑

ℓ∈R′′′
0

a′ℓj −
∑

ℓ∈R′′
0

a′ℓj) + (
∑

ℓ∈R′′′
s

a′ℓj −
∑

ℓ∈R′′
s

a′ℓj).

Using (26), the contribution of block R′
0 (respectively R′

s) will be 0 or -1 (resp. 0 or 1). Hence,

the sum will be then in the set {−1, 0, 1}.

|R′
0| is odd and |R′s| is even. In this case R1 = R′′′

0 ∪ R′′′
s , R2 = R′′

0 ∪ R′′
s and the reasoning of

the previous case can be applied.

|R′
0| is odd and |R′s| is odd. In this case R1 = R′′′

0 ∪R′′
s , R2 = R′′

0 ∪R′′′
s and the situation is like

in the first case.

Therefore,

−1 ≤
∑

ℓ∈R1

a′ℓj −
∑

ℓ∈R2

a′ℓj ≤ 1,

and the result follows. �

As far as subproblem (LR2α) is concerned, we first observe that it can be decomposed in such

a way that a subproblem is obtained for each j ∈ J , t ∈ T , s ∈ S as follows:

min
∑

k∈Ks
jt

(πsg
s
jkt − αs

jt)w
s
jkt +

∑

k∈K ′s
jt

(πsh
s
jkt + αs

jt)v
s
jkt − αs

jtb
s
jt, (28)
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s.t. ws
j1t + vsj1t ≤ 1, (29)

ws
jkt ≤ ws

j1t, k ∈ Ks
jt, (30)

vsjkt ≤ vsj1t, k ∈ K
′s
jt , (31)

ws
jkt ∈ {0, 1}, k ∈ Ks

jt, (32)

vsjkt ∈ {0, 1}, k ∈ K
′s
jt . (33)

In the following proposition we show that the integrality constraints (32) and (33) can be

removed from the subproblem.

Proposition 3.2 The matrix of coefficients of constraints of subproblem (28)–(33) is TU.

Proof: For j ∈ J , t ∈ T , s ∈ S, linear constraints (29)–(31) can be represented as follows:

C1︷ ︸︸ ︷


1 0 0 . . . 0

−1 1 0 . . . 0

−1 0 1 . . . 0
...

...
...

. . .
...

−1 0 0 . . . 1

0 0 0 . . . 0

0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0

C2︷ ︸︸ ︷
1 0 0 . . . 0

0 0 0 . . . 0

0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0

−1 1 0 . . . 0

−1 0 1 . . . 0
...

...
...

. . .
...

−1 0 0 . . . 1







ws
j1t

ws
j2t

ws
j3t

...

ws
j|Ks

jt|t

vsj1t

vsj2t

vsj3t
...

vsj|K ′s
jt|t




6




1

0

0
...

0

0

0
...

0




.

We observe that each row of the coefficients matrix contains at most two nonzero elements. Besides,

the columns of the matrix can be partitioned in two sets C1 and C2 such that two nonzero elements

in a row are in the same set of columns if they have different signs, and in different sets of columns

if they have the same sign. Since this property holds, by [Nemhauser and Wolsey, 1999, Corollary

2.8] the matrix is TU. �

Besides being decomposable and having the unimodularity property, subproblem (LR2α) can

be solved by inspection. To this end we note that, due to constraints (29)–(31), in the optimal

solution to any of the subproblems, w-variables and v-variables cannot take value one simultane-

ously. Instead, w-variables (v-variables) will take value one if the sum of the negative coefficients

associated with w-variables (v-variables) is the smallest one among both. For a fixed value of j, t

and s, we will take into account the following aspects:

(i) For every k ∈ Ks
jt, πsg

s
jkt − αs

jt < 0 if gsjkt <
αs
jt

πs
. Since the last quotient does not depend on

j and parameters gsjkt are sorted increasingly, if
αs
jt

πs
< gsj|Ks

jt|t
we will denote by ℓ the index

such that
αs
jt

πs
∈ (gsjℓt, g

s
j,ℓ+1,t]; otherwise, we will take ℓ = |Ks

jt|.
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Then, the binary values of the w-variables that provide the lowest value of

∑

k∈Ks
jt

(πsg
s
jkt − αs

jt)w
s
jkt

are:

ws
j1t = . . . = ws

jℓt = 1, ws
j,ℓ+1,t = . . . = ws

j|Ks
jt|t

= 0, if
αs
jt

πs
< gsj|Ks

jt|t
,

and

ws
j1t = . . . = ws

j|Ks
jt|t

= 1, otherwise .

(2) Analogously, the binary values of the v-variables that provide the lowest value of

∑

k∈K
′s
jt

(πsh
s
jkt + αs

jt)v
s
jkt

are

vsjkt = . . . = vsjℓ′t = 1, vsj,ℓ′+1,t = . . . = vsj|K ′s
jt|t

= 0, if
−αs

jt

πs
< hsj|K ′s

jt|t
,

and

vsjkt = . . . = vsj|K ′s
jt|t

= 1, otherwise,

where ℓ′ denotes the index such that
−αs

jt

πs
∈ (hsjℓt, h

s
j,ℓ+1,t].

Hence, each of the above subproblems can be solved straightforwardly as follows (we keep

assuming j, t and s fixed in J , T and S, respectively):

We compare
∑

k≤ℓ(πsg
s
jkt − αs

jt) and
∑

k≤ℓ′(πsh
s
jkt + αs

jt). Then,

If
∑

k≤ℓ(πsg
s
jkt − αs

jt) ≤ min{0,
∑

k≤ℓ′(πsh
s
jkt + αs

jt)} we set

w∗s
j1t = . . . = w∗s

jℓt = 1, w∗s
j,ℓ+1,t = . . . = w∗s

j|Ks
jt|t

= 0, if ℓ < |Ks
jt|;

w∗s
j1t = . . . = w∗s

j|Ks
jt|t

= 1, if ℓ = |Ks
jt| :

v∗sjkt = 0, k ∈ K
′s
jt.

If min{0,
∑

k≤ℓ(πsg
s
jkt − αs

jt)} >
∑

k≤ℓ′(πsh
s
jkt + αs

jt), we set

v∗sj1t = . . . = v∗sjℓ′t = 1, v∗sj,ℓ′+1,t = . . . = v∗sj|K ′s
jt|t

= 0, if ℓ′ < |K ′s
jt|;

v∗sj1t = . . . = v∗sj|K ′s
jt|t

= 1, if ℓ′ = |K ′s
jt|;

w∗s
jkt = 0, k ∈ Ks

jt.

If
∑

k≤ℓ(πsg
s
jkt − αs

jt) > 0 and
∑

k≤ℓ′(πsh
s
jkt + αs

jt) > 0, we set

w∗s
jkt = 0, k ∈ Ks

jt,

v∗sjkt = 0, k ∈ K
′s
jt.
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Finally, a solution to (LR2α) is obtained also straightforwardly by considering all the solutions

found above for all subproblems induced by j ∈ J , t ∈ T and s ∈ S. The optimal value of

subproblem (LR2α) is the sum of the optimal values of all such subproblems.

All the developments just presented show that the relaxed problem has the integrality property

and thus the lower bound provided by our Lagrangian relaxation will not improve the lower bound

provided by the linear relaxation of model (GMSCLP′). In other words, we are actually working

with the Lagrangian relaxation of the linear relaxation of (GMSCLP′). However, we can use the

solutions provided by subproblems (LR1α) and (LR2α) to obtain sharp upper bounds to model

(GMSCLP′).

3.1 Deriving feasible solutions to (GMSCLP′)

Let us denote by {z∗, z′∗} an integer optimal solution to (LR1α) for some α. We note that such an

integer solution can be easily obtained by solving (LR1α), for instance, using the Simplex method.

Indeed, since the coefficients matrix associated with (LR1α) is TU, this method guarantees that

the obtained optimal solution is integer.

