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Abstract. Gromov (2003) constructed finitely generated groups whose Cayley
graphs contain all graphs from a given infinite sequence of expander graphs of
unbounded girth and bounded diameter-to-girth ratio. These so-called Gromov
monster groups provide examples of finitely generated groups that do not coarsely
embed into Hilbert space, among other interesting properties. If graphs in Gro-
mov’s construction admit graphical small cancellation labellings, then one gets
similar examples of Cayley graphs containing all the graphs of the family as iso-
metric subgraphs. Osajda (2020) recently showed how to obtain such labellings
using the probabilistic method. In this short note, we simplify Osajda’s approach,
decreasing the number of generators of the resulting group significantly.

1. Introduction

Given a finitely generated group Γ, with a finite set S of generators such that
S−1 = S, the Cayley graph Cay(Γ, S) is the graph whose vertices are the elements
of Γ, in which we add an edge between γ and γ · s for any γ ∈ Γ and s ∈ S. Cayley
graphs are a central object of study in geometric group theory. It turns out that
a number of interesting properties of a group Γ do not depend of the choice of the
generating set S. In particular, in order to show that Γ does not satisfy a given
property of this type, it is sufficient to find one generating set S such that the
corresponding Cayley graph Cay(Γ, S) has a pathological behaviour.

Consider a sequence G = (Gn)n⩾1 of bounded degree graphs, whose girth (length
of a shortest non-trivial cycle) tends to infinity. We say that the sequence is dg-
bounded if the ratio between the diameter and the girth of each Gn is bounded by
a (uniform) constant, see [1]. Consider such a sequence G. Gromov [5] proved that
there is a finitely generated group Γ whose Cayley graph contains (in a certain met-
ric sense) all the members of G. By choosing G as a family of suitable expander
graphs, this implies that such a group Γ has a number of pathological properties, in
particular related to coarse embeddings in Hilbert space, or to Guoliang Yu’s prop-
erty A. The construction has also been used very recently to disprove a conjecture
on the twin-width of groups and hereditary graph classes [2]. Gromov [5] introduced
the graphical small cancellation condition on the labellings. By the classical small
cancellation theory, the existence of labellings of G = (Gn)n⩾1 with the graphical
small cancellation condition guarantees that in Gromov’s construction each graph
Gn embeds isometrically in the Cayley graph Cay(Γ, S), which means that the em-
bedding of each Gn in Cay(Γ, S) is distance-preserving and thus in particular the
graphs Gn appear as induced subgraphs in Cay(Γ, S). Osajda [11] recently showed,
using the probabilistic method, that the graphical small cancellation labellings do
exist, under mild assumptions on G = (Gn)n⩾1.
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TWIN-WIDTH (ANR-21-CE48-0014-01), and by LabEx PERSYVAL-lab (ANR-11-LABX-0025).
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2 L. ESPERET AND U. GIOCANTI

Given a sequence G = (Gn)n⩾1 of graphs whose edges are labelled with elements
from some set S, a word in G is a sequence of labels that can be read along a path
of some graph of G. The main idea of graphical small cancellation theory is to
assign labels from a finite set S to the edges of all the graphs from the sequence
G = (Gn)n⩾1, such that words in each Gn that are sufficiently long compared to the
girth of Gn occur only once in all the sequence G (this will be made more precise
in the next section). The labels from S are then used as generators to define the
group Γ whose relators are the words labelling the cycles of each Gn. The number
of labels (the size of the set S) then gives an upper bound to the minimum number
of generators of the group, and thus the degree of the associated Cayley graph (up
to a multiplicative factor of two, if we do not require that S is closed under taking
inverses). A natural problem is to minimize this number of generators.

The purpose of the present note is twofold: we present a simplified version of
the proof of existence of the labelling of Osajda [11], and significantly decrease the
number of generators (and thus the degree of the corresponding Cayley graph).
Osajda’s proof is based on an application of the Lovász Local Lemma. Instead, we
use a self-contained counting argument popularized by Rosenfeld [12], and originally
introduced in the field of combinatorics on words in the context of pattern avoidance.
This allows us to cleanly handle all the different forbidden patterns at once, instead
of sequentially, and greatly reduces the number of labels. We combine this with a
significantly simpler (and stronger) analysis of intersecting patterns in order to a
obtain a shorter argument that also produces much better bounds.

