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Abstract

The optimal solutions of the restricted master problems used by a standard column generation
technique typically leads to an unstable behaviour and, consequently, originates an unnecessarily
large number of iterations of the method. To overcome this drawback, variations of the standard
approach use interior points of the dual feasible set instead of optimal solutions. In this paper,
we focus on a variation known as the primal-dual column generation technique which uses a
primal-dual interior point method to obtain well-centred non-optimal solutions of the restricted
master problems. We show that the method converges to an optimal solution of the master prob-
lem even though non-optimal solutions are used in the course of the procedure. Also, extensive
computational experiments are presented using column generation formulations that arise in the
context of integer programming. Three classical applications are used in the experiments: the
cutting stock problem, the vehicle routing problem with time windows, and the capacitated lot
sizing problem with setup times. The numerical results indicate that the appropriate use of a
primal-dual interior point method within the column generation technique contributes to a reduc-
tion of the number of iterations as well as the running times, on average. Furthermore, the results
show that the larger the instance, the better the relative performance of the primal-dual column
generation technique.

Keywords: column generation, interior point methods, linear programming

1. Introduction

The column generation technique has become a very important tool in the solution of op-
timization problems [1, 2]. This technique is an iterative procedure applied to solve a linear
programming problem with a huge number of variables, called the master problem (MP), such
that the columns in the coefficient matrix of this problem can be generated by following a known
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rule. By exploiting this characteristic, the column generation technique starts with a reduced ver-
sion of the problem, called the restricted master problem (RMP), in which only a few columns of
the MP are considered at first. Iteratively, new columns are generated and added to the RMP until
an optimal solution of the MP is obtained. In general, it is achieved by generating a relatively
small subset of the columns.

In the standard column generation technique, an unstable behaviour is caused by the use
of optimal dual solutions of the RMPs [1, 3]. To overcome this drawback, variations of the
standard technique relying on interior points of the dual feasible set of the RMP have been
proposed (see Section 2.1). Here we focus on the primal-dual column generation technique [4],
in which an interior point method is used to obtain non-optimal solutions that are well-centred
in the dual feasible set of the corresponding RMP. Promising computational results have been
reported using this technique [4, 5], but it has never been tested on applications in which the MP
formulation comes from an integer programming context. Furthermore, no theoretical analysis
that guarantees the convergence of the primal-dual approach has been presented. The aim of this
paper is to close this gap. First, we review the primal-dual column generation technique and
show that it converges to an optimal solution of the master problem even though non-optimal
solutions are used in the course of the algorithm. Then, we present extensive computational
results for three classes of problems which are well-known in the literature of column generation:
the cutting stock problem (CSP), the vehicle routing problem with time windows (VRPTW), and
the capacitated lot sizing problem with setup times (CLSPST). These problems are known to
lead to very degenerate restricted master problems, a property that usually causes instability
in the standard column generation [6, 7, 8]. We compare the performance of the primal-dual
column generation technique against the standard column generation and the analytic centre
cutting planning method.

The contributions of this paper are twofold: (i) presenting new theoretical as well as compu-
tational results of a naturally stable column generation technique; (ii) showing how primal-dual
interior point methods can be efficiently combined with the column generation technique for
solving relaxations of integer programming problems. The motivation for the latter lies in the
fact that this variation of interior point methods has become very powerful on solving linear
programming problems, but only a few attempts have been made on using it within a column
generation procedure.

Notice that here we are not concerned with obtaining optimal integer solutions, which would
require the development of a branch-and-price framework for each application. Instead, we want
to analyse the behaviour of the primal-dual column generation strategy, when applied to a given
node of the branch-and-price tree. By improving the performance of the column generation
procedure, we are likely to improve the overall performance on solving the integer problem to
optimality. The use of the primal-dual column generation technique within a branch-and-price
framework will be addressed in a companion paper.

The structure of the remaining sections is the following. In Section 2, we present the main
concepts in column generation and establish the notation used throughout the paper. The primal-
dual column generation technique and new theoretical developments are discussed in Section 3.
In Section 4, we describe the Dantzig-Wolfe decomposition, since it is applied in the problems
considered in this paper. In Section 5, a computational study comparing the primal-dual approach
to other two column generation techniques is presented. The conclusions and directions for
further studies are presented in Section 6.
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2. Column generation technique

Consider a master problem (MP) represented as the following linear programming problem

z? := min
∑
j∈N

c jλ j, (2.1a)

s.t.
∑
j∈N

a jλ j = b, (2.1b)

λ j ≥ 0, ∀ j ∈ N, (2.1c)

where N = {1, . . . , n} is a set of indices, λ = (λ1, . . . , λn) is the column vector of decision
variables, c ∈ Rn, b ∈ Rm and a j ∈ Rm, ∀ j ∈ N. We assume that the MP has a huge number
of variables which makes solving this problem a very difficult task. Furthermore, we assume the
columns a j are not given explicitly but are implicitly represented as elements of a set A , ∅,
and they can be generated by following a known rule. To solve the MP, we consider only a small
subset of columns at first, which leads to the restricted master problem (RMP):

zRMP := min
∑
j∈N

c jλ j, (2.2a)

s.t.
∑
j∈N

a jλ j = b, (2.2b)

λ j ≥ 0, ∀ j ∈ N, (2.2c)

for some N ⊆ N. Any primal feasible solution λ̄ of the RMP corresponds to a primal feasible
solution λ̂ of the MP, with λ̂ j = λ̄ j, ∀ j ∈ N, and λ̂ j = 0, otherwise. Hence, the optimal value of
any RMP gives an upper bound of the optimal value of the MP, i.e., z? ≤ zRMP.

The column generation technique consists in an iterative process where we solve the RMP
and use the obtained optimal solution to generate one or more new columns. Then, we modify
the RMP by adding the generated column(s) and repeat the same steps until we can guarantee
that no more columns are necessary to obtain an optimal solution of the MP. Natural questions
arise at this point: (a) how to check whether no more columns are necessary? and (b) how to
generate new columns to be added to the RMP? The answers to both questions are given by the
oracle. The oracle is composed of one or more (pricing) subproblems, which are able to generate
new columns by using a dual solution of the RMP. The idea behind the oracle is to check if a
dual solution of the RMP is also feasible for the MP.

Let u = (u1, . . . , um) be the vector of dual variables associated to constraints (2.1b) of the
MP. For any given pair (λ, u) of primal-dual solution, we assume that λ is a primal feasible
solution. We can check the feasibility of the dual variables in the MP by using the reduced costs
s j = c j − uT a j, for each j ∈ N. If s j < 0 for some j ∈ N, then the dual solution u j is not feasible
and, therefore, λ cannot be optimal. Otherwise, if s j ≥ 0 for all j ∈ N and bT u = cTλ, then an
optimal solution of the MP has been found.

Since we have assumed that columns a j do not have to be explicitly available, we should
avoid computing the values s j for all j ∈ N. Hence, we use the minimum among them, obtained
by solving the subproblem

zS P := min{c j − uT a j|a j ∈ A}. (2.3)
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For simplicity, we reset zS P := 0 when zS P > 0. In some applications, the subproblem (2.3) can
be partitioned into several independent subproblems that provide different types of columns. In
this case, zS P corresponds to the sum of the minimal reduced costs of each subproblem.

The value zS P is called the value of the oracle. If zS P = 0, we can ensure that there is no
negative reduced cost and, hence, an optimal solution of the MP has been obtained. Otherwise,
the column a j corresponding to the minimal reduced cost should be added to the RMP. At this
point, more than one column may be found and we can add one or more of them to the RMP.
Actually, any column with a negative reduced cost can be added to the RMP. By using (2.3) we
can provide a lower bound of the optimal value of the MP, if we know a constant κ such that

κ ≥
∑
i∈N

λ?i , (2.4)

where λ? = (λ?1 , . . . , λ
?
n ) is an optimal solution of the MP. Indeed, we cannot reduce zRMP by

more than κ times zS P and, hence, we have

zRMP + κzS P ≤ z? ≤ zRMP. (2.5)

The value of κ is promptly available when the Dantzig-Wolfe decomposition is applied to obtain
the column generation scheme. This will be clarified in Section 4.

The column generation terminates when both bounds in (2.5) are the same, i.e., zS P = 0. We
refer to each call to the oracle as an outer iteration and consider the column generation scheme
to be efficient if it keeps the number of outer iterations small. Every RMP is then solved by an
appropriate linear programming technique (infeasible primal-dual interior point method in our
case) and the iterations in this process are called inner iterations.