If we fix these variables in the original model (GMSCLP′) the latter can be decoupled according

to the different demand points, time periods and scenarios. Therefore, for every j ∈ J , t ∈ T , and

s ∈ S we can formulate the problem UB(z∗, z′∗)jts that consists of finding the optimal values of

variables w and v as follows:

(UB(z∗, z′∗)jts)

min
∑

k∈Ks
jt

πsg
s
jktw

s
jkt +

∑

k∈K ′s
jt

πsh
s
jktv

s
jkt

s.t.
∑

k∈Ks
jt

ws
jkt −

∑

k∈K ′s
jt

vsjkt = Mjts

ws
j1t + vsj1t ≤ 1,

ws
jkt ≤ ws

j1t, k ∈ Ks
jt

vsjkt ≤ vsj1t, k ∈ K ′s
jt,

ws
jkt ∈ {0, 1}, k ∈ Ks

jt,

vsjkt ∈ {0, 1}, k ∈ K ′s
jt,

where Mjts :=
∑

i∈I a
s
ijt

(
ȳi0 +

∑t
τ=1 z

∗
iτ −

∑t−1
τ=1 z

′∗
iτ

)
−bsjt. It is important to remark that problem

(UB(z∗, z′∗)jts) is always feasible. In fact, taking (15) into account as well as the binary nature of

the parameters asijt we know that

0 ≤
∑

i∈I

asijt

(
ȳi0 +

t∑

τ=1

z∗iτ −
t−1∑

τ=1

z′∗iτ

)
≤ pt,

thus, Mjts is within the variation range of
∑

k∈Ks
jt
ws
jkt −

∑
k∈K ′s

jt
vsjkt. For instance, if we consider

the extreme case Mjts = pt− bsjt, the solution will be w̃s
jkt = 1 for k ∈ Ks

jt and ṽsjkt = 0 for k ∈ K ′s
jt;
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in the other extreme we would have Mjts = −bsjt, and the corresponding solution would be ṽsjkt = 1

for k ∈ K ′s
jt and w̃s

jkt = 0 for k ∈ Ks
jt.

In general, for every j ∈ J , t ∈ T , s ∈ S,

if Mjts < 0, the optimal solution to (UB(z∗, z′∗)jts) is

w̃s
jkt = 0, k ∈ Ks

jt;

ṽsjkt = 1, k ≤ −Mjts;

ṽsjkt = 0, k > −Mjts;

if Mjts > 0, then the optimal solution becomes

ṽsjkt = 0, k ∈ K
′s
jt ;

w̃s
jkt = 1, k ≤ Mjts;

w̃s
jkt = 0, k > Mjts;

if Mjts = 0, then

w̃s
jkt = 0, k ∈ Ks

jt;

ṽsjkt = 0, k ∈ K
′s
jt .

Hence, the optimal value of (UB(z∗, z′∗)jts) is
∑Mjts

k=1 πsh
s
jkt if Mjts < 0 and

∑Mjts

k=1 πsg
s
jkt,

otherwise.

Combining the optimal solutions to the above subproblems we end up with an upper bound on

the optimal value of model (GMSCLP′) that can be computed in the following way:

∑

i∈I

∑

t∈T

(
oit +

T∑

τ=t

fiτ

)
z∗it +

∑

i∈I

∑

t∈T \{T}

(
cit −

T∑

τ=t+1

fiτ

)
z
′∗
it

+
∑

i∈I

∑

t∈T

fitȳi0 +
∑

j∈J

∑

t∈T

∑

s∈S

V(UB(z∗, z′∗)jts), (34)

where V(UB(z∗, z′∗)jts) denotes the optimal value of subproblem UB(z∗, z′∗)jts.

3.2 Optimizing the Lagrangian dual

We have now a mechanism for solving the Lagrangian relaxed problem for some vector of multipliers

as well as a procedure for deriving feasible solutions to the problem.

Our goal when using the Lagrangian relaxation is to optimize the Lagrangian dual, i.e., to solve

max
α

V(LRα),

where V(LRα) denotes the optimal value of (LRα). This can be accomplished by using the subgra-

dient method [see, for instance, Guignard, 2003]. This is an iterative procedure such that in each

iteration κ we obtain a new vector of multipliers that we denote by α[κ], whose generic component

is αs
jt[κ], j ∈ J , t ∈ T , s ∈ S.
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We initialize the process by setting αs
jt[0] = 0, j ∈ J , t ∈ T , s ∈ S. Then, we obtain an initial

lower bound, LB, by solving subproblems (LR1α[0]) and (LR2α[0]), and we obtain an initial upper

bound, UB, by solving the corresponding subproblems UB(z∗, z′∗)jts.

In each generic iteration κ, subproblem (LR1α[κ]) is solved yielding an objective function value of

V(LR1α[κ]). Subproblem (LR2α[κ]) is also solved rendering an objective function value of LR2α[κ].

Hence, in each iteration κ, the lower bound produced is LB[κ] = V(LR1α[κ]) + V(LR2α[κ]). If

LB[κ] > LB then, LB is set equal to LB[κ].

To obtain an upper bound in an iteration κ, subproblems UB(z∗, z′∗)jts (j ∈ J , t ∈ T , s ∈ S)

are solved using the values of z and z′ variables obtained from LR1α[κ]. The solutions of these

subproblems render a feasible solution to (GMSCLP′) that can be evaluated using (34). If this

value is smaller than the incumbent best upper bound then the latter is replaced by the former.

Finally, in each iteration, the Lagrangian multipliers are updated according to

αs
jt[κ+ 1] = αs

jt[κ] + ε[κ] ·
UB − LB[κ]

||γ[κ]||2
· γ[κ],

where

γ[κ] =
∑

i∈I

asijt

(
ȳi0 +

t∑

τ=1

z∗iτ −
t−1∑

τ=1

z′∗iτ

)
− bsjt −

∑

k∈Ks
jt

w∗s
jkt +

∑

k∈K
′s
jt

v∗sjkt.

In the expression of γ[κ] an ‘*’ next to a variable indicates the optimal value of the variable obtained

in iteration κ.

It must be noted that ε[κ] is a “step” parameter to be changed during the procedure. In the

numerical results section we provide the implementation details.

4 Numerical experiments

In this section we report and discuss the numerical experiments conducted to evaluate the models

and methodological developments proposed in the previous sections.

4.1 Data generation

In order to perform the numerical experiments we coded an instance generator for obtaining the

test instances.

We generated instances assuming that the location of the customers define the potential location

for the facilities. Accordingly, we assumed |I| = |J |. For these cardinalities we considered the values

5, 10, 30, 50 and 100. Additionally, we assumed T = S = 3, that is, 3 periods in the planning

horizon and 3 scenarios for capturing the uncertainty.

For every value of |I| = |J | we have generated 5 instances according to the following method-

ology:

• Each demand point is generated as a random point in the rectangle [0, 10] × [0, 50]. As

mentioned above, such point also defines a potential location for the facilities.
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• For every i ∈ I and t ∈ T the opening, closing and operating costs (oit, cit, fit) are randomly

generated according to a continuous uniform distribution in [1,10].

• For every i ∈ I, j ∈ J , t ∈ T , s ∈ S, the covering capability asijt is obtained as follows:

– First set a radius r = 8. Afterwards, for i ∈ I, j ∈ J , s ∈ S, we set asij1 = 1 if dij ≤ r,

where dij denotes the Euclidean distance between points i and j.

– For the remaining periods we consider that the distance covered by a possible location

is decreasing. This is accomplished by decreasing r by 20% from one period to the

following one.

In any case, for every t = 2, . . . , T we set again asijt = 1 for s ∈ S if dij ≤ r.

– Since we want the covering capabilities asijt also to depend on the scenarios, the above

values asijt are then modified as follows:

For every scenario s ∈ S we randomly select a number of locations given by

round(0.2 × m) and set asijt = 0, i ∈ I0, j ∈ J , t ∈ T . I0 denotes the set of

locations selected.

• For every j ∈ J , t ∈ T , and s ∈ S we set bsjt =round(0.3×
∑

i∈I a
s
ijt).

• For all i ∈ I, we set ei = 2.

• For every t ∈ T , pt is randomly generated according to a discrete uniform distribution

U{max{1, 0.1|J |}, 0.3|J |}.

• For fixed values j ∈ J , t ∈ T and s ∈ S the costs gsjkt, k ∈ {1, . . . , |Ks
jt|}, are generated as

follows: we generate |Ks
jt| values according to a continuous uniform distribution in the set

[−10,−1] and sort them non-decreasingly before assigning them to gsj1t, . . . , g
s
j|Ks

jt|t
, respec-

tively. This way we ensure that gsjkt ≤ gsj,k+1,t for k = 1, . . . , |Ks
jt| − 1.

• For fixed values j ∈ J , t ∈ T and s ∈ S, the costs hsjkt, k ∈ {1, . . . , |K ′s
jt}, are generated as

follows: we generate |K ′s
jt| values according to a continuous uniform distribution in the set

[1, 10] and sort them non-decreasingly before assigning them to hsj1t, . . . , h
s
j|K ′s

jt|t
, respectively.

This way we ensure that hsjkt ≤ hsj,k+1,t for k = 1, . . . , |K ′s
jt| − 1.

• Finally, concerning the probabilities πs, s ∈ S we start by randomly generating them accord-

ing to a continuous uniform distribution U [0, 1]. Afterwards, each such value is divided by

their sum to ensure that
∑

s∈S πs = 1.

We generated 5 instances for each value of |J |, such that the set J changes from one instance

to another.

