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Abstract

Several new spectral properties of the normalized Laplacian defined for ori-
ented hypergraphs are shown. The eigenvalue 1 and the case of duplicate
vertices are discussed; two Courant nodal domain theorems are established;
new quantities that bound the eigenvalues are introduced. In particular, the
Cheeger constant is generalized and it is shown that the classical Cheeger
bounds can be generalized for some classes of hypergraphs; it is shown that
a geometric quantity used to study zonotopes bounds the largest eigenvalue
from below, and that the notion of coloring number can be generalized and
used for proving a Hoffman-like bound. Finally, the spectrum of the unnor-
malized Laplacian for Cartesian products of hypergraphs is discussed.

Keywords: Oriented Hypergraphs, Spectral Theory, Laplace Operator,
Cheeger inequality, Hoffman bound, Chromatic number

1. Introduction

The oriented hypergraphs introduced by Shi [1] are hypergraphs with the
additional structure that each vertex in a hyperedge is either an input or an
output. Such structure allows modeling many real networks, as for instance
chemical reaction networks, metabolic networks, neural networks, synchro-
nization networks. The adjacency and unnormalized Laplacian matrices of
oriented hypergraphs were introduced by Reff and Rusnak [2] and the study
of their spectral properties has received a lot of attention [3–10]. The normal-
ized Laplacian has been established in [11], and various spectral properties,
as well as possible applications, have been studied in [11–13]. In this work,
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we bring forward the study of the spectrum for both the normalized and
the unnormalized Laplacian in the context of oriented hypergraphs, with a
special focus on the first one.

The paper is structured as follows. Section 2 provides an overview of
the preliminaries needed in order to discuss the main results. The next five
sections focus on the normalized Laplacian. In particular, in Section 3 we
discuss the eigenvalue 1 and the case of duplicate vertices; in Section 4 we
prove two versions of the Courant nodal domain theorem and in Section 5
we discuss the problem of generalizing the Cheeger inequalities to the case
of the smallest non-zero eigenvalue of the normalized Laplacian. In Section
6 we prove some general bounds for both the smallest nonzero eigenvalue
and the largest eigenvalue, while in Section 7 we generalize the definition of
coloring number and we discuss some of its properties. Finally, in Section 8,
we study the spectrum of the unnormalized Laplacian when considering the
Cartesian product of oriented hypergraphs.

2. Preliminaries

We discuss the preliminaries needed in order to state the main results.
In particular, in Section 2.1 we present an overview of the basic definitions
regarding oriented hypergraphs; in Section 2.2 we provide an overview of
the operators associated to such hypergraphs; in Section 2.3 we characterize
the eigenvalues of the normalized Laplacian using the min-max principle.
Finally, in Section 2.4, we discuss two kinds of hypergraph transformations.

2.1. Oriented hypergraphs

Definition 2.1 ([2]). An oriented hypergraph is a pair Γ = (V,H) such that
V is a finite set of vertices and H is a set such that every element h in H is a
pair of disjoint elements (hin, hout) (input and output) in P(V ). The elements
of H are the oriented hyperedges. Changing the orientation of a hyperedge h
means exchanging its input and output, leading to the pair (hout, hin). With
a little abuse of notation, we shall see h as hin ∪ hout.

Definition 2.2. Given h ∈ H , two vertices i and j are co-oriented in h if
they belong to the same orientation sets of h; they are anti-oriented in h if
they belong to different orientation sets of h.

Definition 2.3 ([12]). The degree of a vertex i is

deg(i) := # hyperedges containing i.

2



The cardinality of a hyperedge h is

#h := #(hin ∪ hout).

From now on, we fix an oriented hypergraph Γ = (V,H) on n vertices
1, . . . , n and m hyperedges h1, . . . , hm. We assume that Γ has no vertices of
degree zero.

Definition 2.4. The oriented hypergraph Γ is d–regular if deg(i) = d for
each i ∈ V . Γ is m–uniform if #h = m for each h ∈ H .

Definition 2.5. The oriented hypergraph Γ is c–complete for some c ≥ 1
if, forgetting about the additional structure of inputs and outputs, it has all
possible

(

n
c

)

hyperedges of cardinality c.

Example 2.6. Every graph is 2–uniform. The complete graph is 2–complete
according to Definition 2.5.

Definition 2.7 ([11]). The oriented hypergraph Γ is connected if, for every
pair of vertices v, w ∈ V , there exists a path that connects v and w, i.e. there
exist v1, . . . , vk ∈ V and h1, . . . , hk−1 ∈ H such that v1 = v, vk = w, and
{vi, vi+1} ⊆ hi for each i = 1, . . . , k − 1.

Definition 2.8 ([11]). The oriented hypergraph Γ = (V,H) has k connected
components if there exist Γ1 = (V1, H1), . . . ,Γk = (Vk, Hk) such that:

1. For every i ∈ {1, . . . , k}, Γi is a connected hypergraph with Vi ⊆ V
and Hi ⊆ H ;

2. For every i, j ∈ {1, . . . , k}, i 6= j, Vi ∩ Vj = ∅ and therefore also
Hi ∩Hj = ∅;

3.
⋃

Vi = V,
⋃

Hi = H .

2.2. Operators on oriented hypergraphs

Definition 2.9 ([11]). The n×m incidence matrix of Γ is I := (Iih)i∈V,h∈H ,
where

Iih :=











1 if i ∈ hin

−1 if i ∈ hout

0 otherwise.
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Definition 2.10 ([2]). The n × n diagonal degree matrix D := D(Γ) is
defined by

Dij :=

{

deg(i) if i = j

0 otherwise.

Definition 2.11 ([2]). The n × n adjacency matrix is A := A(Γ), where
Aii := 0 for each i = 1, . . . , n and

Aij :=#{hyperedges in which i and j are anti-oriented}
−#{hyperedges in which i and j are co-oriented}

for i 6= j.

Definition 2.12 ([11]). Let C(V ) be the space of functions f : V → R,
endowed with the scalar product

(f, g) :=
∑

i∈V

deg(i)f(i)g(i).

The (normalized) Laplacian associated to Γ is the operator

L : C(V ) → C(V )

such that, given f : V → R and given i ∈ V ,

Lf(i) :=

∑

h:i input

(

∑

i′ input of h f(i
′)−∑j′ output of h f(j

′)

)

deg(i)

−

∑

ĥ:i output

(

∑

î input of ĥ f (̂i)−
∑

ĵ output of ĥ f(ĵ)

)

deg(i)
.

Remark 2.13. Note that, as well as the graph normalized Laplacian, L can
be rewritten in a matrix form as

L = Id−D−1A,

where Id is the n × n identity matrix. To see this, observe that, given
f : V → R and i ∈ V ,

Lf(i) =

∑

h:i input

(

∑

i′ input of h f(i
′)−∑j′ output of h f(j

′)

)

deg(i)
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−

∑

ĥ:i output

(

∑

î input of ĥ f (̂i)−
∑

ĵ output of ĥ f(ĵ)

)

deg(i)

=
deg(i)f(i)−∑j 6=iAijf(j)

deg(i)

=f(i)− 1

deg(i)

∑

j 6=i

Aijf(j).

L is not necessarily a symmetric matrix, but it is a symmetric operator
with respect to the scalar product that we use. Also, if we generalize the
symmetric normalized Laplacian introduced by Chung [14] as

L := Id−D−1/2AD−1/2,

it is easy to see that L = D−1/2LD1/2, therefore L and L are similar. In
particular, they have the same eigenvalues counted with multiplicity. This
allows us to apply the theory of symmetric matrices in order to study the
eigenvalues of L.

Remark 2.14. It is easy to see that the trace of L is equal to n. Therefore,
also the sum of its eigenvalues is equal to n.

Definition 2.15 ([2]). The unnormalized Laplacian associated to Γ is the
operator

∆ : C(V ) → C(V )

such that, given f : V → R and given i ∈ V ,

∆f(i) :=
∑

h∈H :hin∋i

(

∑

j′∈hin

f(j′)−
∑

j∈hout

f(j)

)

−
∑

h∈H :hout∋i

(

∑

j′∈hin

f(j′)−
∑

j∈hout

f(j)

)

.

