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A hierarchical semantic-based distance for
nominal histogram comparison

Camille Kurtz, Student Member, IEEE, Pierre Gançarski, Nicolas Passat and Anne Puissant

Abstract—We propose a new distance, devoted to the comparison of nominal histograms equipped with a dissimilarity matrix
providing the correlations between the bins. The computation of this distance is based on a hierarchical strategy, progressively
merging the considered instances (and their bins) according to their semantic proximity. For each level of this hierarchy, a standard
bin-to-bin distance is computed between the corresponding pair of histograms. In order to obtain the proposed distance, these
bin-to-bin distances are then fused by taking into account the semantic coherency of their associated level. From this modus
operandi, the proposed distance can handle histograms which are generally compared thanks to cross-bin distances. It preserves
the advantages of such cross-bin distances (namely robustness to histogram translation and histogram bin size), while inheriting
from the low computational cost of bin-to-bin distances. Validations in the context of geographical data classification emphasize
the relevance and usefulness of the proposed distance.

Index Terms—histogram distance, nominal histogram, semantic-based distance, clustering.
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1 INTRODUCTION
1.1 Context

AHISTOGRAM represents the distribution of quan-
tified values of a measurement among the sam-

ples of a studied set. Such a set can gather, for
example, the results of an experiment, or a popu-
lation of individuals. In various domains, including
the data mining field, it is necessary to classify large
datasets, in which each data is characterized by one
or more histograms. For instance, it is often necessary
to classify populations in terms of the distribution of
a particular measurement/feature (e.g., the distribu-
tion of the size of the individuals contained in these
populations). Histograms are then useful structures to
model numerous kinds of data and enable to take into
consideration their statistical properties.

There exist different kinds of histograms related
to specific types of measurements: nominal, ordinal
(plus modulo, which are a special case of ordinal
measurements) [1]. In a nominal measurement, each
value is named and/or can represent an instance of a
particular semantic concept (e.g., the concept FRUIT
can take values/instances such as Lemon, Quince,
Apple, Grapefruit, Apricot, etc.). Then, a nominal type
histogram can model the composition of a shopping
cart according to the number and the kinds of fruits
it contains (see Figure 1(a)). In such histogram, the
measurement levels can be permuted since there is
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no (total) ordering among them (shuffling invariance
property). On the contrary, in an ordinal measure-
ment, the values are totally ordered (e.g., the price of
fruits can be quantized into 10 discrete values between
1 and 10 pounds). Thus, an ordinal type histogram can
model the composition of a shopping cart according
to the prices of the articles (see Figure 1(b)).

Measuring the similarity between histograms is a
crucial operation in various domains such as clus-
tering [2], [3], pattern classification and recognition
[4], [5], text categorization [6], [7], time series analysis
[8], or image retrieval [9], [10]. Indeed, the distance
between pairs of histograms enables to assess the
similarity of their corresponding statistical properties.
For the last decades, several measures of similarity
between histograms have been proposed. Histogram
distances can be divided into two categories: bin-to-bin
(or vector) and cross-bin (or probabilistic) distances. The
bin-to-bin distances consider a histogram as a fixed-
dimensional vector and only compare the content
of corresponding histogram bins, while the cross-bin
distances consider a histogram as an estimation of a
probability density function and compare corresponding
bins as well as non-corresponding ones.

1.2 Motivation

In this work, we consider the comparison of possi-
bly large datasets where data are characterized by
nominal histograms for which (semantic) proximity
information between the bins can be provided. In
order to illustrate such histograms, let us go back to
the example depicted in Figure 1(a). Each bin of the
histogram represents the proportion of a kind of fruit
which is an instance of the semantic concept FRUIT.
Since Lemon and Orange are both citrus fruits, the
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Fig. 1. Two kinds of histograms modelling the compo-
sition of a shopping cart. (a) Nominal histogram mod-
elling the distribution of the instances of the semantic
concept FRUIT. (b) Ordinal histogram modelling the
distribution of the prices of articles.

instance Lemon could be considered as closer to the
instance Orange than the instance Plum. It is then
possible to evaluate semantic similarities between the
bins composing these nominal histograms. In this
context, it can be advisable to take into account such
kinds of semantic similarities to improve the compar-
ison of these histograms.

On one hand, the bin-to-bin distances are well
fitted to process large datasets, in particular thanks
to their low computational cost. Nevertheless, by
definition, such distances cannot consider the seman-
tic proximity between the different bins. (In partic-
ular, they suffer from both problems of histogram
translations and bin size changes.) For instance, let
us consider the three shopping carts C1, C2, C3, pro-
vided in Table 1. Their fruits can take values in
{Lemon, Quince, . . . , Plum}. Then, the composition
of a shopping cart Ci can be modelled by a his-
togram Hi(#Lemon,#Quince, . . . ,#Plum) where #x
denotes the number of occurrences of the instance x in
the shopping cart Ci. With a standard bin-to-bin dis-
tance, for instance the Manhattan one dL1

, there is the
same distance between H1 and H2 than between H1

and H3 (dL1
(H1, H2) = dL1

(H1, H3) = 16). However,
C1 is semantically closer to C3 than to C2 because C1

and C3 are both citrus fruits shopping carts.
On the other hand, cross-bin distances, which com-

pare more exhaustively both corresponding and non-
corresponding bins, enable to consider the semantic
proximity between the different bins. Practically, this
can be done by assigning, to each pair of instances,
a weight (i.e., a numerical value) modelling the de-

TABLE 1
Histograms modelling the composition of three

shopping carts C1, C2, C3, composed each of 10 fruits.
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H2 1 0 0 0 0 0 0 0 1 8
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gree of semantic proximity between the compared
instances. For instance, in the shopping cart exam-
ple, the weight associated to the couple of instances
(Lemon, Orange) should be lower than the one associ-
ated to the couples (Lemon, Plum) or (Orange, Plum).
The counterpart of such strategies is the quadratic cost
induced by these multiple bin comparisons.

