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Abstract

In [Discrete Mathematics 306 (2005) 153-158], So proposed a conjecture saying
that integral circulant graphs with different connection sets have different spectra.
This conjecture is still open. We prove that this conjecture holds for integral circu-
lant graphs whose orders have prime factorization of 4 types.
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1 Introduction

The spectrum of a graph I', denoted by spec(I'), is the multiset of the eigenvalues of the
adjacency matrix of I'. Graphs are called isospectral or cospectral if they have the same
spectrum. An integral graph is a graph whose spectrum contains integers only. Let G be
a group, and let S be a symmetric subset (that is, Vs € S, s7! € S) of G without the
identity. The Cayley graph Cay(G,S) is defined to be the graph with vertex set G and
edges drawn from g € G to h € G whenever hg=! € S. The set S is called the connection
set of Cay(G, S). In particular, if G is a cyclic group, then Cay(G, S) is called a circulant
graph. We denote the ring of integers modulo n by Z,. In this work, the spectrum of
Cay(Zy, S) is expressed in the following way:

o %% Vo ... Ujg
spoc(Cay(Zo, ) = (4 72 1)
where for every j € {1,2,...,J}, v; denotes distinct eigenvalues and m; denotes the

multiplicity of v;. Isomorphic circulant graphs do not necessarily have a common con-
nection set. For example, Cay(Z;,{1,6}) and Cay(Zr,{2,5}) are both circuits of length
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7, but they have different connection sets. Since isomorphic graphs are isospectral, one
may derive that isospectral circulant graphs do not necessarily share a connection set.
However, this does not seem to be the case for integral circulant graphs. After computing
the spectra of circulant graphs on less than 100 vertices with all possible connection sets,
So in [16] proposed the following conjecture.

Conjecture 1. (See [16, Conjecture 7.3]) Let Cay(Z,,S1) and Cay(Z,, S2) be two inte-
gral circulant graphs. If S; # Ss, then spec(Cay(Z,, S1)) # spec(Cay(Z,, S2)), hence
Cay(Zy, S1) and Cay(Z,,, S2) are not isomorphic.

With the above notation, Klin and Kovécs in [7] pointed out that if S; # S, then
Cay(Zy,S1) and Cay(Z,,S2) are indeed not isomorphic, which follows directly from a
conjecture of Toida [I7]. However, the first part of So’s conjecture, that is, the implication

S1 # Sy = spec(Cay(Z,, S1)) = spec(Cay(Zy,, Ss)) is still open.

So’s conjecture is among studies on isospectrality of graphs and graphs determined by
their spectra, which have been extensively studied [IL3-5,8,9,13[18,19]. For more results,
we refer the readers to the survey [10, Section 4]. For a better description of existing
results on integral circulant graphs, we introduce 3 notations and a lemma. Let n > 1 be
an integer. Set

n] ={1,2,...,n}.

For convenience, we ignore the distinction between Z, and [n]. Let d be a divisor of n.
Set

Gn(d) ={j € [n] : ged(j,n) = d},

where ged(j, n) denotes the greatest common divisor of j and n. Besides, for any subset
S of [n] which is a union of G, (d)’s for some divisors d of n, we denote by Dg, the set of
divisors of n such that

Note that Dg depends not only on S but on n as well.

Lemma 1.1. (See [16, Theorem 7.1]) A circulant graph Cay(Z,,S) is integral if and only
if S is a union of G,(d)’s for some divisors d of n.

Let Cay(Z,, S) be an integral circulant graph. By Lemma [[LT| we have Cay(Z,, S) =
Cay(Zn, Ugeps Gn(d)), which is determined by n and Ds. Hence, we denote an integral
circulant graph Cay(Z,,S) by ICG(n,Dg) for convenience. There hasn’t been much
progress in research on So’s conjecture so far. We collected previous results on So’s
conjecture for integral circulant graphs in the following theorem.

Theorem 1.2. Let n > 1 be an integer. Let ICG(n,Dg,) and ICG(n,Dg,) be two integral
circulant graphs. spec(ICG(n,Dg,)) = spec(ICG(n, Ds,)) implies Sy = Sy if one of the
following conditions is satisfied.

(a) n = p* orn = pq with primes 2 <p < q and k > 1. [16]



(b) n = pg* orn = p*q with primes 2 <p < q and k > 1. [3]
(c) n is square-free and both Dg, and Ds, contain exactly 2 prime factors of n. [6]

(d) n = pqr with primes p < q <r. [12]

In this work, we continue to study on So’s conjecture and verify 4 cases where isospec-
trality implies sharing a connection set for integral circulant graphs. Here is our main
theorem.

Theorem 1.3. Let n > 1 be an integer. Let ICG(n,Dg,) and ICG(n,Dg,) be two integral
circulant graphs. spec(ICG(n,Dg,)) = spec(ICG(n, Ds,)) implies Sy = Sy if one of the
following conditions is satisfied.

a) n > 1 is an odd integer with prime factorisation n = p?*pl% - .- p’s where s > 2 and
= g p P1 Ps Ps =
AARS [8 1]7 Hg_—lp;]i < Dr41-

(b) n > 1 is an even integer with prime factorisation n = 2pi*py? - - -pls where s > 2
and Vr € [s — 1, TIL_, pi" < prys-

(c) n = p3q with primes 2 < p < q.

(d) n = p*¢* with primes 2 < p < q.

Our paper is organized as follows. In Section 2 we introduce notations, definitions
and useful results which will play important roles throughout the work. In Section 3], we
give a proof of Theorem [L.3, which consists of Theorems and [B.7] in Subsection B.1I

and Theorems B.19, 320, B.22 324 B.27 and B.28 in Subsection In Section M, we
conclude our work.

2 Preliminaries

In this section, we introduce notations, definitions and useful results which will play
important roles throughout the work.

e Let n > 1 be an integer. Let d be a divisor of n. We have
Gn(d) =d- Gypa(l),
where d - G,,/q(1) = {dj : j € Gpya(1)}. What follows is that
Cold)] = 1d - GujalD)] = |Goya(V)] = 6(n/d),
where ¢ is the Fuler totient function given by

ETT_,(1— z%i)’ if k= pf'py>---ps > 2 with primes p; < ps < --- < ps,
o(k) = . 1
) 1 - Y



for any integer k > 1. Note that Yk > 3, 2|¢(k). It is known (See [14, Page 244,
Theorem 7.7]) that

n= Y od= ) ¢n/d), (2.1)

dED[n] dED[n]

where

Dy, = {d € [n] : d|n}
according to our previous definition of Dg in Section [l

e Let n > 1 be an integer. Let S be a subset of [n] such that S is a union of G, (d)’s
for some divisors d of n. We have

S1=1 |J Gul@dl =) [Ga(@)l = ) o(n/d). (2.2)

deDg deDg deDg

e Let n > 1 be an integer. Set
{0,[n]} ={0,1,2,...,n}.

e Let Y be a subset of X. Set xy : X — {0, 1}, such that

() 1, ifzey,
€Tr) =
Y 0, ifz¢Y.

e Let n > 1 be an integer. Set
W, = 627I'L/117
where ¢+ = 4/—1 is the imaginary unit.

Lemma 2.1. (See [2, Corollary 3.2]) The eigenvalues of Cay(Zy, S) are given by \p(S) for
each k € [n], where \p(S) are defined as

Ak(S) = Z Xs(g)ws? = Zwﬁg-

g€n] ges
By Lemma 2.1 the following lemma is obvious.
Lemma 2.2. Let Cay(Z,, S1) and Cay(Z,, Ss) be isospectral circulant graphs. Then
An(S1) = An(52).

e Let Cay(Z,,S) be a circulant graph. Let o be an eigenvalue of Cay(Z,,S). Set
Ls(a) ={k € [n]: \(S) = a}.

Given

spec(Caymn,S)):( nowmo )

my Mo ... MMy
by Lemma 2.1, we have Vj € [J],
my = 11k € [n] : W(S) = 3} = L5 (). (23)
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Lemma 2.3. Let Cay(Z,,S1) and Cay(Z,,Ss) be isospectral circulant graphs sharing the

1%} Vo ... Vg
my Mo ... My '

Let R be a subset of [n]| such that Vk € R, \i(S1) = \e(S2). Then Vj € [J],

spectrum

|Ls,(v5) \ B| = [Ls,(v;) \ RI.

Proof. Vj € [J],Vk € Ls,(v;) N R, v; = \e(S1) = Ap(S2) and so k € Lg,(v;) N R. Thus,
Ls,(v;)NR C Lg,(v;) N R. Similarly, Lg, (v;) N R D Lg,(v;) N R and so

le(l/j) NR= ,CSQ(VJ‘) NR. (24)
Then
|Ls,(v5) \ R| = |Ls, ()] — |Ls,(v;) N R
=m; — |Ls,(v;) N R (by .3)
= |Ls,(v)] = |Ls, (v5) N R (by 2.3))
= |Ls,(¥)] = |Ls,(v5) N R (by 2.4))
= |Ls,(v) \ R|.
This completes the proof. O

e Let x > 1 and y > 1 be integers. The Ramanujan sum R,(y) is defined as

Given an integral circulant graph ICG(n, Dg), it is known (See [16, Theorem 5.1])
that Vk € [n],

Me(8) =D Ruyalk). (2.5)

d€Dg

The following formula is given by Ramanujan in [15],

() x
Raly) = TRV ); (2.6)
¢<gcd(y7$)) ged(y, )
where p is the Mébius function given by
1, if k£ is square-free and has an even number of prime factors,
(k) =< —1, if k is square-free and has an odd number of prime factors,
0, if k has a squared prime factor,

for any integer k£ > 1.