Remark 2.16. The unnormalized Laplacian ∆ can be written in a matrix
form as ∆ = D − A.

Also, the Laplacian L is such that

Lf(i) =
1

deg(i)
·∆f(i) for all i ∈ V.
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Therefore, it is easy to see that, if Γ is d–regular,

λ is an eigenvalue for ∆ ⇐⇒ λ

d
is an eigenvalue for L

⇐⇒ d− λ is an eigenvalue for A.

Definition 2.17 ([11]). Let C(H) be the space of functions γ : H → R,
endowed with the scalar product

(γ, τ)H :=
∑

h∈H

γ(h)τ(h).

The hyperedge-Laplacian associated to Γ is the operator

LH : C(H) → C(H)

such that, given γ : H → R and given h ∈ H ,

LHγ(h) :=
∑

i input of h

∑

h′:i input γ(h
′)−∑h′′:i output γ(h

′′)

deg(i)

−
∑

j output of h

∑

ĥ′:j input γ(ĥ
′)−∑ĥ′′:j output γ(ĥ

′′)

deg(j)
.

2.3. Min-max principle

We recall that L has n real, non-negative eigenvalues that we denote by

λ1 ≤ . . . ≤ λn.

Analogously, LH has m real, non-negative eigenvalues,

µ1 ≤ . . . ≤ µm.

As shown in [11], the non-zero spectrum of L and LH coincides. Also, the
multiplicity of the eigenvalue 0 for L, denoted mV , and the multiplicity of 0
for LH , denoted mH , are such that

mV −mH = n−m.

6



By the Courant-Fischer-Weyl min-max principle, we can characterize all
eigenvalues of L and LH as follows. Given a function f ∈ C(V ), its Rayleigh
Quotient is

RQ(f) =

∑

h∈H

(

∑

i input of h f(i)−
∑

j output of h f(j)
)2

∑

i∈V deg(i)f(i)2

and similarly, given γ ∈ C(H),

RQ(γ) =

∑

i∈V
1

deg(i)
·
(

∑

h′:i input γ(h
′)−∑h′′:i output γ(h

′′)

)2

∑

h∈H γ(h)2
.

By the min-max principle, for k = 1, . . . , n,

λk = min
f∈C(V ), (f,fj)=0

j=1,...,k−1

RQ(f)

= max
f∈C(V ), (f,fl)=0

l=k,...,n

RQ(f),

where each fj is an eigenfunction of λj. Also, the functions fk realizing
such a minimum or maximum are the corresponding eigenfunctions of λk.
Analogously, for k = 1, . . . , m,

µk = min
γ∈C(H), (γ,γj)H=0

j=1,...,k−1

RQ(γ)

= max
γ∈C(H), (γ,γl)H=0

l=k,...,m

RQ(γ),

where each γj is an eigenfunction of µj, and the functions γk realizing such
a minimum or maximum are the corresponding eigenfunctions of µk. In
particular,

λ1 = min
f∈C(V )

RQ(f), µ1 = min
γ∈C(H)

RQ(γ)

and
λn = max

f∈C(V )
RQ(f) = max

γ∈C(H)
RQ(γ).
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2.4. Hypergraph transformations

Definition 2.18 ([4]). Given v̂ ∈ V , we let Γ− v̂ := (V̂ , Ĥ), where:

• V̂ = V \ {v̂}, and

• Ĥ = {h \ {v̂} : h ∈ H}.

Γ− v̂ is obtained from Γ by a weak vertex deletion of v̂. Γ is obtained from
Γ− v̂ by a weak vertex addition of v̂. We also allow empty hyperedges.

Lemma 2.19. If Γ̂ is obtained from Γ by weak-deleting r vertices,

λk(Γ) ≤ λk(Γ̂) ≤ λk+r(Γ) for all k ∈ {1, . . . , n− r}.

Proof. By the Cauchy Interlacing Theorem [15, Theorem 4.3.17],

λk(Γ) ≤ λk(Γ− v̂) ≤ λk+1(Γ) for all k ∈ {1, . . . , n− 1}.

By induction, one proves the claim.

Definition 2.20 ([2]). Let Γ = (V,H) be an oriented hypergraph with V =
{v1, . . . , vn} and H = {h1, . . . , hm}. We construct the dual hypergraph of Γ
as Γ⊤ := (V ′, H ′), where V ′ = {v′1, . . . , v′m}, H ′ = {h′

1, . . . , h
′
n} and

v′j ∈ h′
i as input (resp. output) ⇐⇒ vi ∈ hj as input (resp. output).

Remark 2.21. Clearly, I(Γ⊤) = I(Γ)⊤, mV (Γ) = mH(Γ
⊤) and mH(Γ) =

mV (Γ
⊤). For some hypergraphs, as we shall see in Lemma 2.22 below, also

the non-zero eigenvalues of Γ and Γ⊤ are related.

Lemma 2.22. Let Γ be d–regular and m–uniform. Then,

λ is an eigenvalue for Γ ⇐⇒ d

m
λ is an eigenvalue for Γ⊤.

Proof. The eigenvalues of Γ are the min-max of the Rayleigh Quotient

RQ(f : V → R) =
1

d
·

∑

h∈H

(

∑

vin∈h input f(vin)−
∑

vout∈h output f(vout)

)2

∑

i∈V f(i)2
.
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On the other hand, the eigenvalues of Γ⊤ are the min-max of

RQ(γ : H → R) =
1

m
·

∑

v′∈V ′

(

∑

h′
in:v input γ(h

′
in)−

∑

h′
out:v

′ output γ(h
′
out)

)2

∑

h′∈H′ γ(h′)2

=
d

m
· RQ(f : V → R).

Remark 2.23. In the case of graphs, Lemma 2.22 is trivial because every
graph is 2–uniform, therefore if a d–regular graph has a dual graph it must
have d = m = 2.

3. Eigenvalue 1 and duplicate vertices

In the case of graphs, it is well-known that duplicate vertices, that is,
vertices that share the same neighbors, produce the eigenvalue λ = 1 [16].
We show that this is true also for the more general case of hypergraphs.

Lemma 3.1. 1 is an eigenvalue for L with eigenfunction f if and only if 0
is an eigenvalue for A with eigenfunction f . In particular, the multiplicity
of 1 for L equals the multiplicity of 0 for A.

Proof. Observe that

Lf = f ⇐⇒ (Id−D−1A)f = f ⇐⇒ Id f −D−1Af = f ⇐⇒ Af = 0.

This proves the claim.

Definition 3.2. Two vertices i and j are duplicate vertices if the correspond-
ing rows/columns of the adjacency matrix are the same, that is, Ai = Aj and
therefore

Ail = Ajl for each l ∈ V.

In particular, Aij = Ajj = 0.

Remark 3.3. In the case of graphs, Definition 3.2 coincides with the usual
definition of duplicate vertices.

Lemma 3.4. If i and j are duplicate vertices, let f : V → R be such that
f(i) = −f(j) 6= 0 and f = 0 otherwise. Then, Lf = f , that is, 1 is an
eigenvalue and f is a corresponding eigenfunction.
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Proof. It is easy to see that, by definition of f ,

• Lf(i) = f(i),

• Lf(j) = f(j), and

• For each l 6= i, j,

Lf(l) = − 1

deg(i)

(

Alif(i) + Aljf(j)
)

= 0 = f(l).

Corollary 3.5. If there are n̂ duplicate vertices, then the multiplicity of 1 is
at least n̂− 1.

Proof. Assume, up to reordering, that 1, . . . , n̂ are duplicate vertices. For
each i = 1, . . . , n̂− 1, let fi : V → R be such that fi(i) = 1, fi(i + 1) = −1
and fi = 0 otherwise. Then, by Lemma 3.4 the fi’s are eigenfunctions
corresponding to the eigenvalue 1. Also, dim(span(f1, . . . , fn̂−1)) = n̂ − 1,
therefore the multiplicity of 1 is at least n̂− 1.

