
The trace reconstruction problem for spider graphs

Alec Sun∗ William Yue†

September 20, 2022

Abstract

We study the trace reconstruction problem for spider graphs. Let n
be the number of nodes of a spider and d be the length of each leg, and
suppose that we are given independent traces of the spider from a dele-
tion channel in which each non-root node is deleted with probability q.
This is a natural generalization of the string trace reconstruction prob-
lem in theoretical computer science, which corresponds to the special
case where the spider has one leg. In the regime where d ≥ log1/q(n),
the problem can be reduced to the vanilla string trace reconstruction
problem. We thus study the more interesting regime d ≤ log1/q(n), in
which entire legs of the spider are deleted with non-negligible proba-
bility. We describe an algorithm that reconstructs spiders with high

probability using exp
(
O
(

(nqd)1/3

d1/3 (log n)2/3
))

traces. Our algorithm

works for all deletion probabilities q ∈ (0, 1).
Keywords: Trace reconstruction, Graph algorithms, Littlewood

polynomials

1 Introduction

The string trace reconstruction problem, first introduced in 1997 by Leven-
shtein [17], is concerned with reconstructing an unknown seed string using
only noisy samples of the data. The unknown seed string is passed into
some noisy channel multiple times, and the resulting error-prone copies are
referred to as traces. The goal is to use multiple traces to reconstruct the
original seed string with high probability. Levenshtein solved the trace re-
construction problem for a substitution channel, where each symbol of the
seed string is mutated independently with constant probability. In 2004,

∗Carnegie Mellon University, alecsun@andrew.cmu.edu
†Massachusetts Institute of Technology, willyue@mit.edu

1

ar
X

iv
:2

20
9.

08
16

6v
1

 [
cs

.D
S]

 1
6

Se
p

20
22

Batu, Kannan, Khanna, and McGregor [2] analyzed the problem for a dele-
tion channel, where symbols of the seed string are each deleted indepen-
dently with constant probability. The string trace reconstruction problem
has applications to computational biology, specifically in the new rapidly-
evolving fields of DNA data storage and personalized immunogenics. For
example, one might want to reconstruct the correct sequence of nucleotides
of a DNA sequence from several traces, each of which has many deletion
mutations.

It is critical to minimize the number of traces required to reconstruct
the seed string with high probability. For example, in the application of
DNA data storage, reducing the number of traces results in lower sequenc-
ing cost and time [3]. However, despite a wealth of recent work and at-
tention on the deletion channel string trace reconstruction problem, for ex-
ample [5, 10, 11, 12, 13, 14, 18, 20, 21], the current best upper and lower
bounds for the number of traces necessary to reconstruct the seed string
with high probability remain at exp(O(n1/5)) [4] and Ω̃(n3/2) [5, 12], re-
spectively, where n is the length of the seed string. We remark that a lower
bound of exp(O(n1/3)) traces was shown for mean-based algorithms, which
are algorithms that only use the empirical means of individual bits in the
traces for reconstruction [10, 20].

The exponential gap between upper and lower bounds for string trace
reconstruction motivates studying variants of the problem for which one
may be able to close the gap. Many variants have been recently proposed
and studied, for example [1, 6, 7, 9, 16, 19]. We focus on a variant known
as the tree trace reconstruction problem introduced by Davies, Rácz, and
Rashtchian [8]. This is a generalization of the vanilla string trace recon-
struction problem where the goal is to learn a node-labeled tree, rather
than a single string, using traces from a suitably-defined deletion channel.
The tree trace reconstruction problem may be directly applicable as well,
as research on DNA nanotechnology has demonstrated that DNA molecule
structures can be assembled into trees. Recent research has also shown how
to distinguish different molecular topologies, such as spiders with three arms
from line DNA, using nanopores [15].

Davies et al. [8] studied the tree trace reconstruction problem for two
special classes of trees: complete k-ary trees and spiders. This paper extends
their work on spiders. An (n, d)-spider consists of a single unlabeled root
node with paths of d labeled nodes attached to it. In total, there are n
labeled nodes. Consider a deletion channel, formally defined in Section 2.2,
in which every node is independently deleted with probability q.