For the sake of concreteness, if we take G = (Gn)n⩾1 to be the sequence of cubic
Ramanujan graphs introduced by Chiu [3], which is likely to offer the best known
parameters in terms of degree and diameter-to-girth ratio, our result leads to the
existence of a group with 96 generators, whose Cayley graph (of maximum degree
96) contains all the graphs from G as isometric subgraphs. For the same family, the
construction of Osajda [11] uses about 10272 generators (although we note that some
of the quick optimization steps we perform in Section 4 can also be carried directly
in Osajda’s proof, improving his bound to about 1070 generators).

2. Preliminaries

All the graphs we consider in the paper are initially undirected. Each graph G is
then given an arbitrary orientation G⃗ (i.e., the choice of a direction, for each edge
of G). The results do not depend on the specific orientation, but the orientation is
nevertheless crucial to define the relevant objects that we consider belows. Consider
a set S which is closed under (formal) inverse (that is, there is an involution without
fixed point between the elements of S, which we denote by a 7→ ā). Consider also a
labelling ℓ :E(G)→S of the edges of G by the elements of S. We extend the labelling
ℓ to the ordered pairs of adjacent vertices (x, y) in G as follows: if (x, y) is an arc of G⃗
then ℓ(x, y) = ℓ(xy) and otherwise ℓ(x, y) = ℓ(xy). The orientation G⃗ is only used to
define this extended labelling ℓ of the the ordered pairs of adjacent vertices, and will
not be mentioned elsewhere. We say that the labelling ℓ is reduced if for any vertex
v ∈ V (G), and for any pair of distinct neighbors u,w of v in G, ℓ(v, u) ̸= ℓ(v, w). An
ℓ-word (or simply a word, if ℓ is clear from the context) in G is obtained from a path
P in G as follows: if P = v1, v2, . . . , vk, then ℓ(P ) := ℓ(v1, v2) · · · ℓ(vk−1, vk) ∈ L∗ is
the ℓ-word associated to P . The length of a path is its number of edges. We remark
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that in this paper we consider paths as either a sequence of vertices, or a sequence
of edges, depending on the context, and in particular any path P = v1, v2, . . . , vk is
distinct from the reverse path

←−
P := vk, vk−1, . . . , v1.

The girth (length of a smallest cycle) of a graph G is denoted by girth(G), and its
diameter (the maximum distance between two vertices of G) is denoted by diam(G).
Let G = (Gn)n⩾1 be a sequence of graphs. Let λ be a positive real number (for the
main application in group theory we need λ ∈

(
0, 1

6

]
, but this will not be needed in

the full generality of the results presented in this section and the next). Following the
terminology of [11], a sequence of labellings (ℓn)n⩾1 of the graphs from G, with labels
from some set S as above, is said to satisfy the C ′(λ)-small cancellation property if
for all n⩾ 1, ℓn is a reduced labelling of Gn and no word of length at least λ·girth(Gn)
in Gn appears on a different path in G. Small cancellation properties were initially
introduced for groups, as a convenient tool to construct word-hyperbolic groups, see
for instance Chapter V in [8]. The property C ′(λ) we use here is defined in the more
general context of graphs, and is usually known as graphical cancellation property
in the literature. In the remainder of the paper we will omit the “graphical” term,
as there is no risk of confusion with the original small cancellation properties.

Osajda [11] recently proved that under mild assumptions, any sequence of bounded
degree dg-bounded graphs of unbounded girth admits small cancellation labellings
with a finite number of labels.

Theorem 2.1 ([11]). Let λ ∈
(
0, 1

6

]
and A > 0 be real numbers, and let ∆ ⩾ 3 be an

integer. Let G = (Gn)n⩾1 be a sequence of graphs of maximum degree ∆ such that
girth(Gn)→∞ as n→∞, and diam(Gn) ⩽ A · girth(Gn) for any n ⩾ 1. Assume
moreover that 1 < ⌊λ · girth(Gn)⌋ < ⌊λ · girth(Gn+1)⌋ for every n ⩾ 1. Let

L ⩾ 2e4∆2A/λ+2 · (4e4∆)8A/λ+16

be any even integer. Then G has a sequence of labellings satisfying the C ′(λ)-small
cancellation property, with labels from a set S of size L.