Also, [17, Lemma 10] for duplicate vertices can be generalized as follows.

Lemma 3.6. If i and j are duplicate vertices and f is an eigenfunction for
an eigenvalue λ 6= 1 of L, then

f(i) =
deg(j)

deg(i)
f(j).

Proof. An eigenvalue λ of L with eigenfunction f satisfies, for each vertex l,

λf(l) = Lf(l) = f(l)− 1

deg(l)

∑

k 6=l

Alkf(k),

that is,
1

deg(l)

∑

k 6=l

Alkf(k) = f(l)(1− λ).

Therefore, since this is true, in particular, for i and j and by assumption
these are duplicate vertices,

1

deg(i)

∑

k 6=i

Aikf(k) = f(i)(1− λ) =
deg(j)

deg(i)
f(j)(1− λ).
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Since by assumption λ 6= 1, this implies that

f(i) =
deg(j)

deg(i)
f(j).

4. Courant nodal domain theorems

We establish two Courant nodal domain theorems for oriented hyper-
graphs. In particular, in Section 4.1 we prove a signless nodal theorem that
holds for all oriented hypergraphs; in Section 4.2 we define positive and neg-
ative domains and we establish the corresponding Courant nodal domain
theorem for hypergraphs that have only inputs. We refer the reader to [18]
for nodal domain theorems on graphs.

4.1. Signless nodal domain theorem

Definition 4.1. Given a function f : V → R, we let supp(f) := {i ∈ V :
f(i) 6= 0} be the support set of f . A nodal domain of f is a connected
component of the hypergraph that has vertex set V and hyperedge set

H ∩ supp(f) := {h ∩ supp(f) : h ∈ H}.

Theorem 4.2. If f is an eigenfunction of the k-th eigenvalue λk and this
has multiplicity r, then the number of nodal domains of f is smaller than or
equal to k + r − 1.

Remark 4.3. For graphs, the above definition of nodal domain does not co-
incide with the classical one. The reason why we made this choice is that, if
we generalize the classical definitions using the positive and negative nodal
domains, then Theorem 4.2 cannot hold. In fact, the usual nodal domain
in graph theory is a connected component of the graph that has edge set
H ∩ supp+(f) or H ∩ supp−(f), where

supp±(f) := {i ∈ V : ±f(i) > 0}.

But using this definition for hypergraphs, the number of nodal domains might
be too large to satisfy Theorem 4.2. A counterexample is shown below.

Let Γ := (V,H), where V := {1, . . . , 8}, and

H :={{1, 2, 3, 4}, {3, 4, 5, 6}, {5, 6, 7, 8}, {7, 8, 1, 2}, {1, 3}, {1, 4}, {3, 5},
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{3, 6}, {5, 7}, {5, 8}},

with the assumption that all vertices are inputs for all hyperedges in
which they are contained. Then, one can check that mV = 1. However, the
corresponding eigenfunction f of λ1 = 0 defined by f(1) = f(2) = f(5) =
f(6) = 1 and f(3) = f(4) = f(7) = f(8) = −1 has 2 positive nodal domains
and 2 negative nodal domains. Thus, the total number of nodal domains of
f is 4, which is larger than k + r − 1 = 1 + 1 − 1 = 1. Definition 4.1 can
overcome this problem.

Proof of Theorem 4.2. Suppose the contrary, that is, f is an eigenfunction of
λk with multiplicity r, and f has at least k + r nodal domains whose vertex
sets are denoted by V1, . . . , Vk+r. For simplicity, we assume that

λk = λk+1 = . . . = λk+r−1 < λk+r.

Consider a linear function-space X spanned by f |V1, . . . , f |Vk+r
, where the

restriction f |Vi
is defined by

f |Vi
(j) =

{

f(j), if j ∈ Vi,

0, if j 6∈ Vi.

Since V1, . . . , Vk+r are pairwise disjoint, dimX = k + r. Given g ∈ X \ 0,
there exists (t1, . . . , tk+r) 6= ~0 such that

g =

k+r
∑

i=1

tif |Vi
.

Hence,

∑

h∈H

(

∑

i input of h

g(i)−
∑

j output of h

g(j)

)2

=
∑

h∈H

(

∑

i∈hin

k+r
∑

l=1

tlf |Vl
(i)−

∑

j∈hout

k+r
∑

l=1

tlf |Vl
(j)

)2

=
∑

h∈H

(

k+r
∑

l=1

tl

(

∑

i∈hin

f |Vl
(i)−

∑

j∈hout

f |Vl
(j)

))2
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=
∑

h∈H

k+r
∑

l=1

t2l

(

∑

i∈hin

f |Vl
(i)−

∑

j∈hout

f |Vl
(j)

)2

(∵ ∀h,
∑

i∈hin

f |Vl
(i)−

∑

j∈hout

f |Vl
(j) 6= 0 for at most one l)

=

k+r
∑

l=1

t2l
∑

h∈H

(

∑

i∈hin

f |Vl
(i)−

∑

j∈hout

f |Vl
(j)

)2

=
k+r
∑

l=1

t2l
∑

h∈H:h∩Vl 6=∅

(

∑

i∈hin

f |Vl
(i)−

∑

j∈hout

f |Vl
(j)

)2

=
k+r
∑

l=1

t2l
∑

h∈H:h∩Vl 6=∅

(

∑

i∈hin

f(i)−
∑

j∈hout

f(j)

)2

=

k+r
∑

l=1

t2l
∑

i∈Vl

f(i)







∑

h∈H:
hin∋i

(

∑

j′∈hin

f(j′)−
∑

j∈hout

f(j)

)

−
∑

h∈H:
hout∋i

(

∑

j′∈hin

f(j′)−
∑

j∈hout

f(j)

)







=

k+r
∑

l=1

t2l
∑

i∈Vl

f(i)λk deg(i)f(i)

=λk

k+r
∑

l=1

t2l
∑

i∈Vl

deg(i)f(i)2

=λk

k+r
∑

l=1

∑

i∈V

deg(i)

(

tlf |Vl
(i)

)2

=λk

∑

i∈V

deg(i)
k+r
∑

l=1

(

tlf |Vl
(i)

)2

=λk

∑

i∈V

deg(i)

(

k+r
∑

l=1

tlf |Vl
(i)

)2

(∵ V1, . . . , Vk+r are pairwise disjoint)

=λk

∑

i∈V

deg(i)g(i)2.

Therefore, RQ(g) = λk. Now, let Xk+r be the family of all (k + r)–
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dimensional subspaces of C(V ). By the min-max principle,

λk+r = min
X′∈Xk+r

max
g′∈X′\0

∑

h∈H

(

∑

i input of h g
′(i)−∑j output of h g

′(j)
)2

∑

i∈V deg(j)g′(i)2

≤ max
g′∈X\0

∑

h∈H

(

∑

i input of h g
′(i)−∑j output of h g

′(j)
)2

∑

i∈V deg(j)g′(i)2

= λk,

which leads to a contradiction.

4.2. Positive and negative nodal domain theorem

Definition 4.4. Given a function f : V → R, a positive nodal domain of
f is a connected component of the hypergraph that has vertex set V and
hyperedge set

H ∩ supp+(f) := {h ∩ supp+(f) : h ∈ H},

where the notion supp+(f) is already used in Remark 4.3. Analogously, a
negative nodal domain of f is a connected component of the hypergraph that
has vertex set V and hyperedge set H ∩ supp−(f).

Theorem 4.5. Let Γ = (V,H) be an oriented hypergraph with only inputs.
If f is an eigenfunction of the k-th eigenvalue λk and this has multiplicity r,
then the number of positive and negative nodal domains of f is smaller than
or equal to n− k + r.