When d ≥ log1/q(n), solving the spider trace reconstruction problem

2

directly reduces to the string trace reconstruction problem [8, Proposition
24]. This is because in this regime, the legs of the spider are long enough for
all of the legs to survive the deletion channel with high probability, so each
leg can be considered independently as its own string trace reconstruction
problem. Therefore, we assume that d ≤ log1/q(n). In this more interesting
regime, entire legs are deleted with non-negligible probability. Hence, if one
looks at a single trace, it is unclear which of the legs in the seed spider the
legs in the trace come from.

Davies et al. [8] proved that for deletion probabilities q < 0.7, there is
some constant C > 0 that depends only on q such that exp(C · d(nqd)1/3)
traces suffice to reconstruct an (n, d)-spider with probability 1 − O(1/n)
(we refer to this as with high probability). In this paper, we match this up-
per bound, up to polylogarithmic factors, but for the full range of deletion
probabilities q ∈ (0, 1). Furthermore, while Davies et al. [8] used a single
variable generating function alongside harmonic analysis, we consider a bi-
variate generating function, which results in considerably simpler analysis.
We use a best-match algorithm coupled with some results about bivariate
Littlewood polynomials. We remark that Littlewood polynomials have also
been used to analyze a different variant of trace reconstruction known as
the matrix reconstruction problem [16].

Our main result is the following theorem:

Theorem 1.1. Assume that d ≤ log1/q(n). For any fixed deletion probability
q < 1, there exists some constant C > 0 that depends only on q such that

exp

(
C · (nqd)1/3

d1/3
(log n)2/3

)

traces suffice to reconstruct an (n, d)-spider with high probability.

Note that the upper bound in Theorem 1.1 matches the upper bound
exp(C · d(nqd)1/3) in [8] up to polylogarithmic factors and works for all
deletion probabilities q ∈ (0, 1), not just q < 0.7. Furthermore, Theorem 1.1
strictly improves upon the upper bound exp(C · d(nqd)1/3) for all q ∈ (0, 1)
when d = ω(

√
log n).

1.1 Acknowledgements

The authors would like to thank Shyam Narayanan for suggesting the prob-
lem.

3

Figure 1: A binary-labeled (12, 4) spider, with indexing system drawn in
blue to the bottom left of each vertex.

2 Preliminaries

2.1 Rooted spiders

In this section, we define the objects to be reconstructed: rooted binary-
labeled spiders X, as well as an indexing system for their nodes.

Definition 2.1. Let n and d be positive integers, and for convenience as-
sume that d | n. An (n, d)-spider X consists of a single unlabeled root node
with n

d paths of d nodes with binary labels from {0, 1} emanating from it, so
there are n labeled nodes in total. We refer to these paths as the legs of the
spider.

An example of a binary-labeled (12, 4)-spider is shown in Fig. 1. We
index each node using two coordinates, where the first coordinate denotes
the leg of the spider the node is on, and the second its depth down that
leg. This is in contrast to the depth-first-search labelling in [8]. In general,

4

we may denote by ai,j ∈ {0, 1} the label of the (i, j)-node and the set of
all labels of X as a = {ai,j}0≤i<n

d
,0≤j<d. For convenience, we define the set

S := {(i, j) | 0 ≤ i < n
d , 0 ≤ j < d}, so we can write the labels of X as

a = {ai,j}(i,j)∈S .

2.2 Deletion channel for spiders

In the deletion channel for spiders, we start by independently selecting each
non-root node for deletion with probability q. Note that we assume the
root node is never deleted, as deleting the root node would disconnect the
graph. When nodes are deleted, all nodes below it shift upward. If all the
nodes in a leg are deleted, the entire leg disappears. If a leg disappears,
the remaining legs retain the same left-to-right structure, but it is no longer
clear from looking at a trace which leg in the trace corresponds to which leg
in the seed.

Remark 2.2. For trees that are not spiders, one must be more careful with
describing the deletion channel. Davies et al. [8] studied two models, the
Tree-Edit-Distance (TED) model and the Left-Propagation Model. How-
ever, in the case of spiders, both models equivalent to the deletion channel
described above.

For convenience in our analysis, after the deletion process we append
nodes labeled 0 to the end of each shortened leg until they are of length
d again. Also, if any complete legs were deleted, we add a leg of length
d with all nodes labeled 0 to the right of the remaining legs. This pads
the trace with 0’s to form an (n, d)-spider. We refer to the resulting spider
as a trace. We remark that this padding process may cause two originally
different traces to end up becoming identical. An example of the deletion
and padding process is shown in Fig. 2.

