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Abstract

In this study, we introduce a cooperative parallel tabu search algorithm (CPTS) for the quadratic assignment problem (QAP). The
QAP is an NP-hard combinatorial optimization problem that is widely acknowledged to be computationally demanding. These charac-
teristics make the QAP an ideal candidate for parallel solution techniques. CPTS is a cooperative parallel algorithm in which the pro-
cessors exchange information throughout the run of the algorithm as opposed to independent concurrent search strategies that aggregate
data only at the end of execution. CPTS accomplishes this cooperation by maintaining a global reference set which uses the information
exchange to promote both intensification and strategic diversification in a parallel environment. This study demonstrates the benefits that
may be obtained from parallel computing in terms of solution quality, computational time and algorithmic flexibility. A set of 41 test
problems obtained from QAPLIB were used to analyze the quality of the CPTS algorithm. Additionally, we report results for 60 difficult
new test instances. The CPTS algorithm is shown to provide good solution quality for all problems in acceptable computational times.
Out of the 41 test instances obtained from QAPLIB, CPTS is shown to meet or exceed the average solution quality of many of the best
sequential and parallel approaches from the literature on all but six problems, whereas no other leading method exhibits a performance
that is superior to this.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction e
Tﬁ SO fidaii;

The quadratic assignment problem (QAP) is a well- =
known NP-hard combinatorial optimization problem. Its
most common application is in facility location. In this where 7 is an assignment vector of size n, f'is a matrix of
context, the problem consists of assigning n facilities (or flows of items to be transported between facilities and d
warehouses) to 7 locations (or sites) with the objective of is a matrix containing the distances or costs of transporting
minimizing the transportation costs associated with the @ single item between any two locations. The objective is to
flow of materials between facilities and the distances find an assignment vector which minimizes the total trans-
between locations. The QAP can be formulated as a per-  Portation costs given by the sum of the product of the flow

mutation problem as follows: and distance between all pairs in [].
Although facility location has been the most popular

applied area of the QAP, the problem finds applications
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transportation. The problem of assigning gates to incoming
and departing flights at an airport is a transportation appli-
cation that may be formulated as a QAP (Haghani and
Chen, 1998). Allocation is a popular logistic application
of the QAP. Ciriani et al. (2004) explore assigning rooms
to persons with undesirable neighborhood constraints for-
mulated as a QAP. A generalization of the QAP is also
used for a service allocation problem (Cordeau et al.,
2005) with the purpose of minimizing the container rehan-
dling operations at a shipyard. Parallel computing and net-
working provide other location analysis problems that can
be formulated as QAPs (Gutjahr et al., 1997; Siu and
Chang, 2002). For a comprehensive survey of these and
other applications of the QAP and its special cases, we refer
to Cela (1998) and Loiola et al. (2007). It is also possible to
formulate several other well-known combinatorial optimi-
zation problems as QAPs, including the traveling salesman
problem, the bin-packing problem, the maximum clique
problem, the linear ordering problem, and the graph-
partitioning problem, each embracing a variety of other
applications in the fields of transportation, manufacturing,
logistics, economics, engineering, science, and sociology.

The solution complexity of the QAP is widely accepted.
No known polynomial time algorithm exists to solve QAP
instances with more than a relatively small number of inputs.
The exact solution of even small problems (20 <n < 30) is
considered computationally non-trivial. To obtain optimal
solutions for modest size QAP instances (30 < n < 40) a mas-
sively parallel computing environment is required. One of
the most successful exact approaches for the QAP is due to
Anstreicher et al. (2002). Their parallel branch and bound
approach for the QAP is implemented on a large grid and
can obtain optimal solutions for problems of size 30. Due
to the acknowledged difficulty of solution, many sequential
and parallel metaheuristic approaches have been applied to
the QAP. The current study proposes a cooperative parallel
tabu search for the QAP that exploits the parallel computing
platform chosen to provide good quality solutions for 41
QAPLIB test instances in acceptable computational times
that are attractive compared to competitive methods. The
remainder of this paper is organized as follows. A review
of sequential and parallel metaheuristic algorithms for the
QAP is provided in Sections 2 and 3, respectively. Section
4 presents the CPTS algorithm. Section 5 discusses design
considerations of the CPTS algorithm inherent to the paral-
lel platform used for the implementation. A computational
analysis is presented in Section 6 followed by the conclusions
in Section 7.

2. Sequential metaheuristics for the QAP

Sequential metaheuristic algorithms for the QAP include
a variety of approaches. Tabu search (TS) approaches
include the robust tabu search (RTS) algorithm due to Tail-
lard (1991). This algorithm capitalizes on simple TS princi-
ples to quickly find high quality solutions to the QAP. The
RTS algorithm has been further popularized in the literature

as an improvement method for many of the most successful
metaheuristic approaches for the QAP. A multi-start tabu
search (JRG-DivTS) that demonstrates improved solution
quality compared to RTS, is introduced by James et al.
(2006). JRG-DivTS is a basic tabu search which is restarted
from a diversified copy of the best solution found when the
search stagnates. When JRG-DivTS is restarted, the tabu
restrictions are released and the tabu tenure parameters are
modified. Another TS approach for the QAP is due to Mis-
evicius (2005). Misevicius combines a simplified version of
RTS with rudimentary diversification operators that period-
ically perturb the solution provided by the TS procedure
(M-ETS-1, M-ETS-2, and M-ETS-3). This approach is dem-
onstrated to work well on the symmetric and asymmetric
Taillard QAP instances.

Many of the sequential metaheuristic approaches for the
QAP that demonstrate the ability to obtain high quality
results are genetic algorithm (GA) variants which incorpo-
rate a tabu search (TS) method to improve the solutions
provided by the GA operators. Misevicius presents two
algorithms that combine a simplified version of the RTS
algorithm with rudimentary diversification operators which
are then embedded within a GA framework. The first GA
variant (M-GA/TS) applies a “ruin-and-recreate” proce-
dure. M-GA/TS uses a modified version of RTS to ‘“recre-
ate” a solution that has been randomly perturbed by the
“ruin” procedure or the crossover operator (Misevicius,
2003). The second approach (M-GA/TS-I) uses a less ran-
dom “‘ruin” procedure, called a shift operator, to perturb
the solutions provided by the GA once the algorithm starts
to converge (Misevicius, 2004).

Drezner (2003, 2005) explores several TS variations
within a hybrid GA that are shown to perform well on the
Skorin-Kapov QAP instances. The first, D-GA/SD, uses a
special crossover called a “merging process” coupled with
a greedy local search procedure that executes swap moves
until a local optimum is found. The D-GA/S-TS algorithm
is the same as D-GA/SD except that it extends the descent
local search method with a simple TS. The third algorithm,
D-GA/C-TS, further enhances the improvement method
with a concentric tabu search operator that examines moves
based upon their distance from a “center” solution. D-GA/
IC-TS, the last GA hybrid, extends D-GA/C-TS to permit
more moves.

Other types of sequential metaheuristics applied to the
QAP include: ant colony optimization (Stutzle and Dorigo,
1999; Gambardella et al., 1997), path-relinking (James
et al., 2005), and GRASP (Li et al., 1994). A GRASP algo-
rithm enhanced by the TS path-relinking strategy is given
by Oliveira et al. (2004). Tseng and Liang (2005) introduce
an algorithm that combines ant colony optimization with a
genetic algorithm and a simple local search (TL-ACO/GA/
LS).

The solution difficulty and computational requirements
of the QAP make the application of parallel computing to
this problem particularly attractive. Metaheuristic
approaches can provide good solutions, but not necessarily



812 T. James et al. | European Journal of Operational Research 195 (2009) 810-826

optimal solutions, to complex problems in acceptable com-
putational times, less by many orders of magnitude than
the times required by exact methods to solve problems of
much smaller size. Sequential metaheuristic methods have
made tremendous amounts of progress towards this goal
for the QAP. However, parallel metaheuristic techniques
have been explored to a much lesser extent despite the obvi-
ous benefits of improving solution quality in less wall clock
time. The following section will provide an overview of a par-
allel heuristic taxonomy and the parallel metaheuristic
approaches for the QAP that correspond to these
classifications.

3. Parallel metaheuristics for the QAP

Parallel designs for metaheuristic methods that can be
applied to combinatorial optimization problems are attrac-
tive as they may provide for both better solution quality
and reductions in run time to reach a good solution. The
repetitive nature of metaheuristic methods and the complex-
ity of solution, characteristic to many of the problems to
which metaheuristics are applied, make the use of parallel-
ism an attractive alternative. As access to parallel hardware
becomes more prevalent, the possibilities of exploring the
usefulness of such techniques have become greater. Crainic
and Toulouse (2003) develop a classification scheme for par-
allel metaheuristic methods. Their taxonomy provides a
valuable means by which to highlight differences between
the various parallel metaheuristic approaches for the QAP
as well as illustrate the design choices for the development
of a parallel metaheuristic.

