
ar
X

iv
:2

00
7.

13
17

6v
1 

 [
m

at
h.

C
O

] 
 2

6 
Ju

l 2
02

0

SIGNED EULER-MAHONIAN IDENTITIES

SEN-PENG EU, ZHICONG LIN, AND YUAN-HSUN LO

Dedicated to Xuding Zhu on the occasion of his 60th birthday

Abstract. A relationship between signed Eulerian polynomials and the classical Eulerian

polynomials on Sn was given by Désarménien and Foata in 1992, and a refined version,

called signed Euler-Mahonian identity, together with a bijective proof were proposed by

Wachs in the same year. By generalizing this bijection, in this paper we extend the above

results to the Coxeter groups of types Bn, Dn, and the complex reflection group G(r, 1, n),

where the ‘sign’ is taken to be any one-dimensional character. Some obtained identities

can be further restricted on some particular set of permutations. We also derive some new

interesting sign-balance polynomials for types Bn and Dn.

1. Introduction

Let Sn be the symmetric group of [n] := {1, 2, . . . , n}. The inversion number and descent
set of π = π1π2 · · · πn ∈ Sn are defined respectively by

inv(π) := |{(i, j) ∈ [n]2 : i < j and πi > πj}|, (1)

Des(π) := {i ∈ [n− 1] : πi > πi+1},

and denoted by des(π) the cardinality of Des(π). Define the major index of π by

maj(π) :=
∑

i∈Des(π)

i.

In the theory of Coxeter groups, the length ℓ(π) of a group element π is the minimal
number of Coxeter generators needed to express π. It is well-known that Sn is the Coxeter

group of type An−1, where the generators are the adjacent transpositions, say si := (i, i+1)
for i ∈ [n], and ℓ(π) = inv(π) for π ∈ Sn. A fundamental result of MacMahon [25] states
that maj and inv have the same distribution over Sn:∑

π∈Sn

qmaj(π) = [n]q! =
∑

π∈Sn

qinv(π),

where [n]q! = [n]q[n− 1]q · · · [1]q with [i] = 1+ q+ · · ·+ qi−1. In a Coxeter group, a statistic
is called Mahonian if it is equidistributed with the length function ℓ of the group. As the

generating function of
∑

π∈Sn
tdes(π) can be traced back to Euler’s wrok, see e.g. [26, 28], any

statistic equidistributed with des over Sn is called Eulerian. The joint distribution of one

Date: July 28, 2020.

2010 Mathematics Subject Classification. 05A05, 05A19.

Key words and phrases. Signed Eulerian, Signed Mahonian, Coxeter groups, Wreath product.
Partially supported by Ministry of Science and Technology, Taiwan under Grants 107-2115-M-003-009-

MY3 (S.-P. Eu) and 108-2115-M-153-004-MY2 (Y.-H. Lo), the National Natural Science Foundation of China

under Grant 11871247 (Z. Lin), and the project of Qilu Young Scholars of Shandong University (Z. Lin).

1

http://arxiv.org/abs/2007.13176v1


2 SEN-PENG EU, ZHICONG LIN, AND YUAN-HSUN LO

Eulerian statistic with one Mahonian statistic is known as the Euler-Mahonian distribution,
which was introduced by Foata and Zeilberger [17] in 1990 and extensively studied since

then. The most important example is the bivariate distribution of the descent number and
major index over the symmetric group.

Motivated by the work of Loday [23], Désarménien and Foata [13] first investigated the

relationship between a signed Eulerian polynomial and the classical Eulerian polynomial,
called signed Eulerian identity, and obtained, for any positive integer n, that

∑

π∈S2n

(−1)ℓ(π)tdes(π) = (1− t)n
∑

π∈Sn

tdes(π) (2)

and ∑

π∈S2n+1

(−1)ℓ(π)tdes(π) = (1− t)n
∑

π∈Sn+1

tdes(π). (3)

By proposing an elegant involution proof for (2) and (3), Wachs [29] derived a q-analogue

of (2) as

∑

π∈S2n

(−1)ℓ(π)tdes(π)qmaj(π) =

n∏

i=1

(1− tq2i−1)n
∑

π∈Sn

tdes(π)q2maj(π), (4)

which is called a signed Euler-Mahonian identity. Setting t = 1, identity (4) reduces to the
even case of the following signed Mahonian identity due to Gessel and Simion [29]:

∑

π∈Sn

(−1)ℓ(π)qmaj(π) = [1]q[2]−q[3]q[4]−q · · · [n](−1)n−1q. (5)

The above signed enumeration identities have been generalized and extended in two main
directions:

• From symmetric group to other reflection groups by Reiner [27], Adin–Gessel–
Roichman [1], Biagioli [6], Biagioli–Caselli [8] and Chang–Eu–Fu–Lin–Lo [12], to
name a few.

• To restricted permutations such as 321-avoiding permutations by Adin–Roichman [3]
and Eu–Fu–Pan–Ting [15], Simsun permutations by Eu–Fu–Pan [14], PRW permu-
tations by Lin–Wang–Zeng [22] and permutations with subsequence restrictions by

Eu–Fu–Hsu–Liao–Sun [16].

In this paper, we continue with the first direction and find some nice signed Eulerian or

Euler-Mahonian identities for Coxeter groups of typeBn, typeDn and the complex reflection
group G(r, 1, n) that have been long-overlooked.

In the rest of the introduction, we recall some Eulerian and Mahonian statistics for

Coxeter group of type Bn and highlight three of our main results.

1.1. Coxeter group of types Bn. Let Bn be the group of signed permutations of [n], which

consists of all bijections π of {±1,±2, . . . ,±n} onto itself such that π(−i) = −π(i). Elements
in Bn are centrally symmetric and hence can be simply written in the form π = π1π2 · · · πn,
where πi := π(i). For convenience, we use ī to represent −i. Bn is also the Coxeter group

of type Bn with generators s0 = (1,−1) and si = (i, i + 1) for i ∈ [n − 1]. Let ℓB be the
length function of Bn with respect to this set of generators. Following [9], for π ∈ Bn let
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Neg(π) := {i : πi < 0}, then ℓB(π) can be represented as

ℓB(π) = inv(π)−
∑

i∈Neg(π)

πi,

where inv is defined as (1) with respect the natural linear order, i.e.,

n̄ < · · · < 1̄ < 1 < · · · < n.

Denote by neg(π) the cardinality of Neg(π).
Adin and Roichman [2] defined the flag descent number and the flag major index for

π ∈ Bn by

fdes(π) := 2 · desF (π) + δ(π1 < 0),

fmaj(π) := 2 ·majF (π) + neg(π),

where desF and majF are defined like des and maj respectively, but with respect to the linear

order
1̄ < 2̄ < · · · < n̄ < 1 < 2 < · · · < n,

and δ(A) = 1 if the statement A is true and 0 otherwise.

By generalizing Wach’s involution, Biagioli [6] proposed the following signed Mahonian
identity:

∑

π∈B2n

(−1)ℓB(π)qfmaj(π) =
n∏

i=1

(
1− q4i−2

) ∑

π∈Bn

q2fmaj(π), (6)

an analogous version of the even case of (5) for Coxeter group of type Bn.

1.2. Extensions to one-dimensional characters. In this paper we aim to extend the
signed Eulerian-Mahonian identities to Coxeter groups of types Bn, Dn and complex re-
flection group G(r, 1, n), where each one of the one-dimensional characters of the group is

taken to be the “sign”. Precisely speaking, consider the polynomial
∑

π∈W

χ(π)tstat1(π)qstat2(π), (7)

where W = B2n,D2n or G(r, 1, 2n), χ is a one-dimensional character of W, and stat1 and
stat2 are chosen as Eulerian and Mahonian statistics, respectively. For the sake of conve-
nience, we use Gr,n to denote G(r, 1, n) throughout this paper. The first main result in this

paper is the following.

Main Theorem 1 (Theorem 2.3). Let r and n be two positive integers. For any b, 0 ≤
b ≤ r − 1, we have

∑

π∈Gr,2n

χ1,b(π)t
fdes(π)qfmaj(π)xcol(π) =

n∏

i=1

(
1− trqr(2i−1)

) ∑

π∈Gr,n

tfdes(π)(ωbq)2fmaj(π)x2col(π),

where ω is a primitive rth root of 1, and col(π) is the sum of colors in π.

As Bn = G2,n, the corresponding results for Coxeter group of type Bn can be derived by
plugging r = 2 into above as

∑

π∈B2n

(−1)ℓB(π)tfdes(π)qfmaj(π)xneg(π) =

n∏

i=1

(1− t2q4i−2)
∑

π∈Bn

tfdes(π)q2fmaj(π)x2neg(π),
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and

∑

π∈B2n

(−1)inv(|π|)tfdes(π)qfmaj(π)xneg(π) =

n∏

i=1

(1− t2q4i−2)
∑

π∈Bn

tfdes(π)q2fmaj(π)x2neg(π),

which generalize (4) and (6). Here, |π| = |π1||π2| · · · |πn|. Analogous result for Coxeter
group of type Dn is obtained in Theorem 4.1.

Note that we actually derive a more refined version of the above, stated in Theorem 2.3,

which is a refinement to colored restricted subsets. The case for χ0,b, 0 ≤ b ≤ r − 1, is
addressed in Theorem 2.4 as well.

For a natural extension of (3), we also consider the signed Eulerian polynomials for B2n+1

and D2n+1, and derive some neat identities. We highlight the following results.

Main Theorem 2 (Theorem 3.2 and Theorem 3.3). Let n be a positive integer. We have
∑

π∈B2n+1

(−1)inv(|π|)tfdes(π) = (1− t2)n
∑

π∈Bn+1

tfdes(π),

and
∑

π∈B2n+1

(−1)ℓB(π)tfdes(π) = (1− t2)n(1− t)
∑

π∈Bn

t2desB(π).