Lemma 2.4. Let ICG(n,Dg) be an integral circulant graph. Set ki, ke € [n]. If ky, ko
satisfy ged(ky,n) = ged(ke, n), then g, (S) = Mg, (5).

Proof. For every divisor d of n, we have

ged(ky,n/d) = ged(ke,n/d). (2.7)
Then

_—  6/d) n/d .

Ak, (S) —dez’;s ¢(ﬁ%)”(gcd(kl,n/d)) (by @.3) and (2.6))
__on/a) nfd )

dez,;s qs(W%)u(gcd(k‘z,n/d)) (by 1))

= M\, (9). (by @2.I) and [2.G))

This completes the proof. a

Corollary 2.5. Let ICG(n,Dg) be an integral circulant graph. Let o be an eigenvalue of
ICG(n,Dg). Then Ls(a) is a union of Gyn(d)’s for some divisors d of n.

Proof. We give our proof by contradiction. Assume that Lg(«) is not a union of G, (d)’s
for some divisors d of n. Then there exists dy € Dy, such that Lg(a) N Gp(do) # 0
and G,(do) \ Ls(a) # 0. Set ky € Ls(a) N Gy(do) and ky € G,(dy) \ Ls(«). Since
ki, ke € Gp(dp), we have ged(ki,n) = dy = ged(ka,n). Hence by Lemma [2.4]

Ay (S) = Ay (59). (2.8)
Since k1 € Lg(«) and ke ¢ Lg(a), we have
)‘k1(5) =a# )‘k2(S)’

which contradicts (2.8). O

Lemma 2.6. Let n > 1 be an integer such that 2|n. Let ICG(n,Dgs,) and ICG(n, Dg,) be
1sospectral integral circulant graphs. Then

As (S1) = A ().
Proof. Set
my Mo ... My

spec(ICG(n, Ds,)) = spec(ICG(n, Ds,)) = < vy Wy )

Set Vig = An (Sl) Then

[Lsi(v)\{n} = > é(n/d) (by @.2))

d€Drg, (ujo)\{"}
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= 0(2) + > ¢(n/d)

dEDLSI(ujO)\{%,n}

=1 (mod 2) (because Yk > 3, 2|¢(k))
and Vj € [J]\ {jo},
Ls,w)\{n} = > o(n/d) (by (22))
d€Drg (v))\n}
= Z o(n/d) (because An(S1) = vj, # v5)
d€Drg v \{3m}
=0 (mod 2). (because Yk > 3, 2|¢(k))

Set vj; = An(Ss). Similarly,
L6,(1) \ {0} =1 (1mod 2).
By Lemma 2.2, \,,(S1) = A\, (S2). By Lemma 23] V5 € [J],
1Ls, (Vi) \{n}| = [Ls, (v;) \ {n}].
In particular,
[Ls1 (i) \ {n}] = |Ls, () \ {n}| = 1 (mod 2).
Therefore, jo = ji and so Az (S1) = vj, = vj; = An(Sy). O

For convenience, we denote the set of odd integers by O and the set of even integers
by &.

Corollary 2.7. Let n > 1 be an integer such that 2|n. Let ICG(n, Ds,) and ICG(n, Dsg,)
be isospectral integral circulant graphs. Then we have

(8) Ym0 X0s, (6(10/d) = Yo, 0 Xy, (A)6(n/d); and
(b) e, e 0o, (DO/d) = S e sy (d)D(n/d).
Proof. By (7)) and (Z0),
M) = 3 onfd) = Y o (@om/d) + Y X, (@)é(n/d)

dEDsl dED[n]ﬁO dE'D[n]ﬁg

and

M(S2) = Y dn/d)= Y xog,(d)dn/d)+ Y xps,(d)é(n/d).

deDg, deD,NO de€D[y né

By Lemma 2.2, \,,(S1) = A\, (S2) and so
Y xos, ([don/d)+ Y xpg, (d)(n/d)

de'D[n]ﬁO dED[n]ﬂg (2 9)
= Y xpg,([dgn/d)+ Y xog,(d)é(n/d).
deD,NO de€D,NE



An(S1) = — Z Xps, (A)p(n/d) + Z Xps, (d)p(n/d)

dED[n] no dE'D[n] neé

and

(S = 3 xos, (@on/d) + Y xo, (d)6(n/d).

dED[n] no dED[n] né

By Lemma 2.6 An(S1) = Az (S2) and so

— Y xpe, (o(n/d)+ > xpg (d)p(n/d)

deD,NO dED[n]ﬂg
(2.10)
== > xpg,(dom/d)+ > xpg, (d)e(n/d).
de'D[n]ﬁO dE'D[n]ﬁg
By (29) and (2I0), we have (a) and (b). This completes the proof. O

Here we borrow a concept called “super sequence” from [12]. Let ¢ > 0 be a real
number. A sequence {:Ej}jzo of positive real numbers is called a c-super sequence if

vt e [J], > CZ;;B x;. In particular, a super sequence in [12] is a 1-super sequence.

Lemma 2.8. Let {z;}]_, be a c-super sequence. Let {a;}]_, and {b;}]_, be two finite
sequences of nonnegative integers such that

(1) V5 €{0,[J]}, 0 < a;,b; <c; and
(2) S gam =Y b,
then V5 € {0,[J]}, a; = ;.

Proof. We give our proof by contradiction. Assume that Jjo € {0, [J]}, s.t. aj, # bjp-
Then R = {j € {0,[J]} : a; # b;} # 0. Let M be the largest in R. Without loss of

generality, set ay; > bys. Since both aj; and by, are integers, we have
ay > 1+ by (2.11)

Then

J M J
E aja:j = E CL]'ZL’]' —+ E aja:j
Jj=0 Jj=0

j=M+1
M J
= Z a;r; + Z bjz; (M being the largest in R)
=0 j=M+1

J
Z ay Ty + E bjl‘j
Jj=M+1



J
> (14 by)xps + Z bjx; (by @2.110)
j=M+1
J

=xr + by + Z bjz;
j=M+1

M-1 J
> c Z xj + byry + Z bz, ({;}/_y being a c-super sequence)
=0 j=M+1
M—1 J
= cx; + by + Z bjz;
=0 j=M+1
M—1 J
> Z bjz; + by + Z bjz; (by condition (1))
=0

j j=M+1

which contradicts condition (2). O

3 Proof of Theorem 1.3

In this section, we give a proof of Theorem [L.3]

3.1 (a) and (b) of Theorem [1.3|

In this subsection, we give proofs of (a) and (b) of Theorem [L.3]

3.1.1 Useful notations and lemmas

The notations and lemmas introduced here are important in the proofs of (a) and (b) of
Theorem [L.3]

e Denote the set of positive real numbers by R,. Let s > 2 be an integer. For every
i € [s], let J; > 1 be an integer. Through the work, when a mapping

fAg) riels],je{0,[Ji}} — Ry
is given, we tacitly set for every r € [s],
T = {0, [1]} x {0, [B]} x -+ x {0, [ L]},

where X denotes the Cartesian product. For convenience, we denote the image of
(i,7) under f by f; ;. Moreover, we tacitly set for every r € [s],

PO =) H i (3.1)

regr) i=1
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where 7; denotes the i-th entry of 7. In addition, we define P© = 1.
Lemma 3.1. Let s > 2 be an integer. For every i € [s], let J; > 1 be an integer. Let
foAGg) ciels],j €{0,[L]}} = Ry

be a mapping such that Vr € [s], {fr,j}j;o is a PU~Y-super sequence. Let Ay and Ay be
two subsets of T such that

Z XA1<T>Hfi,Ti = Z XA2<T>Hfi7T¢' (32>

reJ () TeJ )

Then Ay = A,.
Proof. Set a mapping
n:1=(1,72...,7Ts) € T (11,72, -, Ts_1) € g,
For every j € {0, [Jy]}, set
TG ={re IV =3}

and

A(G) = AN TV), As(f) = AN TV().
In addition, setting

s—1
aj = Z XAl(j)(T) Hfifm
1=1

TET ()
we have
s—1
a= > xap®]]fin
T€TE)(5) i=1
s—1
= Z Xn(4: ) (0) H fion (n being a bijection from J)(5) to J¢~1)
eeg (=1 i=1
s—1
< > Ilfie=P". (by @D)
seg G- i=1

Similarly, for every j € {0, [Ji]}, set bj = > _c ;) Xa,(5)(7) [1:Z) firs < PG, These two
inequalities about a; and b; correspond to the condition (1) of Lemma 2.8 Moreover,

s Js s—1
Z XA (7_) H fi,n = Z Z XA1(j)(T)(H fi,n)f&j
=1 i=1

reJ () reJ ) j=0
Js s—1
= Z Z XAl(j)(T)(H fir) fsi
i=0 re () =1

10



Js
=D tifes
=0
Similarly,

s Js
D xa() [ fin =D bifes
i=1 j=0

reJ )

By B.2),
Js Js
Zajfs,j = Z bjfs.js
j=0 j=0

which is the condition (2) of Lemma 2.8 Recall the given condition that { f&j}}lszo is a
PG~ super sequence. By Lemma 28, Vj € {0,[J.]}, a; = b;, which means that

s—1 s—1
Z XAl(j)(T) H fi,Ti = Z XA2(j)(T) H fi,n--
i=1 =1

TeJ () NS
Note that V5 € {0,[JJ]}, 1 is a bijection from J)(5) to 1. We have Vj € {0, [J]},
s—1 s—1
> xwaiy@ [[ i = D xuawiin(@) [ fior- (3.3)
oeJ(s—1) =1 ceJ(s=1) i=1

In the following, we give our proof by induction on s. When s = 2, (3.3 means that
Vj € {07 [‘]2]}7

J1 J1
> X E) fie = Xaasy (k) fr.
k=0 k=0
which corresponds to the condition (2) of Lemma 28 Note that Vk € {0, [/1]},

0 < X ) (k) X(aa(iyy (k) < 1=PO,

which corresponds to the condition (1) of Lemma 2.8 Recall the given condition that
{fl,j};h:o is a P-super sequence. By Lemma 2.8, we have Vj € {0, [J5]}, V& € {0, [/1]},
Xn(A1()) (K) = Xn(az(5) (k) and so Vj € {0, [L]}, A1(j) = A2(j). Then

Ja Jo
Ar=JAi(G) = [ A) = As.
j=0 j=0

This completes the proof of the basis where s = 2. Now assume that the assertion is
true for (s — 1). For each j € {0, [J]}, by (B3), using the induction hypothesis, we have

n(A1(j)) = n(A2(j)) and so A;(j) = Az(j). Then
7. 7.
A= U A(j) = UA2(j) = As.