Crainic and Toulouse group strategies for parallel heu-
ristic methods into three categories based upon the division
of work assigned to each processor. In the first strategy, a
low-level parallelization strategy deemed Type 1; a compu-
tationally expensive part of a heuristic is parallelized with
the sole purpose of deriving run time speedups. In this case,
a master process is responsible for controlling the assign-
ment of work to each processor and the collection, as well
as the aggregation, of the results. Decomposition (or Type
2) strategies consist of the division of the decision variables
among processors. By dividing the decision variables
among processors, the size of the solution space being
explored by each processor is decreased. The resulting par-
tial explorations must be combined to obtain a feasible
solution and this is typically performed by a master pro-
cess. This type of parallelization changes the base execution
nature of the original sequential algorithm and therefore
may influence the solution quality.

Crainic and Toulouse’s last classification is a multi-heu-
ristic (or Type 3) parallel model wherein each processor
executes a complete copy of some heuristic on the entire
problem. The model comprises two variants of parallel
designs: independent search strategies and cooperative
multi-thread strategies. These two strategies are differenti-
ated by how the exchange of information between proces-
sors is handled. Both strategies include the exchange and

aggregation of some information that occurs either at the
end (independent search) or during the execution (cooper-
ative multi-thread) of the concurrent searches. Several vari-
ations of this strategy are common, including variants
where different heuristics may be executed on the same
problem on different processors. The searches may also
start from the same initial solution or different initial solu-
tions. We should mention that the term thread is used in
this classification to generally describe a process executing
a portion of the entire algorithm, which technically does
not necessarily materialize through a thread of execution
in a concurrent or parallel system.

3.1. Low-level parallelism (Type 1) strategies for the QAP

Taillard (1991) proposes a low-level parallelism (Type 1)
strategy for the QAP. In this algorithmic design, Taillard
examines subdividing the neighborhood exploration
between multiple processors. Each processor does not
operate on a different solution, but rather each processor
operates on a different portion of the same permutation.
The exchanges (an exchange referring to the swap of two
facilities to the location the other previously occupied)
are subdivided between processors. Each processor calcu-
lates all the move costs for the exchanges assigned to it.
Then every individual processor broadcasts its best move
to all other processors and each processor performs the
global best move on its copy of the permutation. The algo-
rithm then continues to iterate from the new permutation
in the same manner. This parallelization is much different
than more recently proposed parallel algorithms for the
QAP including the one in this study. However, for the par-
ticular parallel architecture utilized and the quality of hard-
ware at the time it was introduced, Taillard’s procedure
was a highly sophisticated and beneficial approach. While
the approach is technically sophisticated, the method
results only in a faster RTS algorithm identical to its
sequential counterpart. As with all Type 1 strategies, this
design will not change the quality of the results, but will
only speed up the sequential algorithm execution.

Chakrapani and Skorin-Kapov (1993) also examine a
similar algorithm for the QAP. Their implementation is
written for an older fine grain SIMD parallel architecture
called a Connection Machine. SIMD stands for single
instruction — multiple data. A SIMD machine executes
the same instruction on different data elements at the same
time. The architecture in this case restricts the flexibility in
parallelization options. However, this study presents a typ-
ical example of a low-level parallelism (Type 1) strategy. In
their algorithm, the evaluations of the pairwise exchanges
on the permutation are divided among multiple processors.
Processors cooperate to compute the costs of all possible
pairwise exchanges and the results are aggregated. The best
exchange is performed on the permutation and the algo-
rithm continues to iterate in the same manner.

Another algorithm that falls within this category is the
parallel path-relinking algorithm given in James et al.
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(2005). This algorithm generates multiple solutions by
applying path-relinking to solutions maintained in a global
reference set, incorporating the customary path-relinking
strategy of using one or more solutions to guide the moves
performed on another solution (in this case, the permuta-
tion being manipulated). The exchanges employed in this
previous study move the facilities into the locations they
occupy in the guiding solution. To improve the solutions
created by the path-relinking procedure, the RTS algo-
rithm is run as an operator on each newly generated solu-
tion. In the parallel implementation of this algorithm, the
path-relinking operator is used to generate a set of trial
solutions sequentially and the RTS algorithm is then run
in parallel on multiple trial solutions. This leads to a
decrease in run time, since the TS is an expensive opera-
tion, but does not change the basic nature of the sequential
algorithm or the solution quality.

3.2. Decomposition (Type 2) strategies for the QAP

While we are not aware of any decomposition (Type 2)
strategies for the QAP, they have shown promise for the
TSP which is a special case of the QAP (Felten et al.,
1985; Fiechter, 1994).

3.3. Multi-heuristic (Type 3) strategies for the QAP

The parallel tabu search proposed by Taillard (1991) is
an independent search algorithm which falls within the
multi-heuristic (Type 3) classification. The algorithm con-
sists of running concurrent, independent tabu searches
starting from different initial solutions. No information is
exchanged throughout the run of the TS algorithms and
the best solution is determined at the end of the execution
all of the threads.

Battiti and Tecchiolli (1992) also propose an indepen-
dent search strategy that runs concurrent executions of a
tabu search algorithm. Talbi et al. (1997) propose a parallel
multi-heuristic (Type 3) tabu search with each processor
running a complete TS algorithm starting from a different
initial solution. This algorithm differs from the two previ-
ous algorithms by varying the TS parameters on each pro-
cessor. A central memory (or master process) is used to
collect the solutions from the slave processors and keep
track of the global best solution found. All three of the
algorithms above are independent search strategies and fol-
low the same design.

Pardalos et al. (1995) examine a parallel GRASP imple-
mentation for the QAP which follows the same indepen-
dent search strategy of the above TS variants but running
parallel GRASP algorithms concurrently on multiple pro-
cessors and keeping a global best from all processors.

De Falco et al. (1994) examine a cooperative multi-thread
tabu search strategy. In this algorithm each processor exam-
ines a set of moves on its starting (or seed) solution. Then a
subset of the processors are synched by exchanging their
current best solutions found and the best of these solutions

is used to update the processors current best. This info
r-mation is exchanged between processors throughout the
search rather than aggregated only at the end by a master
process.

Both an independent search strategy TS and a coopera-
tive multi-thread metaheuristic, combining several tech-
niques, are proposed by Talbi and Bachelet (2006). The
independent search strategy is simply concurrent execu-
tions of a TS algorithm. In this parallel algorithm the glo-
bal best solution is obtained from the multiple processors
at the end of the run and there is no cooperation between
the searches. On the other hand, the cooperative multi-
thread (COSEARCH) algorithm combines multiple tabu
searches with a GA used for diversification purposes.
Intensification is achieved by focusing the search in the
vicinity of high quality (or elite) solutions which are slightly
perturbed by means of a special kick operator before the
actual intensification starts. The global memory, accessible
by all processors, consists of a set of elite solutions, a set of
initial (or reference) solutions and a frequency matrix.
Each TS is run on a solution from the reference solutions
matrix which is periodically updated by the GA algorithm.
The TS on each processor updates both the elite solution
matrix and the frequency matrix. The reference solutions
are used to upgrade the GA population and the frequency
matrix is used in the fitness function to penalize assign-
ments that have high frequencies. The kick operator takes
a solution from the elite solution matrix and applies a con-
trolled number of random pairwise exchanges to the per-
mutation. These newly created solutions are then inserted
into the reference solutions matrix. This algorithm is highly
cooperative with information being exchanged between the
processors throughout the whole search.

Battiti and Tecchiolli (1992) also propose a parallel
genetic algorithm for the QAP which is classified as a
multi-heuristic strategy by Crainic and Toulouse. This par-
allel GA is generally referred to as a course-grained parallel
GA in the literature. The course-grained parallel GA func-
tions by subdividing the population of solutions and run-
ning each subpopulation on an independent processor.
Some defined exchange of information between subpopula-
tions (or processors) occurs throughout the execution of
the algorithm.

The above algorithms constitute many of the proposed
parallel algorithms for the QAP that fall into each category
of Crainic and Toulouse’s taxonomy. For a broader review
of parallel heuristic methods for all problems, the inter-
ested reader may refer to Crainic and Toulouse (2003).
The parallel architectures used in the above studies widely
vary. These platform differences may influence both paral-
lel algorithm design and performance (both in terms of run
time and solution quality). The algorithm proposed in the
current study is a cooperative multi-thread (Type 3) tabu
search algorithm. We incorporate variations of some of
the parallelization techniques outlined above. The follow-
ing sections will detail the implementation and the design
considerations of the proposed algorithm.
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4. Cooperative parallel tabu search for the QAP

The cooperative parallel tabu search algorithm (CPTS)
developed in the current study consists of the parallel exe-
cution of several TS operators on multiple processors. The
base TS operator is a modified version of Taillard’s robust
tabu search (RTS) algorithm, which although relatively
simple, has been shown to perform well on the QAP (Tail-
lard, 1991). The RTS procedure is modified by changing
the stopping criterion and the tabu tenure parameters for
each processor participating in the algorithm. The modifi-
cation to the stopping criteria and tabu tenure parameters
as well as the choice of the diversification operator were
made to the RTS as they proved beneficial in a previous
study (James et al., 2006). The TS operators share search
information by means of a global memory which holds a
reference set of solutions and is managed in a way that pro-
motes both strategic diversification and intensification.
These mechanisms make CPTS a cooperative multi-thread
(Type 3) parallel algorithm according to the classification
outlined in the previous section.