All the computational tests were performed using a machine Intel(R) Core(TM) i7-4790K CPU

32 GB RAM. Besides, models were coded in C++ using ILOG Concert Technology CPLEX 7.0.
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We start by reporting the tests performed using the model proposed in Section 2. In Table 11,

the first column ‘LP-gap’ is the percentage gap between the optimal value of the problem and

the linear relaxation bound. Observe that the optimal value of (GMSCLP′) could be negative or

zero. In problems with possible negative or zero optimal values, zero cannot be used as a lower

bound for the optimal value, which is implicit in the formulas usually considered for computing the

gaps. Consequently, to calculate the relative gaps, an actual lower bound for (GMSCLP′), that we

will denote as LB0, should be considered. One possibility for getting such bound is to solve the

linear relaxation of (GMSCLP′) removing the expected cost of shortage in the coverage from the

formulation, i.e., we solve the linear relaxation of the following problem,

min
∑

i∈I

∑

t∈T

(
oit +

T∑

τ=t

fiτ

)
zit +

∑

i∈I

∑

t∈T \{T}

(
cit −

T∑

τ=t+1

fiτ

)
z′it +

∑

i∈I

∑

t∈T

fitȳi0

+
∑

s∈S

πs
∑

t∈T

∑

j∈J

∑

k∈Ks
jt

gsjktw
s
jkt.

s.t. (6)− (8), (10)− (13), (15)− (18).

The LP-gap is then calculated as OPT-LP
OPT-LB0

· 100, where ‘OPT’ is the optimal value of (GMSCLP′)

and ‘LP’ is the linear relaxation objective value of (GMSCLP′).

The column ‘LP-time’ of Table 11 reports the CPU time, in seconds, required to solve the

linear relaxation and finally, ‘OPT-time’ is the CPU time, again in seconds, required to solve

model (GMSCLP′).

A time limit of 3 hours was considered when solving model (GMSCLP′). We mark with a ‘*’

the running times corresponding to instances that were not solved in this time limit.

4.2 Lower and upper bounds produced by the Lagrangian relaxation

For the Lagrangian relaxation based approach presented in Section 3 two variants were imple-

mented. In both we take ε[0] = 1.5. Then, this parameter is updated when the objective value of

the relaxation is not improved after some iterations. In particular, for variant 1, ǫ[κ] = ǫ[κ−1]
2 if the

objective value has not been improved in 10 iterations. In variant 2, ǫ[κ] is updated in the same

way, but when the number of iterations without improvement is 5. For both variants, we check

different stop criteria, namely: stop (i) after 50 iterations, (ii) after 150 iterations, (iii) after 500

iterations, and (iv) when ǫ[k] < 0.005. Besides, in all variants, we stop the Lagrangian heuristic if
UB−LB

|UB|
100 ≤ 0.01.

Tables 2–5 report the results of the Lagrangian heuristic variants. In Table 2 we can see the

gap between best upper (UB) and lower (LB) bounds obtained in the Lagrangian heuristic. These

gaps have been computed as UB−LB
UB-LB0

100. The best results (boldfaced) are the ones corresponding

to variants 1.iii and 2.iii.

Table 3 reports the percentage gap between the upper bound that we obtain using the La-

grangian heuristic and the optimal values obtained solving model (GMSCLP′).
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Table 1: LP-gap, LP-time and OPT-time results using model (GMSCLP′).

T=3/S=3

m/n LP-gap LP-time OPT-time

5 10.11 <0.01 0.21

5 39.06 <0.01 0.01

5 17.53 <0.01 0.01

5 13.53 <0.01 0.01

5 7.54 <0.01 <0.01

10 8.51 <0.01 0.01

10 28.37 <0.01 0.21

10 20.73 <0.01 0.03

10 31.54 <0.01 0.02

10 20.49 <0.01 0.01

30 29.34 0.06 3.33

30 24.47 0.03 1.30

30 20.20 0.05 1.57

30 24.49 0.05 3.54

30 21.86 0.03 1.42

50 22.42 0.17 1320.88

50 16.42 0.19 3.62

50 16.05 0.11 1.79

50 25.69 0.13 135.08

50 21.62 0.16 1716.52

100 19.84 1.34 10811.70*

100 26.29 1.11 10804.90*

100 24.82 1.45 10809.40*

100 23.73 1.31 10809.90*

100 28.66 0.97 10809.40*
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As observed, in all the variants, we obtain a gap smaller than 4%. Some of the gaps obtained for

the instances with m = n = 100 are negative since the upper bounds are compared with the best

solution obtained in 3 hours. This indicates that the upper bound obtained using the Lagrangian

relaxation based procedure is better than the value of the best feasible solution found by the solver

in 3 hours.

The percentage gaps between the lower bound obtained when using the Lagrangian relaxation

based approach and the linear programming relaxation of model (GMSCLP′) are reported in Table

4. These gaps are calculated as LP-LB
LP-LB0

100.

It is remarkable that, in variant 1.iii, the solutions obtained using Lagrangian relaxation pro-

cedure are exactly the same as those provided by the linear programming relaxation. In general,

all variants render good values.

Finally, Table 5 reports the running times of the Lagrangian relaxation based procedure. In

this table we observe that the largest CPU time observed was 92 seconds. This is a clear indication

that the Lagrangian relaxation allows us to obtain high-quality feasible solutions within a very

small CPU time.

In summary, from all these tables, we can observe that the variants 1.iii, 1.iv, 2.iii and 2.iv are

the ones that provide the best results in general. For this reason, in the next subsection, these

variants have been additionally tested for new instances increasing the number of scenarios and

time periods.

4.3 Lagrangian relaxation based procedure: additional tests

The very good results obtained so far for the Lagrangian relaxation based procedure, encouraged

us to deepen the numerical tests by the inclusion of larger instances namely in terms of the number

of scenarios and the number of time periods. With this purpose, we generated an additional

subset of instances using the following combinations of parameters (T, S) = (3, 5), (T, S) = (5, 5),

(T, S) = (5, 10) and (T, S) = (10, 10) and using m = n = 5, 10, 30, 50, 100. The methodology for

generating the instances is the same explained in Section 4.1.

Table 6 reports the percentage gaps between the best upper bounds and lower bounds obtained

when using the Lagrangian relaxation based procedure. As before, these gaps are calculated as
UB−LB
UB-LB0

100. Like in the previous tables, the values in bold indicate the minimum gap across all

the studied variants. Looking into these tables we conclude that the best gaps are provided by

variant 1.iii. We note that, in this variant, 500 iterations are executed in total updating ǫ after 10

iterations without improvement.

In Table 7 we report the gap between the best upper bounds obtained by our Lagrangian

heuristic and the optimal solutions obtained by solving model (GMSCLP′).These gaps are again

calculated as UB-OPT
UB-LB0

100.

Regarding these gaps, all the variants exhibit a similar behavior, providing a small gap with

respect to the optimal solution. In particular, the gaps obtained for (T, S) = (3, 5) are all smaller

than 4%; the gaps for (T, S) = (5, 5) are smaller than 3%; the gaps for (T, S) = (5, 10) are smaller
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Table 2: Lagrangian relaxation based procedures: percentage gaps between the best lower and

upper bounds found.

GapLB/UB

m/n Variant 1.i Variant 1.ii Variant 1.iii Variant 1.iv Variant 2.i Variant 2.ii Variant 2.iii Variant 2.iv

5 11.48 10.12 10.11 10.12 10.25 10.11 10.11 10.13

40.88 39.06 39.06 39.14 39.30 39.06 39.06 39.13

19.37 17.55 17.53 17.55 17.74 17.53 17.53 17.55

16.01 13.53 13.53 13.56 14.25 13.53 13.53 13.56

7.71 7.54 7.54 7.56 7.64 7.54 7.54 7.55

10 13.39 9.90 9.87 9.89 10.61 9.88 9.87 9.88

32.21 28.43 28.37 28.42 28.77 28.37 28.37 28.43

30.29 21.17 21.09 21.13 22.92 21.09 21.09 21.13

41.49 31.69 31.54 31.59 36.92 31.54 31.54 31.61

27.91 20.62 20.49 20.53 22.37 20.50 20.49 20.55

30 36.71 30.04 29.91 29.98 31.13 29.85 29.85 29.91

38.84 27.58 26.50 26.57 30.51 27.02 27.00 27.07

24.96 21.22 21.05 21.09 22.80 21.06 21.05 21.09

35.55 25.77 25.46 25.51 27.54 25.48 25.46 25.53

28.76 23.13 22.92 22.97 24.88 22.93 22.92 22.98

50 28.50 24.35 23.88 23.94 26.00 23.90 23.88 23.94

44.57 17.82 17.02 17.06 22.38 18.17 18.12 18.17

19.19 16.20 16.05 16.09 19.24 16.09 16.05 16.09

39.21 26.61 25.86 25.93 38.20 26.30 26.09 26.16

28.62 22.88 22.38 22.43 26.40 22.44 22.38 22.44

100 26.78 22.64 22.51 22.57 23.85 22.53 22.52 22.57

37.78 26.51 26.26 26.32 27.53 26.26 26.26 26.32

34.22 23.66 23.32 23.38 29.40 23.38 23.32 23.38

28.96 23.81 23.53 23.60 26.52 23.84 23.81 23.87

40.05 28.03 27.72 27.80 30.59 27.77 27.73 27.81
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Table 3: Lagrangian relaxation based procedure: percentage gaps of the upper bound w.r.t. the

optimal value of the problem.