Based on these considerations, it appears that, when
comparing nominal histograms, the handling of se-
mantic proximity between their instances seems in-
compatible with a low computational cost. In this
work, we propose a new distance addressing this
issue. Its computation is based on a hierarchical strat-
egy, progressively merging the considered instances
(and their bins) according to their semantic proximity.
For each level of this hierarchy, a standard bin-to-
bin distance is computed between the corresponding
pair of histograms. In order to obtain the proposed
distance, these bin-to-bin distances are then fused by
taking into account the semantic coherency of their
associated level. From this modus operandi, the pro-
posed distance preserves the advantages of cross-bin
distances (namely robustness to histogram translation
and histogram bin size), while inheriting from the low
computational cost of bin-to-bin distances.

1.3 Outline
This article is organized as follows. Section 2 intro-
duces useful definitions and notations. Section 3 re-
calls different histogram similarity measures proposed
in the literature. Section 4 describes the proposed
hierarchical distance, dedicated to compare nominal
histograms. Section 5 gathers experiments enabling to
assess the relevance of this distance. Conclusions and
perspectives will be found in Section 6.

2 DEFINITIONS

An interval on R, bounded by a, b ∈ R, will be noted
[a, b] while an interval on Z, bounded by a, b ∈ Z,
will be noted [[a, b]]. A list Lv of v elements ei with
i ∈ [[0, v− 1]] is denoted by 〈ei〉v−10 = 〈e0, e1, . . . , ev−1〉.

2.1 Histogram
For the sake of readability, we follow the same nota-
tions as in [1] and several subsequent articles. Let x
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be a measurement, or an attribute, which can take v
values in the set X = {x0, x1, . . . , xv−1}. Let A be a set
of n elements/objects. Each element of A is associated
to a value a by the measurement x. The “observation”
set resulting from this measurement is denoted by
Ax = {a1, a2, . . . , an} where ai ∈ X . The histogram
of the set Ax according to the measurement x of A,
noted H(x,A) is a list of v elements counting the
number of occurrences of the values of x among the
ai. For the sake of concision, we will use H(A) instead
of H(x,A). The histogram H(A) can be defined as
H(A) = 〈H0(A), H1(A), . . . ,Hv−1(A)〉 where Hi(A),
i ∈ [[0, v − 1]], denotes the number of elements of Ax
that have value xi. Each Hi(A) can be computed as

Hi(A) =

n∑
j=1

cij with cij =

{
1 if aj = xi
0 otherwise (1)

In the literature, the different Hi(A) are generally
called the bins of the histogram H(A). If Pi(A) de-
notes the probability of samples in the i-th bin, then
Pi(A) = Hi(A)/n. Then, P (A) can be considered as a
normalized histogram.

The v values of the measurement x are generally
called measurement levels when they are used in H(A)
to index the distributions of the sample values. With-
out loss of generality, the v values of the measurement
x are also called instances when they are used in H(A)
to index the distributions of the possible instances of
a semantic concept.

2.2 Distance between measurement levels
A histogram H(A) represents the distribution and the
frequency of quantified values of a measurement x
among the samples of a set A. Corresponding to the
two types of measurements (i.e., ordinal and nominal),
we define two functions dord and dnom which mea-
sure the difference between two measurement levels
xi, xj ∈ X . In the literature, the difference between
two measurement levels is called the ground distance.

2.2.1 Ordinal measurement
In an ordinal measurement, the values xi are totally
ordered and it is possible to determine a basic distance
∆(xi, xi+1) ∈ R+ between each successive levels xi and
xi+1 of the measurement. Thus, we define the ground
distance between two ordinal measurement values xi
and xj as the sum of the basic distances between each
successive levels from i to j:

dord(xi, xj) =

j−1∑
k=i

∆(xk, xk+1) (2)

When the ordinal measurement values are numerical
ones (i.e., each xi ∈ R), the ground distance between
two ordinal measurement values is the absolute dif-
ference between them:

dord(xi, xj) =

j−1∑
k=i

|xk − xk+1| = |xi − xj | (3)

TABLE 2
Dissimilarity matrixMdis associated to the instances

of the concept FRUIT. As dnom is symmetric,Mdis is a
symmetric matrix (we only depict its upper right part).
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Lemon 0.00 0.80 0.90 0.20 0.70 0.80 0.90 0.80 0.10 0.85

Quince − 0.00 0.20 0.75 0.40 0.20 0.45 0.50 0.78 0.48

Apple − − 0.00 0.90 0.40 0.02 0.50 0.45 0.95 0.45

Grapefruit − − − 0.00 0.92 0.85 0.75 0.90 0.15 0.95

Apricot − − − − 0.00 0.40 0.15 0.07 0.90 0.10

Pear − − − − − 0.00 0.40 0.40 0.90 0.40

Peach − − − − − − 0.00 0.10 0.90 0.05

Cherry − − − − − − − 0.00 0.90 0.10

Orange − − − − − − − − 0.00 0.90

Plum − − − − − − − − − 0.00

2.2.2 Nominal measurement

In a nominal measurement, two cases can occur:
1) It is not possible to determine proximity relations
between the values xi. Thus, we define the ground
distance between them as either match or mismatch:

dnom(xi, xj) =

{
0 if xi = xj
1 otherwise (4)

2) It is possible to determine semantic proximity rela-
tions between the values xi. As the previous definition
of dnom does not enable to consider the semantic
proximity between the bins of a nominal histogram,
we extend the ground distance between two semantic
nominal measurement values as:

dnom(xi, xj) = dnom(xj , xi) =

{
0 if xi = xj
α(xi,xj) otherwise

(5)

where α(xi,xj) ∈ ]0, 1] reflects the semantic dissimilar-
ity between xi and xj that has been provided by the
background knowledge of the expert (e.g., the human
perception). Then, it is possible to define a v × v
dissimilarity matrix Mdis that models the relations
between each instance x ∈ X = {x0, x1, . . . , xv−1} of
the concept linked to the histogram:

Mdis =

 α(x0,x0) · · · α(x0,xv−1)

...
. . .