The bound on L in Theorem 2.1 has two components: 2e4∆2A/λ+2 comes from
a first phase, where Osajda shows how to assign labels in each Gn ∈ G, so that no
word of Gn appears as a word of length at least λ · girth(Gi) in some Gi, with i < n.
The second component, (4e4∆)8A/λ+16, comes from a second phase where Osajda
shows how to assign labels in each Gn ∈ G, so that no word of Gn of length at least
λ · girth(Gn) appears twice in Gn. This second phase is significantly more involved,
which explains the much larger label size. Our main contribution is the following.

• we use a counting argument instead of the Lovász Local Lemma. This allows
us to assign labels in a single phase (resulting in an additive combination
of the number of labels, instead of a multiplicative one), and optimize the
multiplicative constants. Moreover, the resulting proof is completely self-
contained.
• we provide a major simplification in the analysis of Osajda’s second phase,

showing that the long words appearing twice in Gn can be avoided with a
number of labels of size comparable to Osajda’s first phase.

Using results of Gromov (see [10, 6]), Theorem 2.1 leads to the following.

Corollary 2.2. Let λ,A,∆,G be as in Theorem 2.1. Then for any even integer
L ⩾ 2e4∆2A/λ+2 · (4e4∆)8A/λ+16, there is a group Γ with a set S of L generators such
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that the corresponding Cayley graph Cay(Γ, S) contains isometric copies of all the
graphs from G.

As alluded to in the introduction, in applications we typically want G to be a
sequence of expander graphs. We omit the precise definition here, as it will not be
necessary in this paper. We only mention that expansion can be defined in several
essentially equivalent ways, using isoperimetric inequalities or spectral properties.
Families of random regular graphs typically have these properties, but constructing
explicit families of expander graphs has been an important problem in Mathematics,
with major applications in Theoretical Computer Science. We refer the interested
reader to the survey [7] for more on expander graphs.

A useful family G for us is the sequence of cubic Ramanujan graphs introduced by
Chiu [3]. These graphs are expander graphs (as Ramanujan graphs, they have the
best possible spectral expansion), are ∆-regular with ∆ = 3, satisfy girth(Gn)→∞
as n → ∞ (their girth is logarithmic in their number of vertices) and diam(G) ⩽
3
2
girth(G) + 5 for any G ∈ G. By discarding a bounded number of small graphs in

the sequence, this implies that we have diam(G) ⩽ (3
2
+ ϵ) girth(G) for any ϵ > 0

and any graph G in the sequence, and thus we can take A ⩽ 3
2
+ ϵ for any ϵ > 0.

3. Smaller cancellation labellings

Our main result is the following optimized version of Theorem 2.1.

Theorem 3.1. Let λ,A,∆,G be as in Theorem 2.1, that is λ ∈
(
0, 1

6

]
and A > 0

are real numbers, ∆ ⩾ 3 is an integer, and G = (Gn)n⩾1 is a sequence of graphs
of maximum degree ∆ such that girth(Gn) → ∞ as n → ∞, and diam(Gn) ⩽ A ·
girth(Gn) and 1 < ⌊λ · girth(Gn)⌋ < ⌊λ · girth(Gn+1)⌋ for every n ⩾ 1. Let

L ⩾ 2(∆− 1) + 26(∆− 1)2A/λ+2

be any even integer. Then G has a sequence of labellings satisfying the C ′(λ)-small
cancellation property, with labels from a set S of size L.

We note that the multiplicative constant of 26 in the bound on L can be optimized
both for small values of ∆ and asymptotically as ∆→∞. We have chosen not to
do so here for simplicity, and we remark that improving the factor 2 in the exponent
of (∆− 1) is a more rewarding challenge (see the next section). When ∆→∞, the
number L of labels in Theorem 3.1 grows as O(∆2A/λ+2), and we will see in the next
section that this can be easily improved to O(∆A/λ+2). This is to be compared with
the bound O(∆10A/λ+18) of Theorem 2.1. In the next section we will also see several
ways to improve the constants significantly when ∆ = 3, and the girth of the first
graph in the sequence is already quite large.

Similarly as above, we obtain the following corollary.