2.1. Column generation strategies

As already mentioned in the previous section, the standard column generation is adversely
affected by the use of optimal dual solutions. However, solving every RMP to optimality is not
needed in a column generation procedure and, hence, variations of the standard technique avoid
this strategy. In general, they rely on interior points of the dual feasible set of the RMP. For
instance, the stabilization techniques [9, 10, 11] choose a dual point called stability centre and
add penalization terms to the dual objective function of the RMP to keep the dual solutions close
to this centre. The modified RMP is solved to optimality, however now the dual solutions do
not oscillate greatly from one outer iteration to another, because of the penalties added to the
problem. Although good computational results have been reported for these techniques, they
are too dependent of appropriate choices of the stability centre and penalization terms, which
can be a difficult task in practice, specially for a variety of different problems. For performance
comparisons involving stabilized approaches and the standard column generation, see [12, 11,
13].

An interior point column generation based on the simplex method is proposed in [12]. At
each outer iteration, a dual solution in the interior of the dual space is obtained by solving the
dual problem of the RMP several times, with different objective functions that are randomly
generated. Then, a set of vertices of the dual space is generated and an interior dual point is given
by the convex combination of the points in the set. The authors present computational results
considering instances of the VRPTW, for which the number of outer iterations and CPU time
were considerably reduced in relation to the standard as well as stabilized column generation.
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However, for applications with large-scale RMPs, the need for solving these problems several
times for different objective functions adversely affects the efficiency of the approach.

Other column generation approaches obtain interior points of the dual feasible set without
(directly) modifying the RMP. In [14] and [15], the authors address the solution of two classes
of combinatorial optimization problems by a cutting plane method which uses interior points of
the dual set, obtained by a primal-dual interior point method. For those particular applications,
the valid inequalities are explicitly known in advance, and for each dual solution of the RMP, the
violated inequalities are found by full enumeration. If the violation is not large enough, then the
tolerance is updated and the interior point method continues with the optimization of the RMP.
Notice that this approach cannot be directly applied in the general context of column generation,
as usually the columns cannot be fully enumerated, but are rather generated by solving a possibly
time-consuming problem (NP-hard in many cases).

The analytic centre cutting plane method (ACCPM) [16, 17, 18] is an interior point approach
that relies on central prices. The strategy consists in computing a dual point which is an approx-
imate analytic centre of the localization set associated to the current RMP. The localization set
is given by the intersection of the dual space of the RMP with a half-space given by the best
lower bound found for the optimal dual value of the MP. Relying on points in the centre of the
localization set usually avoid the unstable behaviour between consecutive dual points and also
contributes to the generation of deeper cuts. A very important property of this approach is given
by its theoretical fully polynomial complexity. Although other polynomial cutting plane methods
are proposed in the literature, no efficient computational implementations are publicly available
for them (see [19]). The use of stabilization terms within the analytic centre cutting plane method
has been successful, as showed in [20]. An implementation of this approach will be used in our
computational experiments.

Another interior point approach is the primal-dual column generation technique. Proposed
in [4], it relies on an infeasible primal-dual interior point method to find a non-optimal solution
of the RMP, such that the distance to optimality is defined in function of the relative gap in
the column generation procedure. In the first outer iterations, each RMP is solved with a loose
tolerance, and this tolerance is dynamically reduced throughout the iterations as the relative
gap in the column generation approaches zero. The authors present promising computational
results for a class of nonlinear programming problems, whose linearization is solved by column
generation. A similar strategy is used by [5] to solve linear programming problems by combining
Dantzig-Wolfe decomposition and a primal-dual interior point method. The authors also report a
substantial reduction in the number of outer iterations when compared to other column generation
procedures. To the best of our knowledge, these strategies have never been applied in the context
of integer programming, where column generation formulations are widely employed.

Notice that the standard column generation and the analytic centre approaches are extremal
strategies, as they are based on optimal solutions. In fact, the analytic centre of a feasible set
corresponds to the optimal solution of a modified dual problem associated to the RMP. From
this point of view, the idea of the primal-dual column generation technique is somewhere in the
middle of these two approaches. It relies on solutions that are close-to-optimality, but at the same
time not far from the central trajectory in the dual feasible set. The contribution of using non-
optimal solutions is twofold. First, a smaller number of inner iterations is usually needed to solve
each RMP and, hence, the running times per outer iteration is reduced. Second, a more stable
column generation strategy is likely to be obtained, so that smaller number of outer iterations as
well as less total CPU time are usually required.
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3. Primal-dual column generation

Proposed in [4], the primal-dual column generation method (PDCGM) is based on non-
optimal solutions of the RMPs. A primal-dual interior point method is used to solve the RMPs,
which makes possible obtaining primal-dual feasible solutions which are well-centred in the fea-
sible set, but have a nonzero distance to optimality. The theoretical development of the method
is presented in this section.

Following the notation of Section 2, we consider that a given RMP is represented by (2.2),
with optimal primal-dual solution (λ, u). Similarly to the standard approach, the primal-dual col-
umn generation starts with an initial RMP with enough columns to avoid an unbounded solution.
However, at a given outer iteration, a suboptimal feasible solution (λ̃, ũ) of the current RMP is
obtained, which is defined as follows.

Definition 3.1. A primal-dual feasible solution (λ̃, ũ) of the RMP is called suboptimal solution,
or ε-optimal solution, if it satisfies (cT λ̃ − bT ũ) ≤ ε(1 + |cT λ̃|), for some tolerance ε > 0.

We denote by z̃RMP = cT λ̃ the objective value corresponding to the suboptimal solution (λ̃, ũ).
Since cT λ̃ ≥ cTλ = zRMP, z̃RMP is a valid upper bound of the optimal value of the MP.

The solution (λ̃, ũ) should also be well-centred in the primal-dual feasible set, in order to
provide a more stable dual information to the oracle. We say a point (λ, u) is well-centred if it
satisfies

γµ ≤ (c j − uT a j)λ j ≤ (1/γ)µ, ∀ j ∈ N, (3.1)

for some γ ∈ (0.1, 1], where µ = (1/|N |)(cT − uT A)λ. By imposing (3.1), we guarantee that the
point is not too close to the boundary of the primal-dual feasible set and, hence, the oscillation
of the dual solutions will be relatively small. Notice that (3.1) is a natural way of stabilizing the
dual solutions, if a primal-dual interior point method is used to solve the RMP [4, 21].

Once the suboptimal solution of the RMP is obtained, the oracle is called with the dual
solution ũ as a query point. Then, it should return either a value z̃S P = 0, if no columns could be
generated from the proposed query point, or a value z̃S P < 0, together with one or more columns
to be added to the RMP. Consider the value κ > 0 defined as (2.4) in Section 2. As already
mentioned before, a suitable value for κ is usually promptly available in a column generation
scheme. According to Proposition 3.2, a lower bound of the optimal value of the MP can still be
obtained.

Proposition 3.2. Let z̃S P be the value of the oracle corresponding to the suboptimal solution
(λ̃, ũ). Then, κz̃S P + bT ũ ≤ z?.

Proof. Let λ? be an optimal primal solution of the MP. By using (2.1b), (2.3) and z̃S P ≤ 0, we
have that

cTλ? − bT ũ =
∑
j∈N

c jλ
?
j −

∑
j∈N

λ?j aT
j ũ

=
∑
j∈N

λ?j (c j − aT
j ũ)

≥
∑
j∈N

λ?j z̃S P

≥ κz̃S P.
6



Therefore, z? = cTλ? ≥ κz̃S P + bT ũ. �

The tolerance ε which controls the distance of (λ̃, ũ) to optimality can be loose at the begin-
ning of the column generation process, as a very rough approximation of the MP is known at this
time. This tolerance should be reduced throughout the outer iterations, and be tight when the gap
is small. Hence, we can dynamically adjust it by using the relative gap in the outer iterations,
given by

gap =
cT λ̃ − (κz̃S P + bT ũ)

1 + |cT λ̃|
.

At the end of every outer iteration, we recompute the relative gap, and the tolerance ε is updated
as

ε = min{εmax, gap/D}, (3.2)

where D > 1 is the degree of optimality that relates the tolerance ε to the relative gap. Here, we
consider it is a fixed parameter. Also, an upper bound εmax is used so that the suboptimal solution
is not far away from the optimum.

It is important to emphasize that unlike in the standard approach, z̃S P = 0 does not suffice to
terminate the column generation process. Indeed (λ̃, ũ) is a feasible but suboptimal solution and
therefore there may still be a difference between cT λ̃ and bT ũ. Proposition 3.3 shows that the gap
is still reduced in this case, and the progress of the algorithm is guaranteed.