The main feature of the cooperative parallel tabu search
(CPTY) is to take advantage of parallel computing in the
implementation of adaptive memory programming (Glover
and Laguna, 1997). The CPTS algorithm makes use of
adaptive memory at various levels and stages of the search.
Short-term memory is implemented by the tabu restrictions
and aspiration criteria considered in each individual tabu
search operator and it is local to each execution of the pro-
cedures. Although tabu restrictions implicitly implement
some level of intensification and diversification and are
commonly utilized in TS algorithms for the QAP, higher
levels of these strategies are usually necessary to find the
best solutions. In CPTS this is achieved by appropriately
aggregating information derived from the local short-term
memories into a global longer-term memory structure that
can be shared by all tabu searches. Intensification and
diversification are promoted via the global reference set
as follows. Half of the global reference set always contains
the global best solution found over all searches. This
ensures that at least half of the concurrent tabu searches
are operating on a copy of the best solution found at the
point the execution of the individual TS was started on a
given processor, thus promoting the search in vicinity of
high quality solutions. Diversification is obtained by means
of an extra strategic diversification operator. Each member
of the global reference set has an updated flag that indi-
cates whether or not the item was changed on the last
attempt to update that location in the reference set. If the
reference set item has been updated, then the next TS oper-
ator that accesses the item will use an exact copy of the
solution stored in that location. However, the next TS
operator will have different tabu search parameters (upper
and lower bounds from which to draw the tabu tenure for
an element) to induce the search to take a different trajec-
tory than that of the TS operator that found the improved
solution. This intensifies the search from that good solu-

tion. If the location was not updated by the last TS opera-
tor, then the current solution in that reference set location
is first passed to the diversification operator before the next
TS operator receives it. The pseudocode for the algorithm
is shown in Fig. 1.

The algorithm considers as many reference set solutions
as the number of the processors available and the parallel
execution is conceived by assigning each processor a spec-
ified reference set location. Processors and reference set
locations are identified by their corresponding number
and index location. The algorithm begins by initializing
the reference set. This is accomplished by running one inde-
pendent tabu search on each of the processors being used
so that each process updates the solution of the reference
set whose index corresponds to its processor number. For
the initialization phase, the stopping conditions for the
individual TS operators are set to be shorter than in the
cooperative parallel search of CPTS. The initialization
phase provides the opportunity to seed the reference set
with good solutions while maintaining some level of diver-
sity. At initialization, all the update flags are set to be true
so that the diversification operator will not be called the
first time each solution is used to seed a TS process in
the cooperative parallel search loop.

After initialization, each processor starts a TS process
using the solution from its associated next index of the ref-
erence set and this process is circularized for each subse-
quent TS each individual processor executes. When a
processor’s individual TS terminates execution, it updates
the reference set item it was working from if the solution
the processor found is better than what is currently in that
location and sets the update flag. If a processor updates a
reference set location, an additional check is run to see if
the new solution is a global best. In such a case, the new
global best is threaded through the reference set so that
half the solutions in the reference set become the new best
solution. Any time a processor switches to a new reference
set location it first checks the status of the update flag. If
the update flag is set to false, the diversification operator
is called and a diversified copy of the solution in that loca-
tion is used to seed the TS. The cooperative parallel search
phase is executed by all participating processors for a glob-
ally defined number of nMax iterations at which point the
CPTS algorithm terminates. The parameter nMax in Fig. 1,
which defines the total number of tasks assigned to all pro-
cessors by the parallel loop, is a user defined value. The
final solution of CPTS’s run is the best solution contained
in the reference set at the termination of the algorithm. The
following subsections describe the major components of
the CPTS algorithm and provide relevant implementation
details.

4.1. The tabu search
The tabu search used in CPTS is a modification of Tail-

lard’s robust tabu search procedure (Taillard, 1991). The
pseudocode for the procedure is given in Fig. 2. The
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Input parameters: number of processors (nProcessors)
Global Data:
Distance/Flow Matrices, Reference Set, Tabu Tenure Parameters, Updated Flags, Steps

Parallel Initialization

Private Data: permutation, cost, myPid

Parallel Loop: For each looplndex =1 to nProcessors
Obtain its processor identification number: myPid
Generate a random permutation: myPermutation
Update the (myPid) reference set location with myPermutation
Perform TS(myPid, myTabuTenure, myPermutation, myMaxFailures)
Write the improved myPermutation into the myPid reference set location
Set flagUpdate to TRUE

End Parallel Loop (Synchronizes all the tabu search processes)

Parallel Search: schedule (dynamic)
Private data: permutation, cost, myPid, myMaxFailures
Parallel Loop: For each looplndex =1 to nMax
Lock Critical Section
mylIndex++ (circularize counter if at end)
Get its permutation from current (myIndex) reference set location: myPermutation
Get its own value tabu search parameters: myTabuTenure, myMaxFailures
If processors own reference set location (mylndex=myPid) or flagUpdate=FALSE then
Perform Diversification (myPermutation, myStepSize)
Update diversification step size for that reference set location
End If
Unlock Critical Section
Perform TS(myPid, myTabuTenure, myPermutation, myMaxFailures)
Lock Critical Section
Set flagUpdate to FALSE
If myPermutation better than what is in current index (myindex) location
Update current reference set location with myPermutation
Set flagUpdate = TRUE
End If
Loop: For each loopIndex=1 to nProcessors (Increment loopIlndex by 2)
If myPermutation better than what is in loopIndex reference set location then
Replace solution in loopIndex with the newly best solution, myPermutation
Set flagUpdate = TRUE
End If
End Loop
Unlock Critical Section
End Parallel Loop (Synchronizes algorithm)

Find Overall Best Solution in Reference Set and Print

Fig. 1. Cooperative parallel tabu search pseudocode.

Procedure TS (pid, tabuTenure, bestPermutation, maxFailures)

Set currentPermutation to bestPermutation
Set numFailures = 0
Loop: While numFailures < maxFailures do
Evaluate the neighborhood the currentPermutation and select the exchange
that is not tabu or is tabu but meets all aspiration criteria
Update tabu restrictions
Perform the exchange on currentPermutation
If strictly improving
Set bestPermutation to currentPermutation
Set numFailures = 0
Else
numPFailures++ (Increment numFailures)
End If
End Loop

End Procedure

Fig. 2. Pseudocode for the tabu search component.

815

solution encoding used consists of assigning an integer
value representing each location from 1 to n. The array
indexes represent the facilities. A permutation s can then
be illustrated as:

s =(2,4,10,7,5,3,1,6,9,8).

The classical two-exchange (or swap) neighborhood is
employed. A “move” consists of exchanging two elements
of the permutation. This neighborhood definition is com-
monly applied to the QAP.

The tabu search begins by setting the working solution
to its initial best solution obtained from the reference set.
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Each iteration examines all possible moves in the neighbor-
hood of the working permutation choosing the best non-
tabu or aspired exchange. This exchange is performed
and the modified permutation becomes the new working
solution. The procedure keeps track of the best solution
the TS procedure has found which is updated whenever
the new working solution is better than the current best.
The procedure terminates when its local best solution is
not updated for a defined number of iterations.

Short-term memory is maintained by means of tabu
restrictions and associated aspiration criteria. When an
exchange is made on the working solution, a tabu tenure
is drawn from a defined range for each element of the
exchange. Specifically, the length each element will remain
tabu is drawn randomly from between the upper and lower
tabu tenure bounds. In CPTS, these bounds are globally
defined and are different for each processor. The bounds
for each processor were randomly chosen within the origi-
nal upper and lower bounds used in RTS. A subsequent
move consisting of the exchanged elements is not allowed
for the length of the tabu tenure unless the aspiration crite-
ria are met. The aspiration criteria first checks to ascertain
if the forbidden exchange results in a solution that is better
than the best solution stored for that TS. The exchange
may also be considered if the tabu status of at least one
of the elements is less than a predefined ceiling. If one of
these two conditions holds then a further check is con-
ducted to test if the swap is the first forbidden exchange
considered during the current iteration. If it is, the
exchange is accepted. Otherwise the forbidden exchange
must also be better than any exchange that has been con-
sidered during the current iteration of the TS. These aspi-
ration criteria are those used in RTS.