GapUB/OPT

m/n Variant 1.i Variant 1.ii Variant 1.iii Variant 1.iv Variant 2.i Variant 2.ii Variant 2.iii Variant 2.iv

5 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

<0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

<0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

<0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

<0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

10 1.49 1.49 1.49 1.49 1.49 1.49 1.49 1.49

<0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

0.46 0.46 0.46 0.46 0.46 0.46 0.46 0.46

<0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

<0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

30 0.80 0.80 0.80 0.71 0.71 0.71 0.71 0.71

2.68 2.68 2.68 3.35 3.35 3.35 3.35 3.35

1.50 1.07 1.07 1.07 1.07 1.07 1.07 1.07

1.29 1.29 1.29 1.29 1.29 1.29 1.29 1.29

1.36 1.36 1.36 1.36 1.36 1.36 1.36 1.36

50 1.89 1.89 1.89 1.89 1.89 1.89 1.89 1.89

5.88 0.70 0.70 1.98 2.44 1.98 1.98 1.98

<0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

0.48 0.23 0.23 0.47 0.52 0.47 0.47 0.47

2.93 0.97 0.97 0.97 1.25 0.97 0.97 0.97

100 3.74 3.34 3.34 3.34 3.51 3.34 3.34 3.34

0.40 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05

-2.00 -2.00 -2.00 -2.00 -2.00 -2.00 -2.00 -2.00

0.71 -0.27 -0.27 0.09 0.58 0.09 0.09 0.09

-1.32 -1.32 -1.32 -1.32 -1.32 -1.32 -1.32 -1.32
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Table 4: Lagrangian relaxation versus linear programming relaxation: comparison of lower bounds.

GapLP/LB

m/n Variant 1.i Variant 1.ii Variant 1.iii Variant 1.iv Variant 2.i Variant 2.ii Variant 2.iii Variant 2.iv

5 1.52 0.01 <0.01 0.01 0.16 <0.01 <0.01 0.02

2.99 0.01 <0.01 0.14 0.40 <0.01 <0.01 0.12

2.23 0.02 <0.01 0.02 0.26 <0.01 <0.01 0.02

2.87 <0.01 <0.01 0.04 0.84 <0.01 <0.01 0.04

0.19 <0.01 <0.01 0.02 0.11 <0.01 <0.01 0.02

10 3.90 0.03 <0.01 0.02 0.81 0.01 <0.01 0.01

5.36 0.09 <0.01 0.08 0.56 <0.01 <0.01 0.08

11.66 0.10 <0.01 0.05 2.32 0.01 <0.01 0.05

14.54 0.22 <0.01 0.08 7.87 0.01 <0.01 0.10

9.32 0.16 <0.01 0.04 2.36 <0.01 <0.01 0.07

30 9.70 0.18 <0.01 0.10 1.83 0.01 <0.01 0.09

16.79 1.47 <0.01 0.10 4.80 0.02 <0.01 0.09

4.54 0.22 <0.01 0.05 2.22 0.02 <0.01 0.06

13.54 0.42 <0.01 0.07 2.79 0.03 <0.01 0.09

7.57 0.27 <0.01 0.06 2.54 0.01 <0.01 0.07

50 6.06 0.61 <0.01 0.07 2.78 0.02 <0.01 0.07

29.54 0.97 0.01 0.06 4.80 0.11 0.05 0.11

3.74 0.18 <0.01 0.05 3.80 0.05 <0.01 0.05

17.80 1.02 <0.01 0.09 16.41 0.35 0.06 0.16

6.17 0.64 <0.01 0.06 4.91 0.08 <0.01 0.08

100 5.11 0.16 <0.01 0.08 1.55 0.03 0.01 0.08

15.25 0.35 <0.01 0.09 1.73 0.01 <0.01 0.09

14.22 0.45 <0.01 0.08 7.93 0.08 <0.01 0.08

6.19 0.37 0.01 0.09 3.10 0.06 0.02 0.10

17.06 0.43 <0.01 0.11 3.97 0.08 0.02 0.12
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Table 5: Lagrangian relaxation based procedure: CPU time (seconds).

Lagrangian relaxation times

m/n Variant 1.i Variant 1.ii Variant 1.iii Variant 1.iv Variant 2.i Variant 2.ii Variant 2.iii Variant 2.iv

5 0.30 1.20 4.37 0.94 0.26 0.84 2.28 1.10

0.28 0.86 1.77 0.57 0.30 0.62 2.03 0.34

0.39 0.63 1.64 0.54 0.27 0.58 2.03 0.36

0.27 0.94 1.65 0.47 0.25 0.50 2.20 0.47

0.23 1.67 1.63 0.44 0.26 0.52 2.06 0.46

10 0.30 0.83 2.40 0.90 0.30 0.72 2.78 0.71

0.30 0.92 2.44 0.99 0.32 0.73 2.82 0.46

0.53 0.96 2.71 1.07 0.29 0.73 2.80 0.67

0.29 0.76 2.50 0.97 0.25 0.75 2.53 0.55

0.29 0.72 2.47 0.98 0.25 0.71 2.43 0.67

30 1.17 3.38 11.25 4.06 1.17 3.42 10.98 2.40

1.22 3.23 10.97 5.12 1.11 3.37 10.94 2.71

1.21 3.33 11.56 4.99 1.14 3.35 10.90 2.90

1.12 3.33 10.93 4.46 1.12 3.39 10.91 2.68

1.07 3.19 10.86 4.13 1.10 3.30 10.77 2.57

50 2.54 7.43 25.00 10.09 2.51 7.47 24.59 5.84

2.61 7.80 25.69 14.65 2.56 7.70 24.98 7.68

2.53 7.66 25.03 10.22 2.53 7.62 24.66 7.57

2.51 7.63 25.36 12.07 2.54 7.65 25.06 8.41

2.50 7.45 25.17 11.08 2.50 7.47 24.59 7.48

100 9.33 27.97 92.73 33.85 9.44 27.93 91.83 22.35

8.98 26.78 88.44 33.70 9.04 26.57 87.22 19.33

9.06 27.21 90.34 37.25 9.91 27.39 89.03 27.20

9.06 27.04 89.47 37.46 9.24 27.19 88.20 24.85

9.51 27.12 89.36 37.97 9.15 26.93 88.08 24.87
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than 5%; and the gaps for (T, S) = (10, 10) are smaller than 5%. Consequently, we can say that

the feasible solutions obtained using the Lagrangian heuristic are still good for larger values of T

and S. It must be noticed that, as before, the negative gaps are due to the cases where the solver

could not get in 3 hours a solution to model (GMSCLP′). In these cases, the comparison is made

between the best feasible solution obtained using the Lagrangian heuristic and the best feasible

solution found by the solver (in 3 hours).

With respect to the gaps between the lower bounds produced by Lagrangian relaxation and

those provided by the linear programming relaxation, we can see in Table 8 that they are very

small in all cases. Furthermore, looking into this table, the maximum gap is smaller than 0.2%.

Although all variants present good results in terms of these gaps, we can emphasize variant 1.iii

that 0% gap in most of the cases.

In addtion, Tables 9 and 10 report the CPU time in seconds required by the Lagrangian relax-

ation based procedure for the large instances tested. In these tables we also present the CPU time

required by the solver for tackling model (GMSCLP′).

For (T, S) = (3, 5) the largest running times of variant 2.iv are smaller than 54 seconds. The

largest times of this same variant and (T, S) = (5, 5) are approximately 113 seconds. In the case

of (T, S) = (5, 10), the largest times are 250 seconds and for (T, S) = (10, 10), the largest running

times are 815 seconds. It is remarkable that these CPU times are small if we compare them with

the CPU time required by the solver for handling the model. Hence, we may conclude that the

Lagrangian heuristic provides high-quality feasible solutions in rather small CPU times for these

values of T and S and m = n ≥ 30.