Proposition 3.3. Let (λ̃, ũ) be the suboptimal solution of the RMP, found at iteration k with
tolerance εk > 0. If z̃S P = 0, then the new relative gap is strictly smaller than the previous one,
i.e., gapk < gapk−1.

Proof. We have that z̃RMP = cT λ̃ is an upper bound of the optimal solution of the MP. Also, from
Proposition 3.2 we obtain the lower bound bT ũ, since z̃S P = 0. Hence, the gap in the current
iteration is given by

gapk =
cT λ̃ − bT ũ
1 + |cT λ̃|

.

Notice that the right-hand side of this equality is less than or equal to εk, the tolerance used to
obtain (λ̃, ũ). Hence, gapk ≤ εk. We have two possible values for εk. If εk = εmax, then by (3.2)
gapk−1 ≥ Dεk > εk. Otherwise, εk = gapk−1/D and, again, gapk−1 > εk. Therefore, we conclude
gapk < gapk−1. �

Algorithm 1 summarizes the above discussion. Notice that the primal-dual column genera-
tion method has a simple algorithmic description, similar to the standard approach. Thus, it can
be implemented in the same level of difficulty if a primal-dual interior point solver is readily
available. Notice that κ is known in advance and problem dependent.

Algorithm 1: Primal-Dual Column Generation Method
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1. Input: Initial RMP; parameters κ, εmax > 0, D > 1, δ > 0.
2. set LB = −∞, UB = ∞, gap = ∞, ε = 0.5;
3. while (gap ≥ δ) do
4. find a well-centred ε-optimal solution (λ̃, ũ) of the RMP;
5. UB = min(UB, z̃RMP);
6. call the oracle with the query point ũ;
7. LB = max(LB, κz̃S P + bT ũ);
8. gap = (UB − LB)/(1 + |UB|);
9. ε = min{εmax, gap/D};

10. if (z̃S P < 0) then add the new columns to the RMP;
11. end(while)

Since the PDCGM relies on suboptimal solutions of each RMP, it is important to ensure
that it is a valid column generation procedure, i.e., a finite iterative process that delivers an
optimal solution of the MP. Even though the optimality tolerance ε decreases geometrically in
the algorithm, there is a special case in which the subproblem value is zero, which would cause
the method to stall. Fortunately, by using Proposition 3.3 we can guarantee the method still
converges successfully. The proof of convergence is given in Proposition 3.4.

Proposition 3.4. Let z? be the optimal value of the MP. Given δ > 0, the primal-dual column
generation method converges in a finite number of steps to a primal feasible solution λ̂ of the MP
with objective value z̃ that satisfies

(z̃ − z?) < δ(1 + |z̃|). (3.3)

Proof. Consider an arbitrary iteration k of the primal-dual column generation method, with cor-
responding suboptimal solution (λ̃, ũ). After calling the oracle, two situations may occur:

1. z̃S P < 0 and new columns have been generated. These columns correspond to dual con-
straints of the MP that are violated by the dual point ũ. Since the columns are added to the
RMP, the corresponding dual constraints will not be violated in the next iterations. There-
fore, it guarantees the progress of the algorithm. Also, this case can only happen a finite
number of times, as there are a finite number of columns in the MP.

2. z̃S P = 0 and no columns have been generated. If additionally we have εk < δ, then
from Proposition 3.3 the gap in the current iteration satisfies gapk < δ, and the algorithm
terminates with the suboptimal solution (λ̃, ũ). Otherwise, we also know from Proposition
3.3 that the gap is still reduced, and although the RMP in the next iteration will be the
same, it will be solved to a tolerance εk+1 < εk. Moreover, the gap is reduced by a factor
of 1/D and, hence, after a finite number of iterations we obtain a gap less than δ.

At the end of the iteration, if the current gap satisfies gapk < δ, then the algorithm terminates
and we have

z̃RMP − (z̃S P + bT ũ)
1 + |z̃RMP|

< δ.

Since z̃S P + bT ũ ≤ z?, the inequality (3.3) is satisfied with z̃ = z̃RMP. The primal solution λ̃ leads
to a primal feasible solution of the MP, given by λ̂ j = λ̃ j, ∀ j ∈ N, and λ̂ j = 0, otherwise. If
gapk ≥ δ, a new iteration is carried out and we have one of the above situations again. �
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Having presented a proof of convergence for the PDCGM, it is important to give some re-
marks about its implementation. As requested by (3.1), the suboptimal solutions are well-centred
points in the primal-dual feasible set. This contributes to the stabilization of the dual points and,
hence, reduces the number of outer iterations in general. In our implementation, each RMP is
solved by the interior point solver HOPDM [22]. It keeps the iterates inside a neighbourhood
of the central path, which has the form (3.1). To achieve this, the solver makes use of multiple
centrality correctors [23, 24].

An efficient warmstarting technique is essential for a good performance of a column gen-
eration technique based on a interior point method, as the PDCGM. Throughout the column
generation process, closely-related problems are solved, as the RMP in a given iteration differs
from the RMP of the previous iteration by merely a few columns. Hence, this similarity should
be exploited in order to reduce the computational effort of solving a sequence of problems. In
our implementation of PDCGM, we rely on the warmstarting techniques available in the solver
HOPDM (see [23, 25, 26]). The main idea of these methods consists of storing a close-to-
optimality and well-centred iterate when solving a given RMP. After a modification is carried
out on the RMP, the stored point is used as a good initial point to start from.

Notice that a primal-dual interior point method is well-suited for the implementation of the
PDCGM. In fact, (standard) simplex type methods cannot straightforwardly provide suboptimal
solutions which are well-centred in the dual space. Instead, the primal and dual solutions will
always be on the boundaries of their corresponding feasible sets. Besides, there is no control on
the infeasibilities of the solutions before optimality is reached in a simplex method.

4. Dantzig-Wolfe decomposition

In the classes of problems addressed in this paper, the column generation schemes are ob-
tained by applying Dantzig-Wolfe decomposition to the corresponding integer programming for-
mulations. In this section, we briefly describe the fundamental concepts of this approach.

The Dantzig-Wolfe decomposition (DWD) is a technique proposed for linear programming
problems with a special structure in the coefficient matrix. The original aim of this technique was
to make large linear problems tractable as well as to speed up the solution by the simplex method
[27]. Except for some classes of problems, the DWD was not advantageous for general linear
programming problems. However, it showed to be very successful when extended to integer
programming problems (see [28, 29]). In this context, the focus was to provide stronger bounds
when solving linear relaxations in order to speed up a branch-and-bound search.

Similar to the continuous case, an extended DWD can be applied to integer programming
formulations that have a special structure in the coefficient matrix. Usually, the matrix is very
sparse and composed by several blocks which would be independent except for the existence of
a set of linking constraints. Consider the following (original) integer programming problem:

min cT x, (4.1a)
s.t. Ax = b, (4.1b)

x ∈ X, (4.1c)

where X = {x ∈ Zn
+ : Dx = d} is a discrete set, c ∈ Rn, A ∈ Rm×n, b ∈ Rm, D ∈ Rh×n, d ∈ Rh. Let

us assume that without the presence of constraint (4.1b), the problem would be easily solved by
taking advantage of the structure of X, particularly of matrix D.
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To apply DWD to the integer programming given above, we consider here the convexification
approach, although an alternative approach could have been used (see [29]). Consider the convex
hull of the set X, denoted by C = conv(X). Assume that we know the sets of all extreme points
pq and extreme rays pr that fully represent C. Hence, we can write any x ∈ C as

x =
∑
q∈Q

λq pq +
∑
r∈R

µr pr,

where the setsQ andR consist of indices of all extreme points and extreme rays ofC, respectively.
By using this equality in problem (4.1), we obtain the equivalent formulation:

min
∑
q∈Q

λq(cT pq) +
∑
r∈R

µr(cT pr), (4.2a)

s.t.
∑
q∈Q

λq(Apq) +
∑
r∈R

µr(Apr) = b, (4.2b)∑
q∈Q

λq = 1, (4.2c)

λq ≥ 0, µr ≥ 0, ∀q ∈ Q,∀r ∈ R, (4.2d)

x =
∑
q∈Q

λq pq +
∑
r∈R

µr pr, (4.2e)

x ∈ Zn
+. (4.2f)

Notice that we still need to keep x ∈ Zn
+ in order to guarantee the equivalence between (4.2) and

(4.1). However, relaxing the integrality of x in (4.2) usually leads to a lower bound that is the
same as or stronger than the one obtained by the linear programming relaxation of (4.1). For
this reason, the relaxation of (4.2) is very important when solving (4.1) by a branch-and-bound
approach.