4.2. The diversification operator

In CPTS, the diversification procedure starts from a
seed solution obtained from the global reference set and
is run only if the update flag for the corresponding seed
solution is false. The diversification operator employed
was suggested by Glover et al. (1998). The pseudocode
for this procedure is given in Fig. 3. The operator uses a
step to define a starting position and an increment within
the permutation. This step determines which elements are

Procedure Diversification (permutation, step)

position = 1
Set seedPermutation to permutation
Loop: For start = step to 1 (decrement start by 1)
Loop: For j = start to n (increment j by step)
permutation(position) = seedPermutation(j)
position++ (increment position by 1)
End Loop
End Loop

End Procedure

Fig. 3. Pseudocode for the diversification operator.

chosen from the original permutation to create the new
solution. In CPTS, a step for each reference set item is
stored and incremented every time the diversification pro-
cedure is called. The step values start at 2 and are incre-
mented by 1 until equal to the size of the problem (n)
and then reset to 2 if necessary.

To illustrate the procedure, assume the following seed
permutation and a step size of 2:

s =(2,4,10,7,5,3,1,6,9,8).

The procedure sets the start variable to 2 and steps
through the permutation, resulting in the following partial
permutation:

d = (47773767 87 it At Bt B _)'

The start variable is then decremented by 1 and the per-
mutation is stepped through again, obtaining the final
diverse permutation:

d=(4,7,3,6,8,2,10,5,1,9).

The new diversified permutation, d, is then used to seed
the TS rather than the original solution in the global refer-
ence set.

4.3. Reference set management

The reference set and associated control structures
define a global memory used by CPTS to manage and
allow the exchange of search information between the pro-
cessors. In globally accessible memory, four items are kept
and the access to these items is managed through use of the
parallel programming implementation. The size of the ref-
erence set is defined by the number of processors used.
Each reference set item contains one permutation, its asso-
ciated objective function value and all the control struc-
tures necessary to manipulate the search drawing on that
reference set location. These include an update flag for
the permutation, the last diversification step size that was
used on the corresponding reference set location, the refer-
ence set index that the processor owning the location is cur-
rently using, and the processor tabu search parameter
settings, namely the tabu tenure ranges and the maximum
number of failures.

4.3.1. Reference set management in the initialization

At initialization, each TS algorithm randomly creates
one seed permutation, works on its local permutation until
it reaches its stopping condition, and updates its own refer-
ence set location. The processors local permutation and its
maximum failure value are both private. In this phase, no
critical section is necessary to enforce mutual exclusion in
the access to the reference set locations as the processors
will only update the location corresponding to their proces-
sor identification number. The stopping condition is met
when the TS fails to update its own best solution for a
defined number of iterations. Even though this stopping
condition ensures that all the initial TS processes will
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terminate after a defined number of failures, at any point
the procedure finds a new best solution, this counter is
reset. Consequently, there is no guarantee that all TS pro-
cesses will run the same length of time. For this reason, the
maximum failures value in the initialization is set to be sta-
tic parameter and shorter than in the cooperative parallel
search to minimize idle processors at the first synchroniza-
tion point. The impact of the synchronization is discussed
in more detail in Section 5.3. Upon termination of the ini-
tial TS operators, each processor updates the reference set
location that corresponds to its processor identification
number and denotes that the location has been updated.
The initialization phase must finish completely before the
cooperative parallel search of CPTS is allowed to proceed.
This synchronization point ensures that all locations in the
reference set are seeded before the asynchronous parallel
execution of the various tabu searches begins, hence pre-
venting any of the processors from attempting to operate
on a null solution.

4.3.2. Reference set management in the cooperative parallel
search

Once all the processors have completed their initial TS
operators and the reference set is fully initialized, the coop-
erative parallel search of CPTS begins. Each processor
shifts one position in the reference set with respect to its
current location and retrieves the corresponding reference
set solution. The last processor obtains its solution from
the first reference set location. A private index is main-
tained by each processor that allows it to keep track of
its current location in the reference set. Each processor
runs a TS on its new working solution using its unique tabu
parameters. Although in the initialization phase the maxi-
mum failure value was a static parameter, in the coopera-
tive parallel search phase it is a dynamic parameter
drawn from a range of values. This parameter may there-
fore be different for each TS operator executed.

The range is set in such a way that the maximum failures
parameter drawn will be equal to or greater than what was
used for the initialization phase. Varying the maximum
failure parameter was done purposefully to aid in the main-
tenance of the reference set as well as load balancing and
task management.

As soon as a TS operator terminates on a processor, it
attempts to update the location in the reference set corre-
sponding to its current index and then increments the index
value to refer to the next reference set location of the circu-
larization process.

If the processor’s local best solution is better than the
solution in the reference set at the processor’s index loca-
tion it updates the solution. It also sets the update flag to
true. If a processor updates a reference set location then
another check is triggered. If the processor’s local best
solution represents a global improvement, this newly best
solution is propagated through half the processors by copy-
ing it to every odd index location of the reference set. This
ensures that at least half the processors will work off of this

best solution on their next iteration. On the other hand, if
the new processor best solution is not a local improved
solution the update flag is set to false so that the next pro-
cessor to read that memory location will first diversify the
solution before operating on it.

Only one processor at a time may update the reference
set. This maintains the data integrity but is not a synchro-
nization point as all processors do not have to reach the
same point before continuing. If the reference set is locked
the processor would wait for the lock to be released and
then perform the update. Since each processor terminates
its TS on a variable condition, the TS operators are less
likely to finish at the same time. This makes the design of
the updating scheme less of a bottleneck.

Once a TS processor is finished on a processor, it will
then proceed with its next TS operator based on the condi-
tions described above. This process continues until a
defined number of iterations have been performed. When
the last TS operator terminates on all processors, the best
solution in the reference set is determined as the output
of the CPTS algorithm.

5. Platform design considerations
5.1. Parallel architecture and programming implementation

The CPTS algorithm was written to take advantage of
the parallel platform on which it was implemented. CPTS
was developed and run on an SGI Altix, using an Intel C
compiler and the OpenMP (Chandra et al., 2001) parallel
programming implementation. The SGI Altix is a CC-
NUMA shared-memory machine. This means that the
memory is globally addressable and the architecture pro-
vides the illusion of equidistant memory. The memory is
not technically equidistant but the platform manages
access to provide this appearance. The shared-memory
architecture allows for memory stores to be globally
addressable.

OpenMP uses compiler directives and libraries to paral-
lelize code written in C. OpenMP and the architecture man-
age the access to and location of the memory requiring
little, or in some cases no, involvement from the program-
mer. The memory is globally accessible by all processors
unless specified otherwise. If data dependencies exist,
access to memory that is globally accessible must be man-
aged by the programmer, or marked as private, to prevent
erroneous reads/writes. The platform utilized in this study
can be used to easily parallelize code with moderate pro-
gramming skill due to the high level of abstraction in Open-
MP. However, OpenMP does provide a certain level of
control over parallel design considerations if desired.

5.2. Memory management and algorithm design
considerations

The architecture and the parallel programming imple-
mentation under which CPTS implemented influenced the



818 T. James et al. | European Journal of Operational Research 195 (2009) 810-826

design considerations of the algorithm. CPTS was devel-
oped to take advantage of the platform being utilized
and design tradeoffs were carefully considered during the
design of the algorithm. The rest of this section will outline
several of the most well-known parallel design consider-
ations as well as the design choices made for CPTS and
the tradeoffs for those choices.

Memory management is the first consideration. In
CPTS, there are three types of memory stores that need
to be handled. The first are inputs that are strictly read
by the processors and are never updated. Since these data
elements never change, they can be handled by the plat-
form. The second type of data is the local variables (or
memory locations) that need to be private to each proces-
sor. The third type of data is the shared reference set that
is used to exchange search information. This data must
be globally accessible and will be updated by all processors.
These last two data categories must be explicitly handled
by the programmer.

5.2.1. First data type

In the current study, the use of a shared-memory plat-
form allows for globally accessible flow and distance matri-
ces. Since these matrices are only read and not written to,
uncontrolled global access can be given to the algorithm
for these data stores and the platform can manage their
access. Each processor has its own tabu tenure parameters.
This was accomplished by means of an array referenced by
processor identification number. The parameter array is
never written to, so it can be globally accessible as well
and referenced through use of an index. These data loca-
tions correspond to the first type of data.