Corollary 3.2. Let λ,A,∆,G, L be as in Theorem 3.1. Then there is a group Γ
with a set S of L generators such that the corresponding Cayley graph Cay(Γ, S)
contains isometric copies of all the graphs from G.

Using the family of cubic Ramanujan graphs of Chiu [3] mentioned at the end of
the previous section, we can apply Corollary 3.2 with ∆= 3, A= 3

2
and λ= 1

6
. Then

we obtain a group with a set of L = 4 + 26 · 220 = 27262980 generators such that
the corresponding Cayley graph contains isometric copies of graphs from an infinite



OPTIMIZATION IN GRAPHICAL SMALL CANCELLATION THEORY 5

family of expander graphs. We will see in Section 4 how to decrease this number of
generators to 96.

If instead we apply Corollary 2.2 to the same family G (and hence with the same
parameters ∆ = 3, A = 3

2
and λ = 1

6
), the resulting Cayley graph has degree more

than 10272.

We now prove our main result.

Proof of Theorem 3.1. Let α := 2(∆− 1)2A/λ+2, and let

L ⩾ 2(∆− 1) + 13α = 2(∆− 1) + 26(∆− 1)2A/λ+2

be an even integer. Let S be a set of L elements, closed under formal inverses (and
such that each element a ∈ S is different from its formal inverse ā). For any n ⩾ 1,
let γn := ⌊λ · girth(Gn)⌋. In particular γn ⩽ λ · girth(Gn) ⩽ γn + 1 for any n ⩾ 1,
and thus

(1)
1

λ
⩽

girth(Gn)

γn
⩽

1

λ
+

1

λγn
⩽

2

λ
.

We will sequentially assign labels from S to the edges of each of the graphs
(Gn)n⩾1. Assume that for each i < n, we have already defined a labelling ℓi of
the edges of Gi such that the sequence of labellings (ℓi)i<n satisfies the C ′(λ)-small
cancellation property. We now want to define a labelling ℓn of Gn so that the
sequence (ℓi)i⩽n of labellings of the graphs from (Gi)i⩽n still satisfies the C ′(λ)-small
cancellation property.

For the proof it will be convenient to consider partial labellings of Gn, which are
labellings of some subset F of edges of Gn. Equivalently, these are labellings of
the edges of Gn[F ], the subgraph of Gn induced by the edges of F . We recall that
each labelling ℓ(xy) of an edge xy yields two labellings ℓ(x, y) and ℓ(y, x) of the
pairs (x, y) and (y, x) by elements of S that are formal inverse (and that whether
ℓ(xy) = ℓ(x, y) or ℓ(xy) = ℓ(y, x) depends only on the orientation of the edge xy in
some fixed but otherwise arbitrary orientation of the graph under consideration).

Let F be a non-empty subset of E(Gn). We say that a labelling ℓ of Gn[F ] with
labels from S is valid if it satisfies the following properties:

(a) ℓ is a reduced labelling of Gn[F ],
(b) for each 1⩽ i < n, no ℓi-word of length at least γi in Gi appears as an ℓ-word

in Gn[F ], and
(c) no ℓ-word of length at least γn appears on two different paths of Gn[F ].

Let c(F ) be the number of valid labellings ℓ of Gn[F ] with labels from S (when
F is empty we conveniently define c(F ) := 1). In the remainder of the proof we will
show the following claim, which clearly implies that Gn has a labelling ℓn such that
the sequence of labellings (ℓi)i⩽n of (Gi)i⩽n still satisfies the C ′(λ)-small cancellation
property, and thus we can find such labellings in all the graphs from G.

Claim 3.3. For any non-empty F ⊆ E(Gn) and any e ∈ F , c(F ) ⩾ α · c(F \ {e}).

We prove the claim by induction on |F |. Recall that by assumption, γi > 1 for
any i ⩾ 1, so the properties (a), (b), (c) above are trivially satisfied if F contains
a single element e, which is assigned an arbitrary label from S. It follows that
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c({e}) = L ⩾ α = α · c(∅), as desired. So we can now assume that F contains at
least two elements.