Proof. Since Γ has only inputs, Aij < 0 whenever there is a hyperedge h ∈ H
that contains both i and j, and Aij = 0 otherwise. Thus, the connectivity in
the hypergraph Γ is equivalent to the connectivity in the weighted graph that
has adjacency matrix −A. Now, the symmetric matrix −L = D− 1

2AD− 1
2 −I,

which is isospectral to −L, is a Schrödinger operator on this weighted graph
in the sense of [18], and thus the nodal domain theorem for graphs in [18] can
be applied to derive that the number of nodal domains of an eigenfunction
of λk(L) = −λn−k+1(−L) does not exceed (n−k+1)+ r−1 = n−k+ r.

Remark 4.6. The upper bound n−k+r in Theorem 4.5 is non-increasing with
respect to the eigenvalues, while to the best of our knowledge, all existing
Courant nodal domain theorems in literature regarding positive and negative
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domains have non-decreasing upper bounds with respect to the eigenvalues
(i.e., larger eigenvalues usually have more nodal domains). The reason might
be that, in the graph case, the Courant nodal domain theorem of the signless
Laplacian can be derived by that of the Laplacian directly, and the signless
Laplacian has no geometric and PDE analogs, thus no author investigated
such a peculiar “reversed version”. To some extent, Theorem 4.5 can be
seen as the first Courant nodal domain theorem for the signless Laplacian on
hypergraphs.

Remark 4.7. In the first version of this manuscript, the proof of Theorem 4.5
was longer and more complicated. One of the anonymous referees noticed
that the results on Schrödinger operators for weighted graphs in [18] could
have been applied, and this allowed to prove Theorem 4.5 in a short and
elegant way. It is worth noting that the results in [18] can also be used in
order to recover the nodal domain theorem in its usual form, since for graphs
Aij = 1 if there is an edge between i and j, and Aij = 0 otherwise.

Remark 4.8. The Courant nodal domain theorems 4.2 and 4.5 also hold for
the unnormalized Laplacian. In order to see it, it is enough to remove the
vertex degrees in the proofs of theorems 4.2 and 4.5.

5. Generalized Cheeger problem

We propose a generalization of the classical Cheeger constant and we
prove that, for some classes of hypergraphs, the Cheeger inequalities involv-
ing the smallest non-zero eigenvalue of L, that we denote by λmin, can be
generalized.

Recall that, for a connected graph G, as shown in [14],

1. λmin = λ2 and the harmonic functions, i.e. the eigenfunctions of 0, are
exactly the constant functions.

2. The Cheeger constant is

h := min
∅6=S(V,

Vol(S)≤Vol(V )
2

#E(S, S̄)

Vol(S)

where, given ∅ 6= S ( V , S̄ := V \ S, #E(S, S̄) denotes the number
of edges with one endpoint in S and the other in S̄, and Vol(S) :=
∑

i∈S deg(i). The Cheeger inequalities hold:

1

2
h2 ≤ λ2 ≤ 2h. (1)

15



In particular, (1) is proved using the fact that, by the min-max prin-
ciple, knowing that the harmonic functions are exactly the constants,
one can write

λ2 = min
f∈C(V ),∑

i∈V deg(i)f(i)=0

RQ(f).

Also, in this case, the orthogonality to the constants allows us to say
that an eigenfunction f for λ2 has to achieve both positive and negative
values and therefore we can partition the vertex set as

V = {i : f(i) ≥ 0} ⊔ {j : f(j) < 0},

and the proof of (1) is also based on this.

For an oriented hypergraph Γ, things change because:

1. While for graphs we know that mV equals the number of connected
components of the graph, this is no longer true for hypergraphs. In
particular, a connected hypergraph might have mV = 0 and, on the
other hand, a hypergraph with one single connected component might
have mV > 1, as shown in [11]. Therefore, even if we assume connec-
tivity, we cannot infer that λmin = λ2.

2. The constants are eigenfunctions for 0 if and only if, for each hyperedge
h,

#hin = #hout,

as shown in [11]. Therefore, in general, we cannot use the orthogonality
to the constants, Furthermore, if we assume this condition and we
restrict to a smaller class of hypergraphs, we can state that

λ2 = min
f :

∑
i∈V f(i) deg(i)=0

RQ(f),

but we still cannot infer that λ2 = λmin. If mV > 1, we need to
consider also the orthogonality to the other eigenfunctions of 0, and
these eigenfunctions are not known a priori.

Therefore, the problem of generalizing (1) to the case of oriented hypergraphs
is very challenging. Here we generalize the Cheeger constant and we prove
that, for some classes of hypergraphs, either the lower bound or the upper
bound in (1) can be generalized.
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Definition 5.1. Given ∅ 6= S ⊆ V , we let

Vol(S) :=
∑

i∈S

deg(i),

we let

ẽ(S) :=
∑

h∈H

(

#inputs of h in S −#outputs of h in S

)2

and we let

ν̃(S) :=
ẽ(S)

Vol(S)
.

We define a generalization of the Cheeger constant as

h̃ := min
∅6=S⊆V :

VolS≤ 1
2
Vol V

ν̃(S).

Remark 5.2. In the case of graphs, each edge e has exactly one input and
exactly one output, therefore

(

#inputs of e in S −#outputs of e in S

)

∈ {0, 1},

which implies that

ẽ(S) =
∑

e∈E

(

#inputs of h in S −#outputs of h in S

)2

=
∑

e∈E

(

#inputs of h in S −#outputs of h in S

)

=
∑

e∈E with exactly
one endpoint in S

1

= #{e ∈ E with exactly one endpoint in S}
= #E(S, S̄).

Hence, h̃ coincides with the classical Cheeger constant when Γ is a graph.
The geometrical meaning of h̃, in particular, is the same as h: we want to
divide the vertex set into two disjoint sets that are as big as possible (in
terms of the volume) and so that there is as little flow as possible from one
to the other.
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Remark 5.3. If #V ≥ 2, let i be a vertex of minimum degree. Then deg(i) ≤
VolV/2 and

ν̃(S) =
deg(i)

deg(i)
= 1.

Therefore, for #V ≥ 2, the generalized Cheeger constant is well-defined and
h̃ ≤ 1.

Remark 5.4. We have that

h̃ = 0 ⇐⇒ ∃S ( V, S 6= ∅ : VolS ≤ VolV

2
and

∀h, #inputs of h in S = #outputs of h in S.

Remark 5.5. Given S ⊂ V , let fS : V → R be 1 on S and 0 on S̄. Then, the
Rayleigh Quotient of fS is given by

RQ(fS) =

∑

h∈H

(

#inputs of h in S −#outputs of h in S

)2

∑

i∈S deg(i)

= ν̃(S).

In particular,
λn ≥ RQ(fS) = ν̃(S). (2)

5.1. Cheeger upper bounds

Lemma 5.6. If mV = 1 and #hin = #hout for each h,

λmin ≤ 2h̃.

Proof. We generalize the proof of the upper Cheeger-bound in [19]. Given
S ⊆ V , let f : V → R be such that f := 1 on S and f := −α on S̄, where α
is such that

∑

i∈V deg(i)f(i) = 0, i.e.

α =

∑

i∈S deg(i)
∑

j∈S̄ deg(j)
=

VolS

Vol S̄
.

We also assume that VolS ≤ Vol S̄, so that α ≤ 1. Since we are assuming
that mV = 1, λmin = λ2. Also, since we are assuming that #hin = #hout
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for each h, the constants are the harmonic functions. By construction, f is
orthogonal to the constants, therefore

λmin ≤ RQ(f)

=

(1 + α)2 ·
(

∑

h∈H

(

#inputs of h in S −#outputs of h in S

)2)

∑

i∈S deg(i) +
∑

j∈S̄ deg(j) · α2

=

(1 + α)2 ·
(

∑

h∈H

(

#inputs of h in S −#outputs of h in S

)2)

∑

i∈S deg(i) +
∑

j∈S̄ deg(j) · α2

=

(1 + α) ·
(

∑

h∈H

(

#inputs of h in S −#outputs of h in S

)2)

VolS

≤
2 ·
(

∑

h∈H

(

#inputs of h in S −#outputs of h in S

)2)

VolS
= 2 · ν̃(S).