5.2.2. Second data type

Each TS on each processor needs a memory location to
keep a working solution, a current best solution, the index
of its current position in the reference set, and its maximum
failure value. This data must only be used by the processor
that owns it. While this is also true for the tabu tenure
parameters in the first data type, the key difference between
the two data types is that the second data type elements will
be written as well as read. These data elements will change
each time a TS finishes and thus are temporary variables.
Globally accessible data elements that will be written are
dangerous due to possible data dependencies. Hence, these
variables need to be local to that processor and correspond
to the second type of data. These memory locations need to
be restricted to only be accessible to a particular processor.
In this manner, it is assured that only the processor that
owns these elements will modify them. Technically, this
means that each processor creates its own copy of these
variables. This is accomplished in OpenMP by making
these variables private.

5.2.3. Third data type
The third type of data includes the reference set vari-
ables. These variables need to be globally accessible to

allow for the exchange of information between processors.
However, they are also updated so the access to these mem-
ory locations needs to be explicitly controlled by the pro-
grammer. This is done using a critical directive in
OpenMP, which allows only one processor at a time to
update or read the shared data. This creates a small delay
since the memory location is locked until the processor cur-
rently using the shared data completes the corresponding
critical section. This is necessary to maintain the integrity
of the data store in case more than one processor attempts
to read/write the same location at the same time.

5.3. Parallel search

5.3.1. Synchronous parallel search

In the initialization phase, each processor updates one
location of the reference set. In this phase each processor
runs a tabu search operator concurrently. The paralleliza-
tion for this phase is accomplished by a ““parallel do” direc-
tive in the first loop of Fig. 1. A hard synchronization is
performed at the end of this phase which means that all
processors must finish their tabu search operator before
the rest of the algorithm executes. The synchronization is
accomplished by performing the initialization phase in a
separate parallel do directive which spawns as many tabu
search processes as the number of available processors
and then waits until the processes terminate before contin-
uing. The synchronization is necessary since the next passes
do not reference the processors own location but rather
rotate through the reference set within the cooperative par-
allel search loop. This condition requires that there be a
solution in a location before it is used which cannot be
guaranteed without enforcing synchronization at the end
of the initialization phase. Even though this synchroniza-
tion may cause some processors to be idle while all TS
operators finish execution, this was an algorithm design
choice necessitated by the desired functionality of the algo-
rithm. Although some initialization of the reference set
must be performed, the preferred quality and diversity of
these initial solutions is left to the metaheuristic designer.
We chose to start the base parallel algorithm from rela-
tively good seed solutions. To obtain an improvement in
overall solution quality of the initial seed solutions, some
idleness in the processors was tolerated. The compromise
made in the design was to reduce the number of iterations
of the initial TS operators thereby reducing the idleness of
the processors incurred at this synchronization point. This
becomes a more important tradeoff as the size of the QAP
increases.

5.3.2. Asynchronous parallel search

The cooperative parallel search is also parallelized using
a parallel do construct. The critical sections discussed
above do not enforce any type of synchronization in the
cooperative parallel search. These directives simply protect
the integrity of the reference set. This is important in the
cooperative parallel search because the iterations continue
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regardless of the order the TS operators start or finish. The
platform controls the order in which the processors update
if there is a tie or a queue. Since the platform controls
access through the critical section, the iterations are
allowed to proceed in any order. The execution time of
the TS operator running on any processor is variable.
The previous conditions result in updating occurrences that
should be mentioned. First, some reference set locations
may be updated (read or written to) multiple times before
others. Secondly, the locations may be updated in any
order by any processor.

5.4. Process scheduling and load balancing considerations

5.4.1. Explicit load balancing

The choice of not enforcing synchronous access to the
reference set was done purposefully. This design choice
helps maximize the processors utilization since all proces-
sors can be busy except when waiting to update the refer-
ence set. Since all processors are not synched at each set
of TS operators, some searches may start from a lower
quality solution. A TS operator is likely to execute longer
if the solution keeps improving. This may cause good solu-
tions to enter the reference set more slowly. The variability
of the maximum failure parameter in the cooperative par-
allel search loop was done to counteract this by causing
some TS operators to terminate more quickly than others.
The propagation of the better solutions through half of the
reference set as previously mentioned was conducted to
intensify the search. This intensification also counteracts
the longer runs of the more successful TS operators by
quickly propagating good solutions through the reference
set.

5.4.2. Implicit load balancing

Due to the conditional stopping criterion used in the
TS operators, some intervention was required to improve
the load balancing on the platform. By default OpenMP
uses static scheduling for the processors. This type of
scheduling divides the iterations up at the beginning of
the cooperative parallel loop. In CPTS an iteration (or
chunk) consists of everything within the “Parallel
Search” section of Fig. 1. If some processors run longer
than others, static scheduling will cause the wall clock
time to increase since the algorithm will not terminate
until the last TS is run. Dynamic scheduling was applied
in the cooperative parallel search so that each processor
was assigned smaller chunks of work. The default chunk
size of one was used for the dynamic scheduling option
in CPTS. The processors were then given more work
as they finished the tasks, one task (or loop) at a time.
The compiler handles the distribution of work. This
incurs some additional management overhead which
was negligible compared to the unequal loads if this
directive was not used. Refer to Chandra et al. (2001)
for more information on the dynamic scheduling option
in OpenMP.

These considerations illustrate examples of the tradeoff
between load balancing, task management, and synchroni-
zation. In an ideal parallelization, all processors should be
working at all times to maximize utilization. Requiring all
processors to synchronize causes some of the processors to
idle for a time, dependent on the variation among the run
times of the various tasks. Since the stopping criterion is
conditional, the run times may vary resulting in idle proces-
sors. This was deemed acceptable to initialize the reference
set when the number of iterations per TS was purposefully
shortened, but became too costly as the iteration number in
both the main loop and for each processor’s TS increased.
In the latter case, asynchronous updates were allowed to
improve the load balancing on the machine. In the cooper-
ative parallel loop it was preferable to have the TSs operate
longer on each solution as well as make several passes
through the reference set. The decision to vary the maxi-
mum failure parameter was made for solution quality rea-
sons. These decisions required explicit control of the task
management and caused minimal additional overhead but
improved the load balancing and thus the processor utiliza-
tion and the run time.

5.5. Scalability

CPTS is scalable in two ways if more processors are
available. First, the number of iterations of the cooperative
parallel search could be increased. This would correspond
to operating on each item in the reference set more times.
In this scenario, the reference set would stay the same size
or increase but not proportionally to the number of proces-
sors used. At the same time, the number of tabu searches
that operate on each reference set item would increase. This
proposed scaling would result in each reference set item
being operated on more times. In this manner, the dynam-
ics of the algorithm would change slightly as the quality of
the solutions being operated on may not be as good for
every TS. However, it would also allow for more tabu
searches to be run, as well as more perturbation to occur
by the use of different bounds on each processor and the
diversification operator, which is likely to improve the solu-
tion quality.

Secondly, the maximum failure parameter could be
increased. This would cause the individual TS operators to
run longer. With more processors, the size of the reference
set and the maximum failures could be increased. If the
number of iterations through the reference set were reduced
in this scenario, the algorithm could be scaled in this
manner. The absolute minimum run time of CPTS in this
scenario would be equal to the wall clock time cost of one
TS operator on each reference set item. This would turn
the CPTS algorithm into an independent search strategy.
Compromises can be made between the run time of the indi-
vidual TS operators and the number of iterations in the
cooperative parallel search loop. This would allow the algo-
rithm to be scaled and still be cooperative. It may be possible
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to see improvements in both solution quality and run time
with either of these scaling scenarios.

6. Computational results and discussion

The cooperative parallel tabu search algorithm (CPTS)
was run on a set of 41 test instances obtained from QAP-
LIB (Burkard et al., 1997). The taixa, taixb, and sko* test
instances were chosen as they are the most popular test sets
run by competing algorithms in the literature. The taixa
and taixb test instances are commonly run by about half
of the current algorithms in the literature and the skox
problems by the other half. In order to be able to compare
against the most recent parallel algorithms from the litera-
ture, a set of selected test instances from QAPLIB were also

Table 1

Parameter settings

Parameter Value®
Number of processors 10
Maximum failures® (initialization) 100 % n
Maximum failures® lower bound (cooperative search) 100 % n
Maximum failures® upper bound (cooperative search) 200 « n
Maximum number of iterations (nMax) 50 xn

Diversification step size (incremented by 1 at each use) 2 (initial value)

* Where n=number of facilities/locations and maximum fail-

ures = numFailures in Fig. 2.
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run. This expanded our runs to provide results for a
broader selection of problems. Additionally, we provide
results for 60 taixe test instances. These instances are newly
introduced to the literature (Drezner et al., 2005) and are
demonstrated to be difficult for metaheuristics.

The technical specifications for the computing architec-
ture and programming languages used were provided in
Section 5.1 The parameters were chosen such as to obtain
wall clock run times similar to the run times of popular
sequential algorithms for the QAP. All parameters were
fixed for all runs and test problems except the seed used
to generate initial feasible solutions. Table 1 shows the
parameter settings used in the algorithm.