Assume that we have proved the claim for any F ′ ⊆ E(Gn) with |F ′| < |F |. Con-
sider any edge xy ∈ F . Our goal in the remainder of the proof is to show that
c(F ) ⩾ α · c(F \ {xy}). Note that by the induction hypothesis, for any subset
F ′ ⊆ F containing xy,

(2) c(F \ F ′) ⩽ α1−|F ′| · c(F \ {xy}).
Let L denote the set of labellings ℓ of F with labels from S whose restriction to
F \ {xy} is valid, but such that ℓ itself is not. Then

(3) c(F ) = L · c(F \ {xy})− |L|.
Consider first the subset La ⊆ L of labellings of F that do not satisfy (a) above.
Then by definition, for any ℓ ∈ La, x has a neighbor z different from y such that
ℓ(x, y) = ℓ(x, z), or y has a neighbor z different from x such that ℓ(y, x) = ℓ(y, z).
By assumption, the labelling ℓ− of F \ {xy} obtained from ℓ by discarding the label
of xy is valid. Moreover, ℓ can be recovered in a unique way from ℓ− and the edge
xz or yz as above. As there are at most 2(∆− 1) choices for such an edge incident
to xy, we obtain

(4) |La| ⩽ 2(∆− 1) · c(F \ {xy}).
For 1 ⩽ i ⩽ n − 1, let Li be the subset of labellings ℓ ∈ L of F such that Gn[F ]
contains a path P containing xy such that ℓ(P ) coincides with some ℓi-word ℓi(Q)
of length γi in Gi. Let Ln be the subset of labellings ℓ ∈ L\La of F such that Gn[F ]
contains a path P containing xy such that ℓ(P ) coincides with some ℓ-word ℓ(Q) of
length γn in Gn[F ], for some path Q distinct from P .

For each 1 ⩽ i ⩽ n and each labelling ℓ ∈ Li as above, let ℓ− denote the labelling
of F \ E(P ) obtained from ℓ by discarding the labels of the edges of P . Then ℓ− is
a valid labelling of F \ E(P ). Moreover, if 1 ⩽ i ⩽ n − 1 or if i = n and P and Q
are disjoint, then ℓ− together with the paths P in Gn and Q in Gi (where each path
is viewed as a sequence of edges) are sufficient to recover ℓ in a unique way.

Assume now that ℓ ∈ Ln (so in particular ℓ is reduced), and the distinct paths P
and Q of length γn in Gn[F ] such that ℓ(P ) = ℓ(Q) are not edge-disjoint. We first
observe that E(P )∩E(Q) is a subpath of P and Q, since otherwise Gn would contain
a cycle of length less than 2γn, contradicting the assumption that girth(Gn) ⩾

γn
λ
⩾

6γn. Let P = x0, x1, . . . , xγn and Q = y0, y1, . . . , yγn . Then ℓ(xi, xi+1) = ℓ(yi, yi+1)
for any 0 ⩽ i ⩽ γn − 1. Our goal is to show that despite the fact that the edges of
E(P ) ∩ E(Q) have been unlabelled in ℓ−, we can still recover ℓ from ℓ−, P and Q.

Assume first that P and Q intersect in the same direction, that is there are integers
0 ⩽ p, q ⩽ γn − 1 and 1 ⩽ k ⩽ γn − 1 such that xp+i = yq+i for any 0 ⩽ i ⩽ k. Note
that p ̸= q since otherwise we would have xp = yp and xp+k = yp+k and the fact that
ℓ(xp−1, xp) = ℓ(yp−1, yp) or ℓ(xp+k, xp+k+1) = ℓ(yp+k, yp+k+1) would contradict the fact
that ℓ is reduced. Up to considering the reverse paths

←−
P and

←−
Q instead of P and

Q, we can assume without loss of generality that q > p. Divide P into consecutive
subpaths P1, P ∩ Q, P3, and P4 and divide Q into consecutive subpaths Q1, Q2,
P ∩ Q, and Q4, in such a way that ℓ(P1) = ℓ(Q1) and ℓ(P4) = ℓ(Q4) (see Figure 1,
left). As P1 and P4 are edge-disjoint from E(P ) ∩ E(Q), both ℓ(P1) and ℓ(P4) can
be recovered from ℓ−. Note that as we assumed that q > p, |Q2| > 0, i.e. Q2 has at
least one edge. Let P ′ be the subpath of P obtained by concatenating P ∩Q and P3.
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P

Q

P1 P3

P4

Q4

Q1

Q2

P ∩Q

P

Q

P1
P3

P4

Q4

Q1

Q2

P ∩Q

Figure 1. Two intersecting paths P and Q.