Finally, in Table 11, we have compared LB and UB of Lagrangian relaxation with the best

solution and lower bound provided by CPLEX using the default parameters (Balanced column)

and by emphasizing feasibility (Feasible column). In this table we have reported the average gaps

using variant 2.iv of the Lagrangian based heuristic because this variant provides the best running

times and it is among the ones with best gaps. Observe that the difference of the total average using

balanced or feasible option is not larger than 1.1% (absolute value) in each of the four analyzed

gaps, i.e., not big differences are appreciated by these changes of parameters of CPLEX. On the

other hand, we remark the high improvement of the lower bound of CPLEX with respect to the

value of the Lagrangian relaxation (very close to the linear relaxation, see Table 4).

4.4 The relevance of considering a multi-period stochastic setting

In this work, we have proposed a general formulation for covering location problems that captures

the multi-period and stochastic nature of some problems. This led us to a very general and thus

potentially more involved model. One important question that we have formulated and that it is

still to be answered is: does it compensate using such a more involved model instead of a simplified

one (e.g. static and/or deterministic)?

As far as the relevance of considering a stochastic programming modeling framework for a prob-

lem is concerned, we know that there are no “robust” measures for evaluating that relevance (see,

29



Table 6: Lagrangian relaxation based procedures: percentage gaps between the best lower and upper bounds found for T = 3/S = 5, T = S = 5,

T = 5/S = 10 and T = S = 10.

GapLB/UB

T=3/S=5 T=5/S=5 T=5/S=10 T=10/S=10

m/n Variant 1.iii Variant 1.iv Variant 2.iii Variant 2.iv Variant 1.iii Variant 1.iv Variant 2.iii Variant 2.iv Variant 1.iii Variant 1.iv Variant 2.iii Variant 2.iv Variant 1.iii Variant 1.iv Variant 2.iii Variant 2.iv

5 15.60 15.62 15.60 15.62 18.48 18.50 18.48 18.52 4.56 4.58 4.56 4.58 32.73 32.78 32.73 32.81

6.42 6.43 6.42 6.43 18.66 18.69 18.66 18.68 11.35 11.38 11.35 11.38 15.42 15.44 15.42 15.45

9.50 9.51 9.50 9.51 18.84 18.85 18.84 18.85 4.28 4.28 4.28 4.28 6.02 6.04 6.02 6.04

0.23 0.23 0.23 0.23 0.01 0.01 0.01 0.01 22.80 22.83 22.80 22.83 18.93 18.96 18.93 18.97

6.69 6.70 6.69 6.71 0.01 0.01 0.01 0.01 13.32 13.33 13.32 13.35 12.97 12.98 12.97 12.99

10 24.10 24.14 24.10 24.15 6.58 6.59 6.58 6.59 15.97 16.00 15.97 16.00 20.38 20.41 18.53 18.56

20.13 20.15 20.13 20.16 20.19 20.22 20.19 20.24 17.89 17.91 17.89 17.92 14.48 14.50 14.48 14.50

11.67 11.69 11.67 11.69 15.61 15.64 15.61 15.64 17.88 17.91 17.88 17.92 19.50 19.53 19.50 19.55

8.20 8.21 8.20 8.22 12.17 12.19 12.17 12.20 16.34 16.37 16.34 16.36 25.56 25.61 25.56 25.60

35.71 35.75 35.71 35.76 20.65 20.68 20.65 20.68 28.48 28.53 28.48 28.54 25.91 25.95 25.91 25.97

30 24.90 24.96 24.90 24.97 19.01 19.05 19.48 19.53 18.29 18.33 18.29 18.33 16.97 17.01 17.04 17.08

21.39 21.45 21.39 21.45 23.23 23.27 23.23 23.29 25.25 25.30 25.25 25.31 19.44 19.49 19.44 19.80

21.11 21.16 21.11 21.16 21.67 21.73 21.69 21.75 19.99 20.04 19.99 20.04 20.86 20.91 20.86 20.91

24.71 24.77 24.71 24.77 17.13 17.17 17.15 17.20 17.63 17.67 17.63 17.67 16.09 16.13 16.11 16.15

24.44 24.50 24.44 24.51 12.37 12.40 12.37 12.40 19.77 19.82 19.77 19.82 19.25 19.30 19.26 19.32

50 22.61 22.67 22.62 22.68 18.13 18.17 17.83 17.87 23.07 23.13 23.07 23.13 17.76 17.81 17.74 17.78

19.73 19.77 19.73 19.77 21.59 21.65 21.60 21.65 23.14 23.20 23.19 23.26 18.75 18.90 18.81 18.86

25.06 25.11 25.07 25.13 24.14 24.19 24.12 24.18 21.65 21.70 22.03 22.08 20.59 20.64 20.78 20.84

26.52 26.58 26.52 26.59 24.68 24.74 24.50 24.57 17.64 17.69 17.64 17.69 20.47 20.53 20.91 20.96

21.53 21.59 21.53 21.59 24.25 24.30 24.91 24.98 20.59 20.64 20.61 20.67 22.44 22.49 22.44 22.51

100 20.64 20.70 20.70 20.76 26.82 26.90 27.05 27.13 24.67 24.73 24.50 24.56 18.66 18.70 18.65 18.69

21.18 21.24 21.18 21.24 22.01 22.07 22.01 22.10 19.92 19.97 19.92 19.98 24.61 24.68 24.61 24.68

26.45 26.52 26.45 26.52 21.20 21.26 21.23 21.29 26.12 26.18 26.12 26.19 19.68 19.73 19.89 19.95

21.69 21.75 21.69 21.75 25.41 25.48 25.42 25.49 21.20 21.25 21.21 21.27 22.76 22.82 22.95 23.01

25.70 25.76 25.70 25.76 22.65 22.70 22.61 22.67 24.76 24.83 24.82 24.89 21.36 21.42 21.37 21.43
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Table 7: Lagrangian relaxation based procedure: percentage gaps of the upper bound w.r.t. the optimal value of the problem for T = 3/S = 5,

T = S = 5, T = 5/S = 10 and T = S = 10.

GapUB/OPT

T=3/S=5 T=5/S=5 T=5/S=10 T=10/S=10

m/n Variant 1.iii Variant 1.iv Variant 2.iii Variant 2.iv Variant 1.iii Variant 1.iv Variant 2.iii Variant 2.iv Variant 1.iii Variant 1.iv Variant 2.iii Variant 2.iv Variant 1.iii Variant 1.iv Variant 2.iii Variant 2.iv

5 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

<0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

<0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

<0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

<0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

10 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 4.86 4.86 2.65 2.65

0.94 0.94 0.94 0.94 1.93 1.93 1.93 1.93 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

0.23 0.23 0.23 0.23 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

<0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

<0.01 <0.01 <0.01 <0.01 0.17 0.17 0.17 0.17 1.99 1.99 1.99 1.99 2.44 2.44 2.44 2.44

30 1.80 1.80 1.80 1.80 1.79 1.79 2.20 2.20 <0.01 <0.01 <0.01 <0.01 0.61 0.61 0.67 0.67

<0.01 <0.01 <0.01 <0.01 2.02 2.02 2.02 2.02 1.88 1.88 1.88 1.88 0.19 0.19 0.19 0.57

<0.01 <0.01 <0.01 <0.01 1.17 1.17 1.17 1.17 <0.01 <0.01 <0.01 <0.01 0.99 0.99 0.99 0.99

0.46 0.46 0.46 0.46 1.47 1.47 1.47 1.47 0.12 0.12 0.12 0.12 0.19 0.19 0.19 0.19

0.41 0.41 0.41 0.41 0.75 0.75 0.75 0.75 4.59 4.59 4.59 4.59 -0.41 -0.41 -0.41 -0.41

50 0.47 0.47 0.47 0.47 0.99 0.99 0.61 0.61 -1.75 -1.75 -1.75 -1.75 -4.70 -4.70 -4.76 -4.76

<0.01 <0.01 <0.01 <0.01 0.81 0.81 0.81 0.81 -1.13 -1.13 -1.08 -1.08 -0.31 -0.18 -0.31 -0.31

1.47 1.47 1.47 1.47 1.93 1.93 1.89 1.89 -3.40 -3.40 -2.90 -2.90 -4.76 -4.76 -4.53 -4.53

3.21 3.21 3.21 3.21 0.01 0.01 -0.23 -0.23 0.67 0.67 0.67 0.67 0.31 0.31 0.78 0.78

0.80 0.80 0.80 0.80 0.46 0.46 1.28 1.28 1.20 1.20 1.20 1.20 -8.42 -8.42 -8.42 -8.42

100 0.95 0.95 0.99 0.99 -10.39 -10.39 -10.06 -10.06 -16.73 -16.73 -17.00 -17.00 -3.16 -3.16 -3.19 -3.19