6.1. Computational analysis of the CPTS algorithm

Table 2 summarizes the computational results obtained
by the CPTS algorithm on the 41 problems tested from
QAPLIB. Ten (1.3 GHz) Intel Itanium processors
(1.3 GHz) were used. Computational resource restrictions
limited the processor use to 10. All results are averages over
10 runs of the algorithm on each test instance. The table
presents for each instance the best known solution (BKS)
obtained from QAPLIB, average percent deviation from
the BKS (APD), the number of times the best known solu-
tion was found by CPTS out of the 10 runs (#BKS), the
average wall clock time for the algorithm (Wall Clock

Table 2

Computational results and times for CPTS

Problem  BKS APD  #BKS Wallclock time CPU time Problem BKS APD  #BKS  Wall clock time CPU time

Skorin-Kapov instances Taillard symmetric instances

sko42 15812 0.000 10 5.3 52.2 tai20a 703482  0.000 10 0.1 1.5

sko49 23386  0.000 10 114 110.9 tai25a 1167256  0.000 10 0.3 5.2

sko56 34458  0.000 10 21.0 209.9 tai30a 1818146  0.000 10 1.6 10.6

sko64 48498  0.000 10 429 429.6 tai3Sa 2422002  0.000 10 2.3 20.2

sko72 66256  0.000 10 69.6 695.0 taid0a 3139370  0.148 1 3.5 37.7

sko81 90998  0.000 10 121.4 1212.5 tai50a 4938796  0.440 0 10.3 104.6

sko90 115534 0.000 10 193.7 1935.3 tai60a 7205962  0.476 0 26.4 265.1

sko100a 152002  0.000 10 304.8 3042.4 tai80a 13515450  0.570 0 94.8 947.9

sko100b 153890  0.000 10 309.6 3091.4 tail00a 21059006  0.558 0 261.2 2608.7

sko100c 147862 0.000 8 316.1 3154.4

sko100d 149576  0.000 10 309.8 3091.9

sko100e 149150  0.000 10 309.1 3085.6

sko100f 149036  0.003 4 310.3 3096.4

Average 0.000 9.4 178.8 1785.2 Average 0.244 4.6 44.5 444.6

Selected instances Taillard asymmetric instances

els19 17212548  0.000 10 0.1 14 tai20b 122455319  0.000 10 0.1 1.7

bur26d 3821225  0.000 10 0.4 6.3 tai25b 344355646  0.000 10 0.4 6.3

nug30 6124  0.000 10 1.7 11.0 tai30b 637117113  0.000 10 1.2 13.8

ste36¢ 8239110  0.000 10 2.5 28.9 tai3Sb 283315445  0.000 10 2.4 259

lipa50a 62093  0.000 10 11.2 112.6 tai40b 637250948  0.000 10 4.5 48.3

tai64c 1855928  0.000 10 20.6 206.5 tai50b 458821517  0.000 10 13.8 138.1

will100 273038  0.000 10 316.6 3161.3 tai60b 608215054  0.000 10 30.4 305.0

tho150 8133398 0.013 0 1991.7 19885.4 tai80b 818415043  0.000 9 110.9 1106.3

tai256¢ 44759294 0.136 0 7377.8 73298.8 tail00b 1185996137  0.001 8 241.0 2403.8
tail50b 498896643  0.076 0 7377.8 73298.8

Average 0.023 7.0 1127.2 11217.5 Average 0.000 9.7 45.0 449.9
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Time), and the actual computational time (CPU Time)
used, both in minutes (mm.ss).

All results and computational times for the sequential
algorithms used for comparison were obtained from the lit-
erature, except for JRG-DivTS which is our own. It should
be noted that the hardware on the current architecture is at
least marginally better than all of the sequential architectures
obtained from the literature used for comparison (compar-
ing processor to processor only). Also, CPTS is a parallel
algorithm and used 10 processors, so the total computational
time is greater than a sequential algorithm even if the run
times are not. Fig. 4 depicts the difference between the wall
clock time of CPTS for the test set versus the actual total
computational time expended using a logarithmic scale for
the instances of Table 2. The parameter settings could be
changed to reduce the run times for larger problems. Since
CPTS is a parallel algorithm, the run times could also be
reduced by implementing the scaling techniques described
earlier if more processors became available. The actual com-
putational time for the algorithm increases to over 3000 min-
utes for most problems with 100 facilities/locations while the
wall clock time is less than 500 minutes for all problems. The
wall clock time for these problems is within a reasonable
range, but the actual computational time used would not
be feasible for a sequential algorithm.

The results reported in Table 2 show that CPTS pro-
vides high quality solutions for most test instances in
acceptable wall clock times. For the symmetrical skox test
set, CPTS solves 12 out of the 13 problems to 0.000 percent
deviation on average from the BKS. For 11 of these
instances, the algorithm finds the BKS on all 10 of the runs.
For skol100c, the BKS is found 8 out of 10 times but the
average percent deviation from the BKS is still 0.000. For
the last instance, sko100f, CPTS obtains an average percent
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deviation of 0.003 and finds the BKS 4 out of 10 times. This
is the worst performing instance for this test set, though the
deviation is still very small. Also, CPTS obtains exceptional
solution quality for the selected test instances, producing
solutions that are on average 0.023% from the BKS over
all instances in this set. For all but 3 of the 10 selected
problems, CPTS finds the BKS for all of the 10 runs.
The remaining three test instances were the largest
instances run. The percentage deviations for tail50b and
tho150 were 0.076 and 0.013, respectively. A deviation of
0.136 was obtained for tai256c¢, which was the largest test
instance. Notably, the wall clock time was less than 320
minutes for all but these largest three instances. These
runtimes could be further reduced with the addition of
more processors. Scaling the algorithm could result in
improvement in solution quality as well as solution time.
The wall clock times for the largest 3 instances, tail50b,
thol150, and tai256c were 1549, 1992, and 7378 minutes.
Though they compare favorably with the performance
achieved by other methods, these times may be a somewhat
larger than desired and scaling the algorithm may be
preferable.

CPTS also performs well on the Taillard test instances
(taixa and taixb). On the symmetric test instances (taixa),
which are among the most difficult, CPTS finds the BKS
on the smaller instances for all runs. On the larger instances
(of size 40 or greater), CPTS does not perform as well but
the results are still of acceptable quality. Given longer runs
CPTS may perform better on these instances. As previously
mentioned, the scalability of the algorithm would allow for
these improvements with little or no additional increase in
actual wall clock time. On the asymmetric test set (taixb),
CPTS performs well obtaining 0.000 percent deviations
from the BKS for all but one problem. For tai80b instance,
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the algorithm finds the BKS on 9 out of 10 runs with a
deviation of 0.000%. The BKS was obtained 8 out of 10
times for the tailOOb instance with an average deviation
of 0.001%.

Table 3 reports results for the 60 taixe problems and
provides some of the first heuristic results for these prob-
lems to the literature. Results were obtained for these prob-
lems using Intel Itanium processors (1.6 GHz). The BKS
values for this test set were obtained from Taillard
(2007). For the taixe problems of size 27, CPTS finds the
best known solution 100% of the time in about 4 seconds.
For the size 45 problems, the average percent deviations
appear to be more sporadic. However, the average number
of times the BKS is found is 9.15. This shows that CPTS
finds the best known solution almost all of the time. In
the cases where the BKS is not found, the local optima
found is somewhat larger than the BKS resulting in rela-
tively larger APDs. The algorithm produces relatively large
APDs on the problems of size 75, indicating that indeed
these problems are very difficult for metaheuristic methods
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as CPTS found higher quality solutions for problems of
size 100 or larger in other test sets.

6.2. Comparative analysis with alternative sequential and
parallel algorithms

Additional analysis was carried out in order to provide
comparisons of CPTS to some of the best performing
sequential and parallel algorithms from the literature.
The following algorithms are considered:

— A Multi-Start Tabu Search Algorithm — JRG-DivTS
(James et al., 20006).

— An Ant Colony Optimization/Genetic Algorithm/Local
Search Hybrid — TL-ACO/GA/LS (Tseng and Liang,
2005).

— A Genetic Algorithm Hybrid with a Strict Descent
Operator — D-GA/SD (Drezner, 2003).

— A Genetic Algorithm Hybrid with a Simple Tabu Search
Operator — D-GA/S-TS (Drezner, 2003).