This completes the proof. a

11



Lemma 3.2. Let n > 1 be an odd integer with prime factorisation n = p‘1]1p‘2]2 -+ pls where
s > 2. Set a mapping

fi(i.9) €{6.5) i €lsl. g €{0. [} > 0(p]) € Ry
Then
P =n.
Proof. Set a bijection
G ppst - pht € Dy (ks ko, oo k) € T,

We have Vd € Dy,

S

o(d) = ] o™, (3.4)

=1

where 1(d); denotes the i-th entry of ¢(d). Then

PO =3 1f- (by D)
TEJ(S) =1
= > It
reJ () i=1
= Z H gb(p;p(d)i) (1 being a bijection)
deDy,) i=1
= ) o(d) (by @B.4))
dG'D[n]
=n. (by @1))
This completes the proof. O

Let p be a prime and let t > 1 be an integer. We have

—

-1 00 = - DI+ Y - = - DA+ 1) =60 (35)

J

Il
o

Lemma 3.3. Let n > 1 be an odd integer with prime factorisation n = p‘lhpg2 - pls where
s>2andVr € [s — 1],

I1»/ <P (3.6)
i=1
Set a mapping

oG, 5) €{(i,4) i € [s],7 € {0,[J]}} = o(p]) € Ry

Then ¥r € [s], {fr,j}j;o is a PV -super sequence.

12



Proof. We first give the proof of the case where r = 1. For any ¢ € [J;], by ([B.3]), we
have

t—1 t—1 t—1 t—1
O fi=) fuy= ) < (i —1) Y o) = fig-
=0 j=0 =0 j=0

We now give the proof of the case where 2 < r < s. For any 2 < r < s and any t € [J,],

we have
t—1 r—1 -1 ‘
PO f =TT Do) (by Lemma B2)
=0 i=1 =0
t—1
(pr - 1) Z ¢(p7)
=0
(by (B.6) and the assumption that all primes p; are odd)
= ¢(p,) (by (B.5))
= fr,t-
This completes the proof. a

Lemma 3.4. Let n > 1 be an odd integer with prime factorisation n = p*p3? - - - pls where
s >2and Vr € [s— 1], [I\_, /" < pr41. Let Ds, and Ds, be two subsets of Dy, such that

Z XDS n/d Z XDS n/d) (37)

deDy, deDy,
Then Dg, = Dg,.
Proof. Set a mapping
f(.5) € {(i.5) i € [s],4 € {0,[Ji]}} = 6(p]) € R
Set a bijection
YipipEpl € Dy = (=l Jo— Loy Ty — 1) € T,
We have Vd € Dy,
n/d= pr(d)' (3.8)

Then

Z XDsl o(n/d) = Z XDSl )(b(H p;p(d)i) (by the above equation)

deDy, deDy,

Z Xo(Ds, ) ( (d))gb(H p;p(d)i) (1 being a bijection)
i—1

deDy,

13



- Z XwDSI H(b w(d

deDy,
(¢ bemg a multplicative arithmetic function)

= Z Xw(Dsl)(T) H o(pi’), (1 being a bijection)
=1

TeJg )

where 1(Dg, ) denotes the image of Dg, under . Similarly,

> Xps, (don/d) = > xuws, (1) [ 6(07).
i=1

d€Dpy) reg(®
By B.12),
Z Xw(Dsl)(T) H o(pi') = Z Xw(Dsg)(T) H o(pl).
reJg ) i=1 reg(s) i=1
By Lemmas B.3 and Bl ¥(Ds,) = ¥(Ds,) and so Dg, = Ds,. -
Lemma 3.5. Let n > 1 be an even mteger with prime factorisation n = 2p1 p2 ol

where s > 2 and ¥r € [s — 1], [['_,p* < pry1. Let Ds, and Ds, be two subsels of Dy,
such that

1 > XDsl(d)Qb(n/d): > X’DSQ(d)Qb(n/d),' and

€Dy, NO €Dy, NO
(2) 2 o, (d)o(n/d) = >5 xps,(d)¢(n/d).
deDyp,NE deDy,NE

Then Dgl = DSQ'
Proof. We first prove that Ds, N O = Dg, N O. We have
Y xog, (do(n/d) =Y o (d)$(2n/2d)

de'D[n]ﬁO dED[n]ﬁO

= > oy, (Do(2)6(n/2d)

deD,)NO
(¢ being a multiplicative arithmetic function)

= > xpy, (d)d(n/2d).

dED[n] no

Similarly, we have

Y xog,([do(n/d) = Y xos, (d)o(n/2d).

deD,NO deD,NO

By condition (1),

Y xos (é(n/2d) =Y xog, (d)g(n/2d).

d€D[,,NO deD,)NO
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Note that Dy, VO = {d € [n/2] : d|(n/2)}. By Lemma 3.4, Dg, N O = Ds, N O.
We now prove that Dg, N E = Dg, N E. We have

Y xog, (é(n/d) = Y xog (d)d(n/d)

d€D,NE d€2-(D[n]ﬂO)
=Y vy, (20)6(n/24)
de'D[n]ﬁO
= S o ey (d)6(n/24).
de'D[n]ﬁO

Similarly, we have

Y xog,([don/d) = DY Xi(pg,ne(d)e(n/2d).

dE'D[n] né dE'D[n] no

By condition (2),
Z Xl (Ds ﬁg n/2d Z X (Ds ﬁg ) (n/zd)

dED[ ]ﬁ@ dED[ ]ﬁ@

By Lemma B4, we have 3 - (Dg, N &) =3 - (Dg,NE) and so Dg, NE = Dy, NE. O

3.1.2 Proofs of (a) and (b) of Theorem [I.3]

Here we give proofs of (a) and (b) of Theorem [L.3

Theorem 3.6. (Theorem (a)) Let n > 1 be an odd integer with prime factorisation
n=p'py®---pl where s > 2 and ¥r € [s — 1], [[\—, p)" < pry1. Let Ds, and Ds, be two
subsets of Dy \ {n}. Then spec(ICG(n, Dgs,)) = spec(ICG(n, Dg,)) implies Ds, = Dsg,.

Proof. By Lemma22 \,(S51) = A (S ). By (2.5) and (@)

Z XDS n/d Z XDSQ n/d)

deDy, deDy,

By Lemma 3.4 Dg, = DSQ. O

Theorem 3.7. (Theorem (b)) Let n > 1 be an integer with prime factorisation n =
2p{'py? - pls where s > 2 and Vr € [s — 1], [['_; p]" < pr1. Let Ds, and Ds, be two
subsets of Dy \ {n}. Then spec(ICG(n, Dg,)) = spec(ICG(n, Ds,)) implies Dg, = Dsg,.

Proof. By Corollary 2.7, we have
Y. xog, (on/d) = Y xpg,(d)é(n/d)

€Dy, NO €Dy, NO
and
Y xos, ([@dé(n/d)= Y xpg,(d)g(n/d).
deDy,NE deDy,NE
By Lemma B.5 Dg, = Dsg,. O
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3.2 (c) and (d) of Theorem 1.3

In this subsection, we give proofs of (c¢) and (d) of Theorem [L3l

3.2.1 Useful notations and lemmas

The notations and lemmas introduced here are important in the proofs of (¢) and (d) of
Theorem [L.3]

Lemma 3.8. Let n > 1 be an integer. Let Dg, and Dg, be two subsets of Dy, \ {n}.
If spec(ICG(n, Dg,)) = spec(ICG(n, Ds,)), then n/2 ¢ Ds, ADs,, where A denotes the

symmetric difference.

Proof. We give our proof by contradiction. Assume that n/2 € Dg, ADg,, without loss
of generality, we set n/2 € Dg, \ Ds,. Since Vd € Dp,) \ {n,n/2}, 2|¢(n/d), we have

> dnfd) = ¢(2) + > ¢(n/d) =1 (mod 2)
deDg, \Ds, d€Ds, \Ds, \{n/2}

and

Z ¢(n/d) =0 (mod 2).

dEDS2 \DS1

By Lemma B2 Au(S1) = Au(S2). By @) and @), oep, ¢(1/d) = Yaepy, 6(n/d)
and so EdeDsl \Ds, ¢(n/d) = ZdeD52\DS1 ¢(n/d), leading to

> emfdy= > é(n/d) (mod 2),
deDs, \Ds, d€Ds,\Ds,

which is a contradiction. O

Lemma 3.9. (See [11, Theorem 3.3.10]) Let n > 1 be an integer. Let Dg, and Dg, be two
subsets of Dy \ {n}. If spec(ICG(n,Ds,)) = spec(ICG(n, Dg,)), then for any odd prime
divisor p of n, n/p ¢ Dg, ADsg,.