Main Theorem 3 (Theorem 4.2). For π ∈ Dn, let ddes(π) := fdes(π1π2 · · · πn−1|πn|).
Then, for any positive integer n, we have

∑

π∈D2n+1

(−1)ℓD(π)tddes(π) = (1− t2)n
∑

π∈Dn+1

tddes(π).

Note again that a refined version of the first identity of Main Theorem 2 is given in

Theorem 3.2.
Another aspect in this paper is to consider the signed polynomial (7) for W = Bn and

Dn, and stat1 and stat2 are chosen as type B/D descent number and major index, defined

by Björner and Brenti [9], respectively. We do actually obtain some nice closed forms; see
Theorem 5.1 and Theorem 5.2 for Bn, and Theorem 5.3 for Dn.

The rest of this paper is organized as follows. The proof of Main Theorem 1 is given
in Section 2. Some new signed Eulerian and signed Euler-Mahonian identities for Coxeter
groups of types Bn andDn are collected in Section 3 and Section 4, respectively. In Section 5

we derive the generating functions of the signed polynomials for Bn and Dn. Finally, a brief
conclusion is in Section 6.

2. Extensions to complex reflection group Gr,n

2.1. Colored permutations. Let r, n be positive integers. The group of colored permuta-
tions Gr,n of n letters with r colors is the wreath product Gr,n := Zr ≀Sn of the cyclic group
Zr(:= Z/rZ) with Sn. Gr,n consists of ordered pairs (σ, z), where σ = σ1σ2 · · · σn ∈ Sn

and z = (z1, z2, . . . , zn) is an n-tuple of integers (or, colors) with zi ∈ Zr. An element
(σ, z) ∈ Gr,n can be represented as a word

σ
[z1]
1 σ

[z2]
2 · · · σ[zn]n ,
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in which the superscript [t] is omitted when t = 0. It is called the window notation of (σ, z).

For example, (513426, (0, 1, 0, 2, 1, 3)) ∈ G4,6 can be represented as 51[1]34[2]2[1]6[3]. It is
clear that G1,n = Sn and G2,n = Bn by viewing the letters with color label 1 as negative
numbers.

The group Gr,n can be generated by the set of generators

Sn = {s0, s1, . . . , sn−1},

where si = (i, i+1) for 1 ≤ i ≤ n− 1, while s0 is the action of adding the color label on the
first letter by one (note that the color label is taken module r). The generators are subject

to the defining relations




sr0 = 1,

s2i = 1 for 1 ≤ i ≤ n− 1,

(sisj)
2 = 1 for |i− j| > 1,

(sisi+1)
3 = 1 for 1 ≤ i ≤ n− 2,

(s0s1)
2r = 1.

Note that 12 · · · n is the identity.

The length ℓ(π) of π = (σ, z) ∈ Gr,n is defined to be the minimal number of generators
in Gr,n needed to express it. One of the combinatorial interpretations of ℓ(π) was proposed
by Bagno [5] by

ℓ(π) = inv(π) +
∑

zi>0

(σi + zi − 1), (8)

where inv(π) is the number of inversions of π with respect to the linear order

n[r−1] < · · · < n[1] < · · · < 1[r−1] < · · · < 1[1] < 1 < · · · < n. (9)

For π = (σ, z) ∈ Gr,n let col(π) :=
∑n

i=1 zi. For example, let π = 51[1]34[2]2[1]6[3] ∈ G4,6.

Then ℓ(π) = 13 + (1 + 5 + 2 + 8) = 29 and col(π) = 7.

2.2. Restricted colored permutations. Denote by S = (S1, S2, . . . , Sn) the n-tuple of
non-empty subsets with Si ⊆ Zr and by Rr,n the collection of all such n-tuples. The set of
S-restricted colored permutations, denoted by Gr,n(S), is defined by

Gr,n(S) := {π = (σ, z) : zi ∈ Si for i ∈ [n]}.

For example,

G4,2({0, 2}, {2, 3}) = {12[2], 12[3], 1[2]2[2], 1[2]2[3], 21[2], 21[3], 2[2]1[3], 2[2]1[3]}.

Note that if ∅ appears as an element in S, then Gr,n(S) = ∅.
Let S ∈ Rr,n and H ∈ Rr,2n. We say S ≺ H if

Si = H2i−1 ∩H2i, for i ∈ [n]. (10)

For example, if S = ({0, 2}, {2, 3}) ∈ R4,2 and H = ({0, 1, 2, 3}, {0, 2}, {2, 3}, {0, 2, 3}),
H′ = ({0, 1, 2, 3}, {0, 2}, {2, 3}, {0, 1, 3}) ∈ R4,4, then S ≺ H but S ⊀ H′.

By (10) we have that, for H ∈ Rr,2n, there is unique S ∈ Rr,n such that S ≺ H.
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2.3. Signed Eulerian-Mahonian identities. The 2r one-dimensional characters of Gr,n

are characterized in terms of the length function as follows.

Theorem 2.1 ([12]). For any positive integers r and n, Gr,n has 2r one-dimensional char-
acters

χa,b(π) = (−1)a(ℓ(π)−col(π))ωb col(π), (11)

where ω is a primitive rth root of 1, a = 0, 1 and b = 0, 1, . . . , r − 1.

It should be emphasized that the one-dimensional characters of Gr,n are well known,

studied first by Schur and Specht, see e.g. [20, 24], as the form:

χa,b(π) = (−1)a inv(|π|)ωb col(π), (12)

where |π| = σ. The two expressions in (11) and (12) are similar, while the former one is

more helpful to derive our first main result. See [12] for a simple comparison of these two
formulae. Note that a generalization of the classical one (12) can be found in the study of
signed Mahonian polynomials over projective reflection groups [8].

For π ∈ Gr,n let

DesF (π) := {i ∈ [n− 1] : πi > πi+1}

with respect to the linear order

1[r−1] < · · · < n[r−1] < · · · < 1[1] < · · · < n[1] < 1 < · · · < n. (13)

Adin and Roichman [2] defined the flag descent number fdes and the flag major index fmaj

by

fdes(π) := r · desF (π) + z1,

fmaj(π) := r ·majF (π) + col(π),

where desF (π) = |DesF (π)| and

majF (π) :=
∑

i∈DesF (π)

i.

For example, let π = 4[2]51[1]32[1]6[3] ∈ G4,6. Then DesF (π) = {2, 4, 5}, fdes(π) = 4 · 3+2 =

14 and fmaj = 4 · 11 + 7 = 51.
For a given H ∈ Rr,2n, define a map ϕ : Gr,2n(H) → Gr,2n(H) as follows. Let i ∈ [n]

be the smallest integer such that 2i − 1 and 2i have different colors or are not in adjacent

positions in the window notation of π. Then, let ϕ(π) be the a colored permutation obtained
from π by swapping the two letters 2i − 1 and 2i. If no such i exists let ϕ(π) = π. For

example, in G4,6(H) for some H, ϕ(51[1]34[2]2[1]6[3]) = 52[1]34[2]1[1]6[3] since 1 and 2 are

not in adjacent positions, ϕ(52[1]1[1]6[3]43[2]) = 52[1]1[1]6[3]34[2] since 3 and 4 have different

colors even though they are in adjacent positions, and 562[3]1[3]4[1]3[1] is fixed under ϕ.

It is obvious that the map ϕ is well-defined and an involution on Gr,2n(H) whose fixed
points (those π such that ϕ(π) = π) are the colored permutations in which the letters 2i−1
and 2i are adjacent and having the same color. Moreover, assume the positions of the letters

2i− 1 and 2i are 2p− 1 and 2p. Then, the set of common colors is H2p−1 ∩H2p. Denote by
Fr,2n(H) the set of fixed points under ϕ.



SIGNED EULER-MAHONIAN IDENTITIES 7

Lemma 2.2. Let r and n be two positive integers. For integer 0 ≤ b ≤ r−1 and H ∈ Rr,2n,
we have

∑

π∈Gr,2n(H)

χ1,b(π)t
fdes(π)qfmaj(π)

2n∏

i=1

xzii =
∑

π∈Fr,2n(H)

χ1,b(π)t
fdes(π)qfmaj(π)

2n∏

i=1

xzii .

Proof. Consider π = (σ, z) ∈ Gr,2n(H)\Fr,2n(H) which is not a fixed point under ϕ. Let

ϕ(π) = π′ = (σ′, z′). It is clear that z = z′, so

2n∏

i=1

xzii =
2n∏

i=1

x
z′i
i and col(π) = col(π′). (14)

It is also clear that ℓ(π) = ℓ(π′)± 1 and thus

χ1,b(π) = (−1)χ1,b(π
′) (15)

by the description of χ1,b shown in (11). Furthermore, ϕ preserves the set DesF and hence
does not change both fdes and fmaj. That is,

fdes(π) = fdes(π′) and fmaj(π) = fmaj(π′). (16)

By (14)–(16) we have

χ1,b(π)t
fdes(π)qfmaj(π)

2n∏

i=1

xzii = −χ1,b(π
′)tfdes(π

′)qfmaj(π′)
2n∏

i=1

x
z′i
i ,

and thus the result follows. �

Now we are ready to prove our first main result.