-4.62 -4.62 -4.62 -4.62 -19.43 -19.43 -19.43 -19.39 -12.04 -12.04 -12.04 -12.04 -18.47 -18.47 -18.47 -18.47

-4.08 -4.08 -4.08 -4.08 10.75 10.75 10.75 10.75 -4.32 -4.32 -4.32 -4.32 -5.56 -5.56 -5.30 -5.30

-0.04 -0.04 -0.04 -0.04 -14.16 -14.16 -14.16 -14.16 -9.70 -9.70 -9.70 -9.70 -11.15 -11.15 -10.89 -10.89

-1.63 -1.63 -1.70 -1.70 -8.44 -8.44 -8.50 -8.50 -13.94 -13.94 -13.87 -13.87 -18.04 -18.04 -18.04 -18.04
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Table 8: Lagrangian relaxation versus linear programming relaxation: comparison of lower bounds for T = 3/S = 5, T = S = 5, T = 5/S = 10

and T = S = 10.
GapLP/LB

T=3/S=5 T=5/S=5 T=5/S=10 T=10/S=10

m/n Variant 1.iii Variant 1.iv Variant 2.iii Variant 2.iv Variant 1.iii Variant 1.iv Variant 2.iii Variant 2.iv Variant 1.iii Variant 1.iv Variant 2.iii Variant 2.iv Variant 1.iii Variant 1.iv Variant 2.iii Variant 2.iv

5 <0.01 0.03 <0.01 0.03 <0.01 0.03 <0.01 0.05 <0.01 0.01 <0.01 0.01 <0.01 0.08 <0.01 0.12

<0.01 0.01 <0.01 0.01 <0.01 0.04 <0.01 0.03 <0.01 0.03 <0.01 0.03 <0.01 0.02 <0.01 0.03

<0.01 0.02 <0.01 0.02 <0.01 0.02 <0.01 0.02 <0.01 <0.01 <0.01 <0.01 <0.01 0.02 <0.01 0.02

<0.01 <0.01 <0.01 <0.01 0.01 0.01 0.01 0.01 <0.01 0.04 <0.01 0.03 <0.01 0.04 <0.01 0.04

<0.01 0.02 <0.01 0.02 0.01 0.01 0.01 0.01 <0.01 0.01 <0.01 0.03 <0.01 0.01 <0.01 0.03

10 <0.01 0.05 <0.01 0.06 <0.01 0.01 <0.01 0.01 <0.01 0.04 <0.01 0.04 <0.01 0.05 <0.01 0.04

<0.01 0.02 <0.01 0.04 <0.01 0.04 <0.01 0.06 <0.01 0.03 <0.01 0.04 <0.01 0.02 <0.01 0.03

<0.01 0.03 <0.01 0.02 <0.01 0.03 <0.01 0.03 <0.01 0.03 <0.01 0.05 <0.01 0.04 <0.01 0.06

<0.01 0.01 <0.01 0.02 <0.01 0.02 <0.01 0.03 <0.01 0.03 <0.01 0.02 <0.01 0.07 <0.01 0.05

<0.01 0.06 <0.01 0.08 <0.01 0.04 <0.01 0.05 <0.01 0.07 <0.01 0.09 <0.01 0.05 <0.01 0.08

30 <0.01 0.08 <0.01 0.09 <0.01 0.06 0.16 0.23 <0.01 0.05 <0.01 0.05 0.02 0.07 0.04 0.09

<0.01 0.06 <0.01 0.07 <0.01 0.06 <0.01 0.08 <0.01 0.08 <0.01 0.08 <0.01 0.06 <0.01 0.06

<0.01 0.06 <0.01 0.07 <0.01 0.07 0.02 0.09 <0.01 0.06 <0.01 0.07 <0.01 0.06 <0.01 0.06

<0.01 0.08 <0.01 0.09 <0.01 0.04 0.02 0.08 <0.01 0.05 <0.01 0.06 0.02 0.07 0.05 0.09

<0.01 0.07 <0.01 0.08 <0.01 0.03 <0.01 0.04 <0.01 0.06 <0.01 0.06 <0.01 0.06 0.02 0.08

50 <0.01 0.08 0.02 0.09 <0.01 0.06 0.02 0.07 <0.01 0.08 <0.01 0.08 0.01 0.06 0.02 0.08

<0.01 0.06 <0.01 0.06 <0.01 0.07 0.02 0.08 0.01 0.09 0.02 0.11 0.08 0.13 0.15 0.21

0.01 0.09 0.02 0.11 <0.01 0.07 <0.01 0.08 <0.01 0.07 <0.01 0.07 0.01 0.07 0.04 0.11

<0.01 0.09 <0.01 0.10 <0.01 0.08 <0.01 0.09 <0.01 0.05 <0.01 0.06 <0.01 0.07 0.08 0.14

<0.01 0.07 <0.01 0.07 0.01 0.07 0.07 0.15 0.02 0.08 0.04 0.11 <0.01 0.07 0.01 0.09

100 0.04 0.11 0.07 0.15 <0.01 0.10 0.01 0.12 0.01 0.09 0.02 0.10 <0.01 0.06 0.01 0.07

<0.01 0.08 <0.01 0.08 0.01 0.08 0.01 0.10 <0.01 0.07 0.01 0.07 <0.01 0.09 0.01 0.10

<0.01 0.10 <0.01 0.10 0.01 0.08 0.04 0.12 0.01 0.10 0.01 0.11 <0.01 0.07 0.02 0.09

<0.01 0.08 0.01 0.08 0.02 0.10 0.02 0.12 0.01 0.08 0.03 0.10 0.02 0.09 0.02 0.10

<0.01 0.09 0.07 0.16 0.01 0.08 0.02 0.09 <0.01 0.10 0.03 0.12 <0.01 0.08 0.01 0.08
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Table 9: Lagrangian relaxation based procedure: CPU time (seconds) (T = 3, S = 5 and T = S = 5)

Lagrangian relaxation times

m/n T/S Variant 1.iii Variant 1.iv Variant 2.iii Variant 2.iv tsolv Variant 1.iii Variant 1.iv Variant 2.iii Variant 2.iv tsolv

5 3/5 1.90 0.67 2.23 0.88 0.22 5/5 2.48 0.97 2.45 0.51 0.24

1.89 1.08 1.98 0.42 0.00 2.40 1.11 2.45 0.41 0.01

1.84 0.58 1.93 0.53 0.02 2.42 0.72 2.39 0.34 0.01

1.81 0.38 1.78 0.22 0.00 0.08 0.11 0.09 0.09 0.00

1.90 0.62 1.79 0.31 0.01 0.16 0.16 0.16 0.16 0.00

10 3/5 3.07 1.08 3.04 0.70 0.04 5/5 6.27 2.51 6.04 1.28 0.03

3.14 1.26 3.03 0.66 0.03 6.13 2.09 6.12 1.30 0.10

3.14 1.09 3.37 0.82 0.30 6.10 2.28 5.91 1.36 0.09

3.00 1.28 3.15 0.77 0.02 6.19 2.25 6.13 1.53 0.05

2.96 1.20 3.35 0.71 0.03 6.32 2.28 5.98 1.39 0.03

30 3/5 16.86 8.25 16.49 4.27 2.66 5/5 34.21 16.58 33.77 8.16 30.26

16.29 6.37 17.02 4.06 14.33 33.93 14.41 33.42 8.24 3274.71

16.04 7.46 15.73 4.29 1.84 34.02 14.27 33.38 7.83 973.39

16.26 5.87 16.01 4.17 25.74 34.20 15.96 33.57 8.42 58.44

16.33 6.68 15.90 4.69 8.38 34.20 16.21 33.51 9.20 24.62

50 3/5 38.00 15.32 37.50 9.69 573.93 5/5 87.70 42.51 86.58 25.63 10803.50*

41.18 19.73 40.54 13.27 12.07 88.17 42.23 86.92 25.74 10805.10*

39.84 15.79 39.13 9.11 1810.31 88.48 35.55 87.27 26.63 10804.40*

40.28 15.07 39.42 9.82 9295.68 90.25 34.55 88.97 22.99 10806.50*

39.22 15.40 38.66 10.83 372.20 87.39 42.79 86.03 23.35 10806.60*

100 3/5 142.07 52.81 140.39 44.95 10807.90* 5/5 350.30 192.99 346.24 96.28 10837.40*

148.58 57.21 146.94 48.72 10808.90* 350.97 144.36 346.38 104.88 10809.50*

149.82 63.96 147.86 53.27 10807.90* 348.24 157.14 343.69 90.15 Out of mem.*

146.31 66.77 144.21 45.52 10808.50* 344.73 127.22 340.27 101.62 10811.00*

149.01 74.91 147.30 38.27 10808.70* 343.20 164.47 339.04 112.76 10809.40*
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Table 10: Lagrangian relaxation based procedure: CPU time (seconds) (T = 5, S = 10 and T = S = 10)