Assume we have relaxed the integrality on x. Thus, there is no need to keep the constraints
(4.2e) in the formulation of (4.2). By denoting c j = cT p j and a j = Ap j, ∀ j ∈ Q and ∀ j ∈ R, a
relaxation of the problem (4.2) is given by:

min
∑
q∈Q

cqλq +
∑
r∈R

crµr (4.3a)

s.t.
∑
q∈Q

aqλq +
∑
r∈R

arµr = b, (4.3b)∑
q∈Q

λq = 1, (4.3c)

λq ≥ 0, µr ≥ 0, ∀q ∈ Q,∀r ∈ R, (4.3d)

which is called Dantzig-Wolfe master problem (DW-MP). Under the column generation perspec-
tive, instead of representing the DW-MP by every extreme point pq, q ∈ Q, and every extreme
ray pr, r ∈ R, we consider only a subset of them, for some Q ⊆ Q and R ⊆ R. The dual prob-
lem associated to (4.3) has the same form as the resulting problem after applying Lagrangian
relaxation for integer programming in the original problem (4.1) [30, 1].

Usually, the set X can be represented as the Cartesian product of K independent sets, due
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to a special structure in the matrix D that allows it to be partitioned in several independent
submatrices Dk, k = 1, . . . ,K. Let us define X = X1 × . . . × XK , where

Xk = {xk ∈ Z|Lk |
+ : Dk xk = dk}, ∀k = 1, . . . ,K,

where |Lk | is the number of variables associated to Xk, and xk is the vector containing the com-
ponents of x associated to Xk. For simplicity, we assume the set X is bounded and, hence,
R = ∅, although the following discussion can be extended to deal with unbounded cases (see
[31]). Following the same ideas as described so far, the DW-MP can be rewritten as:

min
K∑

k=1

∑
q∈Qk

ck
qλ

k
q (4.4a)

s.t.
K∑

k=1

∑
q∈Qk

ak
qλ

k
q = b, (4.4b)∑

q∈Qk

λk
q = 1, ∀k = 1, . . . ,K, (4.4c)

λk
q ≥ 0, ∀q ∈ Qk, ∀k = 1, . . . ,K, (4.4d)

where the extreme points of the subset Xk are represented by each pq with q ∈ Qk. Now, K
independent subproblems are obtained and rather than adding only one column to the RMP at
each outer iteration, K columns can be added. In fact, if we denote by u and v the dual variables
associated to constraints (4.4b) and (4.4c), respectively, we have the following subproblem for
each k = 1, . . . ,K:

zk
S P := min

{
ck

q − uT ak
q − vk | q ∈ Qk

}
,

= min
{
(ck − (Ak)T u)T xk − vk | xk ∈ Xk

}
,

where Ak are the columns in A associated to the variables xk, k = 1, . . . ,K.
There are some applications in which the K subproblems are identical hence they will gener-

ate the same columns for a given dual point u. We can avoid this undesirable situation by using
an aggregation of variables

λq :=
K∑

k=1

λk
q.

As a consequence, we can drop the index k from Qk and denote it simply by Q, since all Qk

represent the same set. The same simplification may be applied to the parameters ck
q and ak

q.
Considering all these changes together, we can rewrite problem (4.4) as the following aggregated
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master problem:

min
∑
q∈Q

cqλq (4.5a)

s.t.
∑
q∈Q

aqλq = b, (4.5b)∑
q∈Q

λq = K, (4.5c)

λq ≥ 0, ∀q ∈ Q. (4.5d)

Although similar to the DW-MP, there is now only one subproblem associated to the aggregated
master problem, which is given by any zk

S P, since they are identical. If 0 ∈ Xk and its associated
cost is also zero, then the equality in constraint (4.5c) can be relaxed to∑

q∈Q

λq ≤ K.

Besides, if K is sufficiently large, then this inequality holds strictly in the optimal solution and,
hence, (4.5c) can be dropped from the problem.

It is noteworthy that any solution of the subproblem that has a negative reduced cost can lead
to an attractive column of the MP. Hence, if the method applied to solve the subproblem is able
to find the best t-solutions, for a given t > 0, then we can generate up to t columns, instead of
only one. It is usually a good strategy, as it reduces the number of outer iterations. In practice,
there must be a compromise between the number of columns added to the RMP at each iteration
and the CPU time to solve it.

5. Computational experiments

In this section, we present the results of computational experiments using three classes of
problems which are well known in the column generation literature. They are the cutting stock
problem (CSP), the vehicle routing problem with time windows (VRPTW), and the capacitated
lot sizing problem with setup times (CLSPST). For each application, we have implemented three
different column generation strategies. The descriptions of each strategy are the following:

• Standard column generation (SCG): each RMP is solved to optimality by the simplex
method available in the commercial solver CPLEX [32]. The solver is used as a black-box
and its default parameters are used in the experiments.

• Primal-dual column generation (PDCGM): the suboptimal solutions of each RMP are ob-
tained by using the interior point solver HOPDM [22], which is able to efficiently provide
well-centred dual points and uses warmstarting strategies proposed in [23, 25, 26].

• Analytic centre cutting plane (ACCPM): the dual point at each iteration is an approxi-
mate analytic centre of the localization set associated to the current RMP. The applications
were implemented on top of the open-source solver OBOE/COIN [33], a state-of-the-art
implementation of the analytic centre strategy with additional stabilization terms [20].
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For each application and for every aforementioned column generation strategy, the subproblems
are solved using the same source-code. Also, the SCG and the PDCGM are initialized with the
same columns and, hence, have the same initial RMP. The ACCPM requires an initial dual point
to start from, instead of a set of initial columns. After preliminary tests, we have chosen initial
dual points that led to a better performance of the method on average. We have used different
initial dual points for each application, as will be specified later. To run the tests we have used a
computer with processor Intel Core 2 Duo 2.26 Ghz, 4 GB RAM, and Linux operating system.
The default accuracy, δ, has been set to 10−6.

The standard column generation is known to be very unstable on solving the master problem
formulations of the selected problems. Undoubtedly, it would be interesting to consider stabi-
lized versions of the standard column generation in the computational experiments. However,
the choice of proper stabilization parameters is known to be problem-dependant and makes it
impractical for the variety of problems considered in this study. Nevertheless, comparisons in-
volving stabilized and standard column generation procedures are available in the literature (see
Section 5.4). The purpose of comparing the PDCGM against the SCG is to give an idea of how
much it can be gained in overall performance in relation to the standard approach, i.e., without
any stabilization. The ACCPM was included in our experiments for being a strategy that also re-
lies on an interior point method (although essentially different). After extensive testing we chose
what seems to be the best possible starting point/parameters setting for OBOE/COIN.

Remark In the remainder of this section, we have adopted a compact representation of vectors,
for clarity purposes. For a given set I = {1, . . . , n} of indices, we denote by [xi j]i, j∈I the vector
(x11, x12, . . . , xi j, . . . , xn(n−1), xnn).

5.1. Cutting stock problem

The one-dimensional CSP consists in determining the smallest number of rolls of width W
that have to be cut in order to satisfy the demands d j of pieces of width w j, for j ∈ M =

{1, 2, . . . ,m} [6]. We assume there is an upper bound n on the number of rolls needed to satisfy
the demands and, hence, we associate an index in the set N = {1, 2, . . . , n} to each roll. An integer
programming formulation is given by:

min
∑
i∈N

yi, (5.1a)

s.t.
∑
i∈N

xi j ≥ d j, ∀ j ∈ M, (5.1b)∑
j∈M

w jxi j ≤ Wyi, ∀i ∈ N, (5.1c)

yi ∈ {0, 1}, ∀i ∈ N, (5.1d)
xi j ≥ 0 and integer, ∀i ∈ N,∀ j ∈ M, (5.1e)

where yi = 1 if the roll i is used, and 0 otherwise. The number of times a piece of width w j is cut
from roll i is denoted with xi j. Constraints (5.1b) guarantee that all demands must be satisfied,
and constraints (5.1c) ensure that the sum of the widths of all pieces cut from a roll does not
exceed its width W.
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5.1.1. Dantzig-Wolfe decomposition
The coefficient matrix of problem (5.1) has a special structure with coupling constraints given

by (5.1b), which is well-suited to the application of the DWD. Consider the setX of all points that
satisfy the constraints (5.1c), (5.1d) and (5.1e). Following the discussion presented in Section
4, we define the subsets Xi, for each i ∈ N, which are independent to each other and satisfy
X = X1 × . . . × Xn. Furthermore, we replace each Xi by its convex hull conv(Xi), which is a
bounded set and hence can be fully represented by the set of its extreme points. For each i ∈ N,
let Pi be the set of indices of all extreme points of conv(Xi). These extreme points are then
denoted by (yi

p, x
i
p1, . . . , x

i
pm), for each p ∈ Pi. Using this notation, we have the following master

problem:

min
∑
i∈N

∑
p∈Pi

yi
pλ

i
p, (5.2a)

s.t.
∑
i∈N

∑
p∈Pi

xi
p jλ

i
p ≥ d j, ∀ j ∈ M, (5.2b)∑

p∈Pi

λi
p = 1, ∀i ∈ N, (5.2c)