...
α(xv−1,x0) · · · α(xv−1,xv−1)

 (6)

Table 2 presents an example of a dissimilarity matrix
for the concept FRUIT1 introduced in Section 1.

1. The dissimilarity values contained in this matrix have been
defined for example purpose only and do not reflect a true semantic
reality.
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Metric property
The measures dord and dnom presented in Equa-
tions (3–4) satisfy the following metric properties [1]
and are then distances:

1) Non-negativity: d(xi, xj) ≥ 0
2) Symmetry: d(xi, xj) = d(xj , xi)
3) Identity: d(xi, xj) = 0⇔ xi = xj
4) Triangle inequality: d(xi, xk) ≤ d(xi, xj) +

d(xj , xk)

By construction, the measure in Equation (5) satisfies,
at least, the following properties:

1) Non-negativity: dnom(xi, xj) ≥ 0
2) Symmetry: dnom(xi, xj) = dnom(xj , xi)
3) Identity: dnom(xi, xj) = 0⇔ xi = xj

However, as this measure is built using the hu-
man perception and semantics, the triangle inequal-
ity property is generally not satisfied, and thus, the
extended version of dnom is not a distance.

3 HISTOGRAM DISTANCES

For the last decades, several measures of similarity
between histograms have been proposed. This section
starts by introducing and discussing the advantages
and limitations of the most used ones. The purpose
and contribution of this article are then presented.

3.1 Related works
3.1.1 Bin-to-bin distances
As stated above, bin-to-bin distances consider a his-
togram as a fixed-dimensional vector and only com-
pare the contents of the corresponding bins of the
histograms. To compare these bins, it is possible
to use various metrics/distance functions. The most
commonly used are (non-exhaustively): Manhattan
(L1) distance, Euclidean (L2) distance, Intersection
distances, χ2 distances, etc. In the sequel, they are de-
noted as DL1 , DL2 , D∩, and Dχ2 . For two histograms
H(A) and H(B) with v bins, these distances can be
formulated as:

DL1(H(A), H(B)) =

v−1∑
i=0

|Hi(A)−Hi(B)| (7)

DL2
(H(A), H(B)) =

√√√√v−1∑
i=0

|Hi(A)−Hi(B)|2 (8)

D∩(H(A), H(B)) =

v−1∑
i=0

min(Hi(A), Hi(B)) (9)

Dχ2(H(A), H(B)) =

v−1∑
i=0

|Hi(A)−Hi(B)|2

2(Hi(A) +Hi(B))
(10)

These distances present specific properties, the re-
spective advantages and drawbacks of which are dis-
cussed in [11].

As they only compare corresponding histogram
bins, and then ignore the correlations between neigh-
boring bins, bin-to-bin distances are fast to compute
and can be used to measure similarities for large
datasets. Moreover, they do not require any ordering
or similarity relations among the bins, and can then be
used to compare both nominal or ordinal histograms.
However, they suffer from the translation problem:
a small translation of the histogram values may sig-
nificantly affect the histogram distance. Furthermore,
bin-to-bin distances are deeply linked to the bin size
of histograms: a too coarse binning will not have a
sufficient discriminative capacity while a too fine one
will separate similar/correlated features in different
bins which will not be matched. The cross-bin dis-
tances enable to overcome these limitations.

3.1.2 Cross-bin distances
Different cross-bin distances have been proposed to
compare pairs of histograms in a more accurate fash-
ion than bin-to-bin distances. They can be divided in
two families: those requiring a (dis)similarity matrix
to model the proximity relations among the bins, and
those requiring a total ordering on the bins.

Matrix-based distances Among the matrix-based
distances, the quadratic form ones [12], [13] use a sim-
ilarity matrixMsim (which is the “opposite” ofMdis,
see Equation (6)) to model the similarity relationships
between the bins and compute the histograms dis-
tance as a matrix product:

Dquad(H(A), H(B)) =[
(H(A)−H(B))TMsim(H(A)−H(B))

] 1
2

(11)

These approaches provide a first solution to take
into account the similarity among the bins. However,
they suffer from an important computational cost. For
instance, it is shown in [14] that using the quadratic
form distance in image retrieval tasks leads to weak
results, where the mutual similarity of color distribu-
tions is overestimated.

The match distances are another form of cross-
bin distances. The principle of these approaches is
to estimate the cost of mapping two histograms.
Among them, the Earth Mover’s Distance (EMD)2

is recognized as the most efficient distance measure.
This distance has been deeply studied during the last
decades [17]. In the EMD, two features are considered
as the “earth” and the “holes”, respectively. Then,
the distance measure problem is transformed into the
earth moving problem, where the minimum cost of
moving all the “earth” into the “holes” is calculated.
As for quadratic distances, the EMD makes use of a
similarity matrix Msim to model the similarity rela-
tionships between the bins. The EMD method enables

2. The Earth Mover’s Distance is also called the Mallows distance
[15] in the field of statistics [16].
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to consider the correlations between the bins and to
reduce the sensitivity of the distance to the bin size.
Furthermore, it was shown in [18] that the EMD out-
performs most of the existing cross-bin distances for
image retrieval tasks. The main drawback of the EMD
is its high computational cost. Indeed, solving the
associated linear programming problem requires huge
computation time, a fortiori when the dimensionality
of the feature space is high. Although several methods
have been proposed to reduce this complexity (e.g.,
see [19]), it remains difficult to use the EMD for large-
database applications.