Since this is true for all such S, and since VolS ≤ Vol S̄ if and only if
VolS ≤ VolV/2,

λmin ≤ 2 · min
∅6=S⊆V :

VolS≤Vol S̄

ν̃(S) = 2h̃.

Lemma 5.7. If mV = 0,
λmin ≤ h̃.

Proof. Fix S that minimizes ν(S) and let fS : V → R be 1 on S and 0
otherwise. Then,

λmin = λ1 ≤ RQ(fS) = ν̃(S) = h̃.

Remark 5.8. If we compare Lemma 5.6 and Lemma 5.7 we can observe the
following. The upper bound 2h̃ in Lemma 5.6 has a multiplication by 2
coming from the fact that λ1 = 0 and, in particular, coming from the fact
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that we must impose orthogonality to the constants. When we don’t need to
impose any orthogonality, i.e. in the case mV = 0, the upper bound can be
simply h̃. We can therefore expect that, if λmin = λk, the orthogonality to
k − 1 different harmonic functions brings to k − 1 constrains on f : V → R

and therefore we may have something like λmin = λk ≤ F (k) · h̃.

5.2. Cheeger lower bounds

Remark 5.9. Let S ⊂ V be a minimizer for ν̃(S) and consider a weak vertex
addition Γ ∪ {v̂}. Then,

VolS(Γ ∪ {v̂}) = VolS(Γ) ≤ 1

2
VolV ≤ 1

2
Vol(V ∪ v̂)

and
h̃(Γ) = ν̃(S)(Γ) = ν̃(S)(Γ ∪ {v̂}) ≥ h̃(Γ ∪ {v̂}). (3)

Therefore, a weak vertex addition brings to a non-increasing h̃.

Lemma 5.10. If λmin = λk and there exists a graph G that can be obtained
from Γ by a weak deletion of r vertices, where r ≤ k − 2, then

1

2
h̃2 ≤ λmin.

Proof. By (3), (1) and Lemma 2.19,

1

2
h̃2 ≤ 1

2
h̃(G)2 ≤ λ2(G) ≤ λk−r(G) ≤ λk(Γ) = λmin.

We now prove a generalization of the Cheeger lower bound for a particular
class of oriented hypergraphs. Namely, we fix a hypergraph Γ = (V,H) such
that, for each h ∈ H ,

#hin = #hout =: c

is constant and does not depend on h. Since the number of inputs equals the
number of outputs, in each hyperedge we can couple each input with exactly
one output. In this way we get a graph G that we call a underlying graph of
Γ.
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Lemma 5.11. If λmin = λk and

#hin = #hout =: c

is constant for each h ∈ H, then λk−1(G) = 0 for each underlying graph G of
Γ. Furthermore, if there exists an underlying graph G with λk(G) > 0, then

λmin ≥ 1

2c
h̃2. (4)

Proof. Fix any underlying graph G = (V,E) of Γ. Observe that

degΓ(i) = degG(i) for each i ∈ V

and, for each hyperedge h of Γ, G has c edges. Therefore #E = c ·#H . Also,
we can see a function γ : H → R as a function γ : E → R that is equal to
γ(h) on each edge e coming from h. If τ : H → R is an harmonic function
for Γ,

∑

h′ : i input

τ(h′)−
∑

h′′ : i output

τ(h′′) = 0

for each i ∈ V . Therefore, τ is an harmonic function for G as well. Also,
if γ : H → R is orthogonal to such an harmonic function in Γ, then
∑

h∈H γ(h)τ(h) = 0. Therefore, also

∑

e∈E

γ(e)τ(e) =
∑

h∈H

c · γ(h)τ(h) = 0

and γ is also orthogonal to τ in G. This implies that λk−1(G) = 0.
Now, let γ : H → R be an eigenfunction for λk = λmin(Γ). By the

remarks above, γ is orthogonal to the constants also in G. Also, assume that
λk(G) > 0, so that λmin(G) = λk(G). Then,

λk = λmin(Γ) =

∑

i∈V
1

deg(i)
·
(

∑

hin:i input
γ(hin)−

∑

hout:v output γ(hout)

)2

∑

h∈H γ(h)2

= c ·

∑

i∈V
1

deg(i)
·
(

∑

hin:i input
γ(hin)−

∑

hout:i output
γ(hout)

)2

∑

h∈H c · γ(h)2
≥ c · λk(G)
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≥ c · h(G)2.

Also, given S that minimizes ν(S)(G), let Ē ⊂ E be the set of edges e such
that

#inputs of e in S −#outputs of e in S > 0

and let H̄ ⊂ H be the set of hyperedges corresponding to the edges in Ē.
Then,

h̃(Γ) ≤ ν̃(S)(Γ) =

∑

h∈H

(

#inputs of h in S −#outputs of h in S

)2

VolS

≤ #H̄ · c2
VolS

= c · #Ē

VolS
= c · ν(S)(G) =

c

2
h(G).

Therefore,

λmin(Γ) ≥
c

2
h(G)2 ≥ 1

2c
h̃(Γ)2.

Remark 5.12. Lemma 5.11 can be applied to the case where Γ is a graph,
by taking as underlying graph Γ itself. In this case, c = 1, therefore (4)
coincides with the usual Cheeger lower bound.

6. General bounds

We prove some general characterizations and bounds for λn and λmin that
do not involve h̃.

Lemma 6.1. Given i ∈ V and h ∈ H, let Ii : H → R and Ih : V → R be
defined by Ii(h) := Ih(i) := Iih. Then,

λmin = min
γ∈span{Ii : i∈V }

∑

i∈V
1

deg(i)
(Ii, γ)

2
H

(γ, γ)H
= min

f∈span{D−
1
2 Ih :h∈H}

∑

h∈H〈D− 1
2Ih, f〉2

〈f, f〉
(5)

and

λn = max
γ∈span{Ii : i∈V }

∑

i∈V
1

deg(i)
(Ii, γ)

2
H

(γ, γ)H
= max

f∈span{D− 1
2 Ih :h∈H}

∑

h∈H〈D− 1
2Ih, f〉2

〈f, f〉 ,

(6)
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where, for functions on the vertex set, (·, ·) is the scalar product in Definition
2.12 and 〈·, ·〉 is the scalar product without the weight (deg(1), . . . , deg(n)).
For functions on the hyperedge set, (·, ·)H is the scalar product in Definition
2.17.

Proof. We prove (5), the proof of (6) being similar. Observe that

∑

h∈H

(
∑

i∈hin
f(i)−∑i∈hout

f(i)
)2

∑

i∈V deg(i)f(i)2
=

∑

h∈H〈Ih, f〉2
(f, f)

.

Therefore, f is an eigenfunction corresponding to the eigenvalue 0 if and only
if 〈Ih, f〉 = 0 for all h ∈ H . Hence, the linear space of all harmonic functions
is the orthogonal complement of the set of functions Ih: (span{Ih : h ∈
H})⊥. By the min-max principle,

λmin = min
(f,g)=0

∀g∈(span{Ih:h∈H})⊥

∑

h∈H〈Ih, f〉2
(f, f)

= min
f∈span{D−1Ih:h∈H}

∑

h∈H〈Ih, f〉2
(f, f)

= min
f∈span{D−

1
2 Ih:h∈H}

∑

h∈H〈D− 1
2Ih, f〉2

〈f, f〉 .

Corollary 6.2. The following quantities are all no less than λmin and no
larger than λn:

(C1)

1 +
∑

j∈V

1

deg(i) deg(j)
A2

ij

for any i ∈ V ;

(C2)

1 +
1

n

∑

j∈V

∑

i∈V

1

deg(j) deg(i)
A2

ij

(C3)

1 +

∑

j∈V
1

deg(j)

∑

i∈V A2
ij

∑

j∈V deg(j)
.
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Moreover, λmin equals (C2) or (C3) if and only if

1 +
∑

j∈V

1

deg(i) deg(j)
A2

ij = λmin

for all i ∈ V . The same holds for λn.