λi
p ≥ 0, ∀i ∈ N,∀p ∈ Pi. (5.2d)

Let u = (u1, . . . , um) and v = (v1, . . . , vn) be the dual variables associated to constraints (5.2b)
and (5.2c), respectively. The oracle associated to the master problem (5.2) is given by a set of n
subproblems. Hence, for every i ∈ N, we have the following subproblem:

min yi −
∑
j∈M

u jxi j − vi, (5.3a)

s.t. (yi, xi1, . . . , xim) ∈ conv(Xi), (5.3b)

where u and v represent an arbitrary dual solution. Since the stock pieces are identical (i.e., have
the same width), the subproblems are the same for every i ∈ N, and hence the oracle will generate
n equal columns. To avoid this, we apply the aggregation of variables (see Section 4 for details).
The resulting master problem is given by:

min
∑
p∈P

ypλp, (5.4a)

s.t.
∑
p∈P

xp jλp ≥ d j, ∀ j ∈ M, (5.4b)

λp ≥ 0, ∀p ∈ P, (5.4c)

where P represents the set of indices of all extreme points of conv(X̄), with X̄ := X1 = . . . = Xn.
Also, we dropped the convexity constraint, as 0 ∈ conv(X̄) and n is an inactive upper bound in
the constraint

∑
p∈P λp ≤ n. The oracle is now given by only one subproblem, which is the same

as (5.3), except for dropping the index i and vi. To solve the subproblem we first solve a knapsack
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problem given by:

max
∑
j∈M

u jx j, (5.5a)

s.t.
∑
j∈M

w jx j ≤ W, (5.5b)

x j ≥ 0 and integer, ∀ j ∈ M. (5.5c)

An optimal solution (x?1 , . . . , x
?
m) of this subproblem is used to generate a column of (5.4). If

1 −
∑

j∈M u jx?j < 0, then the column is generated by setting yp := 1 and xp j := x?j for all
j ∈ M. Otherwise, we assume the solution is given by an empty pattern and, hence, the column
is generated by setting yp := 0 and xp j := 0 for all j ∈ M. If the k-best solutions of the knapsack
problem are available, for a given k > 0, then up to k columns can be generated at each call to
the oracle.

5.1.2. Computational results
To analyse the performance of the column generation strategies addressed here when solving

problem (5.4), we have selected 262 instances from the literature in one-dimensional CSP (http:
//www.math.tu-dresden.de/~capad/). The initial RMP consists of columns generated by
m homogeneous cutting patterns, which corresponds to selecting only one piece per pattern, as
many times as possible without violating the width W. In the ACCPM approach and after testing
with different values, we have used the initial guess u0 = 0.5e which has provided the best results
for this strategy. The knapsack problem is solved using a branch-and-bound method described
in [34], the implementation of which was provided by the author.

Adding one column to the RMP. In the first set of numerical experiments we consider that only
one column is generated by the oracle at each iteration. We have classified the instances in two
sets according to m, the number of pieces. In class S (set of small instances) we have included
178 instances with dimensions ranging between 15 and 199 pieces while in class L (set of large
instances) we have 84 instances ranging from 200 to 555 pieces. Table 1 presents for each class
and strategy: the average number of outer iterations (Iter), the average CPU time spent in the
oracle (Oracle) and the average CPU time required for the column generation procedure (Total).
The last row (All) presents the average results considering the 262 instances. For the set of
small instances, the SCG is the best overall strategy if we consider the total CPU time, while
the PDCGM has the smallest number of iterations on average. For the set of large instances, the
PDCGM is on average 3.5 times faster than SCG and 4.1 times faster than the ACCPM. If we
consider the average over all the instances, the PDCGM requires fewer outer iterations and less
CPU time when compared with both, the SCG and the ACCPM.

Observe that the RMPs solved at each outer iteration are actually small/medium size linear
programming problems. The number of columns in the last RMP is approximately the number
of initial columns plus the number of outer iterations. Note that for the SCG the time spent
in solving the RMPs is very small in relation to the time required to solve the subproblems,
regardless the size of the instances. It happens because the simplex method available in the
CPLEX solver is very efficient on solving/reoptimizing these linear programming problems. For
the PDCGM and the ACCPM, the proportion of the total CPU time required to solve the RMP
and the oracle varies according to the size of the instances.
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SCG PDCGM ACCPM
Time (in s) Time (in s) Time (in s)

Class Iter Oracle Total Iter Oracle Total Iter Oracle Total
S 571.8 2.0 2.6 368.9 1.9 4.8 466.2 3.0 10.5
L 881.3 153.7 155.8 591.4 35.5 44.5 734.0 143.9 182.4

All 671.0 50.6 51.7 440.3 12.7 17.5 552.1 48.2 65.6

Table 1: CSP - Average results on the 262 instances adding one column at a time.

SCG PDCGM ACCPM
Time (in s) Time (in s) Time (in s)

k Class Iter Oracle Total Iter Oracle Total Iter Oracle Total
10 S 149.7 0.9 1.2 102.2 0.8 2.1 253.1 2.5 26.1

L 251.4 75.8 77.0 158.4 15.1 18.3 368.3 82.6 148.7
All 182.3 24.9 25.5 120.2 5.4 7.3 290.0 28.2 65.4

50 S 70.9 1.8 2.1 63.2 2.0 3.8 276.8 10.7 106.3
L 133.7 56.6 58.2 97.1 18.8 23.1 400.2 45.5 277.6

All 91.0 19.4 20.1 74.1 7.4 10.0 316.4 21.9 161.2
100 S 53.7 3.8 4.2 53.9 4.6 7.3 308.4 31.2 221.8

L 101.0 66.3 67.8 82.3 25.4 31.5 449.4 96.4 525.2
All 68.8 23.9 24.6 63.0 11.3 15.1 353.6 52.1 319.1

Table 2: CSP - Average results on the 262 instances adding up to k columns at a time.

Adding k-best columns to the RMP. The knapsack solver is able to obtain not only the optimal
solution, but also the k-best solutions for a given k > 0. Hence, we can generate up to k columns
in one call to the oracle to be added to the RMP. It usually improves the performance of a column
generation procedure, since more information is gathered at each iteration. With this in mind, we
carry out a second set of experiments in which we have tested these strategies for three different
values of k: 10, 50 and 100.

In Table 2, we present the results obtained by adding more than one column at each iteration,
where k means the target and maximum number of columns that may be added at each iteration.
For the set of small instances, the SCG is more efficient than PDCGM and the ACCPM, regard-
less the number of columns added at each iteration. However, when the set of large instances is
considered, the PDCGM is on average more efficient than SCG and the ACCPM in terms of both
outer iterations and CPU time. For instance, if we consider k = 100, the PDCGM is 2.2 times
faster than the SCG and 16.7 times faster than the ACCPM. Similar results are observed when all
instances are considered. Again for k = 100, the PDCGM is 1.6 times faster than the SCG and
21.1 times faster than the ACCPM on average. The results indicate that the best overall strategy
to solve the 262 instances is the PDCGM with k = 10, which is on average 2.8 and 8.9 times
faster than the best result found with the SCG (k = 50) and the ACCPM (k = 10), respectively.
Clearly, the behaviour of the ACCPM is adversely affected by the number of columns added at a
time, as the number of iterations and the CPU time required for solving the RMPs are consider-
ably increased for larger values of k. The main reason for this behaviour is that the localization
set may be drastically changed from one outer iteration to another if many columns are added.
Hence, finding the new analytic centre can be very expensive in this case.