2.3 Generating function for traces of spiders

Though the deletion channel for trees is more complicated than that for
strings, it turns out that one can still describe the deletion process explicitly
using generating functions. These generating functions will then be used to
distinguish between candidate spiders.

We begin by defining generating functions which encode the information
of the possible traces of a spider:

Definition 2.3. Let a = {ai,j}(i,j)∈S denote the labels of an (n, d)-spider
where ai,j ∈ R, and let the random variable b = {bi′,j′}(i′,j′)∈S denote the

5

Figure 2: An example of the deletion channel applied on a (12, 4)-spider.
The deleted nodes are colored gray. Then we pad nodes labeled 0, colored
blue, to form a (12, 4) spider.

labels of its trace from the deletion channel with deletion probability q. Define
a generating function ∑

(i′,j′)∈S

bi′,j′w
i′
1w

j′

2

for each possible labeling b = {bi′,j′}(i′,j′)∈S of a trace.

One of our key observations is that for each (n, d)-spider, we can derive
a closed-form formula for the expected value of the generating function of a
trace:

Lemma 2.4. Let a = {ai,j}(i,j)∈S denote the labels of an (n, d)-spider where
ai,j ∈ R, and let the random variable b = {bi′,j′}(i′,j′)∈S denote the labels of
its trace from the deletion channel with deletion probability q. Define

Aa(w1, w2) := E

 ∑
(i′,j′)∈S

bi′,j′w
i′
1w

j′

2

to be the expected value of the generating function of a trace, where the
expectation is taken over the randomness of the deletion process. Then

Aa(w1, w2) = (1− q)
∑

(i,j)∈S

ai,j(q
d + (1− qd)w1)

i(q + (1− q)w2)
j

for all w1, w2 ∈ C.

Proof. Note that the coordinates of a specific node can only decrease after
the deletion process. We compute the probability that the label bi′,j′ comes
from the label ai,j , where i ≥ i′ and j ≥ j′. This occurs when:

6

• ai,j is preserved, which occurs with probability 1− q,

• Exactly i′ of the first i paths are retained, which occurs with proba-
bility (

i

i′

)
(1− qd)i′qd(i−i′).

• Exactly j′ of the first j nodes in the path of the node with in X with
index (i, j) are retained, which occurs with probability(

j

j′

)
(1− q)j′qj−j′ .

Thus the probability that the label bi′,j′ comes from the label ai,j is

(1− q)
(
i

i′

)
(1− qd)i′qd(i−i′)

(
j

j′

)
(1− q)j′qj−j′ .

We conclude that

E

 ∑
(i′,j′)∈S

bi′,j′w
i′
1w

j′

2

= (1− q)

∑
(i′,j′)∈S

wi
′
1w

j′

2

∑
(i,j)∈S

ai,j

(
i

i′

)
(1− qd)i′qd(i−i′)

(
j

j′

)
(1− q)j′qj−j′

= (1− q)

n
d
−1∑
i=0

d−1∑
j=0

ai,j

i∑
i′=0

j∑
j′=0

(
i

i′

)
(1− qd)i′qd(i−i′)wi′1

(
j

j′

)
(1− q)j′qj−j′wj

′

2

= (1− q)

n
d
−1∑
i=0

d−1∑
j=0

ai,j(q
d + (1− qd)w1)

i(q + (1− q)w2)
j

= (1− q)
∑

(i,j)∈S

ai,j(q
d + (1− qd)w1)

i(q + (1− q)w2)
j ,

where we change the order of summation in the second equality and apply
the binomial theorem in the third equality.

Example 2.5. Fig. 3 depicts all 24 = 16 possible deletions that could occur
for a specific (4, 2)-spider with labels a0,0 = 1, a1,0 = 0, a0,1 = 1, and a1,1 =
1, shown on the right. The figure also depicts the resulting padded traces
and their associated generating functions. Note that Aa(w1, w2), which recall

7

Figure 3: All possible padded traces for a certain seed (4, 2)-spider after
being passed through the deletion channel, with their associated generating
functions.