Proof. In order to prove (C1), for each i ∈ V we consider the Rayleigh Quo-
tient γ = Ii and we apply Lemma 6.1. Furthermore, (C2) is the arithmetic
mean of the constants in (C1) over i ∈ V , while (C3) is the weighted arith-
metic mean of the constants in (C1) with the weights deg(1), . . . , deg(n).
This proves (C2) and (C3).

Definition 6.3. Given n, d ∈ N with n ≥ d ≥ 1, let

Cn,d := min
~v1,...,~vn∈Sd−1

max
ε1,...,εn∈{−1,1}

‖ε1~v1 + . . .+ εn~vn‖2,

where Sd−1 is the unit sphere of dimension (d − 1) in Rd and ‖ · ‖2 is the
standard Euclidean norm in Rd.

The quantity Cn,d is a known geometric constant [20–23] that charac-
terizes the best lower bound of the diameter of the d-dimensional zonotope
[−1

2
~v1,

1
2
~v1] + . . . + [−1

2
~vn,

1
2
~vn] generated by n unit vectors, where the sum-

mation here is the Minkowski sum of a finite number of segments. Since
zonotopes have many interesting geometric properties in the theory of poly-
hedron [24], the constant Cn,d is studied in discrete geometry. Interestingly,
the unconstrained quadratic maximization in zero-one variables has been
equivalently transformed into

max
ε1,...,εn∈{−1,1}

‖ε1~v1 + . . .+ εn~vn‖22

for certain ~v1, . . . , ~vn, bridging mathematical optimizations with zonotopes
[23]. Also, it is known that

Cn,n =
√
n < Cn,d

for all d < n.
The following proposition shows a relation between this constant and the

largest eigenvalue of the normalized Laplacian. To the best of our knowledge,
this result is new also for graphs.
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Proposition 6.4.

λn ≥ 1

n
· C2

n,n−mV
.

Proof. The proof is based on Lemma 6.1. Given i ∈ V , let ~vi :=
1√
deg(i)

Ii

and let ε1, . . . , εn ∈ {−1, 1} such that

‖ε1~v1 + . . .+ εn~vn‖22 = max
ε′1,...,ε

′
n∈{−1,1}

‖ε′1~v1 + . . .+ ε′n~vn‖22.

Let also

γ :=
ε1~v1 + . . .+ εn~vn

‖ε1~v1 + . . .+ εn~vn‖2
.

Then, by Lemma 6.1 and by the fact that dim(span(~v1, . . . , ~vn)) = n−mV ,

λn ≥
n
∑

i=1

〈~vi, γ〉2 =
n
∑

i=1

|εi|2〈~vi, γ〉2 ≥
1

n

(

n
∑

i=1

εi〈~vi, γ〉
)2

=
1

n

(

〈
n
∑

i=1

εi~vi, γ〉
)2

=
1

n
‖ε1~v1 + . . .+ εn~vn‖22 ≥

1

n
· C2

n,n−mV
.

We conclude this section by proving a general upper bound for λmin and
lower bound for λn that only involves the multiplicity of 0.

Theorem 6.5.

λmin ≤
n

n−mV

≤ λn

and one of them is an equality if and only if λmin = λn.

Proof. By Remark 2.14,
∑n

i=mV +1 λi = n. Hence, since there are exactly
n−mV non-zero eigenvalues λi with λmin ≤ λi,

(n−mV )λmin ≤
n
∑

i=mV +1

λi = n,

that is, λmin ≤ n/(n−mV ), with equality if and only if λmin = λn. Similarly,
one can see that λn ≥ n/(n−mV ), with equality if and only if λmin = λn.
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Example 6.6. A hypergraph Γ is such that the inequalities in Theorem 6.5
are equalities with mV = 0 if and only if

λ1 = . . . = λn = 1,

therefore if and only if L = Id, which happens if and only if Aij = 0 for all
i 6= j ∈ V , i.e. if and only if, for all i 6= j,

#{hyperedges in which i and j are anti-oriented}
= #{hyperedges in which i and j are co-oriented}.

This is the case, for instance, if Γ is a hypergraph on n vertices and n
hyperedges such that each hyperedge contains exactly one vertex.

Example 6.7. Let Γ be a hypergraph for which the inequalities in Theorem
6.5 are equalities, with mV = n− 1. Then,

λ1 = . . . = λn−1 = 0 and λn = n. (7)

Since we always have
∑n

i=1 λi = n, λn = n implies (7). By [12, Corollary 2],
this happens if and only if each hyperedge contains all vertices.

Example 6.8. If Γ is given by the union of r copies of the complete graph
Kn/r, then mV = r and all non-zero eigenvalues are

λ =
n/r

n/r − 1
=

n

n− r
,

with multiplicity n− r.

Remark 6.9. By [12, Lemma 4.2], λn ≤ max
h∈H

|h|. Together with Theorem 6.5,

this implies that
n

n−mV

≤ max
h∈H

|h|.

Therefore,

mV ≤ n



1− 1

max
h∈H

|h|



 .

In the case of graphs, this says that mV ≤ n/2 and it is immediate to check,
since we are assuming that there are no isolated vertices.
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7. Coloring number

We now generalize the notion of coloring number and we show that it is
related to the eigenvalues of L.

Definition 7.1. A proper k-coloring of the vertices is a function f : V →
{1, . . . , k} such that f(i) 6= f(j) for all i 6= j ∈ h and for all h ∈ H . The
vertex coloring number of Γ, denoted χ(Γ), is the minimal k such that there
exists a proper k-coloring.

Remark 7.2. Observe that the coloring number of an oriented hypergraph
Γ = (V,H) equals the coloring number of a graph G = (V,E) that has
the same vertices as Γ and has, instead of each hyperedge h, a complete
sub-graph K|h|. Hence, the problem of computing the coloring number of a
hypergraph reduces to the graph case.

Remark 7.3. If Γ̂ is obtained from Γ by deleting vertices, then χ(Γ̂) ≤ χ(Γ).

Theorem 7.4. For any oriented hypergraph Γ,

λn ≥ 1 +

(

1− ẽ(S)

Vol(S)

)

1

χ(S)− 1
≥ λ1, ∀S ⊆ V, S 6= ∅.

In particular,

λn ≥ χ(Γ)

χ(Γ)− 1
− ẽ(V )

Vol(V )
· 1

χ(Γ)− 1
≥ λ1 and λn ≥ χ− h̃′

χ− 1
,

where h̃′ := min
∅6=S⊆V

ẽ(S)
Vol(S)

.

Proof. Let χ := χ(Γ) and let V1, . . . , Vχ be the coloring classes of V . Given
k ∈ {1, . . . , χ}, define a function f : V → R by

f(i) :=

{

t if i ∈ Vk,

1 if i 6∈ Vk.

Since Vk ∩ h has at most one element for all h ∈ H ,

(

∑

j∈hin

f(j)−
∑

j′∈hout

f(j′)

)2

=











(t+#hin − 1−#hout)
2 if Vk ∩ hin 6= ∅,

(t+#hout − 1−#hin)
2 if Vk ∩ hout 6= ∅,

(#hout −#hin)
2 otherwise.
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Hence,

∑

h∈H

(

∑

j∈hin

f(j)−
∑

j′∈hout

f(j′)

)2

=
∑

hin∩Vk 6=∅

(t+#hin − 1−#hout)
2

+
∑

hout∩Vk 6=∅

(t+#hout − 1−#hin)
2

+
∑

h∩Vk=∅

(#hout −#hin)
2

and
∑

i∈V

deg(i)f(i)2 = t2
∑

i∈Vk

deg(i) +
∑

i 6∈Vk

deg(i).

Since

λn ≥
∑

h∈H

(

∑

j∈hin
f(j)−∑j′∈hout

f(j′)
)2

∑

i∈V deg(i)f(i)2
≥ λ1,

by taking the summation of the above inequalities over all k’s we obtain

λn

χ
∑

k=1

(

t2
∑

i∈Vk

deg(i) +
∑

i 6∈Vk

deg(i)

)

≥
χ
∑

k=1

∑

hin∩Vk 6=∅

(t+#hin − 1−#hout)
2

+

χ
∑

k=1

∑

hout∩Vk 6=∅

(t+#hout − 1−#hin)
2

+

χ
∑

k=1

∑

h∩Vk=∅

(#hout −#hin)
2.