5.2. Vehicle routing problem with time windows

Consider a set of vehicles V = {1, 2, . . . , v} available to serve a set of customers C =

{1, 2, . . . , n} with demands di, for every i ∈ C. A vehicle can serve more than one customer
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in a route, as long as its maximum capacity q is not exceeded. Each customer i ∈ C must be
served once within a time window [ai, bi]. Besides, a service time is assigned for each customer.
Late arrivals (after time bi) are not allowed and if a vehicle arrives earlier to a customer it must
wait until the window is open (ai). We assume all the vehicles are identical and are initially at
the same depot, and every route must start and finish at this depot. The objective is to design a
set of minimum cost routes in order to serve all the customers.

Let N = {0, 1, . . . , n, n + 1} be a set of vertices such that vertices 0 and n + 1 represent the
depot, and the remaining vertices correspond to the customers in C. The time of travelling from
vertex i to vertex j, denoted by ti j, satisfies the triangle inequality and includes the service time
at the vertex i. By using this notation, we can formulate the VRPTW as follows:

min
∑
k∈V

∑
i∈N

∑
j∈N

ci jxi jk, (5.6a)

s.t.
∑
k∈V

∑
j∈N

xi jk = 1, ∀i ∈ C, (5.6b)∑
i∈C

di

∑
j∈N

xi jk ≤ q, ∀k ∈ V, (5.6c)∑
j∈N

x0 jk = 1, ∀k ∈ V, (5.6d)∑
i∈N

xihk −
∑
j∈N

xh jk = 0, ∀h ∈ C, ∀k ∈ V, (5.6e)∑
i∈N

xi,n+1,k = 1, ∀k ∈ V, (5.6f)

sik + ti j − M(1 − xi jk) ≤ s jk, ∀ i, j ∈ N, ∀k ∈ V, (5.6g)
ai ≤ sik ≤ bi, ∀i ∈ N, ∀k ∈ V, (5.6h)
xi jk ∈ {0, 1}, ∀ i, j ∈ N, ∀k ∈ V. (5.6i)

The binary variable xi jk determines whether vehicle k ∈ V visits vertex i ∈ N and then goes
immediately to vertex j ∈ N. The time vehicle k ∈ V starts to serve customer i ∈ C is represented
by the variable sik. We have that all the parameters are non-negative integers, ci j is given by the
Euclidean distance between vertices i and j, and M is a sufficiently large number. Constraints
(5.6b) together with (5.6i) guarantee that each customer must be visited by only one vehicle.
Constraints (5.6c) ensure that a vehicle cannot exceed its capacity. Both constraints together as-
sure that the demand of each client has to be satisfied by only one vehicle. Moreover, constraints
(5.6d) and (5.6f) ensure that each vehicle must start and finish its route at the depot, respectively.
Constraints (5.6e) guarantee that once a vehicle visits a customer and serves it, it must then move
to another customer or end its route at the depot. Constraints (5.6g) link the vehicle departure
time from a customer and its immediate successor. Indeed, if xi jk = 1 then the constraint be-
comes sik + ti j ≤ s jk. Constraints (5.6h) assure that the vehicle k serves customer i between time
ai and bi. Note that if a vehicle is not used, its route is defined as (0, n + 1).

5.2.1. Dantzig-Wolfe decomposition
The coefficient matrix of the above formulation has a special structure that can be exploited

by DWD, with coupling constraints given by (5.6b). Similar to what we did for the CSP, let X
be the set of all points satisfying constraints (5.6c) to (5.6i). We can then define v independent
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subsets Xk from X, for each k ∈ V , such that X = X1 × . . . × Xv. We replace each Xk by its
convex hull conv(Xk) which can be fully represented by its set of extreme points. For each k ∈ V ,
Pk represents the set of indices of all extreme points of conv(Xk). Following the developments
in Section 4, we obtain the following master problem:

min
∑
k∈V

∑
i∈N

∑
j∈N

∑
p∈Pk

ci jxk
i jpλ

k
p, (5.7a)

s.t.
∑
k∈V

∑
j∈N

∑
p∈Pk

xk
i jpλ

k
p = 1, ∀i ∈ C, (5.7b)∑

p∈Pk

λk
p = 1, ∀k ∈ V, (5.7c)

λk
p ≥ 0, ∀k ∈ V,∀p ∈ Pk, (5.7d)

where for a given p ∈ Pk, xk
i jp are the components of the corresponding extreme point of

conv(Xk), for all i, j ∈ N. Since the vehicles are identical (i.e., have the same capacity), the
subset Xk is the same for every k ∈ V and hence the oracle will generate v identical columns.
Similar to Section 5.1.1, we can avoid this by aggregating variables and using the following
master problem:

min
∑
i∈N

∑
j∈N

∑
p∈P

ci jxi jpλp, (5.8a)

s.t.
∑
j∈N

∑
p∈P

xi jpλp = 1, ∀i ∈ C, (5.8b)

λp ≥ 0, ∀p ∈ P, (5.8c)

where P is the set of indices of all extreme points of conv(X̄), with X̄ := X1 = . . . = Xv. The
convexity constraint has been dropped since 0 ∈ conv(X̄) and v is a loose upper bound in the
constraint

∑
p∈P λp ≤ v (see Section 4). Let u = (u1, . . . , un) denote the dual variables associated

to constraints (5.8b). Furthermore, let u = (u1, . . . , un) be an arbitrary dual solution, and assume
u0 = un+1 = 0. The oracle associated with problem (5.8) is given by the subproblem:

min
∑
i∈N

∑
j∈N

(ci j − u j)xi j,

s.t. [xi j, si]i, j∈N ∈ conv(X̄).

This subproblem is an elementary shortest path problem with resource constraints. An optimal
solution [x?i j, s

?
i ]i, j∈N of this problem is an extreme point of conv(X̄). To generate a column of

(5.8), we set xi jp = x?i j, for all i, j ∈ N.
Although several algorithms are available in the literature (see [35] for a survey), solving the

above subproblem to optimality may require a relatively large CPU time, especially when the
time windows are wide. As a consequence, a relaxed version has been used in practice, in which
non-elementary paths are allowed (i.e., paths that visit the same customer more than once). Even
though the lower bound provided by the column generation scheme may be slightly worse in
this case, the CPU time to solve the subproblem is considerably reduced. We have adopted this
approach in our three implementations. As it will be observed in the following results, a large
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SCG PDCGM ACCPM
Time (in s) Time (in s) Time (in s)

Class Iter Oracle Total Iter Oracle Total Iter Oracle Total
S 99.9 0.8 0.8 48.7 0.4 0.5 106.6 0.4 0.6
M 279.6 20.0 20.1 101.3 6.1 6.3 162.4 7.5 7.8
L 797.8 469.7 470.4 213.7 127.8 128.6 292.2 163.4 164.8

All 392.4 163.5 163.8 121.3 44.8 45.1 187.1 57.1 57.8

Table 3: VRPTW - Average results on 87 instances adding one column at a time.

amount of the total CPU time is spent on solving the subproblems. We believe that using an
exact subproblem solver will lead to similar results, although more tests in this direction may be
required to support this belief.

5.2.2. Computational results
To test the three column generation strategies on the VRPTW, we have selected 87 instances

from the literature (http://www2.imm.dtu.dk/~jla/solomon.html), which were originally
proposed in [36]. The initial columns of the RMP have been generated by n-single customer
routes which correspond to assigning one vehicle per customer. In the ACCPM approach, we
have considered the initial guess u0 = 100.0e which after various settings has proven to be the
choice which gives the best overall results for this problem. The subproblem is solved by our
own implementation of the bounded bidirectional dynamic programming algorithm proposed in
[37], with state-space relaxation and identification of unreachable nodes [38]. We have divided
the instances in small (n = 25), medium (n = 50) and large (n = 100) classes. Each class has 29
instances.

Adding one column to the RMP. In Table 3 we compare the performance of the three strategies
when only one column is added to the RMP at each iteration. For each class and strategy we
present: the number of outer iterations (Iter), the average CPU time to solve the subproblems
(Oracle) and the average total CPU time required for the column generation (Total). The last
row (All) shows the average results considering the 87 instances. In all the classes, the PDCGM
shows the best average performance in the number of iterations and total CPU time compared
with the other two strategies. When the size of the instances increases, the difference between
the SCG and the other two strategies increases as well, with the SCG being the one which shows
the worst overall performance. Considering the 87 instances, the PDCGM is on average 3.7 and
1.3 times faster than the SCG and the ACCPM, respectively. Notice that, differently from what
was observed on the CSP results, here the CPU time required for solving the RMPs is very small
for the PDCGM and the ACCPM as well. In the VRPTW, the RMPs have the set partitioning
structure, which corresponds to a very sparse coefficient matrix with only binary components, a
property that is well exploited by the solvers.