Order-based distances When a total ordering is
available on the instances, the EMD can be simplified
[1], [20] as:

DEMD(H(A), H(B)) =

v−1∑
i=0

∣∣∣ i∑
j=0

(Hj(A)−Hj(B))
∣∣∣ (12)

This definition is then equivalent to the one proposed
in [21] where the match distance between two one-
dimensional histograms is defined as the L1 distance
between their cumulative corresponding histograms.
This distance is efficient for one-dimensional his-
tograms but it is difficult to use it to compare high di-
mensional ones, as the mapping in high dimensional
spaces requires to solve complex graph matching
problems [22].

Temporal measures of similarity can also be viewed
as a special case of order-based cross-bin distances.
For instance, in [8], the similarity is related to the
closeness of positions and shapes of peaks in the com-
pared histograms. The main drawback of such mea-
sures is to focus on the peaks of the histograms that
is generally not sufficient to compare data structures
where empty bins also carry information. Another
solution consists of using the Dynamic Time Warping
(DTW) similarity measure [23], [24]. This temporal
similarity measure enables small distortions when
matching pairs of histograms. However, it requires
to set a distortion parameter. If this parameter is
set to small values, this measure is similar to the
Manhattan bin-to-bin distance. On the contrary, if it is
set to a high value, this measure can handle histogram
distortions (but with a higher computational cost).

On one hand, bin-to-bin distances enable to com-
pare histograms with a low computational cost but
without considering the possible semantic correla-
tions between the bins. On the other hand, cross-
bin distances, and in particular the most general
ones, namely the matrix-based distances can deal
with such semantic correlations but present a much
higher computational cost (despite efforts conducted
to reduce this cost, in particular in the case of ordinal
histograms).

TABLE 3
Histograms modelling the compositions of three
shopping carts C1, C2, C3 (see Table 1) after the

creation of the Citrus instance.
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3.2 Histograms and hierarchies
For the last decades, it has been experimentally
proved that organizing the semantic information,
carried out by the data, into hierarchies can facili-
tate knowledge extraction tasks, as illustrated, e.g.,
in image analysis [25]. Indeed, there exist a wide
range of histogram-based approaches relying on this
paradigm. In such approaches, the considered hier-
archy of histograms is generally composed by the
histograms of a hierarchy of data which are compared
with standard distances.

However, hierarchical strategies directly linked to
histograms seem well adapted to deal with the issue
evoked in Section 1.2. In order to illustrate this asser-
tion, let us go back to the fruit shopping cart example
introduced above.

Let us consider the three shopping carts C1, C2, C3

(composed each of 10 fruits, see Table 1). We recall
that the composition of a shopping cart Ci is modelled
by a histogram Hi(#Lemon,#Quince, . . . ,#Plum).
Suppose now that we fuse the instances Lemon,
Orange and Grapefruit to create a new instance
called Citrus. The composition of a shopping cart
Ci is now modelled by a histogram H ′i(#Citrus,
#Quince, . . . ,#Plum) where #Citrus = #Lemon +
#Grapefruit+#Orange. The resulting composition of
the three shopping carts C1, C2, C3 is presented in Ta-
ble 3. The Manhattan bin-to-bin distance dL1

becomes
now higher between H ′1 and H ′2 (dL1

(H ′1, H
′
2) = 16)

than between H ′1 and H ′3 (dL1
(H ′1, H

′
3) = 2). This

measure value reflects better the semantic similarities
between C1 and C3 which are both citrus fruits shop-
ping carts.

As illustrated by this example, hierarchical dis-
tances naturally enable to consider the multilevel
semantic correlations between the distributions mod-
elled by the histograms. To the best of our knowl-
edge, the only histogram distance based on such
hierarchical strategy has been proposed in [26]. Its
computation relies on the iterative merging of the
closest bins of the histograms to create coarser his-
tograms. As the distance measure value is obtained
by computing iteratively a chosen bin-to-bin distance,
its computational cost is lower than those required
for cross-bin distances. This distance, which has been
involved in image retrieval applications, has provided
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encouraging results. Nevertheless, as its merging pro-
cess requires a total ordering among the bins, this
distance only deals with ordinal histograms. In the
case considered in this work, namely the comparison
of nominal histograms equipped with a dissimilarity
matrix, this distance is therefore irrelevant.

In the next section, we propose to address this issue
by defining a hierarchical distance dealing with such
nominal histograms. In particular, this new distance,
called Hierarchical Semantic-Based Distance (HSBD),
combines the efficiency of bin-to-bin distances (e.g.,
low computational cost) and the advantages offered
by cross-bin distances (e.g., robustness to both his-
togram translation and bin size issues).

4 THE HSBD DISTANCE

4.1 Workflow
The computation of the HSBD distance between two
histograms H(A) and H(B) of v bins, requires two
parameters:

1) a dissimilarity matrix Mdis modelling the se-
mantic proximity values between the v instances
of the concept represented by these histograms;

2) a bin-to-bin histogram distance Dbin.
Before effectively computing the distance between

H(A) and H(B), the adopted strategy requires to
define a way to hierarchically merge the different
instances of the histograms into clusters (i.e., instances
of higher semantic levels). This “pre-processing” step,
described in Section 4.2, mainly consists of building
a dendrogram D induced by Mdis modelling this
instance merging hierarchy. (Note that this step has
to be performed only once for a given matrix Mdis.)