Lemma 3.10. Let A be a finite nonempty set. Let f be a mapping f : A — {0} UR with
a nonempty subset B C A such that

d fla)> > fla). (3.9)

a€EB acA\B

Let Ay and Ay be two subsets of A such that Ay N Ay =0 and

> fla) =" fla) (3.10)
a€A1 acAsz
Then we have B € Ay and B € Ay. In particular, if B = {b} has only one element, then
b¢ Al UA,;.
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Proof. We give our proof by contradiction. Without loss of generality, assuming that
B C Ay, we have

A, C A\ B. (3.11)
Then
; fla) = ; f(a) (by (BI0))
| = ;If(a) + GAZ\Bf (a)

> ; f(a)
> GZA;B f(a) (by B9))
> ; f(a), (by BID)
which is a contradiction. 0

Lemma 3.11. Let A = {a1} be a set having only one element. Let f : A — R, be a
mapping. Let Ay and Ay be two subsets of A such that Ay N Ay = (0 and

S fa)= 3 fla). (3.12)

acAy acAs

Then Al U AQ = @

Proof. We give our proof by contradiction. Assume that A; U Ay # (). Then A; U Ay =
{a1}. Without loss of generality, suppose that A; = {a;}. Since A1 N Ay = 0, Ay = (.
Then ) e, f(a) = fla1) >0 =>4, f(a), contradicting ([5.12). O

Corollary 3.12. Let A = {a1,as} be a set having only two elements. Let f be a mapping
f:A—R,. Let Ay and Ay be two subsets of A such that A; N Ay = () and

Y fla)= " fla).

a€A a€As
Then either
(a) f(a1) = f(az) and [A1] = |[Ag| = 1; or
(b) A; U Ay = 0.
Proof. We first rule out the case where |A; U Ay| = 1 by contradiction. Assume that
|A1 U Ay] = 1. Taking A; U As, f, Ay, As, as A, f, Ay, Ay, in Lemma B.I1] we have

A; U Ay =0, contradicting |A; U Ay| = 1.
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Now, we have either A; U Ay = {ay, a2} or A;U Ay = (). Tt remains to prove that when
Ay U Ay = {ay, a2}, we have f(ay) = f(az) and |A;] = |As] = 1.

Suppose A1 U Ay = {ay,as}. We first prove that f(a;) = f(ag). We give our proof
by contradiction. Assume that f(a;) # f(ag). Without loss of generality, suppose that
f(a1) > f(az). Taking A, f, {a1}, A1, As, as A, f, B, A;, As, in Lemma 310, we have
a; ¢ Ay U Ay, which is a contradiction.

We now prove that |A;| = |Ay| = 1. We give our proof by contradiction. Without loss
of generality, assume that |A;| = 2. Then A; = {a1,a2} and A3 = 0. And so

Y fla) = flar) + flaz) > 0= f(a),

a€A; a€As

contradicting (3.10). 0

Lemma 3.13. Let n > 1 be an integer such that ¢p(n) > n/2. Let Dg, and Dg, be two
subsets of Dpyy \ {n}. If spec(ICG(n, Dg,)) = spec(ICG(n, Dg,)), then 1 ¢ Dg, ADg,.

Proof. Since ¢(n) > n/2, we have

on/) = n—om/)>n—1—6m/h= S én/d).

de (D \{n})\{1}

By Lomma B2 A,(S)) = Au(S2). By @3) and @8), Yyep, 6(n/d) = uep,, d(n/d)

and so
S e = Y o(n/d).
dEDSl \D52 dED52 \Dsl
Taking Dy, \ {n}, ¢(n/-), {1}, Ds, \ Ds,, Ds, \ Ds,, as A, f, B, A;, Ay, in Lemma [3.10,
we have 1 ¢ Dg, ADg,. O

Let n > 1 be an integer. Let Dg be a subset of D). Dy is defined as

Ds = Dy \ {n} \ Ds.

Lemma 3.14. Let n > 1 be an integer. Let Dg, and Dg, be two subsets of Dy \ {n}. If
spec(ICG(n, Ds,)) = spec(ICG(n, Ds,)), then spec(ICG(n, Ds,)) = spec(ICG(n, Ds,)).

Proof. Since both ICG(n,Dgs,) and ICG(n,Dg,) are regular, spec(ICG(n,Dg,)) and
spec(ICG(n, Dg,)) are determined by ICG(n, Dg,) and ICG(n, Dg,), respectively. O

Corollary 3.15. Let n > 1 be an integer. Set dy € Dy, \ {n}. Then (a) implies (b), where
(a) and (b) are the two following statements.

(a) For any subsets Dg,, Dg, C Dy \ {n} such that
(1) do € Dgl N DSQ,' and
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(2) spec(ICG(n,Dg,)) = spec(ICG(n, Ds,)),
we have Dg, = Dsg,.
(b) For any subsets Dg,, Dg, C Dpy \ {n} such that

(1) do ¢ Dg,ADs,; and

(2) spec(ICG(n, Ds,)) = spec(ICG(n, Ds,)),

we have Dg, = Dg, .
Proof. Since dy ¢ Dg, ADs,, we have either dy € Dg, N Dg, or dy € Dg, N Dg,. In the
former case, by condition (a), we have Dg, = Dg,. In the latter case, by Lemma [B.14]

spec(ICG(n, Dg,)) = spec(ICG(n, Ds,)). By condition (a), we have Dg, = Dg, and so
Ds, = Ds,. 0

Lemma 3.16. Let n > 1 be an integer. Let ICG(n,Ds,) and ICG(n, Ds,) be isospectral
integral circulant graphs. Let D be a subset of Dy such that ¥d € Dg, Aa(S1) = Aa(S2).
Let Dy C Dy, \ Dg be a subset such that

(1) ddy € DT, s.t. Vd € DT, )\d(Sl) = )\d()(Sl);' and
(2) ZdeDT p(n/d) >n— EdeDR ¢(n/d) — ZdeDT p(n/d).

Then Ady € Dr, s.t. A (S2) = Agy(S1). In particular, if Dy = {do}, then Ag,(S1) =
Ay (52).

Proof. Set

my Mo ... My

SpeC(ICG(naDsl))Zspec(ICG(n,DSQ)):( noove v )

Note that Vd € Dg, A\g(S1) = A\g(S2). By Lemma R4l Vk € R, A\.(S1) = M\(S2). By
Lemma 23 Vj € [J],

L5, (v;) \ B = |Ls,(v5) \ B (3.13)
Set v, = Ag,(S1). We proceed our proof by contradiction. Assume that Vd € Dr,
Aa(S2) # Mgy (S1) = vj,. By Lemma 2.4 Vk € T', A\;(S2) # vj,. Then we have

1L, (vio) \ B = [Ls,(1j5) \ R\ T

= > ¢(n/d) (by 2.2))
d€Deg, (v;)\Pr\DT
< Y d(n/d)

dG'D[n] \Dr\Dr

=n— Y én/d)— Y ¢(n/d)

dEDR dEDT

19



< Z o(n/d). (by condition (2))

deDr

Note that Dy C Dy, \ D, that is, Dr N Dr = 0. By condition (1), Dy C Des,(v,) \ Dr-
Then

Yoo/ < Y d(nfd) = |Ls(v) \ Rl (by (22))

deDr d€Deg (v, )\Dr
Combining the above two inequalities, we have
1L, (vio) \ BRI < |Ls, () \ Bl

which contradicts (3.13). O
Corollary 3.17. Let n > 1 be an integer such that ¢(n) > n/2. Let ICG(n,Ds,) and
ICG(n, Dg,) be isospectral integral circulant graphs. Then A;(S1) = A1(S2).
Proof. By Lemma 2.2 \,(S1) = A\,(S2). Since ¢(n) > n/2, we have

¢(n/1) Zn—¢(n/1) >n—1=¢(n/l) =n—¢(n/n) — $(n/1).

Taking {n}, {1}, as Dg, Dy, in Lemma B.I6] we have \;(S7) = A\(S2). O

3.2.2 Proof of (c) of Theorem

Lemma 3.18. Set n = 233. Let Ds, and Dg, be two subsets of Dy, \ {n} such that
23 € Dg, N Dg,. Then spec(ICG(n, Ds,)) = spec(ICG(n, Ds,)) implies Dg, = Ds, .