Theorem 2.3. Let r and n be two positive integers. For integer 0 ≤ b ≤ r − 1 and

H ∈ Rr,2n, we have

∑

π∈Gr,2n(H)

χ1,b(π)t
fdes(π)qfmaj(π)

2n∏

i=1

xzii

=

n∏

i=1

(
1− trqr(2i−1)

) ∑

π∈Gr,n(S)

tfdes(π)(ωbq)2fmaj(π)
n∏

i=1

(x2i−1x2i)
zi , (17)

where S ∈ Rr,n is the unique n-tuple such that S ≺ H. In particular,
∑

π∈Gr,2n

χ1,b(π)t
fdes(π)qfmaj(π)xcol(π)

=

n∏

i=1

(
1− trqr(2i−1)

) ∑

π∈Gr,n

tfdes(π)(ωbq)2fmaj(π)x2col(π). (18)

Proof. (17) can be reduced to (18) by simply letting H = (Zr, . . . ,Zr), S = (Zr, . . . ,Zr)
and x = x1 = x2 = · · · = x2n. By Lemma 2.2, to derive (17) it suffices to consider the set

of fixed points Fr,2n(H).
Consider a bijective correspondence φ between elements in Fr,2n(H) and colored permu-

tations in Gr,n(S) with some letters marked a “hat”, according to the following rules.

• Each pair of adjacent entries of type (2j − 1)[t], 2j[t] in Fr,2n(H) is replaced by j[t].
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• Each pair of adjacent entries of type 2j[t], (2j − 1)[t] in Fr,2n(H) is replaced by ĵ[t].

We denote by Ĝr,n(S) the set of all hatted S-restricted colored permutations of [n]. Formally,

φ : π = (σ, z) ∈ Fr,2n(H) 7→ π′ = (σ′, z′) ∈ Ĝr,n(S) by

σ′i =

{
j, if σ2i−1 = 2j,

ĵ, if σ2i = 2j,
and z′i = z2i−1 = z2i (19)

for i =∈ [n]. For π′ = (σ′, z′) ∈ Ĝr,n(S) let ℓ(π′), χa,b(π
′),DesF (π

′), fdes(π′), fmaj(π′) and
col(π′) be defined by omitting the hats and let P(π′) be the set of the positions of the

hatted letters. For example, let 5[1]6[1]2[2]1[2]874[1]3[1] ∈ F3,8(H) for some H ∈ R3,8. Then

π′ = φ(π) = 3[1]1̂[2]4̂2̂[1] ∈ Ĝ3,4(S), where S ≺ H, is the corresponding hatted colored permu-

tation with ℓ(π′) = 9, χa,b(π
′) = (−1)5aω4b, DesF (π

′) = {1, 3}, fdes(π′) = 7, fmaj(π′) = 16,

col(π′) = 4 and P(π′) = {2, 3, 4}.

Let π′ = (σ′, z′) = φ(π = (σ, z)) ∈ Ĝr,n(S). By the definition of φ, i.e., (19), we have

2n∏

i=1

xzii =
n∏

i=1

(x2i−1x2i)
z′i and col(π) = 2col(π′). (20)

By computing the flag descent set with respect to the linear order (13), it follows that

DesF (π) = {2i : i ∈ DesF (π
′)} ∪ {2i − 1 : i ∈ P(π′)} (21)

and thus

fdes(π) = r(desF (π
′) + |P(π′)|) + z′1 = fdes(π′) + r|P(π′)|. (22)

By (21), we have majF (π) = 2majF (π
′) +

∑
i∈P(π′)(2i− 1). It follows from (20) that

fmaj(π) = r
(
2majF (π

′) +
∑

i∈P(π′)

(2i− 1)
)
+ 2col(π′)

= 2fmaj(π′) + r
∑

i∈P(π′)

(2i− 1). (23)

Furthermore, decompose P(π′) into two parts PN (π′) ⊎ PC(π′), where PN (π′) collects the
positions of the hatted letters without colors (i.e., z′i = 0). Following the linear order (9)
we have

inv(π) = 4 · inv(π′) + |PN (π′)| − |PC(π′)|+
∑

z′i>0

1. (24)

Then,

ℓ(π) = inv(π) +
∑

zi>0

(σi + zi − 1)

= 4 · inv(π′) + |PN (π′)| − |PC(π′)|+
∑

z′i>0

1 +
∑

z′i>0

(
(4σ′i − 1) + 2(z′i − 1)

)

= 4
(
inv(π′) +

∑

z′i>0

(σ′i + z′i − 1)
)
+ |PN (π′)| − |PC(π′)| − 2

∑

z′i>0

(z′i − 1)

= 4ℓ(π′) + |PN (π′)| − |PC(π′)| − 2
∑

z′i>0

(z′i − 1).
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By plugging it into (8), it follows that

χ1,b(π) = (−1)
4ℓ(π′)+|PN (π′)|−|PC(π′)|−2

∑
z′
i
>0(z

′
i−1)−2

∑
z′
i
>0 1 ω2b·col(π′)

= (−1)|P
N (π′)|−|PC(π′)|ω2b·col(π′)

= (−1)|P(π
′)|ω2b·col(π′). (25)

Hence, by Lemma 2.2, (20), (22), (23), (25) and the fact that ωr = 1, the LHS of (17) is

∑

π∈Fr,2n(H)

χ1,b(π)t
fdes(π)qfmaj(π)

2n∏

i=1

xzii

=
∑

π′∈Ĝr,n(S)

(−1)|P(π
′)|ω2b·col(π′)tfdes(π

′)+r|P(π′)|q2fmaj(π′)+
∑

i∈P(π′)(2i−1)
n∏

i=1

(x2i−1x2i)
z′i

=
∑

π′∈Ĝr,n(S)

(
(−1)|P(π

′)|tr|P(π
′)|qr

∑
i∈P(π′)(2i−1)

)
ω2b

(
r·majF (π′)+col(π′)

)
tfdes(π

′)q2fmaj(π′)
n∏

i=1

(x2i−1x2i)
z′i

=
∑

π∈Gr,n(S)

( ∑

A⊆[n]

(−1)|A|tr|A|qr
∑

i∈A(2i−1)
)
ω2b·fmaj(π)tfdes(π)q2fmaj(π)

n∏

i=1

(x2i−1x2i)
zi

=
n∏

i=1

(
1− trqr(2i−1)

) ∑

π∈Gr,n(S)

tfdes(π)
(
ωbq

)2fmaj(π)
n∏

i=1

(x2i−1x2i)
zi ,

as desired. �

Theorem 2.4. Let r and n be two positive integers. For integer 0 ≤ b ≤ r−1 and S ∈ Rr,n,

we have

∑

π∈Gr,n(S)

χ0,b(π)t
fdes(π)qfmaj(π)

n∏

i=1

xzii =
∑

π∈Gr,n(S)

tfdes(π)(ωbq)fmaj(π)
n∏

i=1

xzii . (26)

In particular,
∑

π∈Gr,n

χ0,b(π)t
fdes(π)qfmaj(π)xcol(π) =

∑

π∈Gr,n

tfdes(π)(ωbq)fmaj(π)xcol(π). (27)

Proof. By (11) and the fact that ωr = 1, the LHS of (26) is equal to

∑

π∈Gr,n(S)

ωb·col(π)tfdes(π)qfmaj(π)
n∏

i=1

xzii

=
∑

π∈Gr,n(S)

ωb(r·majF (π)+col(π))tfdes(π)qfmaj(π)
n∏

i=1

xzii

=
∑

π∈Gr,n(S)

ωb·fmaj(π)tfdes(π)qfmaj(π)
n∏

i=1

xzii ,

as desired. Finally, (27) can be derived by plugging S = (Zr, . . . ,Zr) and x = x1 = · · · = xn
into (26). �



10 SEN-PENG EU, ZHICONG LIN, AND YUAN-HSUN LO

3. Coxeter groups of type Bn

In Bn there are four one-dimensional characters: the identity χ0,0(π) = 1, χ0,1(π) =

(−1)neg(π), χ1,0(π) = (−1)inv(|π|) and χ1,1(π) = (−1)ℓB (π), where |π| = |π1||π2| · · · |πn|.
Let Rn := R2,n. For simplicity, the entries of the n-tuple S ∈ Rn are represented as +,

− or ±. For example, (+,±) means the first number is positive while the second one can

be positive or negative and B2(+,±) = {12, 12̄, 21, 21̄}.
As an application of Theorem 2.3 and Theorem 2.4, we obtain some sign Euler-Mahonian

identities for Bn as follows.

Corollary 3.1. Let n be a positive integer. For H ∈ R2n we have

(i)
∑

π∈B2n(H)

(−1)ℓB(π)tfdes(π)qfmaj(π)
∏

i∈Neg(π)

xi

=
n∏

i=1

(1− t2q4i−2)
∑

π∈Bn(S)

tfdes(π)q2fmaj(π)
∏

i∈Neg(π)

x2i−1x2i,

(ii)
∑

π∈B2n(H)

(−1)inv(|π|)tfdes(π)qfmaj(π)
∏

i∈Neg(π)

xi

=

n∏

i=1

(1− t2q4i−2)
∑

π∈Bn(S)

tfdes(π)q2fmaj(π)
∏

i∈Neg(π)

x2i−1x2i,

where S ∈ Rn is the unique n-tuple such that S ≺ H; and, for S ∈ Rn we have

(iii)
∑

π∈Bn(S)

(−1)neg(π)tfdes(π)qfmaj(π)
∏

i∈Neg(π)

xi =
∑

π∈Bn(S)

tfdes(π)(−q)fmaj(π)
∏

i∈Neg(π)

xi.

In particular,

(i)
∑

π∈B2n

(−1)ℓB(π)tfdes(π)qfmaj(π)xneg(π) =

n∏

i=1

(1− t2q4i−2)
∑

π∈Bn

tfdes(π)q2fmaj(π)x2neg(π),

(ii)
∑

π∈B2n

(−1)inv(|π|)tfdes(π)qfmaj(π)xneg(π) =

n∏

i=1

(1− t2q4i−2)
∑

π∈Bn

tfdes(π)q2fmaj(π)x2neg(π),

(iii)
∑

π∈Bn

(−1)neg(π)tfdes(π)qfmaj(π)xneg(π) =
∑

π∈Bn

tfdes(π)(−q)fmaj(π)xneg(π).

In what follows, we aim to derive the signed Eulerian identities for B2n+1, which can be
seen as natural generalizations of (3).