Lagrangian relaxation times

m/n T/S Variant 1.iii Variant 1.iv Variant 2.iii Variant 2.iv tsolv Variant 1.iii Variant 1.iv Variant 2.iii Variant 2.iv tsolv

5 5/10 3.90 0.73 4.41 0.58 0.24 10/10 8.81 2.53 8.71 1.59 0.23

4.57 0.92 3.67 0.64 0.03 8.96 3.31 8.71 1.69 0.08

4.32 1.72 3.85 0.76 0.01 8.77 2.31 8.49 1.42 0.02

4.20 1.98 3.60 0.67 0.03 8.89 3.37 8.63 2.22 0.01

4.23 1.40 3.84 0.87 0.01 9.05 2.67 8.57 1.61 0.30

10 5/10 9.64 3.09 9.48 1.75 0.12 10/10 27.39 11.72 26.82 6.10 1.35

9.95 5.26 9.78 2.93 0.43 27.00 9.39 26.33 5.90 0.27

9.74 4.23 9.59 2.18 0.37 27.41 9.53 26.97 5.57 1.07

9.72 3.34 9.42 1.76 0.04 27.13 10.28 26.57 5.34 0.31

9.78 4.03 9.53 2.00 0.49 26.99 7.79 26.49 6.15 0.29

30 5/10 63.40 28.17 62.67 17.00 943.88 10/10 216.05 104.32 213.07 57.24 10805.10*

64.44 31.75 63.41 18.85 10805.90* 215.70 101.18 212.63 57.52 10801.90*

64.21 31.40 63.27 16.71 1242.70 216.90 103.88 217.32 49.34 10805.30*

63.76 30.94 62.92 16.24 10805.40* 214.30 97.44 211.24 71.92 10805.00*

64.12 25.69 63.26 15.87 10804.70* 215.20 93.24 212.24 46.78 10805.30*

50 5/10 175.28 75.15 172.85 45.71 10808.30* 10/10 592.43 241.40 584.85 168.82 10808.20*

170.21 83.57 167.98 46.79 10818.80* 595.36 278.10 588.00 171.96 10806.90*

172.01 71.11 169.95 54.46 10806.80* 590.74 293.53 583.05 182.19 10807.10*

176.84 61.79 174.55 48.25 3188.16 593.77 237.06 586.50 164.41 10810.40*

172.13 89.65 169.95 50.64 10807.60* 593.08 291.27 585.22 153.64 10859.20*

100 5/10 679.40 331.05 670.86 208.37 10827.10* 10/10 2351.86 1187.46 2320.97 814.57 10845.60*

681.25 311.92 672.81 249.65 10810.30* 2362.42 1272.60 2330.85 812.97 10810.00*

679.43 328.07 671.00 189.48 10807.30* 2359.49 1163.45 2329.60 672.58 10828.40*

681.71 336.42 673.59 219.87 10807.50* 2358.36 1467.57 2328.16 784.03 10810.60*

688.06 293.90 679.29 212.49 10808.70* 2355.81 959.28 2324.92 675.98 10811.80*
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Table 11: Table including average gaps between UB and LB of variant 2.iv Lagrangian based

heuristic and best lower bound (LBcplex) and best solution (OPT) using CPLEX.

Gap LB and LBcplex Gap UB and LBcplex Gap LB and OPT Gap UB and OPT

Balanced Feasible Balanced Feasible Balanced Feasible Balanced Feasible

(T,S)=(3/3)

(m,n)=(5/5) 17.58% 17.58% 0.00% 0.00% 17.58% 17.58% 0.00% 0.00%

(m,n)=(10/10) 21.98% 21.98% 0.39% 0.39% 21.98% 21.98% 0.39% 0.39%

(m,n)=(30/30) 24.12% 24.12% 1.57% 1.57% 24.13% 24.13% 1.56% 1.56%

(m,n)=(50/50) 20.50% 20.03% 1.08% 1.65% 20.51% 20.52% 1.06% 1.06%

(m,n)=(100/100) 19.33% 17.14% 6.74% 9.19% 24.74% 24.02% 0.01% 0.98%

Average 20.70% 20.17% 1.96% 2.56% 21.79% 21.65% 0.60% 0.80%

(T,S)=(3/5)

(m,n)=(5/5) 7.70% 7.70% 0.00% 0.00% 7.70% 7.70% 0.00% 0.00%

(m,n)=(10/10) 19.80% 19.80% 0.23% 0.23% 19.80% 19.80% 0.23% 0.23%

(m,n)=(30/30) 22.95% 22.95% 0.55% 0.55% 22.97% 22.97% 0.53% 0.53%

(m,n)=(50/50) 22.22% 20.43% 1.22% 3.37% 22.24% 22.27% 1.19% 1.16%

(m,n)=(100/100) 16.28% 14.70% 8.26% 9.97% 24.57% 23.71% -1.89% -0.68%

Average 17.79% 17.12% 2.05% 2.82% 19.46% 19.29% 0.01% 0.25%

(T,S)=(5/5)

(m,n)=(5/5) 11.21% 11.21% 0.00% 0.00% 11.21% 11.21% 0.00% 0.00%

(m,n)=(10/10) 14.73% 14.73% 0.42% 0.42% 14.73% 14.73% 0.42% 0.42%

(m,n)=(30/30) 17.58% 17.58% 1.54% 1.54% 17.59% 17.59% 1.52% 1.52%

(m,n)=(50/50) 17.18% 12.63% 6.58% 11.42% 21.97% 22.36% 0.87% 0.35%

(m,n)=(100/100) 14.24% 12.41% 11.04% 12.94% 29.31% 25.21% -8.12% -2.01%

Average 14.99% 13.71% 3.92% 5.26% 18.96% 18.22% -1.06% 0.06%

(T,S)=(5/10)

(m,n)=(5/5) 11.28% 11.28% 0.00% 0.00% 11.28% 11.28% 0.00% 0.00%

(m,n)=(10/10) 19.06% 19.06% 0.40% 0.40% 19.06% 19.06% 0.40% 0.40%

(m,n)=(30/30) 18.21% 14.52% 2.46% 6.42% 19.16% 19.37% 1.32% 1.05%

(m,n)=(50/50) 14.19% 11.57% 8.29% 11.04% 21.93% 20.96% -0.77% 0.49%

(m,n)=(100/100) 12.27% 11.79% 12.68% 13.15% 31.12% 26.88% -11.38% -4.87%

Average 15.00% 13.64% 4.77% 6.20% 20.51% 19.51% -2.09% -0.59%

(T,S)=(10/10)

(m,n)=(5/5) 17.25% 17.25% 0.00% 0.00% 17.25% 17.25% 0.00% 0.00%

(m,n)=(10/10) 20.02% 20.02% 1.02% 1.02% 20.02% 20.02% 1.02% 1.02%

(m,n)=(30/30) 15.10% 10.03% 4.11% 9.51% 18.33% 18.57% 0.40% 0.11%

(m,n)=(50/50) 10.65% 9.33% 10.67% 11.97% 22.75% 21.33% -3.45% -1.47%

(m,n)=(100/100) 9.84% 9.71% 12.99% 13.11% 29.12% 25.67% -11.18% -5.58%

Average 14.57% 13.27% 5.76% 7.12% 21.49% 20.57% -2.64% -1.19%

Total Av. 16.61% 15.58% 3.69% 4.79% 20.44% 19.85% -1.03% -0.13%
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for instance, Birge and Louveaux 2011). However, as explained in Correia and Saldanha-da-Gama

[2015], two measures are often used as an indication of the convenience of an stochastic model.

These are the value of the stochastic solution (VSS) and the expected value of perfect information

(EVPI). The former relies on the resolution of the so-called expected value problem which consists

of replacing the random variables by their expectation. The resulting solution, if feasible to the

stochastic problem, is then evaluated as an approximate stochastic (first-stage) solution and its

value compared with the optimal value to the stochastic problem. In our case, this cannot be ac-

complished since we have binary stochastic parameters (asijt) and thus the expected value problem

is meaningless. Therefore, we resort to the second measure above mentioned, which is the EVPI.

This is a value that indicates the amount that the decision maker should be willing to pay to get

access to perfect information about the future.

The EVPI is computed as the difference between the objective value of the stochastic problem

(SP) and the wait-and-see solution (WS). The WS is the weighted sum for the optimal values to all

single-scenario problems considering as weights the corresponding probabilities for the scenarios.

Accordingly, WS =
∑

s∈S πsDPs, where DPs is the optimal value of the stochastic problem related

with scenario s ∈ S; EVPI = SP − WS.