Table 3

Computational results for the Taillard 27, 45, and 75 and instances

Problem BKS APD #BKS Wall clock time CPU time Problem BKS APD #BKS Wall clock time CPU time
Taillard 27e instances Taillard 45e instances

tai27e01 2558 0.000 10 0.4 6.2 taid5e01 6412 0.000 10 4.3 43.7
tai27e02 2850 0.000 10 0.4 6.2 tai45e02 5734 0.000 10 5.5 51.0
tai27¢03 3258 0.000 10 0.4 6.1 taid5e03 7438 0.000 10 5.0 49.2
tai27e04 2822 0.000 10 04 6.3 tai45e04 6698 0.021 9 5.2 51.0
tai27¢05 3074 0.000 10 0.4 6.3 taid5e05 7274  0.168 7 5.2 51.2
tai27e06 2814 0.000 10 04 6.1 tai45e06 6612 0.000 10 5.3 50.8
tai27¢07 3428 0.000 10 0.4 6.4 tai45e07 7526 0.000 10 4.6 453
tai27e08 2430 0.000 10 04 6.3 tai45e08 6554 0.000 10 4.6 48.4
tai27¢09 2902 0.000 10 04 6.7 tai45e09 6648 0.361 7 4.5 46.7
tai27e10 2994 0.000 10 0.4 6.2 tai45el0 8286  0.019 7 4.5 48.1
tai27ell 2906 0.000 10 04 6.2 taidSell 6510  0.000 10 4.7 48.7
tai27el2 3070 0.000 10 0.4 5.5 taid5el2 7510  0.053 8 4.5 47.0
tai27el3 2966 0.000 10 04 6.6 tai45el3 6120  0.000 10 5.3 51.2
tai27el4 3568 0.000 10 0.4 6.3 taid5el4 6854  0.000 10 5.2 52.4
tai27el5 2628 0.000 10 04 6.3 tai45el5 7394  0.141 8 4.5 47.0
tai27el6 3124 0.000 10 0.4 6.5 taid5el6 6520  0.000 10 5.2 49.8
tai27el7 3840 0.000 10 04 6.4 tai45el7 8806  0.055 8 4.5 47.5
tai27e18 2758 0.000 10 0.4 6.2 tai45el8 6906  0.000 10 5.0 49.0
tai27e19 2514 0.000 10 04 6.4 tai45e19 7170  0.061 9 4.7 48.5
tai27e¢20 2638 0.000 10 04 6.3 tai45e20 6510  0.000 10 4.6 48.3
Average 0.000 10 0.4 6.3 Average 0.044 9.15 4.8 48.7
Taillard 75e instances Taillard 75e instances (cont)

tai75e01 14488 5915 0 47.7 475.2 tai75e01 15250 3.721 0 442 442.5
tai75¢01 14444 8.751 0 47.3 472.4 tai75e¢01 12760 8.196 0 47.1 469.9
tai75e01 14154 2.681 0 48.2 482.0 tai75e01 13024 5.123 0 453 450.0
tai75e¢01 13694 3.705 0 46.4 464.7 tai75e¢01 12604 3.659 0 44.8 448.1
tai75e01 12884 2412 1 46.4 464.1 tai75e01 14294 2976 0 46.3 461.7
tai75e¢01 12554 4.005 0 48.5 485.2 tai75e¢01 14204 3.389 0 46.4 463.1
tai75¢01 13782 8.015 0 432 431.7 tai75e¢01 13210 3.653 0 48.6 483.5
tai75e¢01 13948 8.523 0 42.7 425.7 tai75e¢01 13500 7.176 0 47.3 472.5
tai75¢01 12650 4.798 0 48.7 485.9 tai75¢01 12060  2.861 1 46.1 458.2
tai75e01 14192 5.740 0 46.4 463.1 tai75e01 15260  2.743 0 48.3 479.0
Average Average 4.902 0.1 46.5 463.9
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— A Genetic Algorithm Hybrid with Concentric Tabu
Search Operator — D-GA/C-TS (Drezner, 2003).

— A Genetic Algorithm Hybrid with an Improved Concen-
tric Tabu Search Operator — D-GA/IC-TS (Drezner,
2005).

— Three Tabu Search Variants (M-ETS-1, M-ETS-2, and
M-ETS-3) (Misevicius, 2005).

— Two Genetic Algorithm Hybrids with a Tabu Search —
M-GA/TS and M-GA/TS-1 (Misevicius, 2003, 2004).

— An Independent Parallel Tabu Search — TB-MTS (Talbi
and Bachelet, 2006).

— A Cooperative Parallel Tabu Search Hybrid with a
Genetic Algorithm — TB-COSEARCH (Talbi and Bach-
elet, 2006).

Tables 4-6 summarize the computational results for the
various algorithms on the three sets of instances used in
Table 2.

The results in Table 4 show that CPTS ties or outper-
forms all other algorithms on all of the asymmetric test
instances (taixb) with the exception of tail00b. For this
instance the M-GA/TS-I algorithm of Misevicius (2004)
slightly edges out CPTS by 0.001%. On the symmetric
(taixa) instances, CPTS finds a 0.000 percent deviation
for the first 4 instances of this set. Of the competing meth-
ods, only JRG-DivTS and M-GA/TS-I achieve this result.
For the next 5 symmetric instances (considered large) the
method that obtains the best solution is different in each
case, each method finding only one of these solutions;
hence none of the algorithms strictly dominates all the oth-

Table 4
CPTS comparisons on the symmetric and asymmetric Taillard instances

ers. Only one of Misevicius’s TS variants (M-ETS-2) pro-
vided a smaller percentage deviation for tai40a than
CPTS. All three of these TS variants and one of the GA
hybrids provide better solution quality for tai50a. M-GA/
TS finds good solutions for the two largest instances
(tai80a and tail0Oa), but CPTS strictly outperforms this
algorithm on all other symmetric instances. M-GA/TS-1
performs quite well overall obtaining 0.000 percent devia-
tion for the smaller 4 instances and obtaining the best solu-
tion over all algorithms for tail00a. M-GA/TS-I does
outperform CPTS on 3 out of the 5 large problems and ties
for the 4 smaller instances. Similarly, all TS variants (M-
ETS-1, M-ETS2, M-ETS-3) find better solutions than
CPTS for these two largest instances, but these algorithms
fail to find the BKS for several of the smaller instances.
Although JRG-DivTS is very effective for the smaller
instances it is slightly outperformed on the larger ones.
TL-ACO/GA/LS does not find a BKS on any problem of
the symmetric test set and the average solution quality of
this algorithm is not on a par with any of the alternative
algorithms.

Table 5 presents comparisons of CPTS to several
sequential heuristic methods from the literature that have
provided some of the best results for the Skorin-Kapov test
set. As seen, CPTS ties or outperforms all algorithms on
every test instance of the skox test set.

Only JRG-DivTS and TL-ACO/GA/LS run both the
Taillard problems and the Skorin-Kapov test set. The Sko-
rin-Kapov problems are run exclusively by the GAs due to
Drezner and the Taillard problems exclusively by the GAs

Problem BKS CPTS JRG-DivIS ~ M-ETS-1 M-ETS-2 M-ETS-3 TL-ACO/GA/LS M-GA/TS M-GA/TS-1
APD Time APD Time APD APD APD Time APD Time APD APD Time
Taillard symmetric instances
tai20a 703482 0.000 0.1 0.000 0.2 0.000 0.000 0.000 0.0 0.061 0.000 0.0
tai25a 1167256  0.000 0.3 0.000 0.6 0.037 0.000 0.015 0.1 0.088 0.000 0.1
tai30a 1818146  0.000 1.6 0.000 1.3 0.003 0.041 0.000 0.2 0.341 1.4 0.019 0.000 0.3
tai35a 2422002 0.000 2.3 0.000 4.4 0.000 0.000 0.000 37 0487 35 0.126 0.000 0.6
taid0a 3139370  0.148 35 0222 52 0.167 0.130 0.173 28.3  0.593 13.1 0.338 0.209 1.4
tai50a 4938796 0.440  10.3 0.725 102 0.322 0.354 0.388 116.7 0.901 29.7 0.567 0.424 5.0
tai60a 7205962 0.476 264 0.718 257 0.570 0.603 0.677 116.7 1.068 58.5 0.590 0.547  12.0
tai80a 13515450 0.570 948 0.753  52.7 0.321 0.390 0.405 200.0 1.178 152.2 0.271 0.320 533
tail00a 21059006 0.558 261.2 0.825 142.1 0.367 0.371 0.441 666.7 1.115 335.6 0.296 0.259  200.0
Average 0.244 445 0360 269 0.199 0.210 0.233 1258 0.812 84.9 0.262 0.195 303
Taillard asymmetric instances
tai20b 122455319  0.000 0.1 0.000 0.2 0.000 0.000 0.000 0.0 0.000 0.000 0.0
tai25b 344355646  0.000 0.4 0.000 0.5 0.000 0.000 0.000 0.0 0.007 0.000 0.0
tai30b 637117113 0.000 1.2 0.000 1.3 0.000 0.000 0.000 0.1 0.000 0.3 0.000 0.000 0.0
tai35b 283315445 0.000 2.4 0.000 2.4 0.000 0.019 0.000 0.2 0.000 0.3 0.059 0.000 0.1
taid0b 637250948  0.000 4.5 0.000 3.2 0.000 0.000 0.000 0.2 0.000 0.6 0.000 0.000 0.1
tai50b 458821517 0.000 13.8 0.000 8.8 0.000 0.003 0.000 4.5 0.000 2.9 0.002 0.000 0.3
tai60b 608215054  0.000 304 0.000 17.1 0.000 0.001 0.003 22.5  0.000 2.8 0.000 0.000 0.7
tai80b 818415043 0.000 1109 0.006 58.2 0.008 0.036 0.016 116.7  0.000 60.3 0.003 0.000 2.5
tail00b 1185996137 0.001 241.0 0.056 118.9 0.072 0.123 0.034 333.3  0.010 698.9 0.014 0.000 7.3
Average 0.000 450 0.007 234 0.009 0.020 0.006 53.1  0.001 109.4 0.009 0.000 1.2
Overall 0.122 447 0.184 252 0.104 0.115 0.120 89.4 0.407 97.1 0.136 0.098 15.8
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Table 5