For a given H ∈ R2n+1, consider the involution ϕ on B2n+1(H) which is defined on

Gr,2n(H) in Section 2.3. That is, ϕ(π) is obtained from π by swapping the two letters 2i−1
and 2i, where i is the smallest integer such that 2i− 1 and 2i have opposite signs or are not
in adjacent positions. Similar to the same arguments in Section 2.3, the fixed points under ϕ

are those signed permutations in which the letters 2i−1 and 2i are adjacent and having the
same sign, for i ∈ [n]. Denote by F2n+1(H) the set of fixed points. By the same argument

in the proof of Lemma 2.2, when π is not a fixed point, (−1)inv(|π|) = −(−1)inv(|ϕ(π)|) and
fdes(π) = fdes(ϕ(π)). It follows that

∑

π∈B2n+1(H)

(−1)inv(|π|)tfdes(π) =
∑

π∈F2n+1(H)

(−1)inv(|π|)tfdes(π). (28)
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For k ∈ [n] let Sk be the n-tuple S ∈ Rn with an extra tilde mark above the k-th entry.

For Sk = (S1, . . . , S̃k, . . . , Sn), define Bn(Sk) ⊆ Bn(S) to be the set of signed permutations
such that (i) πi/|πi| ∈ Si for 1 ≤ i ≤ n and (ii) |πk| = n.

Consider H ∈ R2n+1 and S ∈ Rn+1. We say Sk ⊳H if

Si =





H2i−1 ∩H2i, if i < k,

H2i−1, if i = k,

H2i ∩H2i+1, if i > k.

Denote by F(H) be the collection of (n + 1)-tuples Sk such that Sk ⊳ H. For example,

if H = (±,−,+,±,±), then F(H) = {(±̃, ∅,±), (−, +̃,±), (−,+, ±̃)}, and B3((±̃, ∅,±)) =
∅, B3((−, +̃,±)) = {1̄32, 1̄32̄, 2̄31, 2̄31̄}, B3((−,+, ±̃)) = {1̄23, 1̄23̄, 2̄13, 2̄13̄}. Obviously,
Bn(Sh) ∩ Bn(Sk) = ∅ whenever h 6= k.

Theorem 3.2. Let n be a positive integer. For H ∈ R2n+1, we have
∑

π∈B2n+1(H)

(−1)inv(|π|)tfdes(π) = (1− t2)n
∑

Sk∈F(H)

∑

π∈Bn+1(Sk)

tfdes(π).

In particular,
∑

π∈B2n+1

(−1)inv(|π|)tfdes(π) = (1− t2)n
∑

π∈Bn+1

tfdes(π).

Proof. The second identity can be obtained from the first one by letting H = (±, . . . ,±).
More precisely, when H = (±, . . . ,±), B2n+1(H) = B2n+1 and F(H) = S1 ⊎S2 ⊎ · · · ⊎Sn+1,
where S = (±, . . . ,±) ∈ Rn+1. Therefore,

⊎

Sk∈F(H)

Bn+1(Sk) = Bn+1.

By (28), to derive the first identity it suffices to consider the set F2n+1(H). Consider the
bijective correspondence φ between elements in F2n+1(H) and elements in ⊎Sk∈F(H)Bn+1(Sk)
with some letters marked a “hat”, according to the following rules.

• Each pair of adjacent entries of type ±(2j − 1),±2j in F2n+1(H) is replaced by ±j.
• Each pair of adjacent entries of type ±2j,±(2j − 1) in F2n+1(H) is replaced by ±ĵ.
• The entry ±(2n + 1) in F2n+1(H) is replaced by ±(n+ 1).

We denote by B̂n+1(Sk) the set of all hatted Sk-restricted signed permutations on [n+1] for

Sk ∈ F(H). For π′ ∈ B̂n+1(Sk), let inv(|π′|), DesF (π
′) and fdes(π′) be defined by omitting

the hats, and let L(π′) and P(π′) respectively be the sets of the hatted letters and their

positions. Note here that 0 ≤ |L(π′)| = |P(π′)| ≤ n, k /∈ P(π′), and n + 1, n+ 1 /∈ L(π′).

For example, let π = 5̄6̄2̄1̄8794̄3̄. Then π′ = φ(π) = 3̄ˆ̄14̂5ˆ̄2 is the corresponding hatted
signed permutation with inv(|π′|) = 4, DesF (π

′) = {1, 4}, fdes(π′) = 5, L(π′) = {1, 2, 4} and

P(π′) = {2, 3, 5}.

Pick π ∈ F2n+1(H). Denote by π′ = φ(π) ∈ B̂n+1(Sk) for some Sk ∈ F(H). Let max(π)

be the position of letter ±(2n + 1) in π. Obviously, max(π) = 2k − 1. We further let
σ (resp., σ′) be the resulting H-restricted signed permutation (resp., hatted Sk-restricted
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signed permutation) obtained from π (resp., π′) by removing the letter ±(2n + 1) (resp.,
±(n+ 1)). By the definition of φ, we have

inv(|π|) = inv(|σ|) +
(
2n+ 1−max(π)

)

= 4inv(|σ′|) + |L(σ′)|+
(
2n + 1− (2k − 1)

)

= 4inv(|σ′|) + |L(π′)|+ 2
(
n− k − 1

)
,

which implies that

(−1)inv|π| = (−1)|L(π
′)|. (29)

Moreover,

DesF (π) ={2i : i ∈ DesF (π
′), i < k} ∪ {2i− 1 : i ∈ DesF (π

′), i ≥ k}

∪ {2i : i ∈ P(π′), i < k} ∪ {2i − 1 : i ∈ P(π′), i > k}.

Since π1 and π′1 have the same sign, it follows that

fdes(π) = 2
(
desF (π

′) + |P(π′)|
)
+ δ(π1 < 1) = fdes(π′) + 2|L(π′)|. (30)

Hence, by (29) and (30) we have
∑

π∈F2n+1(H)

(−1)inv(|π|)tfdes(π) =
∑

Sk∈F(H)

∑

π′∈B̂n+1(Sk)

(
(−1)|L(π

′)|t2|L(π
′)|
)
tfdes(π

′)

=
∑

Sk∈F(H)

∑

π′∈Bn+1(Sk)


 ∑

A⊆[n]

(−1)|A|t2|A|


 tfdes(π

′)

=(1− t2)n
∑

Sk∈F(H)

∑

π′∈Bn+1(Sk)

tfdes(π
′).

This completes the proof. �

Now, we consider the signed identity in which the sign is taken to be (−1)ℓB . Recall

that ϕ is an involution on B2n+1. Similar to the argument for getting the identity (28), as
(−1)ℓB(π) = −(−1)ℓB(ϕ(π)) for any non-fixed point under ϕ on B2n+1, we have

∑

π∈B2n+1

(−1)ℓB(π)tfdes(π) =
∑

π∈F2n+1

(−1)ℓB(π)tfdes(π), (31)

where F2n+1 simply is the set of fixed points under ϕ on B2n+1. Note that F2n+1 consists
of those signed permutations in which the letters 2i− 1 and 2i are adjacent and having the
same sign, for i ∈ [n].

For a signed permutation π ∈ Bn let

DesB(π) := {i : 0 ≤ i ≤ n− 1, πi > πi+1}

with respect to the natural linear order

n̄ < · · · < 1̄ < 1 · · · < n,

where π0 := 0 by convention. Following [9], the type B descent number of π, denoted by

desB(π), is then defined to be the cardinality of DesB(π), and the type B major index of π
is given by

majB(π) :=
∑

i∈DesB(π)

i.
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We use sgm to record the sign of the maximum letter (i.e., n) in π by letting sgm(π) = 1 if
its sign is negative and 0 otherwise. For example, sgm(2̄513̄4) = 0 and sgm(2̄5̄13̄4) = 1.

Theorem 3.3. For any positive integer n, we have

∑

π∈B2n+1

(−1)ℓB(π)tfdes(π) = (1− t2)n(1− t)
∑

π∈Bn

t2desB(π).

Proof. Consider the bijection φ given in the proof of Theorem 3.2 between the elements in

F2n+1 and the hatted signed permutations in B̂n+1. Here, we view B̂n+1 as ⊎n+1
k=1B̂n+1(Sk),

where S = (±, . . . ,±) ∈ Rn+1. Pick π ∈ F2n+1. Denote by π′ = φ(π) ∈ B̂n+1. The
definitions of max(π), inv(π′), ℓB(π

′), DesF (π
′), fdes(π′), L(π′) and P(π′) are of the same as

before. Let σ (resp. σ′) be the resulting signed permutation (resp. hatted signed permuta-
tion) obtained from π (resp. π′) by removing the letter ±(2n+1) (resp. ±(n+1)). Observe

that, if max(π) = 2k − 1, then π′ ∈ B̂n+1(Sk).
We consider the sign of the letter 2n+ 1 in π. First, if sgm(π) = 0, then

ℓB(π) = ℓB(σ) + 2n+ 1−max(π).

By the definition of ℓB and (24), we have

ℓB(π) = 4inv(σ′) + |P+(σ′)|+ neg(σ′)− |P−(σ′)| −
∑

i∈Neg(σ′)

(4σ′i + 1) + 2n+ 1−max(π)

= 4inv(σ′) + |P(σ′)| − 2|P−(σ′)| − 4

( ∑

i∈Neg(σ′)

σ′i

)
+ 2(n − k + 1),

where P+(σ′) := {i ∈ P(σ′) : σ′i > 0} and P−(σ′) := {i ∈ P(σ′) : σ′i < 0}. Since

|P(σ′)| = |P(π′)|, it follows that (−1)ℓB(π) = (−1)|P(π
′)|. On the other hand, if sgm(π) = 1,

then

ℓB(π) = ℓB(σ) + 2n+max(π).