Proof. By Lemmaf2Z2 A, (S1) = A(S2). By @) and @8), Xyep, 0(n/d) = Yaep,, (n/d)

and so

Y. o)=Y d(n/d) (3.14)

de'DSl \'D52 dG'D52 \DS1

By Lemmas and 3.9, 223,23 ¢ Dg, ADs, and so Dg,ADs, C {1,3,2,2-3,2%2}. By (a)
of Corollary [2.7] ZdeDslﬂ{lﬁ} d(n/d) = Zde”DsQﬂ{Lfﬂ} ¢(n/d) and so

S = Y b/,

de(Dsl \D52)0{1,3} dE('DSQ\Dsl)ﬂ{l,g}
Taking {1a 3}7 QZ)(TL/), (D5’1 \DS2) N {1a 3}7 (DSQ \DSI) n {173}a gb(”/)? as Aa fa Ala AZa
in Corollary B12, we have either ¢(n/1) = ¢(n/3), which is impossible, or (Dg, ADg,) N
{1,3} = (Ds, N{1,3})A(Ds, N {1,3}) = (). Therefore,
Ds,ADs, C {2,2-3,2%} (3.15)

To prove Dg, = Dg,, we rule out the following 3 cases.
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e Case 1: |Dg,ADg,| =3

Then Dg, ADs, = {2,2-3,2%}. Note that ¢(n/2) > ¢(n/(2-3)) = ¢(n/2?) and recall
(B.I4). Taking {2,2- 3,22}, ¢(n/-), {2,2- 3}, Ds, \ Ds,, Ds, \ Ds,, as A, f, B, Ay,
Ay, in Lemma B.10, we have

{2, 2 3} SZ Dsl \D52 and {2, 2. 3} 7,@ DS2 \DSI. (316)

Taking {2,2 - 3,22}, ¢(n/), {2,2%}, Ds, \ Ds,, Ds, \ Ds,, as A, f, B, A;, Ay, in
Lemma [3.10, we have

{2,2°} ¢ Ds, \ Ds, and {2,2°} € Dg, \ Ds,. (3.17)

With out loss of generality, we have

— Subcase 1.1: Dg, \ Ds, = {2,2-3,2?} and Dg, \ Ds, = 0
This contradicts (3.16) and (3.17).
— Subcase 1.2: Dg, \ Dg, = {2,2- 3} and Dg, \ Dg, = {27}
This contradicts (3.16]).
— Subcase 1.3: Dg, \ Ds, = {2,2%} and Ds, \ Ds, = {2 - 3}
This contradicts (3.17).
— Subcase 1.4: Dg, \ Ds, = {2} and Dg, \ Ds, = {2 3,2?}
Recall 2° € Dg, N Dgs,. By Table [l spec(ICG(n, Ds,)) # spec(ICG(n, Dg,)),
which is a contradiction.

Table 1: n = 233, Dgl \D52 = {2}, D52 \Dgl = {2 . 3,22} and 23 € Dsl N D52

Ds, N Dsg, spec(ICG(n, Ds,)) spec(ICG(n, Ds,))
23 6 2 1 -1 -2 -3 6 2 0 —4
2%} 2 4 4 8 2 4 2 2 16 4
2 3 7T 2 1 -1 -2 7 3 1 -1 -3
127 3,27} ( 2 4 4 2 12 2 2 4 12 4
3 10 2 1 -1 -2 -7 10 4 2 0 —4
3,27} ( 1 5 6 8 2 2 ) ( 1 2 3 12 6 )
2 3 11 3 2 1 -1 -2 —6 11 5 3 -1 -3
13,27 3,27} ( 1 1 6 4 2 8 2 1 2 3 12 6
3 14 2 1 -1 -2 -7 14 4 2 0 -2 —4
(1,27} ( 1 4 6 8 3 2 ) ( 1 2 2 12 1 6 )
2 3 15 2 1 -1 -2 —6 15 5 3 -1 -3
11,27 3,27} ( 1 6 4 3 8 2 1 2 2 13 6
3 18 2 1 -1 -2 -3 —6 18 2 0 —4 —6
{1,3,27} ( 1 4 4 8 2 4 1 ) ( 1 2 16 4 1 )
2 3 19 2 1 -1 -2 -5 19 3 1 -1 -3 -5
{1,8,27-3,27} ( 1 4 4 2 12 1 ) ( 1 2 4 12 4 1 )

e Case 2: |Dg,ADg,| =2

Then Dg, ADs, = {2,2- 3}, {2,2%} or {2 3,2?}. Set Ds,ADs, = {a1,as}. Taking
Ds,ADs,, ¢(n/-), Ds, \ Ds,, Ds, \ Ds,, as A, f, Ay, Ag, in Corollary B.12 we have
either ¢(n/a;) = ¢(n/ay) while |Dg, \ Ds,| = |Ds, \ Ds,| = 1, or Dg,ADg, = 0
leading to a contradiction. Note that ¢(n/2) # ¢(n/(2-3)), that ¢(n/2) # ¢(n/(2?)),
and that ¢(n/(2:3)) = ¢(n/2?). Without loss of generality, we have Dg, \Ds, = {2-3}
and Dg, \ Ds, = {2%}. Recall 22 € Dg, N Dg,. By Table B spec(ICG(n,Dg,)) #
spec(ICG(n, Ds,)), which is a contradiction.
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Table 2: n =233, Dg, \ Ds, = {2- 3}, Ds, \ Ds, = {2?} and 2% € Dg, N Dg,

Ds; N Ds, spec(ICG(n, D)) spec(ICG (1, D3,))
3 4 2 1 0 -1 -3 1 0 —2
27 (244284) (4128)
i (516 ) (i =)
{2,2%} (2 TS *24) (g o ;4>
(20 (245 & ) I D
5.2 (P 5305 & &) P25 4 o)
(.20 (031 a0) 331 % 7)
8,2,2% (Y 1335 5 %) (210 3)
ez V(Y 3 e i e 2 2 a ) (P57 w o)
2 (P 2i 3 & ) [(Fesn &3 F)
(2% 5,2 (Y 56 1) (Y55 % 3 %)
NG ED) (7 2 2
ez | (V5 5 8 W S ) (V5 3 )
I O A I D) Y in s 1)
(o o) iieow 1) D)
f1..2,2) (T 7 % &) (T % &)
o222 (i) (Lo »)

e Case 3: |Dg,ADg,| =1
Recall (814). Taking Ds,ADg,, ¢(n/-), Ds, \ Ds,, Ds, \ Ds,, as A, f, A, Ay, in
Lemma B.1T], we have Dg, ADg, = (), which is a contradiction.

This completes the proof.

Theorem 3.19. Set n = 233. Let Dg, and Ds, be two subsets of Dy \ {n}. Then
spec(ICG(n, Dg,)) = spec(ICG(n, Dg,)) implies Dg, = Ds,.

Proof. By Lemma 3.9 2° ¢ Dg, ADg,. By Lemma B.I8 and Corollary B.I5] we obtain

the result. O

Theorem 3.20. Set n = 23q with prime ¢ > 3. Let Dg, and Dg, be two subsets of Dy \{n}.
Then spec(ICG(n, Dg,)) = spec(ICG(n, Ds,)) implies Dg, = Dg,.

Proof. By Lemmal22 )\, (S7) = \,(S2). By (2.3]) and (2.6)), EdGDsl o(n/d) = Zdeps2 ¢(n/d)
and so
S e/ = S on/d).

dEDSl \D52 dED52 \Dsl

Similar to ([B.I5) in the proof of Lemma [B.I8] replacing 3 by ¢, we have Dg, ADg, C
{2,2q,2%}. Therefore,

Y. xos (/)= Y xo,(d)d(n/d),

de{2,2%,2q} de{2,22,2q}
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which is the condition (2) of Lemma .8 Set (xg, 21, 72) = (4(n/2q), p(n/2%), p(n/2)),
which is a I-super sequence. Set (ag, a1, a2) = (Xps, (29), Xs, (2%), XDs, (2)), (bo, b1, b2) =
(XDs, (20), XDs, (2%), XD, (2)), Which clearly satisfies the condition (1) of Lemma 28 By
Lemma 28 (ag, a1, az) = (bo, by, b), that is, Dg, N {2,22, 2¢} = Dg, N {2,22,2¢}. Thus,
Ds, = Dg,. This completes the proof. a

Lemma 3.21. Set n = p*>q with primes 3 < p < q. Let Ds, and Ds, be two subsets of
Dy \ {n} such that 1 € Dg, NDg,. Then spec(ICG(n,Dg,)) = spec(ICG(n, Dg,)) implies
Dg, = Dsg,.

Proof. By Lemmaf2Z2 A, (S1) = Au(S2). By @) and @8), Xyep, 0(n/d) = Yep,, (n/d)

and so

Y. o)=Y ¢(n/d). (3.18)

dG'DSl \DS2 dG'DS2 \DS1

By Lemma[3.9] p?q, p* ¢ Dg, ADs, and so Ds, ADs, C {1,q, p, pq, p*}. Since 1 € Dg,NDg,
and so 1 ¢ Dg,ADs,, we have Dg, ADs, C {q,p,pq,p*}. Besides, by Corollary B.17,

A1(S1) = A(S2). Hence, by (2.H) and (2.0]), EdeDsl pu(n/d) = EdeDg2 p(n/d) and so

S oun/d) = Y uin/a)

dEDSl \D52 dG'DS2 \DS1

Note that p(n/p*) = 1 and that Vd € {q, p, pq}, u(n/d) = 0. Taking {q, p, pq,p*}, p(n/-),
{p*}, Ds, \ Ds,, Ds, \ Ds,, as A, f, B, A, Ay, in Lemma 310, we have p?> ¢ Dg, ADsg,
and so

Ds, ADs, C {q,p, pq}-

To prove Dg, = Dg,, we rule out the following 3 cases.

e Case 1: |Dg,ADg,| =3
Then Dg,ADs, = {q,p,pq}. Note that ¢(n/p) > ¢(n/q) > ¢(n/pq) and recall
(B.I]). Similar to Case 1 in the proof of Lemma B.I8 replacing 2,23, 22 by p, q, pq,

without loss of generality, we only need to rule out the subcase where Dg, \Dgs, = {p}
and Dg, \ Ds, = {¢,pq}. In this subcase, (B.18) implies that

q=p+2. (3.19)
Recalling that 1 € Dg, N Dg,, we have {1,p} C Dg, C {1, p, p?, p*, p?q}. Therefore,

Table 3: Some Ramanujan sums when n = p3q

d takes (values) 1 p p> P> q Pq p2q
n/d equals to p°q p’q Pq q P> P> jd
R, /4(p) equals to 0 p —(p—1) —1 0 —p p—1
Ry a(p?) equals to | p? —plp—1) | -1 | -1 | =p" [ plp—1) [ p—1
Ap(S1) = Rnj1(p) + Ruyp(p) + > Roja(p) (by @.3))

deDs, N{p?,p3,p2q}
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= Ron(P) + Rupp(@) + D, Ruul®®) (by Table )

deDs, N{p?,p3,p%q}

= M2 (Sh). (by (@2.3))

Since p > 3, we have p> + p*> —p — 1 > p® + p, which by (B.19), implies
S bfd)sa- S i) 3 énfd)

de{p,p?} de{l,p*q} de{p,p?}

Taking {1, p%q}, {p, p*}, as Dg, Dr, in Lemma B.16, we have either
)\p<Sl> = )\p<52) or )\p2<S1) = )\p2<S2).