This can be simplified as

λn

(

∑

i∈V

deg(i)(t2 − 1) + χ
∑

i∈V

deg(i)

)

≥
∑

h∈H

#hin(t+#hin − 1−#hout)
2

+
∑

h∈H

#hout(t+#hout − 1−#hin)
2

+
∑

h∈H

(χ−#hin −#hout)(#hout −#hin)
2
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= (t− 1)2
∑

h∈H

(#hin +#hout)

+ (2(t− 1) + χ)
∑

h∈H

(#hout −#hin)
2.

Since Vol(V ) =
∑

h∈H(#hin +#hout) and ẽ(V ) =
∑

h∈H(#hout −#hin)
2,

λnVol(V )(t2 − 1 + χ) ≥ (t− 1)2Vol(V ) + (2(t− 1) + χ)ẽ(V ),

hence

λn ≥ (t− 1)2Vol(V ) + (2(t− 1) + χ)ẽ(V )

Vol(V )(t2 − 1 + χ)
= 1+

ẽ(V )− Vol(V )

Vol(V )
·2(t− 1) + χ

t2 − 1 + χ
.

Now, using the fact that

max
t∈R

2(t− 1) + χ

t2 − 1 + χ
= 1 at t = 1 and min

t∈R

2(t− 1) + χ

t2 − 1 + χ
=

−1

χ− 1
at t = 1−χ,

it follows that

λn ≥
{

ẽ(V )
Vol(V )

if ẽ(V ) ≥ Vol(V ),
χ

χ−1
− ẽ(V )

Vol(V )
· 1
χ−1

if ẽ(V ) < Vol(V ).
(8)

In summary,

{

χ

χ− 1
− ẽ(V )

Vol(V )
· 1

χ− 1
,

ẽ(V )

Vol(V )

}

⊂ [λ1, λn].

Now, given V ′ ⊂ V , let H ′ := {h ∩ V ′ : h ∈ H}. Then, Γ′ := (V ′, H ′) is
the restricted sub-hypergraph of H on V ′. By Lemma 2.19,

λn(Γ) ≥ λmax(Γ
′) ≥ λ1(Γ

′) ≥ λ1(Γ).

Consequently,

{

ẽ(S)

Vol(S)
,

χ(S)

χ(S)− 1
− ẽ(S)

Vol(S)
· 1

χ(S)− 1

∣

∣

∣

∣

S ⊂ V, S 6= ∅
}

⊂ [λ1(Γ), λn(Γ)].

This completes the proof.
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Corollary 7.5. Let Γ be an oriented hypergraph such that |#hin−#hout| = c
for all h ∈ H, for some c ≥ 0. Then,

λn ≥ 1 +
Vol(V )− c2 ·m

Vol(V )
· 1

χ(V )− 1
≥ λ1, (9)

where m := #H. If we further assume that Γ is r–uniform (where r = c+2l
for some l ∈ Z≥0), then

λn ≥ χ

χ− 1
− c2

r
· 1

χ− 1
≥ λ1. (10)

Proof. Since |#hin −#hout| = c for all h ∈ H , ẽ(V ) = c2 ·m. By Theorem
7.4, we get (9). The further assumption that Γ is r–uniform implies r ·m =
Vol(V ). Thus,

ẽ(V )

Vol(V )
=

c2

r

and we immediately obtain (10).

Corollary 7.6. Let Γ = (V,H) be an oriented hypergraph such that #hin = c
and #hout = 0 for all h ∈ H, for some c ∈ N. Then,

λ1 ≤
χ(Γ)− c

χ(Γ)− 1
and λn = c. (11)

If, in addition, Γ is c–complete, then χ(Γ) = n and

λ1 = . . . = λn−1 =
n− c

n− 1
.

Proof. By construction, Γ is a c–uniform, bipartite hypergraph. Therefore,
by [12, Lemma 4.2], λn = c. Also, by Corollary 7.5 with r = c, we get that

λ1 ≤
χ− c

χ− 1
.

If, in addition, Γ is c–complete, clearly χ(Γ) = n and each vertex has degree
(

n−1
c−1

)

. Now, for each vertex k, let fk : V → R be defined by fk(k) := n − 1
and fk(i) := −1 for i 6= k. Then,

Lfk(k) =
1

deg(k)

∑

h∋k

(n− 1 + (c− 1)(−1)) = n− c =
n− c

n− 1
· fk(k)
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and for i 6= k,

Lfk(i) =
1

deg(i)





∑

h∋i,h 6∋k

(−c) +
∑

h⊃{i,k}

(n− c)





= −c +
1

(

n−1
c−1

) ·
(

n− 2

c− 2

)

· n

=
n− c

n− 1
· fk(i).

Therefore Lfk = fk · ((n− c)/(n− 1)), which proves that (n− c)/(n− 1) is
an eigenvalue and the functions fk are corresponding eigenfunctions. Now,
since

dim(span(f1, . . . , fn)) = n− 1

and since λn = c, the multiplicity of (n− c)/(n− 1) is n− 1. Hence,

λ1 = . . . = λn−1 =
n− c

n− 1
.

Corollary 7.7. If #hin = #hout for all h ∈ H,

λn ≥ χ(Γ)

χ(Γ)− 1
= λn(Kχ),

where Kχ is the complete graph on χ vertices.

Proof. It follows directly by taking c = 0 in Corollary 7.5. It is known that a
complete graphKN on N vertices has the maximal eigenvalue N/(N−1).

Corollary 7.8. If there exists a hypergraph Γ̂ obtained from Γ by weak-vertex
deletion of some vertices, such that

#hin(Γ̂) = #hout(Γ̂) for each h ∈ H,

then

λn ≥ χ(Γ)

χ(Γ)− 1
.
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Proof. Assume that Γ̂ is obtained from Γ by weak-vertex deletion of r ver-
tices. By Lemma 2.19 and Corollary 7.7,

λn(Γ) ≥ λn−r(Γ̂) = λn(Γ̂) ≥
χ(Γ̂)

χ(Γ̂)− 1
.

Now, since χ(Γ̂) ≤ χ(Γ),

χ(Γ̂)

χ(Γ̂)− 1
≥ χ(Γ)

χ(Γ)− 1
.

Hence,

λn ≥ χ(Γ)

χ(Γ)− 1
.

Remark 7.9. The results on the chromatic number above closely relate to the
Hoffman’s bound for graph, which states that, for a graph G,

χ(G) ≥ 1− λmax(A)

λmin(A)
,

where λmax(A) and λmin(A) are the largest and the smallest eigenvalues of
the adjacency matrix [25, 26].

In the setting of Corollary 7.7, when does λn = χ(Γ)/(χ(Γ) − 1) hold?
The next proposition answers this question.

Proposition 7.10. For a hypergraph Γ with #hin = #hout for each h and
chromatic number χ, the following are equivalent:

1. λn = χ/(χ− 1).

2. The vertex set can be partitioned as V = V1 ⊔ . . . ⊔ Vχ such that:

• #(h ∩ Vk) ∈ {0, 1}, for all h and for all k,

• (χ− 1)| deg(i) for all i ∈ V , and

• For all k and for all i 6∈ Vk,

#{h ∈ H : i and h ∩ Vk anti-or.} −#{h ∈ H : i and h ∩ Vk co-or.}

=
deg(i)

χ− 1
.
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Proof. We first show a direct proof of Corollary 7.7, which states that λn ≤
χ/(χ− 1). Let V1, . . . , Vχ be the coloring classes of V . Given k ∈ {1, . . . , χ},
define a function fk : V → R by

fk(i) =

{

χ− 1, if i ∈ Vk

−1 if i 6∈ Vk.

Since #hin = #hout and Vk ∩ h has at most one element for all h ∈ H ,

(

∑

j∈hin

fk(j)−
∑

j′∈hout

fk(j
′)

)2

=

{

χ2 if Vk ∩ h 6= ∅,
0 otherwise.