By the same argument, we have

ℓB(π) = 4inv(σ′) + |P(σ′)| − 2|P−(σ′)| − 4

( ∑

i∈Neg(σ′)

σ′i

)
+ 2(n+ k)− 1,

which implies that (−1)ℓB(π) = (−1)|P(π
′)|+1. Since sgm(π) = sgm(π′), we conclude that

(−1)ℓB(π) = (−1)|P(π
′)|+sgm(π′). (32)

Moreover, as shown in (30), we replace |L(π′)| with |P(π′)| and then obtain

fdes(π) = fdes(π′) + 2|P(π′)|. (33)
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Hence, by (32) and (33) it follows that

∑

π∈F2n+1

(−1)ℓB(π)tfdes(π) =
∑

π′∈B̂n+1

(
(−1)|P(π

′)|t2|P(π
′)|

)
(−1)sgm(π′)tfdes(π

′)

=
∑

π′∈Bn+1

( ∑

A⊆[n]

(−1)|A|t2|A|

)
(−1)sgm(π′)tfdes(π

′)

=(1− t2)n
∑

π′∈Bn+1

(−1)sgm(π′)tfdes(π
′),

which completes the proof in view of the Lemma 3.4 below. �

Lemma 3.4. For n ≥ 1, we have
∑

π∈Bn+1

(−1)sgm(π)tfdes(π) = (1− t)
∑

π∈Bn

t2desB(π). (34)

The proof is based on the technique of flag barred permutations developed by the second

named author [21], which was originally inspired by Gessel and Stanley [19]. We need some
preparations.

For any signed permutation π ∈ Bn, define the sign change function δπ : [n] → {0, 1}n as

δπ(i) = δπi := 1 if πiπi+1 < 0 or i = n and πn < 0, otherwise 0.

Let ch(π) :=
∑

i δ
π
i be the total sign change of π. For instance, for π = 1̄3̄425̄ ∈ B5, we have

δπ = 01011 and ch(π) = 3. It was shown in [21, Lemma 17] that

fdes(π) = ch(π) +
∑

i∈DesF (π)

δπ
i
=0

2. (35)

This relationship motivates the definition of flag barred permutations below.
Let π ∈ Bn. We call the space between πi and πi+1 the i-th space of π for 1 ≤ i ≤ n− 1

and it is called a descent space if i ∈ DesF (π). We also call the space befor π1 and the space

after πn the 0-th space and the n-th space of π, respectively. A flag barred permutation on
π is obtained from π by inserting bars such that

• for each i (1 ≤ i ≤ n), the i-th descent space of π with δπi = 0 receives at least 2
bars;

• the parity of the number of bars in the i-th space (1 ≤ i ≤ n) of π has the same
parity as δπi .

In view of relationship (35), every barred permutation on π has at least fdes(π) bars. For

example, if π = 2̄3̄15̄4̄ ∈ B5, then the flag barred permutation on π with the least number
of bars is 2̄3̄|1|5̄||4̄|.

We are now ready for the proof of Lemma 3.4.

Proof of Lemma 3.4. Let B+
n+1 (resp. B−

n+1) denote the set of signed permutations π ∈

Bn+1 such that sgm(π) = 0 (resp. sgm(π) = 1), namely, n+1 (resp. n+ 1) appears as a letter

of π. Let B̃+
n+1 (resp. B̃−

n+1) be the set of flag barred permutations on B+
n+1 (resp. B−

n+1).
For each flag barred permutation π̃, the weight of π̃, denoted wt(π̃), is defined by

wt(π̃) = tbar(π̃), where bar(π̃) is the number of bars in π̃. We are going to count the

flag barred permutations in B̃+
n+1 by the weight “wt” in two different ways. First, fix a
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signed permutation π ∈ B+
n+1, and sum over all flag barred permutations on π. Then, fix

the number of bars k, and sum over all flag barred permutations with k bars.

Fix a permutation π ∈ B+
n+1. The flag barred permutation on π with the least number

of bars, denoted by π̄, has the weight tfdes(π). As every flag barred permutation on π can
be obtained from π̄ by further inserting any number of bars in the 0-th space of π and an
even number of bars in the i-th (1 ≤ i ≤ n+1) space of π, we see that counting all the flag

barred permutations on π according to the weight “wt” gives

tfdes(π)(1 + t+ t2 + · · · )(1 + t2 + t4 + · · · )n+1 =
tfdes(π)

(1− t)(1− t2)n+1
.

Therefore, we have

∑

π̃∈B̃+
n+1

wt(π̃) =

∑
π∈B+

n+1
tfdes(π)

(1− t)(1− t2)n+1
. (36)

For a fixed integer k ≥ 0, let B̃+
n+1,k be the set of flag barred permutations in B̃+

n+1 with

k bars. Now, each flag barred permutation from B̃+
n+1,k can be obtained in two steps. First,

we put k bars in one line and insert the letters 1, 2, . . . , n+1 into the spaces between bars.
Second, we determine the signs of all the letters and the order of the letters between each
pair of two adjacency bars in the resulting object in such a way that it becomes a flag barred

permutation. The signs and the orders of letters are unique according to the definition of a
flag barred permutation, which requires

(a) all letters between two adjacency bars have the same sign and are in increasing order

with respect to the linear order

1̄ · · · < n̄ < n+ 1 < 1 < · · · < n < n+ 1.

(b) the sign of an integer in the (i+ 1)-th space (from right to left) of the k + 1 spaces
of the k bars is “+” (resp. “−”) if i is even (resp. odd).

In general, there are k + 1 ways to insert the letter i for 1 ≤ i ≤ n and because of rule (b)

above, the letter n + 1 must be inserted in the odd numbered space (from right to left) of
the k + 1 spaces of the k bars in order to have positive sign. Thus,

∑

π̃∈B̃+
n+1,k

wt(π) = (k + 1)n⌈(k + 1)/2⌉tk

and hence ∑

π̃∈B̃+
n+1

wt(π̃) =
∑

k≥0

∑

π̃∈B̃+
n+1,k

wt(π) =
∑

k≥0

(k + 1)n⌈(k + 1)/2⌉tk .

Comparing with (36) we get the identity
∑

π∈B+
n+1

tfdes(π)

(1− t)(1− t2)n+1
=

∑

k≥0

(k + 1)n⌈(k + 1)/2⌉tk . (37)

Similarly, applying the same approach to B̃−
n+1 results in

∑
π∈B−

n+1
tfdes(π)

(1− t)(1− t2)n+1
=

∑

k≥0

(k + 1)n⌊(k + 1)/2⌋tk . (38)
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Combining (37) and (38) yields that
∑

π∈Bn+1
(−1)sgm(π)tfdes(π)

(1− t)(1 − t2)n+1
=

∑

k≥0

(2k + 1)nt2k. (39)

On the other hand, it is well known (see Theorem 3.4 in [10] with q = 1) that
∑

π∈Bn
tdesB(π)

(1− t)n+1
=

∑

k≥0

(2k + 1)ntk.

It then follows that
(1− t)

∑
π∈Bn

t2desB(π)

(1− t)(1 − t2)n+1
=

∑

k≥0

(2k + 1)nt2k,

which gives (34) in view of (39) �

4. Coxeter groups of type Dn

The even-signed permutation group Dn is the subgroup of Bn defined by

Dn := {π ∈ Bn : neg(π) is even},

which consists of those signed permutations with an even number of negative entries. The
groupDn is known as the Coxeter group of typeDn which has the generators s′0, s1, . . . , sn−1,

where s′0 = (1̄, 2) and si = (i, i+ 1) for i ≥ 1. Let ℓD be the corresponding length function
of Dn. It is known [9] that the combinatorial description of ℓD is

ℓD(π) = inv(π)−
∑

i∈Neg(π)

(πi + 1).

For example, ℓD(2̄35̄1̄4̄) = 6− (−8) = 14.
For π ∈ Dn the D-descent number and the D-major index of π are respectively defined

in [7] by

ddes(π) := fdes(π1π2 · · · πn−1|πn|),

dmaj(π) := fmaj(π1π2 · · · πn−1|πn|),

where fdes and fmaj are considered in Bn = G(2, n). For example, if π = 2̄35̄1̄4̄, then
ddes(π) = fdes(2̄35̄1̄4) = 5 and dmaj(π) = fmaj(2̄35̄1̄4) = 13.

As in Dn there are only two one-dimensional characters, 1 and (−1)ℓD(π), it suffices to

consider the case when χ(π) = (−1)ℓD(π). Let us first consider the case for n being even.
For π ∈ D2n let i be the smallest integer such that the letters 2i− 1 and 2i satisfy one of

the following conditions.

(A1) They are not in adjacent positions.
(A2) They have opposite signs, and are not both at the last two positions.
(A3) They are both at the last two positions with negative signs.

Then, let η(π) be the even-signed permutation obtained from π by swapping the two letters
2i − 1 and 2i. For examples, η(213̄5̄64̄) = 214̄5̄64̄, η(215̄634̄) = 216̄534̄ and η(213̄4̄5̄6̄) =
213̄4̄6̄5̄. Clearly, η is an involution on D2n whose fixed points are those even-signed permu-

tations π in which the letters 2i−1 and 2i are adjacent and having the same sign, and both
π2n−1 and π2n are positive. Note that the last property “both π2n−1 and π2n are positive”
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is because of even number of negatives. Denote by FD
2n the set of fixed points under the

involution η.