Note that Dg, = (Dgl \DSQ) U (Dgl ﬂ'DSQ) and that Dg, = (DSQ \DSI) U (DSI QDSQ).

We have
M(S) = Rapp®@)+ D Rusalp) (by @.3))
deDg, NDsg,
> Rnjg(p) + Ronspy(p) + Z Rnsa(p) (by Table ()
deDgs,NDsg,
= An(52) (by @3))
and
M2(S1) = Rupp(®) + Y Rusalp?) (by @.5))
deDg, NDs,
< Rujg(0®) + Ruma@) + D Rualp®) (by Table B)
deDg, NDg,
= A2 (), (by @3))

which is a contradiction.

e Case 2: |Dg,ADg,| =2
Then Ds,ADs, = {p,pq}, {p,p?*}, or {pq, p*}. Recall (B.I8). Note that ¢(n/p) >

¢(n/Q) > ¢(n/pQ) Taking D51ADS2’ gb(n/)a DSI \DSQa DS2 \DSU as A, /s Ay, Ay,
in Corollary 312 we have Dg, ADg, = (), which is a contradiction.

e Case 3: |Dg,ADg,| =1
Recall (BI8)). Taking Ds,ADg,, ¢(n/:), Ds, \ Ds,, Ds, \ Ds,, as A, f, Aj, Ay, in
Lemma B.IT], we have Dg, ADg, = (), which is a contradiction.

This completes the proof. a

Theorem 3.22. Set n = p3q with primes 3 < p < q. Let Dg, and Ds, be two subsets of
Dy \ {n}. Then spec(ICG(n,Dg,)) = spec(ICG(n, Dg,)) implies Dg, = Dy, .

Proof. Since ¢(n)/n = % > 24 > 1 we have ¢(n) > n/2. By Lemma BI3,

1 ¢ Dg, ADg,. By Lemma B.22] and Corollary 315, we obtain the result. O
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3.2.3 Proof of (d) of Theorem .3

Lemma 3.23. Set n = 223%. Let Dy, and Dg, be two subsets of Dy, \ {n} such that
223 € Ds, N Dg,. Then spec(ICG(n, Dg,)) = spec(ICG(n, Ds,)) implies Dg, = Dg,.

Proof. By Lemma B8 and 3.9 2 - 32,223 ¢ Dg,ADg, and so Dg,ADs, C {1,3,3%,2,2-
3,22}, By Lemma 22, \,(S;) = A\, (S2). By (25) and (2.6), we have ZdEDsl d(n/d) =
ZdeD52 ¢(n/d) and so

Y. o)=Y o(n/d). (3.20)

de'DSl \DS2 dG'DS2 \DS1

We first use the method in proof of Lemma B.20 to prove that Ds, N {1,3,3?} =
Dg, N {1,3,3?}. By (a) of Corollary 2.7

Y. xog, ([@Do(n/d)= Y xpg,(d)o(n/d),

de{1,3,32} de{1,3,32}

which is the condition (2) of Lemma 28 Set (zg,z1,72) = (¢(n/3?),0(n/3),d(n/1)),
which is a 1-super sequence. Set (ag,a1,a2) = (xpg, (3%), Xps, (3), Xps, (1)) and corre-
spondingly, (bo, b1,b2) = (xps, (3%), XD, (3), Xps, (1)), which clearly satisfies the condition
(1) of Lemma 2.8 By Lemma 28, Dg, N {1,3,3%*} = Ds, N {1,3,3?}. So

Ds, ADs, C {2,2-3,2%}. (3.21)
To prove Dg, = Dg,, we rule out the following 3 cases.

e Case 1: |Dg,ADg,| =3
Then Ds, ADs, = {2,2-3,2?}. Note that ¢(n/2) = ¢(n/2%) > ¢(n/(2-3)) and recall
[B3.20). Taking {2,2- 3,22}, ¢(n/-), {2,2- 3}, Ds, \ Ds,, Ds, \ Ds,, as A, f, B, Ay,
As, in Lemma B.10, we have

{2,2-3} ¢ Dg, \ Dy, and {2,2-3} ¢ D, \ Ds,. (3.22)

Taking {Za 2- 3722}a ¢(n/)a {2 ' 3a 22}7 Dsl \D5’27 DSQ \DSN as Aa .fa Ba Ala A2a n
Lemma [3.10, we have

{2-3,2°} € D5, \ Ds, and {2-3,2°} € Dg, \ Dg,. (3.23)

Taking {2,2 - 3,22}, ¢(n/), {2,2%}, Ds, \ Ds,, Ds, \ Ds,, as A, f, B, A;, Ay, in
Lemma [B.10, we have

{2,2°} € D, \ Ds, and {2,2°} € Dg, \ Dsg,. (3.24)

B22), B3:23) and B.24) imply Ds, ADs, # {2,2 - 3,22}, which is a contradiction.
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Table 4: n = 2232 Dg, \ Ds, = {2}, Ds, \ Ds, = {2?} and 223 € Dg, N Dg,

Ds, N Dg, spec(ICG(n, Dg, ) spec(ICG(n, Dg,))
@ (5% = =) (3 )
{232,223} g i 106 IQQ _25 ) ( g ; 106 It? )
{23,223} 120 i 411 102 Izz ;6 ) 120 g 411 102 IZ2 743 )
{2.3,232,223} ( 121 ; §41 _27 ) ( 121 g 421 §41 _44 )
{32,223} P S ) ( NIRRT )
(.23, 2%3) (P T 418 % 7)) (v 535 4
.2 52%) (P e 8 3 T (¥ v 55w 2 4 &)
weses2 | (P9 0700 0 7)) (Y1256 8 % o )
79 (P73 e & ) (P57 348 @ & 7)
3,232,223} ( U S-S ) ( Sy e m o )
{3,2-3, 223} ( 114 1 g i 108 _23 _64 _26 ) ( 114 g g 108 _63 _64 )
peaza2an [ (P75 10 05 3 @ F7)(P i85 en 5 & 3)
{3,32, 223} ( w2 o 7 ) ( S0l % o )
{3,32%,2.32,223} (115 S i ? 102 Izz B ;6 (115 ; g ? 102 IGQ ;6
{3,32%,2-3,223} 116 ; Z11 Z 102 Izz ;5 ;6> (116 ; g 411 102 ;22 743 ;5>
{3,3%,2.3,2.3% 223} 117 g ? i §41 _24 _27 ( 117 2 g g41 _64 )
{1,223} ( EU T S ) ( TS w13 )
(1,232,223} ( S T ) ( IR T
PP (7710 % 5 7)) (P 250 % & »)
{1,2-3,2-32,223} ( 213 2 i gsl _24 _27 ) ( 213 2 g gsl _64 )
(1,52,2%3) (T 5560 o 5 5 ) (P38 6w & 27
{1,32,2.32,223} ( 213 é (2; ISQ _24 _35 ) ( 213 ; ;1 (23 522 _24 _15 )
{1,32%,2. 3,223} ( 214 2 i 108 _23 _74 _26 ) ( 214 g 2 108 _63 _74 )
{1,32,2.3,2.32 223} (215 S }7) (215 S 2 6 1 2 7 14)
o (T T ) (¥ 375 % & o)
{1,3,2- 32,223} ( e 2 T ) ( Tl s o )
(1,323,223 ( 216 2 108 —21 —64 —36 ) ( 216 g g 108 —21 —43 —64 —16 )
nezaszazy | (Y 3300 4 30 P ) [(Y334658 8 ¢ 7))
{1,3,32,223} ( o e e ) ( T 3 s 1 )
{1,3,3%,2.32,223} ( 217 i 106 Izz ;5 719 ) ( 217 ; 106 IGZ 719 )
{1,3,32,2.3,223} ( N T ) FUE A TS )
{1,3,32,2-3,2.32 223} ( 219 52; g41 _37 ) ( 219 g 421 ;11 _44 _17 )

e Case 2: |Dg,ADg,| =2

Then Dg, ADs, = {2,2- 3}, {2,2%} or {2-3,2?}. Set Ds,ADs, = {a1,as}. Taking
Ds,ADs,, ¢(n/-), Ds, \ Ds,, Ds, \ Ds,, as A, f, Ay, Ag, in Corollary B.12 we have
either ¢(n/a;) = ¢(n/ay) while |Ds, \ Ds,| = |Ds, \ Ds,| = 1, or Ds,ADs, = 0
leading to a contradiction. Note that ¢(n/2) # ¢(n/(2-3)), that ¢(n/2) = ¢(n/2?%),
and that ¢(n/(2-3)) # ¢(n/2%). Without loss of generality, we have Dg, \ Dg, = {2}
and Dg, \ Ds, = {2°}. Recall 223 € Dg, N Ds,. By Table M spec(ICG(n, Dgs,)) #
spec(ICG(n, Ds,)), which is a contradiction.

Case 3: |Ds, ADg,| =1
Recall (820). Taking Ds, ADg,, ¢(n/-), Ds, \ Ds,, Ds, \ Ds,, as A, f, A, Ay, in
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Lemma B.1T], we have Dg, ADg, = (), which is a contradiction.