8

is the expected value of the generating functions of the padded traces, is a
weighted average of all the generating functions on the right. For example,
if q = 1

2 , we can simply average all the values in Fig. 3 to get

Aa(w1, w2) = E

 ∑
0≤i′<2,0≤j′<2

bi′,j′w
i′
1w

j′

2

=

13

16
+

3

16
w1 +

5

16
w2 +

3

16
w1w2

(1)

Note that Eq. (1) equals what we expect from Lemma 2.4:

Aa(w1, w2) = (1− q)
∑

(i,j)∈S

ai,j(q
d + (1− qd)w1)

i(q + (1− q)w2)
j

=
1

2
·

∑
0≤i<2,0≤j<2

ai,j

(
1

4
+

3

4
w1

)i(1

2
+

1

2
w2

)j
=

1

2

[
1 +

(
1

2
+

1

2
w2

)
+

(
1

4
+

3

4
w1

)(
1

2
+

1

2
w2

)]
=

13

16
+

3

16
w1 +

5

16
w2 +

3

16
w1w2.

3 Proof of main result

In this section we prove Theorem 1.1. Like in previous work on string trace
reconstruction, we use a best-match algorithm to reconstruct the spider.
As is typical in best-match algorithms, we compare every pair (X(1), X(2))
of candidate spiders to see which spider from the pair is more likely to
have produced the observed traces. We repeat this process for each pair of
candidates and use the results to select a best possible guess for the original
seed spider.

3.1 Overview of the algorithm

We consider all 2n possible candidate spiders X and select a pair of spiders
to compare against each other. Suppose we select candidate spiders X(1)

and X(2) with labels a(1) = {a(1)i,j }(i,j)∈S and a(2) = {a(2)i,j }(i,j)∈S , respectively.

Now, consider the element-wise difference a = a(1) − a(2), which is nonzero
since X(1) and X(2) are distinct. Let Y (1) and Y (2) denote the random traces
with labels b(1) = {b(1)i′,j′}(i′,j′)∈S and b(2) = {b(2)i′,j′}(i′,j′)∈S , which result from

passing X(1) and X(2) respectively through the deletion channel. Now, we

9

compute the difference of the generating functions corresponding to X(1) and
X(2), which is equivalent to plugging a into the expression in Lemma 2.4:∑

(i′,j′)∈S

(E[b
(1)
i′,j′]− E[b

(2)
i′,j′]) · w

i′
1w

j′

2

= (1− q)
∑

(i,j)∈S

ai,j(q
d + (1− qd)w1)

i(q + (1− q)w2)
j .

(2)

Through a process described in Section 3.3, we can select some pair of indices

(I, J) ∈ S, depending on X(1) and X(2), such that |E[b
(1)
I,J]−E[b

(2)
I,J]| is lower

bounded substantially. What this means is that the expected value of some
label bI,J in the trace differs significantly depending on whether or not the
seed spider was X(1) or X(2). We can use this information in combination
with the empirical expected value E[bI,J] among our observed traces to select
the better match between X(1) and X(2), that is, which of X(1) or X(2) is
more likely to have produced the empirical expected value E[bI,J]. Such a
process is known as a mean-based algorithm.

We repeat the above comparison for all pairs of spiders and then output
the spider X∗ that loses against no other spiders, if such a spider exists. If
no such spider exists, we can output a uniformly random spider. As the true
seed spider is among the 2n candidate spiders, we can use a Chernoff bound
to upper bound the probability that it loses against any other candidate
spider by O

(
1
n

)
. Therefore, so long as we are given enough traces, the true

seed spider is outputted by the algorithm with high probability.

3.2 Littlewood polynomials

To analyze the expression in Eq. (2), we use bivariate Littlewood polynomi-
als from complex analysis. We begin by defining these polynomials:

Definition 3.1. A two-variable polynomial A(z1, z2) is called a bivariate
Littlewood polynomial if all of its coefficients are in the set {−1, 0, 1}.

Note that in the right hand side of Eq. (2), the coefficients satisfy ai,j =

a
(1)
i,j − a

(2)
i,j ∈ {−1, 0, 1}. If we write the right hand side of Eq. (2) in terms

of new variables z1 = qd + (1− qd)w1 and z2 = q + (1− q)w2, then we get

(1− q)
∑

(i,j)∈S

ai,jz
i
1z
j
2,

which is (1− q) times a nonzero bivariate Littlewood polynomial with (z1)-
degree less than n

d and (z2)-degree less than d. In order to lower bound

10

this polynomial for some choice of z1 and z2, we prove the following lemma
concerning bivariate Littlewood polynomials:

Lemma 3.2. Let f(z1, z2) be a nonzero bivariate Littlewood polynomial with
degree a in z1 and degree b in z2. Then

|f(z∗1 , z
∗
2)| ≥ exp (−cL1L2 log(ab))

for some z∗1 = exp(iθ1) and z∗2 = exp(iθ2), where θ1 and θ2 lie in the ranges
|θ1| ≤ π

L1
and |θ2| ≤ π

L2
.