Let π be a non-fixed point under η and denote by π′ = η(π). Obviously, Neg(π) = Neg(π′).
It is also clear that

DesF (π1π2 · · · π2n−1|π2n|) = DesF (π
′
1π

′
2 · · · π

′
2n−1|π

′
2n|),

which implies that ddes(π) = ddes(π′) and dmaj(π) = dmaj(π′). Assume i is the smallest

integer such that 2i − 1 and 2i satisfy (A1), (A2) or (A3). If the two letters 2i − 1 and 2i
are of the same sign, then

inv(π) = inv(π′)± 1 and
∑

i∈Neg(π)

(πi + 1) =
∑

i∈Neg(π′)

(π′i + 1);

otherwise, if they are of opposite signs, then

inv(π) = inv(π′) and
∑

i∈Neg(π)

(πi + 1) =




∑

i∈Neg(π′)

(π′i + 1)


 ± 1.

In either case, it follows that ℓD(π) = ℓD(π
′)± 1. Therefore, we conclude that

∑

π∈D2n

(−1)ℓD tddes(π)qdmaj(π)
∏

i∈Neg(π)

xi =
∑

π∈FD
2n

(−1)ℓD tddes(π)qdmaj(π)
∏

i∈Neg(π)

xi. (40)

We are ready to derive the following result.

Theorem 4.1. For any positive integer n we have
∑

π∈D2n

(−1)ℓD tddes(π)qdmaj(π)
∏

i∈Neg(π)

xi

=

n∏

i=1

(1− t2q4i−2)
∑

π∈Dn

tddes(π)q2dmaj(π)
∏

i∈Neg(π)\{n}

x2i−1x2i.

Proof. By (40) it suffices to consider the set FD
2n. Introduce the bijective correspondence φ

between elements in FD
2n and elements in Dn with some letters marked a “hat”, according

to the following rules.

• Each pair of adjacent entries of type ±(2j − 1),±2j in FD
2n is replaced by ±j.

• Each pair of adjacent entries of type ±2j,±(2j − 1) in FD
2n is replaced by ±ĵ.

• After the above two steps, if the number of negatives of the resulting permutation
is odd, then change the sign of the last entry from positive to negative.

Note that the last rule is well-defined, since after the first two steps, the last entry must

be positive due to π2n−1 > 0 and π2n > 0 for π ∈ FD
2n. We denote by D̂n the set of all

hatted even-signed permutations on [n]. For π′ ∈ D̂n let inv(π′), Neg(π′), neg(π′), ddes(π′)
and dmaj(π′) be defined by omitting the hats, and let P(π′) be the set of the positions of

the hatted letters. For example, φ(215̄6̄8743) = 1̂3̄4̂ˆ̄2.

Pick π ∈ FD
2n. Denote by π′ = φ(π) and σ′ = π′1 · · · π

′
n−1|π

′
n|. By the same argument for

getting the identity (24), we have

inv(π) = 4inv(σ′) + |P+(σ′)| − |P−(σ′)|+ neg(σ′),
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where P+(σ′) := {i ∈ P(σ′) : σ′i > 0} and P−(σ′) := {i ∈ P(σ′) : σ′i < 0}. By the definition
of ℓD, it follows that

ℓD(π) = 4inv(σ′) + |P+(σ′)| − |P−(σ′)|+ neg(σ′)−
∑

σ′
i<0

(
(4σ′i + 1) + 2

)

= 4inv(σ′) + |P(σ′)| − 2|P−(σ′)| − 2neg(σ′)− 4
∑

σ′
i<0

σ′i,

which implies that

(−1)ℓD(π) = (−1)|P(π
′)| (41)

due to the fact that P(π′) = P(σ′). By the same arguments for getting the identities
(21)–(23), we have

DesF (π) = {2i : i ∈ DesF (σ
′)} ∪ {2i− 1 : i ∈ P(σ′)},

and thus

ddes(π) = fdes(π) = fdes(σ′) + 2|P(σ′)| = ddes(π′) + 2|P(π′)| (42)

dmaj(π) = fmaj(π) = 2fmaj(σ′) + 2
∑

i∈P(σ′)

(2i− 1) = 2dmaj(π′) +
∑

i∈P(π′)

(4i − 2), (43)

where the first equalities of the two identities are due to π2n > 0. Furthermore, it is easy

to see that

Neg(π) =
⊎

i∈Neg(π′)\{n}

{2i− 1, 2i}. (44)

Combining (41)–(44) yields that
∑

π∈FD
2n

(−1)ℓD tddes(π)qdmaj(π)
∏

i∈Neg(π)

xi

=
∑

π′∈D̂n

(
(−1)|P(π

′)|t2|P(π
′)|q

∑
i∈P(π′)(4i−2)

)
tddes(π

′)q2dmaj(π′)
∏

i∈Neg(π′)\{n}

x2i−1x2i

=
∑

π′∈Dn


 ∑

A⊆[n]

(−1)|A|t2|A|q
∑

i∈A(4i−2)


 tddes(π

′)q2dmaj(π′)
∏

i∈Neg(π′)\{n}

x2i−1x2i

=
n∏

i−1

(1− t2q4i−2)
∑

π′∈Dn

tddes(π
′)q2dmaj(π′)

∏

i∈Neg(π′)\{n}

x2i−1x2i

and the proof is completed. �

Next, we consider the signed Eulerian identity for D2n+1 with respect to ddes. For

π ∈ D2n+1 let i be the smallest integer such that the letters 2i− 1 and 2i satisfy one of the
following conditions.

(B1) They are not in adjacent positions.
(B2) They have opposite signs, and are not both at the last two positions.
(B3) They are both at the last two positions with negative signs.

(B4) They are both at the last two positions with negative signs, and π2n < 0 and
π2n+1 < 0.
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Note that conditions (B3) and (B4) can be simply combined as “are both at the last two
positions and π2n < 0”; however, we separate it into two cases for the convenience of

discussion. Next, let ι(π) be the even-signed permutation obtained from π by swapping
the two letters 2i − 1 and 2i. For examples, ι(587̄1̄2̄9634̄) = 687̄1̄2̄9534̄, ι(587̄1̄2̄963̄4) =
587̄1̄2̄964̄3, and ι(587̄1̄2̄963̄4̄) = 587̄1̄2̄964̄3̄. It is easy to see that ι is an involution on D2n+1

whose fixed points are those even-signed permutations π having the following properties.

• For i ∈ [n] the letters 2i− 1 and 2i are adjacent.

• For i ∈ [n] the letters 2i − 1 and 2i have the same sign if both of them are not at
the last two positions.

• If 2i− 1 and 2i appear at the last two positions for some i, then π2n > 0.

Let FD
2n+1 denote the set of fixed points under ι. For example,

FD
3 = {123, 213, 312, 321, 1̄2̄3, 2̄1̄3, 3̄12̄, 3̄21̄}.

Recall that sgm(π) records the sign of the maximum letter in π. It is clear that, for
π ∈ FD

2n+1, sgm(π) = 1 if and only if π2n+1 < 0.
Let π be a non-fixed point under ι and denote by π′ = ι(π). Assume i is the smallest

integer such that 2i− 1 and 2i satisfy (B1), (B2), (B3) or (B4). Observe that ι is identical
to η, which is defined on D2n, if the last condition (B4) is omitted. So, we have ℓD(π) =
ℓD(π

′)± 1 and ddes(π) = ddes(π′) if 2i− 1 and 2i satisfy (B1), (B2) or (B3). If they satisfy

(B4), it is easy to see that inv(π) = inv(π′) and
∑

i∈Neg(π)(πi + 1) =
∑

i∈Neg(π′)(π
′
i + 1)± 1,

which imply ℓD(π) = ℓD(π
′) ± 1; and, ddes(π) = ddes(π′) due to DesF (π) = DesF (π

′) and

π2n+1 > 0, π′2n+1 > 0. Therefore, we conclude that
∑

π∈D2n+1

(−1)ℓD tddes(π) =
∑

π∈FD
2n+1

(−1)ℓD tddes(π). (45)

We are ready to derive the following result.

Theorem 4.2. For any positive integer n, we have
∑

π∈D2n+1

(−1)ℓD(π)tddes(π) = (1− t2)n
∑

π∈Dn+1

tddes(π).

Proof. By (45) it suffices to consider the set FD
2n+1. Introduce the bijective correspondence

φ between elements in FD
2n+1 and elements in Dn+1 with some letters marked a “hat”,

according to the following rules.

• Each pair of adjacent entries of type ±(2j − 1),±2j in FD
2n+1 but not at the last

two positions is replaced by ±j.
• Each pair of adjacent entries of type ±2j,±(2j−1) in FD

2n+1 but not at the last two

positions is replaced by ±ĵ.
• The pair of entries of type (2j−1),±2j at the last two positions in FD

2n+1 is replaced
by j.

• The pair of entries of type 2j,±(2j−1) at the last two positions in FD
2n+1 is replaced

by ĵ.
• The entry ±(2n + 1) in FD

2n+1 is replaced by ±(n+ 1).

• After the above steps, if the number of negatives of the resulting permutation is
odd, then change the sign of the last entry.
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We denote by D̂n+1 the set of all hatted even-signed permutations on [n+ 1]. For π′ ∈ D̂n

let inv(π′), Neg(π′), neg(π′), ddes(π′) and dmaj(π′) be defined by omitting the hats, and
let L(π′) and P(π′) denote respectively the sets of the hatted letters and their positions.
Note that |L(π′)| = |P(π′)| ≤ n since the letter n + 1 will not be hatted. For examples,

φ(215̄6̄879̄43̄) = 1̂3̄4̂5̄2̂, φ(2̄1̄5̄6̄879̄34̄) = ˆ̄13̄4̂5̄2̄ and φ(215̄6̄87439) = 1̂3̄4̂2̂5̄.
Pick π ∈ FD

2n+1 and define π′ = φ(π). We first claim that

ℓD(π) ≡ |P(π′)| (mod 2). (46)

We will only consider the case that sgm(π) = 1 (i.e., π2n+1 < 0) since the other cases can be

dealt with in the same way. In this case, we have π2n+1 < 0 and π2n+1 6= 2n+ 1, which forces
the pair (π2n, π2n+1) to be (2j, 2j − 1) or (2j − 1, 2j) for some 1 ≤ j ≤ n and 2n+ 1 must
appear as a letter in π. For convenience, let σ (resp., σ′) be the resulting signed permutation
(resp., hatted signed permutation) obtained from π (resp., π′) by removing the letter 2n + 1

(resp., n+ 1). Observe that there are 2(|σ′n| − 1) entries among {σ1, σ2, . . . , σ2n−2} whose
absolute values are smaller than |σ2n|. Recall that max(π) and max(π′) denote the positions
of 2n+ 1 and n+ 1 in π and π′, respectively. We need to distinguish two cases.