This completes the proof. O

Theorem 3.24. Set n = 2232, Let Dg, and Ds, be two subsets of Dy \ {n}. Then
spec(ICG(n, Dg,)) = spec(ICG(n, Dg,)) implies Dg, = Ds,.

Proof. By Lemma 3.9 223 ¢ Dg, ADg,. By Lemma and Corollary B.15 we obtain
the result. O

Theorem 3.25. Set n = 22¢® with prime ¢ > 3. Let Dg, and Ds, be two subsets of
Dy \ {n}. Then spec(ICG(n, Ds,)) = spec(ICG(n, Ds,)) implies Dg, = Dy, .

Proof. In order to prove Dg, = Dg,, similar to the proof of Lemma B.23] replacing 3 by
q, we only need to rule out the case where Dg, \ Dg, = {2} and Dg, \ Dg, = {2%}. Set

SpeC(ICG(n, DSl)) = Sp@C(ICG(n’ DS2>) — ( g V2 v vy ) )

my Mo ... My

By simple calculation, Vd € {1,2,22 ¢,2q, 2%}, we have (¢ — 1)|¢(n/d). The following
part is similar to the proof of Lemma 2.6l Set v;, = A\;2(S1). Then

L3, (Vo) \ {26%, 2°°}| = > ¢(n/d) (by 22))

deDrg (v, )\ (202227}
= ¢(n/q¢?) + Z ¢(n/d)
d€Drg (v, )\{4?:2¢%,2%¢%}
=2 (mod (¢ — 1))
(because Vd € {1,2,2% ¢,2q,2%q}, (¢ — 1)|¢(n/d))
and Vj € [J]\ {jo},

L5, () \ {24, 2°¢*}] = > ¢(n/d) (by @22)

d€Drg (v;)\{2¢%,22¢%}

- Z o(n/d) (because A2 (S1) = vj, # v;)

d€Deg (v;)\14?2¢%,22¢%}

=0 (mod (¢ — 1)).
(because Vd € {1,2,22% q,2q,2%}, (¢ — 1)|¢(n/d))

Set vj; = A\g2(S2). Similarly,
L5, () \ {2¢%,2°¢*} = 2 (mod (g — 1)).

By Lemmas 2.2 and 2.6, we have A,(S1) = A, (S2) and Az (S1) = An(S;). By Lemma 2.3
vje ],
L5, () \{2¢°, 2°¢°} = | L, () \ {267, 2°¢°}.
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In particular,

L5, (vig) \ {2¢%,2°¢°}| = | L, (v) \ {2¢°, 2°¢"}| = 2 (mod (¢ — 1)).

Therefore, jo, = j, and so

)\q2 (Sl) = Vj, = Vj(/) = )\q2(52).

Note that Dg,
have

A (S1)

which is a contradiction.

(Dgl \DSQ) U (DSI ﬂDSQ) and that D52

=Rop(@)+ D Ruuld)
dGDSlﬂD52
=—qlg-1)+ > Ruyuld’)
dGDSlﬂD52
<qlg—-D+ D> Ruuld’)
dEDslﬁDSQ
=Ro2(®)+ Y. Ruald®)
dE'Dslﬁ'DSQ

(DSQ \Dsl) U (DSI A DSQ)' We

(by @.3)

(by (@.6))

Lemma 3.26. Set n = 37, Let Ds, and Dsg, be two subsets of Dy, \ {n} such that

(1) Dsl \D52 = {3} cmd DS2 \1)51 = {32, 7, 72},‘ cmd

(2) 1e Dsl ﬂDSQ.

Then spec(ICG(n, Dg,)) # spec(ICG(n, Ds,)).

Proof. The 8 pairs of spectra listed in Table [ suggest the result. This completes the

Table 5: n = 3272, Dg, \ Ds, = {3}, Dg, \ Ds, = {32,7, 7%} and 1 € Dg, N Dg,

Ds, NDg, spec(ICG(n, Dg,)) spec(ICG(n, Dgs,))
(1) 336 7 0 —42 56 336 42 0 —7 —105
1 48 378 8 6 1 6 378 54 2
2 342 13 —1 —36 —50 342 48 -1 —99
{1,377} ( 1 48 378 8 6 ) 1 6 432 2 )
(1,372} 338 9 6 2 -1 —40 —43 —54 338 41 2 -1 -5 -8 —103
’ 1 12 36 126 252 2 6 6 1 6 126 252 18 36 2
2 .2 344 15 12 1 -2 —34 —37 -48 344 47 1 -2 —97
{,3-77,377} 112 36 126 252 2 6 6 ( 1 6 144 288 2 )
13.7 348 19 1 -2 —30 —44 —48 348 36 5 1 -2 —-13 -93
(1,37} 1 12 288 126 2 6 6 1 6 18 252 126 36 2
(1,3-7,327) 354 25 7 0 -3 -—24 -—38 —42 354 42 11 0 -3 -7 —87
’ ’ 1 12 36 252 126 2 6 6 1 6 18 252 126 36 2
2 350 21 0 —28 —42 —49 350 35 7 0 —14 -—91
{1,8-7.8-77} ( 112 414 2 6 6 ) ( 1 6 18 3718 36 2 )
2 .2 356 27 6 —1 —22 —36 —43 356 41 13 -1 -8 -85
{1,3.7,3-77,377} ( 1 12 36 378 2 6 6 ) ( 1 6 18 378 36 2 )

proof.
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Lemma 3.27. Set n = p*q? with primes 3 < p < q. Let Dg, and Dg, be two subsets of
Dy \ {n} such that 1 € Dg, NDg,. Then spec(ICG(n, Dg,)) = spec(ICG(n, Ds,)) implies
Dgs, = Dg,.

Proof. By Lemmal2.2] \,(S1) = A\, (S2). By (2.3) and (2.6), ZdEDsl o(n/d) = ZdeD52 o(n/d)

and so

Y. o)=Y d(n/d). (3.25)

de'DSl \DS2 dG'DS2 \DS1

By Lemma B9, p*q, pg* ¢ Ds, ADs, and so Ds, ADs, € {q,¢% p, pq,p*}. Since ¢p(n)/n =

p=D(=1) > 24 o 1, we have ¢(n) > n/2. By Corollary BIT, A;(S1) = AMi(S2). Hence, by

Pq — 35

@) and @8), Y ep, #(n/d) = Y gep,, p(n/d) and so
S umjd) = S pin/d).

dE'DSI \D52 dEDS2 \Dsl

Note that u(n/pq) = 1 and that Vd € {q,¢*,p,p*}, p(n/d) = 0. Taking {q, ¢ p, pq,p*},
/L(Tl/), {pQ}v DSI \D527 DSQ \D517 as A7 f7 B, Ala A27 in Lemma m we have prq ¢
Ds, ADg, and so

Ds,ADs, C {q,¢* p,p*}.

To prove Dg, = Dg,, we rule out the following 4 cases.

e Case 1: |Dg,ADg,| =4
Then Ds, ADs, = {q,¢% p,p*}. Note that ¢(n/p) > ¢(n/p*) > ¢(n/q¢*) and that

¢(n/p) > ¢(n/q) > ¢(n/¢?). Recall B25). Taking {g,¢*,p,p’}, é(n/), {p,q},
Ds, \ Ds,, Ds, \ Ds,, as A, f, B, Ay, Ay, in Lemma [3.10, we have

{pa q} SZ DSI \DSQ and {pa Q} ,Q DS2 \D5’1' (326)

Taking {Q7q2ap7p2}7 gb(n/)) {p7p2}7 D& \D527 DSQ \DSN as Aa f7 Ba Ala A2a in
Lemma [3.10, we have

{pap2} SZ DSI \DSQ and {pap2} SZ DS2 \DS1' (327)

Without loss of generality, we have

— Subcase 1.1: Dg, \ Ds, = {q,¢* p,p*} and Dg, \ Dg, =0
This contradicts (3.26) and (3.27).

Subcase 1.2: Dg, \ Ds, = {q,¢*, p} and Dg, \ Ds, = {p*}
This contradicts (3.20).

Subcase 1.3: Ds, \ Ds, = {¢,p,p’} and Ds, \ Ds, = {¢*}
This contradicts (3.26) and (3.27).

Subcase 1.4: DS1 \DS2 = {q2ap>p2} and DS2 \DS1 = {q}
This contradicts (3.27).

29



— Subcase 1.5: Dgs, \ Ds, = {q,¢? p*} and Dg, \ Ds, = {p}
Then (B.25) implies that (p —2)(¢ — 1) = p(p — 1). Set ¢ = p+ k. Then k is
a positive even integer. If k = 2, then, by simple calculation, (p —2)(¢ — 1) =
p(p—1) leads to a contradiction. If £ > 4, then (p—2)(¢—1) = p(p—1) implies
p= % < 4. Hence p =3 and ¢ = 7. Recall that 1 € Dg, N Dg,. By Lemma
[3.26] spec(ICG(n, Ds,)) # spec(ICG(n, Ds,)), which is a contradiction.

— Subcase 1.6: Dg, \ Ds, = {¢,p} and Dg, \ Ds, = {¢% p*}
This contradicts (3.26).

— Subcase 1.7: Dg, \ Ds, = {¢*, p} and Dg, \ Ds, = {q, p*}
Then ([B.23) implies that (p—1)g(¢—1) +p(p—1) = ¢(¢=1) +p(p—1)(¢—1).
Set ¢ = p+ k. Then k is a positive even integer and k = —pidp=2 qf p =3,

p—2
then k& = 1 is odd, which is a contradiction. If p > 3, then k < 0, which is a

contradiction.