Proof. Define the 2-variable polynomial

F (z1, z2) =
∏

1≤x≤L1
1≤y≤L2

f
(
z1e

2πix/L1 , z2e
2πiy/L2

)
.

Using the maximum modulus principle, which recall says that the modu-
lus |F | of any holomorphic function F achieves its maximum value at the
boundary of its domain, we first show that we can find some z′1 and z′2 on
the unit circle such that |F (z′1, z

′
2)| ≥ 1. Note that restricting the domain of

a holomorphic function to the unit disk leaves the function holomorphic.
Factor F (z1, z2) = zk2 ·G(z1, z2) so that G(z1, z2) no common factors with

z2. Since F has nonzero coefficients, G(z1, 0) can be viewed as a nonzero
polynomial in one variable z1. We can now factor G(z1, 0) = z`1 · H(z1)
so that H(z1) is nonzero and hence satisfies |H(0)| = 1. By the maximum
modulus principle, we can find some z′1 on the unit circle such that |H(z′1)| ≥
|H(0)| = 1. We can apply the maximum modulus principle again to find
some z′2 on the unit circle such that |G(z′1, z

′
2)| ≥ |G(z′1, 0)|. Therefore, we

can find z′1 and z′2 such that

|F (z′1, z
′
2)| = |G(z′1, z

′
2)| ≥ |G(z′1, 0)| = |H(z′1)| ≥ |H(0)| = 1.

Now, applying the definition of F gives

1 ≤ |F (z′1, z
′
2)| ≤ |f(z′1e

2πix/L1 , z′2e
2πiy/L2)| · (ab)L1L2−1

for all 1 ≤ x ≤ L1 and 1 ≤ y ≤ L2, where we use the fact that |f(z1, z2)| ≤ ab
for |z1| = |z2| = 1. We can now choose appropriate x and y to rotate z′1 and
z′2 along the unit circle in the complex plane so that z∗1 = z′1 · e2πix/L1 =
exp(iθ1) and z∗2 = z′2 · e2πiy/L2 = exp(iθ2) satisfy |θ1| ≤ π

L1
and |θ2| ≤ π

L2
.

We conclude that

|f(z∗1 , z
∗
2)| ≥ 1

(ab)L1L2−1 ≥ exp(−L1L2 log(ab)),

where z∗1 = exp(iθ1) and z∗2 = exp(iθ2) satisfy |θ1| ≤ π
L1

and |θ2| ≤ π
L2

.

We remark that Lemma 3.2 is a generalization of [16, Lemma 17].

11

3.3 Completing the proof

We set the parameters in Lemma 3.2 to be L1 = L for some constant L to
be chosen later, L2 = 1, a ≤ n

d , and b ≤ d. By Lemma 3.2 and the triangle
inequality, we can lower bound Eq. (2) as∑

(i′,j′)∈S

|E[b
(1)
i′,j′]− E[b

(2)
i′,j′]||w

∗
1|i
′ |w∗2|j

′ ≥ (1− q) exp (−L log n) (3)

for some z∗1 = exp(iθ1) and z∗2 = exp(iθ2) such that |θ1| ≤ π/L and |θ2| ≤ π.
Recall the change of variables

w∗1 =
z∗1 − qd

1− qd
and w∗2 =

z∗2 − q
1− q

.

We can upper bound |w∗1| as

|w∗1| =
|z∗1 − qd|
1− qd

≤

√(
cos πL − qd

)2
+
(
sin π

L

)2
1− qd

=

√
1− 2qd cos πL + q2d

1− qd

=

√
(1− qd)2 + 2qd

(
1− cos πL

)
1− qd

=

(
1 +

2qd
(
1− cos πL

)
(1− qd)2

)1/2

≤ exp

(
qdπ2

2L2(1− qd)2

)
,

where we use the inequalities (1 + x)r ≤ erx for r, x ≥ 0 and 1 − cos πL ≤
1
2

(
π
L

)2
. Therefore,

|w∗1|
n
d ≤ exp

(
n

d
· Cqd

L2(1− qd)2

)
for some constant C. We can also upper bound |w∗2| as

|w∗2| =
|z∗2 − q|
1− q

≤ 1 + q

1− q
,

12

so
|w∗2|d ≤ exp(C ′d)

for some constant C ′ depending on q. Therefore, by Eq. (3) and the fact
that |w∗1|, |w∗2| ≥ 1, we have

exp

(
n

d
· Cqd

L2(1− qd)2
+ C ′d

) ∑
(i′,j′)∈S

|E[b
(1)
i′,j′]−E[b

(2)
i′,j′]| ≥ (1−q) exp(−L log n).