Case 1: π2n < |π2n+1|. If σ
′
n > 0, then

inv(σ) = 4inv(σ′) + |P+(σ′)|+ neg(σ′)− |P−(σ′)|+ 2(|σ′n| − 1) + 1;

otherwise, σ′n < 0 and

inv(σ) = 4inv(σ′) + |P+(σ′)|+ neg(σ′)− |P−(σ′)| − 2(|σ′n| − 1).

As max(π) = 2max(π′)− 1, we have

inv(π) = inv(σ) + max(π)− 1

= 4inv(σ′) + |P(σ′)| − 2|P−(σ′)|+ neg(σ′) + 2max(π′) +

{
2|σ′n| − 3, if σ′n > 0

−2|σ′n|, if σ′n < 0.

Moreover, since σ2n = −2|σ′n|, it follows that
∑

πi<0

(πi + 1) = −(2n+ 1) +
∑

σi<0

(σi + 1)

= −2n+
∑

σ′
i<0 and i<n

(4σ′i + 3) +

{
−2σ′n + 1, if σ′n > 0

2σ′n + 1, if σ′n < 0

= −2n+ 2
∑

σ′
i<0 and i<n

(2σ′i + 1) + neg(σ′) +

{
−2σ′n + 1, if σ′n > 0

2σ′n, if σ′n < 0
.

Hence we have

ℓD(π) = inv(π)−
∑

πi<0

(πi + 1) ≡ |P(σ′)| = |P(π′)| (mod 2).

Case 2: π2n > |π2n+1|. By similar arguments as in Case 1, we have

inv(π) = 4inv(σ′) + |P(σ′)| − 2|P−(σ′)|+ neg(σ′) + 2max(π′) +

{
2|σ′n| − 4, if σ′n > 0

−2|σ′n|+ 1, if σ′n < 0
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and
∑

πi<0

(πi + 1) = −(2n+ 1) +
∑

σi<0

(σi + 1)

= −2n+
∑

σ′
i<0 and i<n

(4σ′i + 3) +

{
−2σ′n + 2, if σ′n > 0

2σ′n + 2, if σ′n < 0

= −2n+ 2
∑

σ′
i<0 and i<n

(2σ′i + 1) + neg(σ′) +

{
−2σ′n + 2, if σ′n > 0

2σ′n + 1, if σ′n < 0
.

It also concludes that

ℓD(π) = inv(π)−
∑

πi<0

(πi + 1) ≡ |P(σ′)| = |P(π′)| (mod 2).

Let ρ = π1π2 · · · π2n|π2n+1| and ρ′ = π′1π
′
2 · · · π

′
n|π

′
n+1|. Similar to the discussions for

getting the identity (30), we have fdes(ρ) = fdes(ρ′) + 2|L(ρ′)| and thus

ddes(π) = fdes(ρ) = fdes(ρ′) + 2|L(ρ′)| = ddes(π′) + 2|L(π′)|. (47)

As |L(π′)| = |P(π′)| for π′ ∈ D̂n+1, combining (46) and (47) yields that
∑

π∈FD
2n+1

(−1)ℓD tddes(π) =
∑

π′∈D̂n+1

(−1)|L(π
′)|tddes(π

′)+2|L(π′)|

=
∑

π′∈Dn+1


 ∑

A⊆[n]

(−1)|A|t2|A|


 tddes(π

′) = (1− t2)n
∑

π′∈Dn+1

tddes(π
′),

as desired. �

5. More Sign-balance Distributions for Bn and Dn

In this section, we consider the sign-balance
∑

π∈Bn or Dn

χ(π)tstat1(π)qstat2(π),

where χ is a one-dimensional character on Bn or Dn, and the statistics stat1 and stat2 are
type B or D descent number and major index, respectively. We shall derive the generating

functions of these sign-balances.

5.1. Sign-balance results on Bn. Recall that, for π ∈ Bn, desB(π) and majB(π) are the
type B descent number and major index of π.

Theorem 5.1. For any positive integer n, we have

∑

π∈Bn

(−1)ℓB(π)tdesB(π)qmajB(π) =
∑

π∈Bn

(−1)neg(π)tdesB(π)qmajB(π) =

n−1∏

i=0

(
1− tqi

)
.

Proof. Let k be the smallest integer such that |πk| 6= k. Assume |πi| = k for some i. Note
that i > k. Then, define θ(π) to be the signed permutation obtained from π by changing

the sign of πi. For example, if π = 1̄254̄3̄, then θ(π) = 1̄254̄3, where k = 3 and i = 5; and,
if π = 1̄23̄45, then θ(π) = π since no such k exists. It is clear that θ is an involution, where



22 SEN-PENG EU, ZHICONG LIN, AND YUAN-HSUN LO

the fixed points are those signed permutations π ∈ Bn with |π1| = 1, |π2| = 2, . . . , |πn| = n.
Let In denote the set of fixed points.

Pick a non-fixed point π ∈ Bn\In under θ. Let k be the smallest integer such that
|πk| 6= k and denote by π′ = θ(π). Obviously, neg(π′) = neg(π) ± 1. Meanwhile, it is not
hard to see that

ℓB(π
′) =

{
ℓB(π) + 2k − 1, if πi = k,

ℓB(π)− (2k − 1), if πi = −k.

Furthermore, since |πi−1| > |πi| = k, θ preserves DesB , which yields

desB(π
′) = desB(π) and majB(π

′) = majB(π).

It follows that ∑

π∈Bn

(−1)neg(π)tdesB(π)qmajB(π) =
∑

π∈In

(−1)neg(π)tdesB(π)qmajB(π), (48)

and ∑

π∈Bn

(−1)ℓB(π)tdesB(π)qmajB(π) =
∑

π∈In

(−1)ℓB(π)tdesB(π)qmajB(π). (49)

Since each fixed point π in In is of the form |πi| = i for i ∈ [n], we have DesB(π) =
Neg(π)− 1, which implies that desB(π) = neg(π) and majB(π) =

∑
i∈Neg(π)(i − 1). Hence,

the right-hand-side of (48) is equal to

∑

π∈In

(−t)neg(π)q
∑

i∈Neg(π)(i−1) =
∑

A⊆[n]

(−t)|A|q
∑

i∈A(i−1) =

n−1∏

i=0

(
1− tqi

)
.

On the other hand, it is easy to see that inv(π) =
∑

i∈Neg(π)(i − 1) for π ∈ In. Then,

ℓB(π) =
∑

i∈Neg(π)(2i− 1), and hence the right-hand-side of (49) is equal to
∑

π∈In

(−1)
∑

i∈Neg(π)(2i−1)t|Neg(π)|q
∑

i∈Neg(π)(i−1)

=
∑

A⊆[n]

(−1)
∑

i∈A(2i−1)t|A|q
∑

i∈A(i−1)

=

n−1∏

i=0

(
1− tqi

)
.

This completes the proof. �

Theorem 5.2. For any positive integer n, we have

∑

π∈Bn

(−1)inv(|π|)tdesB(π)qmajB(π) =
(
1 + (−1)n−1tqn−1

) n−2∏

i=0

(
1− tqi

)
.

Proof. For π ∈ Bn let i be the smallest integer such that the letters 2i − 1 and 2i satisfy

one of the following conditions.

(C1) They are not in adjacent positions.
(C2) They are in adjacent positions and have opposite signs.

(C3) They are in adjacent positions and have the same sign, but are not both at the
(2i− 1)-th and (2i)-th positions.
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Then, let ψ(π) be the signed permutation obtained from π by swapping the two letters
2i − 1 and 2i if they satisfy (C1) or (C2), or swapping the two letters 2i − 1 and 2i and

changing their signs if they satisfy (C3). For examples, ψ(2̄135̄64) = 1̄235̄64, ψ(1̄2̄53̄64̄) =
1̄2̄54̄63̄ and ψ(2̄1̄6345) = 2̄1̄64̄3̄5. It is clear that ψ is an involution on Bn, where the fixed
points are those signed permutations π satisfying that, for i = 1, 2, . . . , ⌊n/2⌋, the letters

2i − 1 and 2i have the same sign and are both in the (2i − 1)-th and (2i)-th positions.
Let Fn denote the set of fixed points. For instances, F2 = {12, 1̄2̄, 21, 2̄1̄} and F3 =
{123, 1̄2̄3, 213, 2̄1̄3, 123̄, 1̄2̄3̄, 213̄, 2̄1̄3̄}.

Let π be a non-fixed point under ψ. Let i be the smallest integer such that the letters

2i − 1 and 2i satisfy one of the conditions (C1) – (C3) and let π′ := ψ(π). Obviously,
inv(|π′|) = inv(π) ± 1. Moreover, it is easy to see that DesB(π

′) = DesB(π) if the letters
2i− 1 and 2i in π satisfy either (C1) or (C2). Suppose the letters 2i− 1 and 2i in π satisfy

(C3) and appear in πk and πk+1. Observe that |πk−1| > 2i, otherwise we could find a
smaller integer i′ < i such that 2i′ − 1 and 2i′ satisfy one of (C1) – (C3). This implies
DesB(π

′) = DesB(π), which concludes that ψ preserves desB and majB. Therefore, we have

∑

π∈Bn

(−1)inv(|π|)tdesB(π)qmajB(π) =
∑

π∈Fn

(−1)inv(|π|)tdesB(π)qmajB(π).