It remains to explain how to recover ℓ(P ′) from ℓ−. For this, it suffices to observe
that since ℓ(P ) = ℓ(Q), the prefix of ℓ(P ′) of size |Q2| must be equal to ℓ(Q2). Then
the prefix of ℓ(P ′) of size 2|Q2| must be equal to ℓ(Q2) · ℓ(Q2). By iterating this
observation, it follows that ℓ(P ′) is a prefix of the word ℓ(Q2)

ω (the concatenation of
an infinite number of copies of ℓ(Q2)). Since Q2 is edge-disjoint from E(P )∩E(Q),
ℓ(P ′) (and thus ℓ(P )) can be recovered from ℓ−, P and Q, as desired.

We now assume that P and Q intersect in reverse directions, that is there are
integers 0 ⩽ p, q ⩽ γn and k ⩾ 1 such that xp+i = yq−i for any 0 ⩽ i ⩽ k. We say
that P and Q collide if there is an index i such that either xi = yi, or xi = yi+1 and
yi = xi+1 (think of two particles following the trajectories of P and Q at the same
speed). Assume for the sake of contradiction that P and Q collide. If xi = yi for
some index i, then ℓ is not reduced, which is a contradiction. Otherwise we have
ℓ(xi, xi+1) = ℓ(yi, yi+1) = ℓ(xi+1, xi), which contradicts the fact that ℓ(xi, xi+1) =

ℓ(xi+1, xi) as for each a ∈ S, a ̸= a. So P and Q do not collide, and in particular
p ̸= q. We recall that

←−
P and

←−
Q denote the paths obtained by reversing P and Q,

respectively. When we use this notation below we also write
−→
P and

−→
Q instead of P

and Q to avoid any confusion. Up to considering
←−
P and

←−
Q instead of

−→
P and

−→
Q , we

can again assume without loss of generality that q > p. We divide P into consecutive
subpaths P1,

−→
P ∩
←−
Q , P3 and P4 and we divide Q into consecutive subpaths Q1, Q2,←−

P ∩
−→
Q , and Q4, in such a way that ℓ(P1) = ℓ(Q1), ℓ(P4) = ℓ(Q4) (see Figure 1,

right). As before, P1 and P4 are edge-disjoint from E(P )∩E(Q), so both ℓ(P1) and
ℓ(P4) can be recovered from ℓ−. As P and Q do not collide, |Q2| > |

−→
P ∩
←−
Q |, which

implies that ℓ(
−→
P ∩
←−
Q) is equal to a prefix of ℓ(Q2), and can thus be recovered from

ℓ−. Finally, since ℓ(P ) = ℓ(Q), ℓ(P3) is equal to ℓ(
←−
P ∩

−→
Q), which is obtained by

reading ℓ(
−→
P ∩

←−
Q) backwards. Hence, ℓ(P ) can be recovered from ℓ−, P and Q, as

desired.
For each 1 ⩽ i ⩽ n and each edge e in Gi there are at most (∆− 1)γi−1 paths of

length γi containing e in which e is at a fixed position on the path. Hence, there are
at at most 2γi(∆− 1)γi−1 paths of length γi containing e (and in particular at most
2γi(∆−1)γi−1 choices for the path P in Gn containing xy when considering a labelling
ℓ ∈ Li). Moreover, each Gi has at most 1+∆+∆(∆− 1)+ · · ·+∆(∆− 1)diam(Gi)−1

vertices, and thus at most

(5) ∆
2
·
(
1 + ∆ (∆−1)diam(Gi)−1

∆−2

)
⩽ 3

2
(∆− 1)diam(Gi)+2
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edges, using ∆⩾ 3 (the inequality is quite loose here, we have chosen the right-hand
side mostly in order to simplify the computation later). It follows that each Gi has
at most