Adding k-best columns to the RMP. Since the subproblem solver is able to provide the k-best so-
lutions at each iteration, we carried out a second set of experiments. For each column generation
method, we have solved each instance using k equal to 10, 50, 100, 200 and 300. In Table 4 we
show the results of these experiments where column k denotes the maximum number of columns
added at each iteration to the RMP. For class S , the SCG and the PDCGM have a similar overall
performance. Now, if we take into account classes M and L, the PDCGM seems to be consis-
tently more efficient than the other two approaches in both, number of outer iterations and total
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k Class SCG PDCGM ACCPM
Time (in s) Time (in s) Time (in s)

Iter Oracle Total Iter Oracle Total Iter Oracle Total
10 S 26.2 0.3 0.3 22.3 0.2 0.2 93.6 0.4 0.5

M 66.7 6.1 6.2 37.7 2.4 2.6 122.0 5.4 5.7
L 188.2 113.5 114.1 72.6 41.0 41.6 170.6 90.9 92.1

All 93.7 40.0 40.2 44.2 14.5 14.8 128.7 32.2 32.8
50 S 14.4 0.2 0.2 18.1 0.1 0.2 92.2 0.4 0.5

M 33.1 3.5 3.5 26.4 1.6 1.8 120.0 5.3 5.7
L 88.0 54.9 55.5 48.6 26.0 27.0 165.2 85.8 87.8

All 45.2 19.5 19.7 31.0 9.3 9.7 125.8 30.5 31.3
100 S 12.2 0.2 0.2 16.7 0.1 0.2 92.3 0.4 0.6

M 26.0 2.9 3.0 23.2 1.4 1.7 119.7 5.4 5.8
L 65.4 41.7 42.4 37.9 20.3 21.5 166.0 84.5 87.5

All 34.5 14.9 15.2 25.9 7.3 7.8 126.0 30.1 31.3
200 S 9.8 0.1 0.2 16.1 0.1 0.3 92.4 0.4 0.6

M 20.8 2.3 2.4 21.1 1.2 1.7 120.9 5.3 6.0
L 50.1 33.1 33.9 32.4 16.9 18.7 167.4 82.1 89.2

All 26.9 11.9 12.1 23.2 6.1 6.9 126.9 29.3 31.9
300 S 9.4 0.1 0.1 15.8 0.1 0.3 93.3 0.4 0.6

M 18.0 2.1 2.2 20.4 1.2 1.8 121.1 5.2 6.1
L 42.6 28.7 29.7 31.5 16.2 18.8 168.7 79.4 89.9

All 23.3 10.3 10.7 22.6 5.8 7.0 127.7 28.3 32.2

Table 4: VRPTW - Average results on 87 instances adding at most k columns at a time.

CPU time, for any k. The same conclusion is obtained considering all the 87 instances. For all
the strategies and values of k, the PDCGM with k = 200 is the most efficient setting on average,
as it is 1.6 and 4.5 times faster than the best results obtained with the SCG (k = 300) and the
ACCPM (k = 100), respectively.

5.3. Capacitated Lot-Sizing Problem with Setup Times
Consider a set of time periods N = {1, . . . , n} and a set of items M = {1, . . . ,m} which are

processed by a single machine. The objective is to minimize the total cost of producing, holding
and setting up the machine in order to satisfy the demands d jt of item j ∈ M at each time period
t ∈ N. The production, holding and setup costs of item j in period t are denoted by c jt, h jt and f jt,
respectively. The processing and setup times required to manufacture item j in time period t are
represented by a jt and b jt, respectively. The capacity of the machine in time period t is denoted
by Ct. This problem is known as the capacitated lot sizing problem with setup times (CLSPST).
Following [39] this problem can be formulated as:

min
∑
t∈N

∑
j∈M

(
c jt x jt + h jt s jt + f jty jt

)
(5.9a)

s.t.
∑
j∈M

(
a jt x jt + b jty jt

)
≤ Ct, ∀t ∈ N (5.9b)

s j(t−1) + x jt = d jt + s jt, ∀ j ∈ M,∀t ∈ N, (5.9c)
x jt ≤ Dy jt, ∀ j ∈ M,∀t ∈ N, (5.9d)

x jt ≥ 0, ∀ j ∈ M, ∀t ∈ N, (5.9e)
s jt ≥ 0, ∀ j ∈ M, ∀t ∈ N, (5.9f)

y jt ∈ {0, 1}, ∀ j ∈ M, ∀t ∈ N, (5.9g)
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where x jt represents the production level of item j in time period t and s jt is the number of units
in stock of item j at the end of time period t. Also, the final inventory for every product j is
assumed zero (i.e., s jn = 0). The binary variable y jt determines whether item j is produced in
time period t (y jt = 1) or not (y jt = 0). Constraints (5.9b) ensure that for every time period
t ∈ N, the capacity required for the production plan should not exceed the available capacity of
the machine in that period. Constraints (5.9c) are the inventory equations which guarantee that
the production and units of each item in stock at the beginning of a given period must satisfy the
demand while the remaining units are stored for next time period. Note that backlogging is not
allowed. Constraints (5.9d) assure that if item j is produced in period t, then the machine must
be set up, where D is a sufficiently large number. Constraints (5.9e) and (5.9f) guarantee that the
level of production and stock at each period t for each item j are non-negative.

5.3.1. Dantzig-Wolfe decomposition
As with the CSP and the VRPTW in previous sections, the coefficient matrix of the above

formulation has a special structure. We have chosen (5.9b) as the coupling constraint, and the
set X is given by all the points satisfying constraints (5.9c) to (5.9g). For each j ∈ M, we define
a subset X j by fixing j in X, such that X = X1 × . . . × Xm. Following Section 4, we replace
each X j by its convex hull, which is fully represented by its extreme points. The resulting master
problem is:

min
∑
j∈M

∑
t∈N

∑
p∈P j

(
c jt x

j
pt + h jt s

j
pt + f jty

j
pt

)
λ

j
p (5.10a)

s.t.
∑
j∈M

∑
p∈P j

(
a jt x

j
pt + b jty

j
pt

)
λ

j
p ≤ Ct, ∀t ∈ N, (5.10b)∑

p∈P j

λ
j
p = 1, ∀ j ∈ M, (5.10c)

λ
j
p ≥ 0, ∀ j ∈ M,∀p ∈ P j, (5.10d)

where P j is the set of indexes of all extreme points of conv(X j), for every j ∈ M. To obtain the
oracle associated to this master problem, let u = (u1, . . . , un) and v = (v1, . . . , vm) denote the dual
variables associated to constraints (5.10b) and (5.10c), respectively. Note that u is restricted to be
non-positive. Let u = (u1, . . . , un) and v = (v1, . . . , vm) be an arbitrary dual solution. The oracle
is then defined by m subproblems of the form:

min
∑
t∈N

(
(c jt − a jtut)x jt + h jt s jt + ( f jt − b jtut)y jt

)
− v j (5.11a)

s.t. [x jt, s jt, y jt]t∈N ∈ conv(X j), (5.11b)

for each j ∈ M. Observe that each subproblem is a single-item lot sizing problem with modified
production and setup costs, and without capacity constraint. Hence, it can be solved by the
Wagner-Whitin algorithm [40]. For a given j ∈ M, if the optimal value of the subproblem is
negative, the corresponding optimal solution [x?jt, s

?
jt, y

?
jt]t∈N is used to generate a column for

(5.10) by setting x j
pt = x?jt, s j

pt = s?jt and y j
pt = y?jt. Otherwise, the solution is discarded and no

column is generated from that subproblem. Since m subproblems are solved in each call to the
oracle, we add up to m columns to the RMP at each outer iteration.
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SCG PDCGM ACCPM(1)

Time (in s) Time (in s) Time (in s)
Class Inst Iter Oracle Total Iter Oracle Total Iter Oracle Total

E 58 38.1 0.7 0.7 29.7 0.5 0.9 38.3 0.7 0.8
F 70 33.4 0.6 0.6 28.0 0.5 0.8 40.4 0.7 0.9
W 12 66.4 1.2 1.2 55.3 1.0 1.8 48.6 0.8 1.1
G 71 44.8 6.6 6.6 32.4 3.9 4.7 43.2 5.2 5.6
X1 180 47.5 4.2 4.2 28.8 2.4 3.0 35.2 3.0 3.3
X2 180 42.6 7.4 7.5 20.5 3.5 3.9 27.4 4.6 5.0
X3 180 48.9 12.7 12.8 18.7 4.7 5.2 24.3 6.1 6.7
All 751 44.7 6.6 6.6 25.1 3.0 3.5 32.4 3.9 4.3
(1) A subset of 7 instances could not be solved by the ACCPM using the default accuracy level,
δ = 10−6 (4 from class X2 and 3 from class X3). To overcome this we have used δ = 10−5.