Now, we define a bijective correspondence between Fn and In, which is given in the proof

of Theorem 5.1 as the set of signed permutations π ∈ Bn with |π1| = 1, |π2| = 2, . . . , |πn| = n,
according to the following rules.

• Each pair of adjacent entries of type 2i, 2i − 1 in Fn is replaced by 2i− 1, 2i.

• Each pair of adjacent entries of type 2i, 2i− 1 in Fn is replaced by 2i− 1, 2i.

Again, denote by π′ the resulting signed permutation. It is clear that DesB(π) = DesB(π
′) =

Neg(π′)− 1, and thus desB(π) = neg(π′) and majBπ =
∑

i∈Neg(π′)(i− 1). Observe that both

the patterns 2i, 2i− 1 and 2i, 2i− 1 in π provide 1 to inv(|π|), while the ones 2i− 1, 2i and

2i− 1, 2i in π′ provide 1 to neg(π). Then,

inv(|π|) =

{
neg(π′), if n is even or n is odd and πn = n;

neg(π′)− 1, if n is odd and πn = n̄.

Therefore, when n is even, we have

∑

π∈Fn

(−1)inv(|π|)tdesB(π)qmajB(π) =
∑

π∈In

(−1)|Neg(π)|t|Neg(π)|q
∑

i∈Neg(π)(i−1)

=
∑

A⊆[n]

(−1)|A|t|A|q
∑

i∈A(i−1) =
n−1∏

i=0

(
1− tqi

)
.
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Also, when n is odd, the generating function turns out to be
∑

π∈In
πn=n

(−1)|Neg(π)|t|Neg(π)|q
∑

i∈Neg(π)(i−1) +
∑

π∈In
πn=n̄

(−1)|Neg(π)|−1t|Neg(π)|q
∑

i∈Neg(π)(i−1)

=
∑

A⊆[n−1]

(−1)|A|t|A|q
∑

i∈A(i−1) +
∑

A⊆[n−1]

(−1)|A|t|A|+1qn−1+
∑

i∈A(i−1)

=(1 + tqn−1)
n−2∏

i=0

(
1− tqi

)
.

�

5.2. Sign-balance results on Dn. For a signed permutation π ∈ Dn, let

DesD(π) := {i : 0 ≤ i ≤ n− 1, πi > πi+1}

with respect to the natural linear order

n̄ < · · · < 1̄ < 1 · · · < n,

where π0 := −π2. Following [9], the type D descent number of π, denoted by desD(π), is
defined to be the cardinality of DesD(π), and the type D major index of π is given by

majD(π) :=
∑

i∈DesD(π)

i.

The proof of the following result is similar to that of Theorem 5.2.

Theorem 5.3. For any positive integer n ≥ 2 we have

∑

π∈Dn

(−1)ℓD(π)tdesD(π)qmajD(π) =
(
1 + (−1)n−1tqn−1

) n−2∏

i=0

(
1− tqi

)
,

and
∑

π∈D1
(−1)ℓD(π)tdesD(π)qmajD(π) = 1.

Proof. For π ∈ Dn let i be the smallest integer such that the letters 2i − 1 and 2i satisfy

one of the following conditions.

(D1) They are not in adjacent positions.

(D2) They are in adjacent positions and have opposite signs, but are not both at the first
two positions if i = 1.

(D3) They are in adjacent positions and have the same sign, but not both at the (2i−1)-th

and (2i)-th positions.

Then, let ψ(π) be the signed permutation obtained from π by swapping the two letters

2i − 1 and 2i if they satisfy (D1) or (D2), or swapping the two letters 2i − 1 and 2i and
changing their signs if they satisfy (D3). It is clear that ψ is an involution on Dn, where the
fixed points are those even-signed permutations π satisfying that the letters 1 and 2 are at

the first two positions and, for i = 2, 3, . . . , ⌊n/2⌋, the letters 2i − 1 and 2i have the same
sign and are both at the (2i − 1)-th and (2i)-th positions. Let FD

n denote the set of fixed
points. Note that, for π ∈ FD

n , if n is even, π1 and π2 have the same sign; while, if n is odd,

exactly one of π and π2 is negative if and only if πn is negative. For instances, FD
2 = D2

and F3 = {123, 12̄3̄, 1̄23̄, 1̄2̄3, 213, 21̄3̄, 2̄13̄, 2̄1̄3}.
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Let π be a non-fixed point under ϕ. Let i be the smallest integer such that the letters
2i− 1 and 2i satisfy one of conditions (D1) – (D3), and denote by π′ = ψ(π). If the letters

2i − 1 and 2i satisfy either (D1) or (D2), then ℓD(π
′) = ℓD(π) ± 1. Since 1 and 2 are

not both at the first two positions, −π′2 > π′1 if and only if −π2 > π1. This verifies that
DesD(π

′) = DesD(π). Now, suppose the letters 2i− 1 and 2i satisfy (D3), and appear at πk
and πk+1. Note that k > 1. In this case, |πh| > 2i for h > k + 1, so changing the signs of
πk and πk+1 will not affect the size relationship between them and all entries on the right.
Therefore, inv(π′) = inv(π)± (4i− 4) and

∑
π′<0(π

′+1) =
∑

π<0(π+1)∓ (4i− 3), and thus
ℓD(π

′) = ℓD(π) ± (8i − 7). On the other hand, since k > 1 and |πk−1| > 2i (by the same

argument in the proof of Theorem 5.2), we have DesD(π
′) = DesD(π). Hence we conclude

that
∑

π∈Dn

(−1)inv(|π|)tdesD(π)qmajD(π) =
∑

π∈FD
n

(−1)inv(|π|)tdesD(π)qmajD(π).

Recall that In is the set of signed permutations with |πi| = i for all i. Define a bijective
correspondence between FD

n and In according to the following rules.

• Each pair of adjacent entries of type 2i, 2i − 1 in FD
n is replaced by 2i− 1, 2i.

• Each pair of adjacent entries of type 2i, 2i− 1 in FD
n is replaced by 2i− 1, 2i.

• Pair 12̄ in FD
n is replaced by 12.

• Pair 1̄2 in FD
n is replaced by 1̄2̄.

• Pair 21̄ in FD
n is replaced by 12̄.

• Pair 2̄1 in FD
n is replaced by 1̄2.

For π ∈ FD
n let π′ denote the corresponding signed permutation in In. It is routine to

verify that DesD(π) = DesB(π
′) = Neg(π′)− 1, and thus desD(π) = neg(π′) and majD(π) =∑

i∈Neg(π′)

(
i− 1

)
.

Now, we consider the relationship between ℓD(π) and neg(π′). When n is even or n is
odd and πn = n, by the structure of π ∈ FD

n , inv(π) is equal to an even integer plus the

number of adjacent pairs of type 2i, 2i− 1 or 2i− 1, 2i, and
∑

i∈Neg(π)(πi+1) is equal to an

even integer plus the number of adjacent pairs of type 2i− 1, 2i or 2i, 2i− 1. This implies
that

ℓD(π) ≡ |
{
adjacent pairs of type 2i, 2i − 1 or 2i, 2i− 1

}
| (mod 2).

Adjacent pairs of types 2i, 2i − 1 and 2i, 2i − 1 in π are respectively replaced by 2i − 1, 2i
and 2i− 1, 2i, each of which supports 1 to neg(π′), so we have

ℓD(π) ≡ neg(π′) (mod 2).

When n is odd and πn = n̄, either π1 or π2 is negative. By a similar argument, we have

ℓD(π) ≡ ℓD(π1π2) + |
{
adjacent pairs of type 2i, 2i − 1 or 2i, 2i− 1

}
| (mod 2).

Observe that ℓD(π1π2) ≡ neg(π′1π
′
2) (mod 2), and the element n̄ contributes an even number

to ℓD(π) and 1 to neg(π′). It follows that

ℓD(π) ≡ neg(π′) + 1 (mod 2).
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This concludes that

(−1)ℓD(π) =

{
(−1)neg(π

′), if n is even or n is odd and πn = n;

−(−1)neg(π
′), if n is odd and πn = n̄.

Hence, the result follows by the same computations shown at the end of the proof of
Theorem 5.2. �

6. Concluding Remarks

In this paper we proposed some new signed Euler-Mahonian and signed Eulerian identities
for Bn, Dn and Gr,n = G(r, 1, n). For Bn and Dn, when n is even we derived signed
Euler-Mahonian identities on restricted (even-)signed permutations, generalizing Wachs and

Biagioli’s results (4) and (6). When n is odd we also obtained signed Eulerian identities on
(even-)signed permutations, which generalize Désarménien and Foata’s result (3). Except
for the odd n cases, we further extend above results to Gr,n, where the ‘sign’ is taken to

be any one-dimensional character of the form χ1,b, for 0 ≤ b ≤ r − 1. The missing piece
for odd n seems elusive. Moreover, in the last section we derived some neat closed forms
for the sign-balance polynomials on Bn and Dn, where the statistics are taken to be the

Coxeter-type descent numbers and major indices.
Note that many identities of this work fit in the framework called the ‘folding phenome-

non’ [15], in which one has an identity of the form
∑

π∈X2n or X2n+1

(−1)stat1(π)qstat2(π) = f(q)
∑

π∈Xn

q2·stat2(π),

where Xn is a family of combinatorial objects of size n with statistics stat1 and stat2, and

f(q) is a rational function. Note that in this viewpoint Theorem 3.3 is surprising since the
statistic of the right hand side changes after the folding. In the case of permutations there
have been several instances of the folding phenomenon when Xn ⊂ Sn are certain families

(say, involutions, 321-avoiding permutations, et al.), see [3, 15, 18] for examples. It is then
a natural question to investigate other types. We leave it to the interested readers.
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