— Subcase 1.8: Dg, \ Ds, = {p, p*} and Ds, \ Ds, = {q, ¢*}
This contradicts (3.271).

e Case 2: |Dg,ADg,| =3

Then we have Dg, ADs, = {q,¢* p}, {¢,4* p*}, {a.p,p°}, or {¢*,p.p*}.
Suppose that Dg, ADs, = {q,¢* p}. Note that ¢(n/p) > é(n/q) > ¢(n/q*). Recall
(Im)' Taklng {q7q27p}7 (b(n/)a {puq}7 Dsl \D527 DSQ \D517 as A7 f7 B7 A17 A27 in
Lemma [B.10, we have

{p7 Q} SZ DSI \DS2 and {p7 q} g DSQ \D51' (328)
Taking {q7 q27p}7 ¢<n/>7 {p7 q2}7 DS1 \D527 DSQ \DS17 as A7 f7 B7 A17 A27 in Lemma
B.I0, we have

{pa q2} SZ DSI \DSQ and {pa q2} SZ DS2 \DSI' (329)

Without loss of generality, we have

— Subcase 2.1: Dg, \ Ds, = {q,¢* p} and Dg, \ Dg, =0
This contradicts (3.28) and (3.29).

— Subcase 2.2: Dg, \ Ds, = {q,p} and Dg, \ Ds, = {¢*}
This contradicts (3.28).

— Subcase 2.3: Dg, \ Ds, = {¢*,p} and Dg, \ Ds, = {q}
This contradicts (3.29).

— Subcase 2.4: Dg, \ Ds, = {¢,¢°} and Dg, \ Ds, = {p}
Then (B.25]) implies that ¢ = p + 1. Since both p and ¢ are odd, we have a
contradiction.

Suppose that Dg, ADs, = {q, ¢, p*}. Note that ¢(n/q) > ¢(n/q*) and that ¢(n/p*) >

(b(n/qQ) Recall (Im) Takmg {q7q27p2}7 (b(n/)v {Q7p2}7 DSI \D527 DSQ \D517 as
A, f, B, Ay, Ay, in Lemma 310, we have

{¢.p°} € D5, \Ds, and {q,p’} € Ds, \ Ds,. (3.30)
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Without loss of generality, we have

— Subcase 2.5: Dg, \ Ds, = {q,¢? p*} and Dg, \ Dg, = 0
This contradicts (3.30).

— Subcase 2.6: Dg, \ Ds, = {q,p*} and Dg, \ Ds, = {¢*}
This contradicts (3.30).

— Subcase 2.7: Ds, \ Ds, = {p?, ¢*} and Dg, \ Ds, = {¢}
Then (B.25) implies that p(p — 1)(¢ —2) = g(¢ — 1). Then ¢q|(p — 1)(¢ — 2) =
(p—1)g—2(p—1) and so ¢|2(p — 1). Since ¢ > p — 1, we have ¢ = 2(p — 1).
Since ¢ is odd, we have a contradiction.

— Subcase 2.8: Dg, \ Ds, = {q,¢*} and Dg, \ Dg, = {p*}
Then (B.25) implies that

q=p*—p+1. (3.31)
Besides, we have
Mp(51) = Rosg(p) + Rusz @)+ D Ruyalp) (by @.3))
dEDsl ﬂDS2
=p—p+ Y. Ruulp) (by @8))
dGDslﬂDS2
dEDslﬂD52
=Rup(®)+ Y. Rualp) (by (Z0))
dEDsl ﬂDS2
= Ap(52) (by @.3))
and
A (S1) = Ropo(0®) + R (0) + D Ruyalp®) (by @23))
dEDsl ﬂDS2
=—pp-D+pp—1+ > Ruul (by (Z0))
dE'DSI NDs,

=0+ > Ruul®

dEDsl NDs,
=R )+ D Rusald?) (by 2.8))
dEDsl NDs,
= Ap2(S2). (by (23))

Since p > 3, we have p*(p? — 3p + 1) > —1. By (B.31)), the inequality, p*(p® —
3p+1) > —1, implies

o(nfa)>n— > ¢(n/d)—d(n/q).

de{n,1,p,p?}
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Taking {n, 1,p,p*}, {q}, as Dg, Dr, in Lemma [B.16], we have

)‘q<Sl> = )‘q(52)-

However,
Ay(S1) = Rusg(a) + Roy(@) + Y Ruyala) (by (@2.35))
dEDslﬁDS2
=040+ D Ruulg) (by ([2.6))
dEDslﬁDS2
>—q+ Y, Ruaa)
dEDslﬂD52
=Rup(@+ Y Ruula) (by (2.8))
dGDslﬂDS2

= Ag(52), (by @.3))

which is a contradiction.

Suppose that Ds, ADs, = {q,p, p*}. Note that ¢(n/p) > ¢(n/q) and that ¢(n/p) >

¢(n/p2) Recall (m) Taklng {Q7pap2}a ¢(n/), {qap}a DS1 \DSm DSQ \DS17 as A7
f, B, A1, Ay, in Lemma [3.10, we have

{Q7p} SZ DSI \DSQ and {qap} /q DS2 \D5’1' (332)

Recall (m) Taklng {Q7pap2}7 ¢(n/), {p7p2}7 DSl \D527 DSQ \DSN as A7 f7 B,
A1, Ay, in Lemma B.10] we have

{pap2} SZ DSI \DSQ and {pap2} SZ DS2 \DS1' (333)

Without loss of generality, we have

— Subcase 2.9: Dg, \ Ds, = {¢,p,p*} and Dg, \ Dg, = 0
This contradicts (3.32) and (3.33)).

— Subcase 2.10: Dg, \ Ds, = {¢,p} and Dg, \ Ds, = {p*}
This contradicts (3.32)).

— Subcase 2.11: Dg, \ Dg, = {p,p*} and Ds, \ Ds, = {q}
This contradicts (3.33)).
— Subcase 2.12: Dg, \ Ds, = {p?, ¢} and Dg, \ Ds, = {p}

Then (B.28) implies that (p — 1)g(¢ — 1) = q(¢ — 1) + p(p — 1)(¢ — 1). Set
q = p-+ k. Then k is a positive even integer and p = k2—_k1 If £ =2, then p =4,

which is a contradiction. If £ > 4, then p = kz—_kl < 3, which is a contradiction.

Now we have Dg,ADs, = {¢°,p,p?}. Note that ¢(n/p) > é(n/p?) > é(n/qd*).

Recall (m) Taklng {q27pap2}7 ¢(n/), {p7p2}7 DSl \DSm DSQ \DSN as A7 fa B,
A1, Ay, in Lemma B.10] we have

{p.p’} ¢ D5, \Ds, and {p,p’} & Dg, \ Ds,. (3.34)
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Taking {q27p7p2}7 ¢<n/>7 {p7 q2}7 DSl\DSQ7 DSQ\DS17 as A7 f7 Ba A17 A27 in Lemma
B.I0, we have

{pa q2} SZ DSI \DSQ and {pa q2} SZ DS2 \DS1' (335)

Without loss of generality, we have

— Subcase 2.13: Dg, \ Ds, = {¢*,p,p*} and Dgs, \ Ds, = 0
This contradicts (3.34) and (3.33]).

— Subcase 2.14: D, \ Dg, = {p,p’} and Ds, \ Ds, = {¢*}
This contradicts (3.34)).

Subcase 2.15: Dg, \ Ds, = {p,¢*} and Dg, \ Ds, = {p*}

This contradicts (3.33]).

Subcase 2.16: Dg, \ Ds, = {p?, ¢*} and Dg, \ Ds, = {p}

Then (B.25]) implies that (p —2)q(¢—1) = p(p—1). Since p > 3 and ¢(¢—1) >
p(p — 1), we have (p — 2)q(q — 1) > p(p — 1), which is a contradiction.

e Case 3: |Dg,ADg,| =2
Set Dg, ADg, = {a1,a2}. Taking Dg, ADg,, ¢(n/-), Dg, \ Ds,, Ds, \ Ds,, as A, f,
Ay, Ay, in Corollary B2l we have either ¢(n/a;) = ¢(n/az) while |Dg, \ Dg,| =
|Ds, \ Dg,| = 1, or Dg, ADg, = 0 leading to a contradiction. Note that ¢(n/p) >
o(n/p?) > ¢(n/q*) and that ¢(n/p) > ¢(n/q) > ¢(n/q*). Without loss of generality,
we have Dg, \Dgs, = {q} and Dg, \Ds, = {p*}. Then ([B.25)) implies that ¢ = p(p—1).
Since ¢ is odd, we have a contradiction.

e Case 4: |Dg,ADg,| =1
Recall (8:25). Taking Ds, ADg,, ¢(n/:), Ds, \ Ds,, Ds, \ Ds,, as A, f, Aj, Ay, in
Lemma B.IT], we have Dg, ADg, = (), which is a contradiction.

This completes the proof. O

Theorem 3.28. Set n = p?¢* with primes 3 < p < q. Let Dg, and Dg, be two subsets of
Dy \ {n}. Then spec(ICG(n,Dg,)) = spec(ICG(n, Dg,)) implies Dg, = Dy, .

Proof. Since ¢(n)/n = % > 24 > 1 we have ¢(n) > n/2. By Lemma B.I3,

1 ¢ Dg, ADg,. By Lemma B.27 and Corollay B.15, we obtain the result. O

4 Conclusion

In this work, we affirm So’s conjecture for 4 types of integral circulant graphs. From
our experience, it is difficult to completely solve So’s conjecture and new methods should
be involved. It is natural to discuss integral circulant graphs of order in other forms.
However, without new techniques involved, it might be more complicated.
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