(6) 3
2
(∆− 1)diam(Gi)+2 · 2(∆− 1)γi−1 ⩽ 3(∆− 1)(2A/λ+1)γi+1

paths of length γi (here the multiplicative factor γi disappears since we can count
each path from its starting edge). It follows that there are at most 3(∆−1)(2A/λ+1)γi+1

choices for the path Q in Gi when considering a labelling ℓ ∈ Li. Since |E(P )| = γi,
it follows from (2) that for each labelling ℓ ∈ Li, the number of valid labellings ℓ−

of F \ E(P ) is c(F \ E(P )) ⩽ α1−γi · c(F \ {xy}). As each ℓ ∈ Li can be recovered
from ℓ−, P and Q in a unique way, we obtain

|Li| ⩽ 2γi(∆− 1)γi−1 · 3(∆− 1)(2A/λ+1)γi+1 · α1−γi · c(F \ {xy})
⩽ 6γi(∆− 1)(2A/λ+2)γi · α1−γi · c(F \ {xy})
⩽ 6γi(α/2)

γi · α1−γi · c(F \ {xy})
⩽ 6α · γi(1/2)γi · c(F \ {xy}),

where we have used α = 2(∆− 1)2A/λ+2 in the third inequality. As a consequence

(7)
n∑

i=1

|Li| ⩽ 6α
n∑

i=1

γi(1/2)
γic(F \ {xy}) ⩽ 12α · c(F \ {xy}),

where we have used
∑∞

j=1 j(1/2)
j = 2. As L = La ∪

⋃n
i=1 Li, it follows from (4) and

(7) that

|L| ⩽ c(F \ {xy}) · (2(∆− 1) + 12α)

⩽ c(F \ {xy})(L− α),

by the definition of L. By (3), we have

c(F ) = L · c(F \ {xy})− |L|
⩾ L · c(F \ {xy})− (L− α)c(F \ {xy})
⩾ α · c(F \ {xy}),

as desired. This completes the proof of Claim 3.3, which concludes the proof of
Theorem 3.1. □

4. Optimizing the number of generators

So far our goal was to optimize the construction of Osajda [11], while obtaining
a result that is comparable to his (i.e., a result with the exact same set of initial
assumptions). There are two quick ways to further optimize the number of labels in
Theorem 3.1, if we have some control over the family G.

The first way consists in removing all sufficiently small graphs from G (we have
done this already with the cubic Ramanujan graphs of Chiu [3], to argue that A was
arbitrarily close to 3

2
in this case). As the girth of the graphs in G tends to infinity, the

right-hand-side of (1) can be replaced by 1+ϵ
λ

for any ϵ > 0. This allows to replace all
instances of 2A/λ by (1+ϵ)A/λ in the proof, effectively dividing by 2 the exponent of
the number of labels in the theorem. Using this observation in the case of the cubic
Ramanujan graphs of Chiu [3], with λ = 1/6, we obtain α = 2 · 2(1+ϵ)

3
2
/
1
6
+2 ⩽ 4097

for sufficiently small ϵ > 0, and a number of labels L ⩾ 2 · 2 + 13 · 4097 ≈ 53266 is
sufficient.
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A more efficient way to decrease the number of labels in the case of families of
expander graphs with an explicit description consists in using a more precise bound
on the number of edges in a graph Gn ∈ G, as a function of girth(Gn). In (5),
we have used that |E(Gn)| ⩽ 3

2
(∆ − 1)diam(Gn)+2 ⩽ 3

2
(∆ − 1)A girth(Gn)+2. However,

better bounds are known for a number of families G. This is the case for the cubic
Ramanujan graphs of Chiu [3] mentioned in the previous section. The graphs G
in this class satisfy |E(Gn)| ⩽ 3

2
· 2(3 girth(Gn)+6)/4, which is an improvement over the

bound based on the diameter (recall that for these graphs ∆ = 3 and A can be
made arbitrarily close to 3

2
). Fix any real ϵ > 0, and recall that γn = ⌊λ · girth(Gn)⌋.