Once the dendrogram D has been built, the HSBD
distance can be computed. This computation is orga-
nized in two main steps:

– Step 1. Hierarchical bin-to-bin sub-distances
computation During an iterative merging pro-
cess (scanning each stage of the dendrogram
from the leaves to the root), the histograms
Hk(A) and Hk(B) associated to H(A) and H(B),
which are induced by the merging of the in-
stances composing each cluster of the stage Sk,
are built. After each iteration, a bin-to-bin sub-
distance Dbin is then computed between the
couple of coarser histograms Hk(A) and Hk(B)
created previously.

– Step 2. Bin-to-bin sub-distances fusion The bin-
to-bin sub-distances computed for all the stages
of the dendrogram, and the “semantic energy”
required to go from one stage to the next, are
then fused into a function which is finally inte-
grated to provide the HSBD distance.

These two steps are fully described in Section 4.3. The
reader may also refer to Figure 3 for a visual outline
of the computation of HSBD. Finally, Section 4.4 pro-
vides a computational complexity study of HSBD.
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Fig. 2. Dendrogram associated to the dissimilarity
matrix presented in Table 2. The basic instances are
represented by gray rectangles while the instances of
higher semantic level are represented by blue disks.

4.2 Building the merging hierarchy

The principle of the proposed approach is to compute
several times a bin-to-bin distance between pairs of
histograms by progressively merging the semantically
closest bins/instances to create coarser histograms of
higher semantic levels. To this end, it is necessary
to determine the order of the fusions between the
instances of the semantic concept. Such order can be
naturally determined by defining an instance merging
hierarchy.

Starting from the values contained in Mdis, it is
possible to compute the instance merging hierar-
chy by using the Ascendant Hierarchical Clustering
(AHC) algorithm [27]. It performs in four steps:

– Step 1: Begin with groups containing only one
basic instance (i.e., v groups where v is the
number of instances).

– Step 2: Compute the dissimilarity values be-
tween every group couples, and update the dis-
similarity matrix Mdis.

– Step 3: Merge the two closest groups (i.e.,
the groups which have the lowest dissimilarity
value in Mdis), and modify Mdis accordingly
(by merging the two lines/columns associated
to these two groups).

– Step 4: If there are more groups than desired
(generally, one group), go to step 2.

This algorithm hierarchically builds clusters of in-
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Fig. 3. Computation workflow of the HSBD distance.

stances while minimizing their intra-group inertia. To
compute the dissimilarity values between every group
couple, it is necessary to choose a linkage criteria. In
this work, we have chosen to use the well-known
Average Linkage criterion which generally provides
satisfactory results.

A merging hierarchy is usually modelled by a den-
drogram D of s stages3, whose root is the cluster that
contains all the instances. Each stage of D corresponds
to a particular semantic level. The minimal value of
s (smin = 2) is reached when Mdis is a matrix where
α(xi,xj) = 1 if xi 6= xj and α(xi,xj) = 0 otherwise
(i.e., no background knowledge). In this case, the
dendrogram presents one stage for the leaves which
are the basic instances and one stage for the root. On
the contrary, the maximal value of s (smax = v) is
reached when D is a totally unbalanced dendrogram.

From the considered dendrogram, we define:
– a function fD which takes as input the index k

of the stage Sk (k ∈ [[0, s − 1]]) and provides as
output the list Lkm = 〈Lv0 , . . . ,Lvm−1〉 composed
of the m instance merging lists Lvi (i ∈ [[0,m−1]])
induced by D at this stage (i.e., m clusters).

– a function hD which takes as input the index k
of the stage Sk and provides as output its height
hD(k) in the dendrogram D.

This height hD(k) corresponds to the “semantic en-
ergy” required to build the considered clusters of
instances (i.e., the inter-group inertia computed when
running the AHC algorithm).

For instance, Figure 2 illustrates the dendrogram
associated to the dissimilarity matrix defined in Ta-
ble 2. In this example, the height of the stage S7

3. Such stages are generally indexed by their depth in the den-
drogram (i.e., from the root to the leaves). In our case, and for
readability purpose, we index these stages by their level in the
dendrogram (i.e., from the leaves to the root).

is given by the function hD(7) = 0.2. The list
L7
3 of the 3 instance merging lists at stage S7 is

given by fD(7) = 〈〈Plume, Peach,Cherry,Apricot〉,
〈Pear,Apple,Quince〉, 〈Grapefruit, Orange, Lemon〉〉.
(Note that these 3 instance merging lists correspond to
the three classes of higher semantic level: Stone fruits,
Pome fruits and Citrus fruits.)

4.3 Computation of HSBD
Based on the dendrogram D provided from the pre-
processing step, it becomes possible to compute HSBD
between the two histograms H(A) and H(B) of v bins.