Thus there exists some pair of indices (I, J) ∈ S such that

|E[b
(1)
I,J]−E[b

(2)
I,J]| ≥ 1− q

n
exp

(
−n
d
· Cqd

L2(1− qd)
− C ′d− L log n

)
=: η. (4)

Denote the right hand side of Eq. (4) by η.
Returning now to the best-match algorithm, given two candidate spiders

X(1) and X(2), we define the better match to be X(1) if∣∣∣∣∣ 1

T

T∑
t=1

stI,J − E[b
(1)
I,J]

∣∣∣∣∣ ≤
∣∣∣∣∣ 1

T

T∑
t=1

stI,J − E[b
(2)
I,J]

∣∣∣∣∣ ,
where stI,J ∈ {0, 1} is the value of the node at position (I, J) of the t-th

trace. Now, suppose X(1) = X∗ is the true seed spider. For all possible
seed spiders X(2), we can use a Chernoff bound to upper bound the failure
probability, namely the probability that X(2) is a better match than X(1),
by exp(−Tη2/2), where T is the total number of traces. Therefore, by a
union bound, the probability that X∗ loses to at least one other spider is at
most

P[X∗ not chosen by algorithm] ≤
∑

X(2) 6=X∗
P[X(2) better match than X∗]

≤ 2n · exp(−Tη2/2)

≤ exp

(
n log 2− Tη2

2

)
.

For this expression to be at most 1
n = exp(− log n), we set

T =
2

η2
(n log 2 + log n) = Θ(η−2n).

Plugging in the definition of η from Eq. (4) yields

T = Θ

(
n3 · exp

(
n

d
· Cqd

L2(1− qd)
+ C ′d+ cL log n

))
. (5)

13

Note that the n3 term is negligible. The C ′d term is also negligible since we
are in the regime d ≤ log1/q(n). Finally, 1− qd ≥ 1− q depends only on q,
so Eq. (5) can be simplified to

T = exp

(
Θ

(
nqd

dL2
+ L log n

))
.

To balance these terms, we set L =
(

nqd

d logn

)1/3
to get a final bound of

T = exp

(
C · (nqd)1/3

d1/3
(log n)2/3

)
,

where C is a constant that depends only on q. We conclude the proof of
Theorem 1.1.

4 Conclusion

We presented a mean-based algorithm using Littlewood polynomials that
reconstructs (n, d)-spiders with high probability in the regime d ≤ log1/q(n),

where q is the deletion probability. Our algorithm uses exp
(
O
(
(nqd)1/3

d1/3
(log n)2/3

))
traces and works for the full range q ∈ (0, 1) of deletion probabilities.

In light of recent work improving the string trace reconstruction upper
bound to exp(Õ(n1/5)) using a non-mean-based algorithm [4], it would be
interesting to see whether a similar technique could achieve an upper bound

of the form exp
(
Õ((nqd)1/5)

)
for the spider trace reconstruction problem.

14

References

[1] Alexandr Andoni, Constantinos Daskalakis, Avinatan Hassidim, and
Sebastien Roch. Global alignment of molecular sequences via ances-
tral state reconstruction. Stochastic Processes and their Applications,
122(12):3852–3874, 2012.

[2] Tugkan Batu, Sampath Kannan, Sanjeev Khanna, and Andrew Mc-
Gregor. Reconstructing strings from random traces. Symposium on
Discrete Algorithms, pages 910–918, 2004.

[3] Vinnu Bhardwaj, Pavel A Pevzner, Cyrus Rashtchian, and Yana Sa-
fonova. Trace reconstruction problems in computational biology. IEEE
Transactions on Information Theory, 67(6):3295–3314, 2020.