Table 5: CLSPST - Average results on 751 instances adding one column per subproblem at a time.

5.3.2. Computational results
We have selected 751 instances proposed in [39] to test the aforementioned column gener-

ation strategies. The SCG and the PDCGM approaches are initialized using a single-column
Big-M technique. The coefficients of this column are set to 0 in the capacity constraints and set
to 1 in the convexity constraints. In the ACCPM approach, after several settings, we have chosen
u0 = 10.0e as the initial dual point. The subproblems are solved using our own implementation
of the Wagner-Whitin algorithm [40].

For each column generation strategy, we found that the 751 instances were solved in less than
100 seconds. The majority of them were solved in less than 0.1 seconds. From these results, no
meaningful comparisons and conclusions can be derived, so we have modified the instances in
order to challenge the column generation approaches. For each instance and for each product j
we have replicated their demands 5 times and divided the capacity, processing time, setup time
and costs by the same factor. Also, we have increased the capacity by 10%. Note that we have
increased the size of the problems in time periods but not in items and therefore, all instances
remain feasible. In Table 5, we show a summary of our findings using the modified instances.
We have grouped the instances in 7 different classes. Small instances are included in classes E, F
and W while classes G, X1, X2 and X3 contain larger instances. For each class and strategy we
present: the number of outer iterations (Iter), the average CPU time to solve the subproblems
(Oracle) and the average total CPU time required for the column generation (Total). The last row
(All) shows the average results considering the 751 modified instances. Additionally to our usual
notation, we have included the number of instances per class (Inst). From Table 5, we can observe
that the strategies have different performances for the small instances classes and on average each
strategy requires less than 2 seconds to solve an instance from these classes. If we consider the
total CPU time, the SCG is slightly better for classes E and F, and the ACCPM outperforms
the other two strategies only in class W. If we look at the oracle times, we will observe that
for small instances the ACCPM and the PDCGM outperform the SCG due to the reduction in
the number of outer iterations. Now, if we observe the performance in classes containing larger
instances (i.e., G, X1, X2 and X3), the PDCGM outperforms the other two strategies on average.
Furthermore, for the 751 instances, the PDCGM reduces the average number of outer iterations
and total CPU time when compared with the ACCPM and the SCG.

In addition to the previous experiment, we have considered a set of more challenging in-
stances. We have taken 3 instances from [39], which were used in [8] as a comparison set, to
test the three column generation strategies. Additionally, we have selected 8 additional instances
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SCG PDCGM ACCPM
Time (in s) Time (in s) Time (in s)

r Iter Oracle Total Iter Oracle Total Iter Oracle Total
5 27.5 4.7 4.7 11.5 1.5 1.6 22.5 3.1 3.2
10 32.0 62.7 62.7 15.6 20.4 21.0 29.5 49.1 49.5
15 38.4 308.8 308.8 20.0 103.8 106.2 36.4 273.2 274.3
20 45.5 975.6 975.8 25.9 350.5 358.4 42.4 938.7 941.0
All 35.8 337.9 338.0 18.3 119.0 121.8 32.7 316.0 317.0

Table 6: CLSPST - Average results on 11 modified instances adding one column per subproblem at a time.

from the sets of larger classes, X2 and X3. This small set of 11 instances3 has been replicated 5,
10, 15 and 20 times following the same procedure described above. The summary of our find-
ings are presented in Table 6, where column r denotes the factor used to replicate the selected
instances. From the results, we see that for every choice of r, the PDCGM requires fewer outer
iterations and less CPU time on average, when compared with the ACCPM and the SCG. Con-
sidering the 44 instances (11 instances and 4 values for r), the PDCGM is 2.8 and 2.6 times faster
than the SCG and the ACCPM, respectively.

5.4. Additional computational results from the literature

In [11], the authors present a comprehensive computational study comparing the standard
column generation against the bundle method, a stabilized cutting plane method which uses
quadratic stabilization terms. A set of five different applications were used in the computational
experiments, including the CSP and the CLSPST (MILS problem in their paper). Regarding the
CSP, the results indicate that using the bundle stabilization may slightly reduce the number of
iterations at the cost of worsening CPU times. In the results obtained for the CLSPST, we see
that the bundle method behaves poorly in terms of both, CPU times and number of iterations,
when compared with the standard column generation.

Rousseau et al. [12] propose an interior point column generation technique in which the
dual solutions are convex combinations of extreme dual points of the RMP that are obtained by
randomly modifying the dual objective function. To analyse the computational performance of
their approach, they have used the set of large VRPTW instances described in Section 5.2.2 (i.e.,
Solomon’s instances with n = 100). Only the results of 22 out of 29 instances were presented by
the authors. Their comparison involved the implementations of the standard column generation
as well as a stabilized version called BoxPen technique [10]. Since a different subproblem solver
has been used in their computational experiments, it would not be appropriate to make a straight-
forward comparison of the figures presented in their tables with those presented in Tables 3 and
4 of Section 5.2.2. Hence, we have considered the gain obtained by each approach in relation
to the standard column generation. According to their results, a well-tuned implementation of
the BoxPen stabilization reduces the number of outer iterations by 16%, on average, while the
total difference regarding CPU times is negligible. The interior point column generation tech-
nique proposed by the authors showed a better performance than the BoxPen stabilization, being
1.38 times faster than the standard column generation technique. For the same set of instances,
PDCGM can be around 2 times faster than the SCG on average (k = 200).

3Instances: G30, G53, G57, X21117A, X21117B, X21118A, X21118B, X31117A, X31117B, X31118A, X31118B.
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6. Conclusions

In this paper we have presented new developments in theory and applications of the primal-
dual column generation method (PDCGM). The method relies on a primal-dual interior point
method to obtain non-optimal and well-centred solutions of the restricted master problems, lead-
ing to a more stable approach in relation to the standard column generation technique. Theoret-
ical support is given to show that the PDCGM converges to an optimum of the master problem,
even though non-optimal dual solutions are used. Also, computational experiments show that the
method is competitive when column generation procedure is applied in the context of integer pro-
gramming. These experiments were based on column generation formulations of three classes of
problems that are well-known in the literature, namely the cutting stock problem (CSP), the ve-
hicle routing problem with time windows (VRPTW) and the capacitated lot sizing problem with
setup times (CLSPST). These problems lead to different types of master problem formulations:
an aggregated master problem in the CSP, an aggregated master problem with a set partitioning
structure in the VRPTW, and a disaggregated master problem in the CLSPST. Additionally, we
have tested the addition of different numbers of columns at each outer iteration, which typically
affects the behaviour of the methods. Hence, it was possible to verify the performance of the
primal-dual column generation technique on a wide range of situations.

By analysing the computational results, we conclude that the PDCGM achieves the best
overall performance when compared to the standard column generation method (SCG) and the
analytic centre cutting plane method (ACCPM). Furthermore, we have observed that the relative
performance of the PDCGM improves when larger instances are considered. The comparison of
the PDCGM against the SCG gives and idea of how much can be gained by using non-optimal
and well-centred dual solutions provided by a primal-dual interior point method. One important
characteristic of the PDCGM is that no specific tuning was necessary for each application, while
the success of using a stabilization technique for the SCG and the ACCPM sometimes strongly
depends on the appropriate choice of parameters for a specific application. The natural stabi-
lization available in the PDCGM due to the use of well-centred interior point solutions is a very
attractive feature of this column generation approach.

Several avenues are available for further studies involving the primal-dual column generation
technique. One of them is to combine this technique with a branch-and-bound algorithm to obtain
a branch-and-price framework that is able to solve the original integer programming problems.
Furthermore, since the PDCGM relies on an interior point method, the investigation of new
effective warmstarting strategies applicable in this context is essential for the success of the
framework.

Acknowledgements

The authors are grateful to Dr. Franklina M. B. Toledo for making the instances of the
CLSPST available to us, to Aline A. S. Leão for providing us with the knapsack solver used in
the computational experiments, and to Dr. Raf Jans for facilitating his results of the CLSPST
instances for validation purposes. Also, the authors would like to thank the anonymous referees
for their valuable contributions to this paper.

References
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