4.3.1 Step 1. Hierarchical bin-to-bin sub-distances
computation
To compute the hierarchical bin-to-bin distance during
the iterative merging process, we define the function
dk for any k ∈ [[0, s−1]]. This function, which provides
the distance Dbin between the coarser versions Hk(A)
and Hk(B) of the histograms H(A) and H(B) at stage
Sk of D, is defined as

dk(H(A), H(B)) = Dbin(Hk(A), Hk(B)) (13)

Such coarser histograms (linked to a higher level of
semantics) can be built using the function fD(k) which
provides a list Lkm = 〈Lv0 , . . . ,Lvm−1〉 composed of
the m instance merging lists induced by the stage Sk.
More formally, the histogram Hk(Y ) is defined as

Hk(Y ) = 〈Hk
0 (Y ), Hk

1 (Y ), . . . ,Hk
m−1(Y )〉 (14)

where each bin Hk
i (Y ) is computed as

Hk
i (Y ) =

∑
j∈Lvi

Hj(Y ) (15)

For the sake of concision, dk(H(A), H(B)) will be sim-
ply denoted as dk. Furthermore, the values produced
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Fig. 4. Graphical representation of the dk values and the function dinter, computed between pairs of example
histograms. Each histogram models the composition of a shopping cart composed of 100 fruits. The dk values
are represented by red disks while the function dinter is represented by the curve Cdinter with black lines.
Depending on the contents of the histograms H(A) and H(B), the behavior of the function dinter widely differs.

by this function will also be called the sub-distance
values in the remainder of this article.

The iterative hierarchical merging process performs
as follows (Figure 3-¬)): Firstly, the bin-to-bin dis-
tance d0 is computed for H(A) and H(B) by con-
sidering all the bins of the histograms (i.e., fD(0) =
〈〈x0〉, 〈x1〉, . . . , 〈xv−1〉〉 and hD(0) = 0). Then, by
climbing to the next stage Si of the dendrogram, the
closest bins of the histograms (given by fD(i)) are
merged, and a new sub-distance di is computed be-
tween the two resulting histograms Hi(A) and Hi(B).
This sub-distance enables to assess the similarity at
a specific level of binning and semantics. This step
is repeated for each stage Sk, k ∈ [[1, s − 1]] until the
number of bins is equal to 1 (i.e., the process stops
when the root of the dendrogram is reached), and
a series of fine-to-coarse sub-distances is stored as
d0, . . . ,ds−1. Note that ds−1 is always equal to 0 since
Hs−1(A) and Hs−1(B) are always composed of only
one bin representing the instance of highest semantic
level of the dendrogram (i.e., the root).

4.3.2 Step 2. Bin-to-bin sub-distances fusion

Once all the fine-to-coarse sub-distances d0, . . . ,ds−1

have been computed, it is possible to fuse them to
get the HSBD distance between the two considered
histograms H(A) and H(B).

In order to introduce and motivate the proposed
approach, let us consider the examples provided in

Figure 4. This figure illustrates the graphical repre-
sentation of the dk values, computed between pairs
of example histograms. One can note that for se-
mantically/thematically similar histograms (see Fig-
ure 4(a)), the dk values tend to decrease more rapidly
than for dissimilar ones (see Figure 4(b)).

This behavior is linked to analytic properties
of the function induced by the dk values. More
precisely, let us consider the piecewise affine
function dinter : [hD(0), hD(s− 1)]→ R+ defined by
dinter(hD(k)) = dk for any k ∈ [[0, s−1]] (see Figure 4).
The decreasing rate of dinter, which characterizes the
similarity between histograms, is directly linked to the
integral value Adinter of this function (Figure 3-).

This assertion justifies the definition of the Hierar-
chical Semantic-Based Distance (HSBD) as

HSBD(H(A), H(B)) =

∫ hD(s−1)

hD(0)

dinter(t).dt (16)

Practically, this distance can be computed by using
the Trapezoidal Rule, then leading to the following
discrete formulation

HSBD(H(A), H(B)) =

1
2

∑s−2
k=0

[(
dk+1 + dk

)
(hD(k + 1)− hD(k))

] (17)

Remark 1. It is possible to use the HSBD similarity mea-
sure with a “partial” dissimilarity matrixMdis. Indeed, in
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the case where a proximity cannot be established between
some of the considered instances, the associated dissimilar-
ity values are set to 1 inMdis. For such parts of the matrix,
the proposed similarity measure will act as the underlying
bin-to-bin distance Dbin for the associated instances. (Note
that the matrix considered in the experiments of Section 5
(see Table 4) is an example of such partial matrix.)

In particular, if no background knowledge is available,
Mdis is a matrix where α(xi,xj) = 1 if xi 6= xj and
α(xi,xj) = 0 otherwise. In such conditions, the HSBD sim-
ilarity measure is coherently equivalent to the underlying
bin-to-bin distance:

HSBD(H(A), H(B)) =
1

2
Dbin(H(A), H(B)) (18)

Metric property
To be a distance, a measure has to satisfy the follow-
ing properties: non-negativity, symmetry, identity and
triangle inequality. The HSBD measure can be defined
as a weighted sum of sub-distances dk (Equation (17))
which is equivalent to a sum of bin-to-bin distances
Dbin. We demonstrate hereafter that the HSBD mea-
sure inherits from the metric properties of Dbin and
is then a distance.

Fact 1 (Non-negativity property). HSBD has non-
negativity property: HSBD(H(A), H(B)) ≥ 0.

Proof: The result derives from the non-negativity
property of the function dk and the decreasingness of
the function hD.

Fact 2 (Symmetry property). HSBD has symmetry prop-
erty: HSBD(H(A), H(B)) = HSBD(H(B), H(A)).

Proof: The result derives from the symmetry prop-
erty of Dbin.

Fact 3 (Identity property). HSBD has identity property
HSBD(H(A), H(B)) = 0⇔ H(A) = H(B).

Proof: The “⇐” part of the result straightfor-
wardly derives from the identity property of Dbin.