Comparative results on Skorin-Kapov instances

Problem BKS CPTS JRG-DivTS TL-ACO/GA/LS D-GA/SD D-GA/S-TS D-GA/C-TS D-GA/IC-TS
APD Time APD Time APD Time APD Time APD Time APD Time APD Time

Skorin-Kapov instances

sko42 15812 0.000 5.3 0.000 4.0  0.000 0.7 0.014  0.16 0.001 0.3 0.000 1.2

sko49 23386 0.000 11.4  0.008 9.6  0.056 7.6 0.107  0.28 0.062 0.5 0.009 2.1

sko56 34458 0.000 21.0  0.002 132 0.012 9.1 0.054 0.42 0.007 0.7 0.001 3.2 0.000 13.6

sko64 48498 0.000 429  0.000 22.0  0.004 17.4 0.051  0.73 0.019 1.2 0.000 5.9 0.000 26.2

sko72 66256  0.000 69.6  0.006 38.0 0.018 70.8 0.112  0.93 0.056 1.5 0.014 8.4 0.000 38.3

sko81 90998 0.000 1214 0.016 564  0.025 112.3 0.087 1.44 0.058 2.2 0.014 133 0.003 63.1

sko90 115534 0.000 1937  0.026 89.6  0.042 92.1 0.139 231 0.073 35 0.011 224 0.001 102.3

sko100a 152002 0.000 304.8 0.027 129.2  0.021 171.0 0.114 342 0.070 5.1 0.018  33.6 0.002  177.6

sko100b 153890  0.000 309.6 0.008 106.6 0.012 192.4 0.096 347 0.042 5.1 0.011  34.1 0.000 170.2

sko100c 147862  0.000 316.1 0.006 126.7  0.005 220.6 0.075 322 0.045 4.7 0.003  33.8 0.001 158.4

sko100d 149576~ 0.000  309.8  0.027 1235  0.029 209.2 0.137  3.45 0.084 5.2 0.049 339 0.000 164.2

sko100e 149150  0.000  309.1 0.009 108.8  0.002 208.1 0.071  3.31 0.028 4.7 0.002  30.7 0.000 169.6

sko100f 149036 0.003 3103  0.023 110.3  0.034 210.9 0.148  3.55 0.110 53 0.032 357 0.003  174.6

Average 0.000 178.8  0.012 72.1  0.020 117.1 0.093 2.1 0.050 3.1 0.013 199 0.001 114.4

Table 6 lel algorithms from the literature either were not tested for

Comparative results to parallel heuristics on sample QAP instances

Problem BKS CPTS TB-MTS TB-COSEARCH
APD Time APD APD
Selected test instances
els19 17212548  0.000 0.1 0.000 0.000
tai25a 1167256  0.000 0.3 0.736 0.736
bur26d 3821225  0.000 0.4 0.000 0.000
nug30 6124 0.000 1.7 0.000 0.000
tai35b 283315445  0.000 2.4 0.000 0.000
ste36¢ 8239110  0.000 2.5  0.000 0.000
lipa50a 62093  0.000 11.2  0.000 0.000
sko64 48498  0.000 42,9 0.004 0.003
tai6dc 1855928  0.000 20.6  0.000 0.000
tail00a 21059006  0.558 261.2 0.783 0.513
tail00b 1185996137  0.001 241.0 0.397 0.135
sko100a 152002  0.000 304.8 0.073 0.054
will00 273038 0.000 316.6 0.035 0.009
tail 50b 498896643 0.076 1549.4 1.128 0.439
tho150 8133398 0.013 1991.7 0.012 0.065
tai256¢ 44759294  0.136 7377.8 0.271 0.170
Average 0.049 757.8 0.215 0.133

of Misevicius. Since approximately half of the test prob-
lems are run by one set of algorithms and the other half
by a different set, a globally dominant algorithm cannot
be determined.

Since CPTS is a parallel algorithm and all other algo-
rithms in Tables 4 and 5 are sequential, runtime compari-
sons convey no useful information other than to
demonstrate that the wall clock times for CPTS are within
reasonable ranges.

Table 6 presents results for our cooperative parallel tabu
search algorithm (CPTS), an independent parallel tabu
search algorithm (TB-MTS), and a cooperative tabu search
hybrid with a genetic algorithm (TB-COSEARCH). To the
best of our knowledge, MTS and COSEARCH are the only
two parallel algorithms whose computational results can be
used for comparison with those of CPTS. The other paral-

the same test problems or their outcomes were not pre-
sented in a format that could be utilized. Many of the ear-
lier studies adopted a theoretical approach and presented
results on timing and solution quality for only a single
run, the one where the algorithm gave its best performance,
or else presented no results at all.

TB-MTS and TB-COSEARCH are both due to Talbi
and Bachelet (2006) and are the most recent parallel algo-
rithms for the QAP from the literature. As can be seen in
Table 6, our CPTS method outperforms MTS on all test
instances. CPTS similarly outperforms COSEARCH on
all instances but one (tail00a). Time comparisons were
not possible because the authors of these algorithms did
not present times in their tables. In addition, the parallel
architecture used in their study differs substantially from
the one of the current study, making time comparisons of
questionable value. The difficulty of making such compar-
isons is further magnified by the differences in platforms
and number of processors available (where 150 processors
were incorporated into the Talbi and Bachelet study while
system constraints restricted us to only 10 processors in
ours).

7. Conclusions

This study introduced a cooperative parallel tabu search
algorithm (CPTS) for the quadratic assignment problem
(QAP) that provides high quality results for a large set of
benchmark instances from QAPLIB. We also provided
some of the first heuristic results for a new, difficult set of
60 test instances.

CPTS performed well when compared to the indepen-
dent search strategy (and the cooperative search strategy)
of Talbi and Bachelet (2006). Solution quality results indi-
cate an advantage of cooperative strategies over indepen-
dent search strategies. CPTS outperformed JRG-DivTSs,
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our multi-start TS run on the same platform, which fur-
ther illustrates the possible benefit of parallel strategies.
Although CPTS provides results that are competitive with
the best sequential algorithms in the literature, only JRG-
DivTS was run on all the same test instances and was uni-
formly dominated by our method. The best performing
sequential algorithms were run on either the taixa/b test
instances or the skosx instances only, not both, which
make the identification of a globally dominant algorithm
impossible. The comparisons provide an indication of the
strength of our algorithm in relation to other well per-
forming methods. While a couple of the hybrid GAs are
strong contenders on one test set or the other, we note
that algorithms can behave quite differently on different
test sets. The best performing hybrid GA on the Taillard
instances was not run on the Skorin-Kapov instances and
vice versa. This complicates overall comparisons and the
designation of an overall best algorithm.

By embedding simple tabu search strategies in a parallel
design the algorithm implements a cooperative search
based on adaptive memory. The algorithm is tailored to
take advantage of the platform on which it is run. By lever-
aging the characteristics of the parallel programming
implementation and architecture, CPTS demonstrates the
benefits that can be obtained by parallelizing metaheuristic
methods for difficult combinatorial optimization problems.
Determining the impact of the platform and number of
processors used on the performance of the algorithm pro-
vides an appealing area for future research.

We anticipate that our outcomes can be enhanced in
settings where additional processors are available. Only
10 processors were employed in the CPTS runs of our
study, which may have limited the quality of the solu-
tions found within the time limits imposed. Future
research investigating the scaling options of the algo-
rithm and the impact of the number of processors uti-
lized may provide interesting insights if more
processors become available. Likewise we anticipate that
our outcomes can be improved by incorporating more
sophisticated adaptive memory components. Varying
the neighborhood used and the diversification operator
employed are anticipated to produce interesting out-
comes. Future research will be devoted to investigating
such components within environments provided by differ-
ing types of parallel platforms.
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