[4] Zachary Chase. New upper bounds for trace reconstruction. arXiv
preprint arXiv:2009.03296, 2020.

[5] Zachary Chase. New lower bounds for trace reconstruction. Annales
de l’Institut Henri Poincaré, Probabilités et Statistiques, 57(2):627–643,
2021.

[6] Xi Chen, Anindya De, Chin Ho Lee, Rocco A Servedio, and Sandip
Sinha. Near-optimal average-case approximate trace reconstruction
from few traces. In Proceedings of the 2022 Annual ACM-SIAM Sym-
posium on Discrete Algorithms (SODA), pages 779–821. SIAM, 2022.

[7] Mahdi Cheraghchi, Ryan Gabrys, Olgica Milenkovic, and Joao Ribeiro.
Coded trace reconstruction. IEEE Transactions on Information The-
ory, 66(10):6084–6103, 2020.

[8] Sami Davies, Miklos Z Racz, and Cyrus Rashtchian. Reconstructing
trees from traces. In Conference On Learning Theory, pages 961–978.
PMLR, 2019.

[9] Sami Davies, Miklós Z Rácz, Benjamin G Schiffer, and Cyrus
Rashtchian. Approximate trace reconstruction: Algorithms. In 2021
IEEE International Symposium on Information Theory (ISIT), pages
2525–2530. IEEE, 2021.

[10] Anindya De, Ryan O’Donnell, and Rocco A Servedio. Optimal mean-
based algorithms for trace reconstruction. In Proceedings of the 49th
Annual ACM SIGACT Symposium on Theory of Computing, pages
1047–1056, 2017.

15

[11] Lisa Hartung, Nina Holden, and Yuval Peres. Trace reconstruction
with varying deletion probabilities. In 2018 Proceedings of the Fifteenth
Workshop on Analytic Algorithmics and Combinatorics (ANALCO),
pages 54–61. SIAM, 2018.

[12] Nina Holden and Russell Lyons. Lower bounds for trace reconstruction.
The Annals of Applied Probability, 30(2):503–525, 2020.

[13] Nina Holden, Robin Pemantle, Yuval Peres, and Alex Zhai. Subpoly-
nomial trace reconstruction for random strings and arbitrary deletion
probability. Mathematical Statistics and Learning, 2(3):275–309, 2020.

[14] Thomas Holenstein, Michael Mitzenmacher, Rina Panigrahy, and Udi
Wieder. Trace reconstruction with constant deletion probability and
related results. In Proceedings of the nineteenth annual ACM-SIAM
symposium on Discrete algorithms, pages 389–398. Citeseer, 2008.

[15] Philipp Karau and Vincent Tabard-Cossa. Capture and translocation
characteristics of short branched dna labels in solid-state nanopores.
ACS sensors, 3(7):1308–1315, 2018.

[16] Akshay Krishnamurthy, Arya Mazumdar, Andrew McGregor, and
Soumyabrata Pal. Trace reconstruction: Generalized and parame-
terized. IEEE Transactions on Information Theory, 67(6):3233–3250,
2021.

[17] V. Levenshtein. Reconstruction of objects from a minimum number of
distorted patterns. Doklady Mathematics, 55(3):417–420, 1997.

[18] Andrew McGregor, Eric Price, and Sofya Vorotnikova. Trace recon-
struction revisited. In European Symposium on Algorithms, pages 689–
700. Springer, 2014.

[19] Shyam Narayanan and Michael Ren. Circular trace reconstruction. In
12th Innovations in Theoretical Computer Science Conference (ITCS
2021). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2021.

[20] Fedor Nazarov and Yuval Peres. Trace reconstruction with
exp(O(n1/3)) samples. In Proceedings of the 49th Annual ACM
SIGACT Symposium on Theory of Computing, pages 1042–1046, 2017.

[21] Krishnamurthy Viswanathan and Ram Swaminathan. Improved string
reconstruction over insertion-deletion channels. In Proceedings of

16

the nineteenth annual ACM-SIAM symposium on Discrete algorithms,
pages 399–408, 2008.

17

	1 Introduction
	1.1 Acknowledgements

	2 Preliminaries
	2.1 Rooted spiders
	2.2 Deletion channel for spiders
	2.3 Generating function for traces of spiders

	3 Proof of main result
	3.1 Overview of the algorithm
	3.2 Littlewood polynomials
	3.3 Completing the proof

	4 Conclusion