The “⇒” part of the result is detailed hereafter:

HSBD(H(A), H(B)) = 0

⇒ 1
2

∑s−2
k=0

[
(dk+1 + dk)︸ ︷︷ ︸

≥0

(hD(k + 1)− hD(k))︸ ︷︷ ︸
>0

]
= 0

⇒
∑s−2
k=0

[
Dbin(Hk+1(A), Hk+1(B))

+Dbin(Hk(A), Hk(B))
]

= 0
⇒ ∀k ∈ [0, s− 2], Dbin(Hk(A), Hk(B)) = 0
⇒ H(A) = H(B)

We obtain HSBD(H(A), H(B)) = 0 ⇒ H(A) = H(B).

Fact 4 (Triangle inequality property). HSBD has
triangle inequality property HSBD(H(A), H(B)) +
HSBD(H(B), H(C)) ≥ HSBD(H(A), H(C)).

Proof: The result derives from the triangle in-
equality property of Dbin.

4.4 Computational complexity

We detail hereafter the computational complexity
of the proposed distance. To compute HSBD, it is
first necessary to run a pre-processing step (see Sec-
tion 4.2), which consists of building the merging order
(i.e., to build the dendrogram D). To this end, we use
the Ascendant Hierarchical Clustering (AHC) algo-
rithm. The complexity of the naive AHC algorithm
is Θ(v3) where v is the number of basic instances,
since it is necessary to exhaustively scan the v × v
matrix Mdis for the smallest dissimilarity in each of
the v− 1 iterations (see Section 4.2, Step 4). However,
this complexity can be reduced to Θ(v2 log v) by using
a priority-queue algorithm.

Once the dendrogram has been built, it becomes
possible to compute the HSBD distance. This requires
the pre-computation of the series of sub-distances
d0, . . . ,ds−1 (see Equation (17)) where s corresponds
to the number of stages in D. The complexity of the
computation of each dk is directly linked to the one
of Dbin which is, in general, Θ(v) where v denotes the
number of bins in the histograms (see Equations (7-
10)). Thus, the complexity of HSBD depends on both
the number of bins v in the histograms and the
number of stages s in the dendrogram D.

Depending on the value of s (which is correlated to
the shape of D), different cases can appear:

– if D is a “flat” dendrogram (i.e., a 2-stage one),
then s = 2 and the complexity of HSBD becomes

Θ(v + 1) = Θ(v) (19)

– if D is a totally balanced dendrogram, then s =
log2(v) and the complexity of HSBD becomes

Θ(v +
v

2
+
v

4
+ . . .+ 1︸ ︷︷ ︸

log2(v) terms

) = Θ(2v) = Θ(v) (20)

– if D is a totally unbalanced dendrogram, then
s = v and the complexity of HSBD becomes

Θ(v + (v − 1) + . . .+ 1︸ ︷︷ ︸
v terms

) = Θ(v2) (21)

Thus, the computational cost of HSBD is bounded by
Θ(v) and Θ(v2). To this complexity, it is necessary
to add the one required to build the dendrogram D
which takes Θ(v2 log v) operations. However, as this
operation is only performed once, its complexity can
be considered as insignificant when comparing large
histogram datasets.

To conclude this complexity study, the computation
of HSBD requires more time/operations than the
computation of classical bin-to-bin distances but much
less than the cross-bin distances that can require, in
the worst case, supercubic time. Thus, HSBD can be
relevantly used to compare large histogram datasets.
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5 EXPERIMENTAL STUDIES

To assess the relevance of the proposed similarity
measure, we have applied it to the clustering of
geographical data. We start by introducing the context
of this experimental study in Section 5.1. The datasets
that were used to test the method are then described
in Section 5.2. Finally, the experiments performed
using these data are presented in Section 5.3.

5.1 Context: Classification of geographical data
Urban planning and development organizations, dis-
aster or environment agencies need to follow the in-
crease of urban settlements. To this end, it is necessary
to map urban areas from satellite images. Since the
last decades, numerous efforts have been conducted
to automatically extract features from satellite images,
in order to involve them into learning systems. The
classical methodology consists of classifying the data
into land cover classes by using supervised or unsu-
pervised classification [28].

The mapping of urban areas can be realized at
different scales corresponding each to a particular
level of analysis. To validate the propose distance, we
have applied it to the classification of urban blocks,
which can be defined by the minimal cycles closed
by communication ways. The main originality of this
task is to classify sets of urban blocks that are char-
acterized by their “ground” compositions in terms of
basic urban objects (e.g., individual houses, gardens,
roads, etc.) [29]. For instance, a urban block Ui can
be characterized by a histogram Hi(#Red tile roof,
#Slate roof, . . . ,#Herbaceous vegetation) where Red
tile roof, Slate roof, . . . , Herbaceous vegetation are the
instances of the concept URBAN OBJECT (Table 4).

The main issue is to succeed in classifying into a
same cluster several objects that are not characterized
by similar histograms. For instance, let us consider a
block Ui characterized by a histogram Hi(21, 4, . . . , 10)
(i.e., Ui is composed of 21 red tile roofs, 4 slate
roofs, . . . , 10 vegetation parcels) and a block Uj char-
acterized by a histogram Hj(3, 22, . . . , 10) (i.e., Uj is
composed of 3 red tile roofs, 22 slate roofs, . . . , 10
vegetation parcels). From the expert point of view,
these two blocks have to be grouped into the same
class “Urban fabric with individual houses” because
they are both composed of individual houses (with
red tile roofs or slate ones) and vegetation parcels.

To deal with this issue, a solution consists of using
a classification process associated to a distance that
takes into consideration the semantic correlations of
the data. We propose to validate the usefulness of the
HSBD distance by integrating it into a classification
algorithm to classify such data.