Hence,

λn ≥
∑

h∈H

(

∑

j∈hin
fk(j)−

∑

j′∈hout
fk(j

′)
)2

∑

i∈V deg(i)fk(i)2

=

χ2
∑

h∈H:
h∩Vk 6=∅

1
∑

i∈Vk
deg(i)(χ− 1)2 +

∑

i 6∈Vk
deg(i)

. (12)

That is, for all k,

λn ·
(

∑

i∈Vk

deg(i)((χ− 1)2 − 1) +
∑

i∈V

deg(i)

)

≥ χ2
∑

i∈Vk

deg(i). (13)

Summing up the above inequalities for all k,

λn ·
(

∑

i∈V

deg(i)((χ− 1)2 − 1) + χ
∑

i∈V

deg(i)

)

≥ χ2
∑

i∈V

deg(i),

and thus λn(χ− 1) ≥ χ.
Now, it is clear that λn = χ/(χ−1) if and only if (13) (equivalently (12))

is an equality for all k. Therefore, λn = χ/(χ − 1) if and only if fk is an
eigenfunction for λn for each k = 1, . . . , χ. This is the case if and only if

Lfk =
χ

χ− 1
fk, k = 1, . . . , χ

that is,
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Lfk(i) =
1

deg(i)

(

∑

hin∋i

χ−
∑

hout∋i

(−χ)

)

= χ =
χ

χ− 1
fk(i)

for all k and for all i ∈ Vk. Thus, λn = χ/(χ− 1) is equivalent to

Lfk(i) =
χ

χ− 1
fk(i), for all k and for all i 6∈ Vk.

That is,

1

deg(i)

∑

h∋i, h∩Vk 6=∅

(

∑

i and h∩Vk co-or.

χ+
∑

i and h∩Vk anti-or.

(−χ)

)

= − χ

χ− 1
,

which is equivalent to

#{h ∈ H : i and h∩Vk anti-or.}−#{h ∈ H : i and h∩Vk co-or.} =
deg(i)

χ− 1
.

In particular, (χ− 1)| deg(i) for all i.

Corollary 7.11. Given two natural numbers n ≥ 2 and c ≥ 1, let Γ :=
(V,H) be the 2c–complete hypergraph defined by V := {1, . . . , n} and

H := {(hin, hout) : #hin = #hout = c, hin ∩ hout = ∅}.

Then, λ1 = 0 and λ2 = . . . = λn = n/(n− 1).

Proof. Clearly, χ(Γ) = n. Now, for each k = 1, . . . , n, let Vk := {k}. Then,
for all i and k:

deg(i) =

(

n− 1

2c− 1

)

(

2c
c

)

2
,

#{h ∈ H : i and h ∩ Vk anti-oriented} =

(

n− 2

2c− 2

)

(

2c
c

)

2

c

2c− 1
,

#{h ∈ H : i and h ∩ Vk co-oriented} =

(

n− 2

2c− 2

)

(

2c
c

)

2

c− 1

2c− 1
.

Thus, (n− 1)| deg(i) for all i, and

#{h ∈ H : i and h ∩ Vk anti-or.} −#{h ∈ H : i and h ∩ Vk co-or.}
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=

(

n− 2

2c− 2

)

(

2c
c

)

2

1

2c− 1
=

1

n− 1

(

n− 1

2c− 1

)

(

2c
c

)

2
=

deg(i)

n− 1
.

By Proposition 7.10, λn = n/(n− 1).
Now, observe that f = 1 is such that Lf = 0, which means that λ1 = 0

and f is a corresponding eigenfunction. Therefore,

n =

n
∑

i=1

λi =

n
∑

i=2

λi ≤ (n− 1)λn = n,

which implies that λ2 = . . . = λn = n/(n− 1).

Remark 7.12. For c = 1, Corollary 7.11 gives a complete graph of order n.
For c ≥ 2, Corollary 7.11 gives a 2c–uniform and 1

2

(

n−1
2c−1

)(

2c
c

)

–regular oriented
hypergraph.

8. Cartesian product of hypergraphs

In this last section, we define the Cartesian product of hypergraphs and
we study the spectrum of the unnormalized Laplacian in this case.

Definition 8.1. Given two oriented hypergraphs Γ1 = (V1, H1) and Γ2 =
(V2, H2), their Cartesian product Γ := (V,H), denoted Γ1�Γ2, is defined by
letting V := V1 × V2 and

H := {h : hin = {v} × h2
in , hout = {v} × h2

out or hin = h1
in × {u},

hout = h1
out × {u}, for some v ∈ V1, u ∈ V2, h

i ∈ Hi}.

Proposition 8.2. Let

λ1 ≤ . . . ≤ λn1 and µ1 ≤ . . . ≤ µn2

be the spectra of the unnormalized Laplacians for Γ1 = (V1, H1) and Γ2 =
(V2, H2), respectively, where n1 = #V1 and n2 = #V2. Then, the spectrum of
the unnormalized Laplacian of the Cartesian product Γ1�Γ2 is given by

λi + µj, for i = 1, . . . , n1 and j = 1, . . . , n2.
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Proof. Denote by ∆(Γi) the unnormalized Laplacian of Γi, for i = 1, 2. Let
f be an eigenfunction of ∆(Γ1) with eigenvalue λ, that is, ∆(Γ1)f = λf .
Similarly, fix g and µ such that ∆(Γ2)g = µg. According to Definition 2.15,

∑

h1
in∋i





∑

i′∈h1
in

f(i′)−
∑

i′′∈h1
out

f(i′′)



−
∑

h1
out∋i





∑

i′∈h1
in

f(i′)−
∑

i′′∈h1
out

f(i′′)



 = λf(i)

and

∑

h2
in∋j





∑

j′∈h2
in

g(j′)−
∑

j′′∈h2
out

g(j′′)



−
∑

h2
out∋j





∑

j′∈h2
in

g(j′)−
∑

j′′∈h2
out

g(j′′)



 = µg(j)

for all i = 1, . . . , n1 and j = 1, . . . , n2. Now, let f ⊗ g : V1 × V2 → R be
defined by

f ⊗ g (i, j) := f(i) · g(j).
Then, for all (i, j) ∈ V1 × V2,

∆(f ⊗ g)(i, j)

=
∑

hin∋(i,j)





∑

(i′,j′)∈hin

f ⊗ g(i′, j′)−
∑

(i′,j′)∈hout

f ⊗ g(i′, j′)





−
∑

hout∋(i,j)





∑

(i′,j′)∈hin

f ⊗ g(i′, j′)−
∑

(i′,j′)∈hout

f ⊗ g(i′, j′)





=
∑

h1
in
∋i





∑

i′∈h1
in

f(i′)g(j) −
∑

i′∈h1
out

f(i′)g(j)





+
∑

h2
in∋j





∑

j′∈h2
in

f(i)g(j′)−
∑

j′∈h2
out

f(i)g(j′)





−
∑

h1
out∋i





∑

i′∈h1
in

f(i′)g(j) −
∑

i′∈h1
out

f(i′)g(j)





+
∑

h2
out∋j





∑

j′∈h2
in

f(i)g(j′)−
∑

j′∈h2
out

f(i)g(j′)





36



=g(j)





∑

h1
in∋i





∑

i′∈h1
in

f(i′)−
∑

i′′∈h1
out

f(i′′)



−
∑

h1
out∋i





∑

i′∈h1
in

f(i′)−
∑

i′′∈h1
out

f(i′′)









+ f(i)





∑

h2
in∋j





∑

j′∈h2
in

g(j′)−
∑

j′′∈h2
out

g(j′′)



−
∑

h2
out∋j





∑

j′∈h2
in

g(j′)−
∑

j′′∈h2
out

g(j′′)









=g(j)λf(i) + f(i)µg(j) = (λ+ µ)(f ⊗ g)(i, j).

Hence, λ+ µ is an eigenvalue of ∆(Γ1�Γ2), with eigenfunction f ⊗ g. Since
this is true for all such f , λ, g and µ, this proves the claim.
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