Using as in the previous paragraph the fact that the girth of the graphs from G
can be made arbitrarily large by discarding a constant number of graphs from the
family, we can assume that γnϵ > γ1ϵ is larger than any fixed constant, and thus
(3 girth(Gn)+6)/4⩽ 3+ϵ

4λ
γn and |E(Gn)|⩽ 3

2
·2γn·(3+ϵ)/4λ, for any n⩾ 1. With λ=1/6,

we obtain |E(Gn)| ⩽ 3
2
· 2(9+ϵ)γn/2, for any n ⩾ 1. Substituting this bound in (6), we

obtain that there are at most 3 ·2(11+ϵ)γn/2−1, paths of length γn in Gn. Substituting
this bound in the proof of Theorem 3.1, and defining α := (1+ ϵ)2(13+ϵ)/2, we obtain
the following.

|Li| ⩽ 2γi2
γi−1 · 3 · 2(11+ϵ)γi/2−1 · α1−γi · c(F \ {xy})

⩽ 3α
2
γi · 2(13+ϵ)γi/2 · α−γi · c(F \ {xy})

⩽ 3α
2
γi · ( 1

1+ϵ
)γi · c(F \ {xy}),

As
∑∞

j=1 j · (
1

1+ϵ
)j converges, we can choose again γ1 sufficiently large so that the

truncated sum
∑∞

j=γ1
j · ( 1

1+ϵ
)j is arbitrarily small (say smaller than ϵ/(3α

2
)). We

obtain
∑n

i=1 |Li|⩽ ϵ·c(F \{xy}), and the same computation as in the proof of Claim
3.3 shows that any even number L ⩾ 2 · 2 + ϵ+ α = α+ ϵ+ 4 of labels is sufficient.
Using α = (1 + ϵ)2(13+ϵ)/2, and taking ϵ > 0 sufficiently small, we can obtain that
L = 96 labels are sufficient.

So, we obtain a group with a set S of 96 generators whose Cayley graph Cay(Γ, S)
contains infinitely many graphs of the sequence of cubic Ramanujan graphs as iso-
metric subgraphs.

5. Conclusion

The number L of labels in Theorem 3.1 is of order O(∆2A/λ+2), as ∆ → ∞,
and the remarks in the previous section improve this bound to O(∆A/λ+2). In
typical applications, A is a small constant and the bound becomes ∆O(1/λ). We
now observe that this is the right order of magnitude. If G is a ∆-regular graph
of girth g, then the ball of radius g/2 centered in any vertex induces a tree, and
thus for any λ < 1/2, G contains Ω(∆g/2+λg−1) paths of length λg (the ball of radius
g/2 centered in a vertex contains Ω(∆g/2) edges and each of them is the starting
point of Ω(∆λg−1) paths of length λg). By the C ′(λ)-small cancellation property, all
these paths must correspond to different words. As there are at most Lλg possible
words of length λg, we obtain Lλg = Ω(∆g/2+λg−1), and thus L= Ω(∆1/2λ+1−1/g). As
the girth of the graphs in our family is unbounded, it follows that L = Ω(∆1/2λ+1),
which shows that the bound in Theorem 3.1 is fairly close to the optimum (up to
a small multiplicative factor in the exponent). It remains an interesting problem to
close the gap between the upper and lower bounds, both in the case of small degree
(∆ = 3) and asymptotically as ∆→∞.
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It might also be interesting to consider other cancellation properties. For an
integer k ⩾ 1, a family of labellings (ℓn)n⩾1 of a graph family G = (Gn)n⩾1 satisfies
the C(k+1)-small cancellation property if for any n ⩾ 1, ℓn is reduced and no cycle
C in Gn can be divided into k paths P1, . . . , Pk such that for each 1 ⩽ i ⩽ k, the ℓn-
word associated to Pi appears on a different path in G. This condition is weaker than
the C ′(1/k)-small cancellation property, but nevertheless allows to construct finitely
generated groups with interesting properties when k ⩾ 7 [6]. A natural problem is
to obtain a version of Theorem 3.1 for C(k)-small cancellation, with an improved
exponent.

We conclude with some algorithmic remarks. Using the constructive proof of the
Lovász Local Lemma by Moser and Tardos [9], the original proof of existence of the
labelling given by Osajda [11] can be turned into an efficient algorithm computing the
labels, by which we mean a randomized algorithm, running in polynomial time (in
the size of Gn), and computing a C ′(λ)-small cancellation labelling for the sequence
of graphs (Gi)1⩽i⩽n. As our main goal was to obtain a simple, self-contained proof
of the existence of the labels, we chose to use counting rather than constructive
techniques such as the entropy compression method (see [4]). It turns out that our
result can also be obtained with this type of techniques, at the cost of a longer and
more technical analysis.

Acknowledgements. We thank Goulnara Arzhantseva for her comments on a pre-
vious version of this manuscript.
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