With respect to the relevance of using a multi-period modeling framework, we consider a mea-

sure described by Nickel and Saldanha-da-Gama [2015] as the value of the multi-period solution

(VMS). It consists of comparing the optimal value of the multi-period model (MPS) with the value

of a feasible solution (1PS) to that model obtained by solving to optimality a static counterpart.

This way, we are evaluating how good a ‘static’ solution may be when considered as an approximate

solution to the multi-period problem.

In our case, we obtain a static counterpart to our problem by assuming that opening and closing

decisions can only be made in the first period. Consequently, the static counterpart is obtained

from the original model setting

zit = 0, for i ∈ I, t ∈ T \ {1} and z′it = 0 for i ∈ I and t ∈ T \ {1, T}.

Finally, we have VMS =1PS − MPS.

In Table 12 we can observe the results for the above-mentioned measures: EVPI and VMS.

Then, we can see that in average, the EVPI is 63.98 and VMS is 323.43. As a conclusion, both

measures show that it is important to take into account stochastic and multi-period aspects.

5 Conclusions

A very general set covering location problem with stochasticity and multiple time periods has been

introduced and analyzed in this paper. Almost all the covering location problems in the literature

can be looked at as particular cases of this general problem, which in consequence is worth studying

but difficult to solve. An integer linear programming formulation has been developed which on the

one hand is able to deal with instances of limited size and, on the other hand, has been the basis

for a Lagrangian heuristic designed to obtain good solutions for larger instances. Despite the fact

that the relaxed Lagrangian subproblem presents the integrality property, the goodness of the
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Table 12: The relevance of considering a multi-period stochastic setting: EVPI and VMS.

m/n T/S EVPI VMS SP/MPS

5 3 4.11 0.00 15.03
0.00 0.00 -9.24
0.29 0.00 31.96
7.08 3.25 12.79
2.33 2.24 14.19

10 3 14.58 37.32 31.47
5.47 51.20 -22.34
11.99 0.00 -38.89
22.54 7.76 -13.12
2.31 6.46 -0.04

30 3 42.83 616.84 -1341.48
52.99 285.87 -708.26

136.94 290.74 -889.88
69.82 254.51 -1246.03

187.12 226.15 -680.27
50 3 127.40 385.67 -2329.67

147.46 1286.12 -3378.28
66.15 860.84 -2914.91

204.61 1470.84 -2404.21
173.63 683.48 -2268.85

Average 63.98 323.43 -907.00

solutions it generates in a subgradient optimization framework has been deduced from an extensive

computational study.

As a matter of future research, additional properties and improvements of the formulation (by

means of ad-hoc valid inequalities) and/or some of their possible particularizations will possibly

lead to reduced computational times and to the possibility of optimally solving larger instances.
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A Appendix

Next, we describe the remaining multi-period models proposed by Gunawardane [1982].

• DSCLP—Dynamic Set Covering Location Problem.

This problem is a multi-period SCP that restricts each demand point j ∈ J to be covered

in time period tj ∈ T . Hence, a facility covering j should be opened either at the beginning

of that period or in a previous one. In this problem, facilities cannot be closed during the

planning horizon. Furthermore, at most one facility/equipment can be operating in each

location.

In order to adapt (GMSCLP) to the model (DSCLP) introduced by Gunawardane [1982],

variables y, z′, w and v are removed from the model and yit is replaced by
∑t

τ=1 ziτ . When

performing these changes, constraints (3), (4), (6)–(9), (11)–(13) are not longer needed. Be-

sides, constraints (5) are replaced by (23). Then, we set bjt = 0 for j ∈ J , t < tj, where tj

is the period in which demand of customer j arises first. Additionally, we take bjtj = 1 for

j ∈ J and, since facilities cannot be closed, we can set bjt = 0 for t > tj . The remaining
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parameters from the model become: cit = fit = 0, oit = ot for i ∈ I, t ∈ T such that ot ≥ ot+1

for t = 1, . . . , T − 1. In addition we set pt = m for t ∈ T and ei = 1 for i ∈ I.

• DSCLP2—Dynamic Set Covering Location Problem 2.

This is a multi-period set covering problem where facilities cannot be closed during the

planning horizon and at most one facility can be opened at each location. In this problem, in

each period t ∈ T a subset of demand points Jt ⊂ J must be covered by at least one center.

Converting (GMSCLP) into (DSCLP2) is accomplished by setting Kjt = K ′
jt = ∅, oit = 0,

cit = M , fit = 1, pt = m, ei = 1, ȳi0 = 0 for i ∈ I, j ∈ J , t ∈ T . Finally, bjt = 1 for j ∈ Jt,

t ∈ T and bjt = 0 for j ∈ J \ Jt, t ∈ T .

Constraints (5) are replaced by (23). Finally, since Kjt and K ′
jt are empty, constraints (6)–(8)

are removed from the model.

• DSCPP—Dynamic Set Covering Phase Out Problem.

In this problem, at the beginning of the planning horizon, there is one facility opened in each

location i ∈ I. Using the terminology associated with (GMSCLP) we have ȳi0 = 1 for i ∈ I.

During the planning horizon, facilities can only be closed. Similarly to (DSCLP2), a subset

of customers Jt ⊂ J must be covered in every period t ∈ T . In order to specialize (GMSCLP)

to this model we should consider only variables yit for i ∈ I, t ∈ T and we should set the

parameters as follows: Kjt = K ′
jt = ∅, oit = M , cit = 0, fit = 1, pt = m, ei = 1, for i ∈ I,

j ∈ J , t ∈ T . As in the previous model, bjt = 1 for j ∈ Jt, t ∈ T and bjt = 0 for j /∈ Jt, t ∈ T .

• DMCLP1—Dynamic Maximum Covering Location.

This problem is a multi-period maximum covering location problem that seeks to minimize

the weighted sum of demand points that are not covered in each time period. In this case,

we consider a set of empty locations (Io) where a facility can be opened during the planning

horizon and a set of locations (Ic) where a facility is currently open and that can be closed

during the planning horizon. These two sets do not overlap.

To model this problem using our general formulation we set Kjt = {1}. Associated with each

demand point, a population size ςjt is considered and the benefit for covering this population

is gj1t = −ςjt. Besides, only y- and w-variables are considered. Constraints (5) are replaced

by ∑

i∈I

aijtyit ≥ wj1t, j ∈ J, t ∈ T . (35)

In this case, fit = 0, hjt = 0, pt = pt, K
′
jt = ∅ and ei = 1 for i ∈ I, j ∈ J , t ∈ T . As before,

oit = M for i ∈ Ic and oit=0 otherwise for t ∈ T . Similarly, cit = M for i ∈ Io and cit = 0

otherwise for t ∈ T . To obtain the same objective value as in the original model, the constant

−
∑

j∈J

∑
t∈T gj1t must be added to the objective value.

In tables 13 and 14, we summarize the constraints and parameters, respectively, used to adapt

(GMSCLP) to the models appearing in Gunawardane [1982].
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Table 13: Constraints needed in analyzed formulations.

Model Constraints

(COV) (2), (5), (9), (12)

(DSCLP) (10), (23)

(DSCLP2), (DSCPP), (GDSCLP) (3),(4), (9)-(11), (23)

(DMCLP1), (DMCLP2) (2)–(4), (9)–(12), (35)
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Table 14: Paramaters to adapt model (GMSCLP) to existing covering location problems.

Model T S |Ks
jt| |K

′s
jt | c f g p b e o

(COV) 1 1 K 0 0 f g p b e 0

(DSCLP) T 1 0 0 0 0 0 m bjtj = 1 and bjt = 0 for t 6= tj, j ∈ J 1 oit = ot, ot > ot+1, t ∈ T

(DSCLP2) T 1 0 0 M 1 0 m bjt = 1, t ∈ T , j ∈ Jt and bjt = 0, t ∈ T , j /∈ Jt 1 0

(DSCPP) T 1 0 0 0 1 0 m bjt = 1, t ∈ T , j ∈ Jt and bjt = 0, t ∈ T , j /∈ Jt 1 M

(GDSCLP) T 1 0 0 cit = M, i ∈ Io, cit = 0 i ∈ Ic 1 0 m bjt = 1, t ∈ T , j ∈ Jt and bjt = 0, t ∈ T , j /∈ Jt 1 oit = M, i ∈ Ic, oit = 0 i ∈ Io

(DMCLP1) T 1 1 0 cit = M, i ∈ Io, cit = 0 i ∈ Ic 0 −ς p 0 1 oit = M, i ∈ Ic, oit = 0 i ∈ Io

(DMCLP2) T 1 1 0 c 0 −ς p 0 1 o
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