5.2 Datasets
We consider three datasets (denoted DATASET-1, -2
and -3) composed each of (i) a set of urban blocks

TABLE 4
Dissimilarity matrixMdis associated to the instances

of the concept URBAN OBJECT.
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Fig. 5. Dendrogram associated to the dissimilarity
matrix presented in Table 4. The basic instances are
represented by gray rectangles while the instances of
higher semantic levels are represented by blue disks.

manually extracted by an expert and (ii) a high reso-
lution map providing the composition of each block
in terms of basic urban objects.

Each urban block Ui (of each dataset) has then been
characterized by a “composition” histogram H(Ui)
which models the composition of the urban block Ui
in terms of the distribution of the eleven instances
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of the semantic concept URBAN OBJECT in the high
resolution map. These eleven instances considered in
this experiment are listed in Table 4. Note that as each
urban block Ui is not composed of the same number
of urban objects in the high resolution map, we use
the normalized histogram P (Ui) instead of H(Ui).

5.3 Experiments

5.3.1 Experimental settings

To model the semantic relations between each level
of the histograms, a 11 × 11 dissimilarity matrix
Mdis has been provided by the expert (Table 4).
The dissimilarity values, which are modelled by this
matrix, enable to take into consideration the semantic
“proximity” between the considered levels and the
land use function attached to each one of these levels.
From this matrix, a 7-stage dendrogram has been built
(using the pre-process, see Section 4.2) to model the
merging order of these different levels (Figure 5).

Supervised classification algorithms require train-
ing examples to learn the classification model. In our
case, the definition of such training examples remains
a complex task for the expert. Indeed, the high num-
ber of considered classes induced a high number of
examples to define. Moreover, such training examples
are strongly data-dependent and can not be reused
directly to classify other datasets. For these reasons,
we have chosen to use an unsupervised classification
algorithm that does not require the definition of such
examples. We have applied the K-MEANS clustering
algorithm [30], which does not require a priori param-
eters, to classify the urban blocks created previously.

To process, the distance HSBD has been directly
integrated into the K-MEANS clustering algorithm to
compare the classified histograms. We have respec-
tively run the K-MEANS clustering algorithm with the
HSBD distance associated to different bin-to-bin sub-
distances (HSBDL1 , HSBDL2 , and HSBDχ2 ). To com-
pare HSBD to other existing distances, we have also
run the K-MEANS algorithm using classical bin-to-
bin distances DL1

, DL2
, and Dχ2 . These comparisons

enable to assess the advantages of using HSBD instead
of a classical bin-to-bin distance (e.g., HSBDL1

vs. DL1
,

HSBDL2 vs. DL2 and HSBDχ2 vs. Dχ2 ). As the results
provided by the K-MEANS algorithm are sensitive to
the initialization step of the algorithm, each run has
been repeated 10 times by varying the “seeds” of
the algorithm. We have then computed the variance
value σ obtained for each considered evaluation index
(described hereafter) and for each series of run.

From these datasets, we have chosen, in agreement
with the expert, to extract nine classes of urban blocks:
c1 - Dense urban fabric; c2 - Urban fabric with housing
blocks; c3 - Urban fabric with individual houses; c4 -
Industrial urban fabric; c5 - Water surfaces; c6 - Roads;
c7 - Agricultural zones; c8 - Urban vegetation; c9 -

TABLE 5
Evaluation measures.

Symbol Evaluation measure Type
P Precision index }

Per-class
accuracyR Recall index

F F-measure
K Kappa index } Global

accuracyF Weighted harmonic mean of F

Forest areas; except for the DATASET-2 and DATASET-
3 where the “Dense urban fabric” class can not be
extracted. Thus, the K-MEANS algorithm has been run
respectively with ten clusters for the DATASET-1 and
nine clusters for the DATASET-2 and DATASET-3.

5.3.2 Results evaluation
Evaluating clustering results is a complex task since
it is difficult to find an objective measure of quality of
clusters. A common strategy consists of assessing and
comparing the intra/inter cluster inertia of the differ-
ent clustering results (i.e., unsupervised evaluation).
Nevertheless, in our case the clustering algorithm is
run by varying the distance used to compare the data
(and then the inertia definitions vary). Thus, such
measure of goodness seems not relevant to assess the
quality of the clustering results obtained.

We decided to consider supervised evaluation tech-
niques which consists of comparing a clustering result
to a set of data manually labelled by the expert. Thus,
we have compared the obtained clustering results to
different land cover reference maps (extracted from
geographical databases or provided by the expert). To
this end, we have computed both standard local and
global evaluation indexes (see Table 5).

Local evaluation Local evaluation indexes enable to
independently assess the extraction of each thematic
class. To process, for each thematic class, the best
corresponding clusters were extracted. Then, we have
computed: the percentage of false positives, denoted
by f (p), the percentage of false negatives, denoted by
f (n), and the percentage of true positives, denoted by
t(p). These measures are used to estimate the precision
P and the recall R of the results obtained by using the
proposed method:

P =
t(p)

t(p) + f (p)
and R =

t(p)

t(p) + f (n)
(22)

To fuse these measures, we have computed the stan-
dard F-measure F which is the harmonic mean of
precision and recall:

F = 2 · P · R
P +R

(23)

Global evaluation To assess the relevance of the
results, we also provide global classification accuracy
indexes. For each experiment, we have computed
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(a) Evaluation of the DATASET-1.
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(b) Evaluation of the DATASET-2.
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(c) Evaluation of the DATASET-3.

Fig. 6. Local evaluation results on DATASET-1, DATASET-2, DATASET-3.
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TABLE 6
Global evaluation results on DATASET-1, DATASET-2, DATASET-3.

F ± σ K ± σ
Dataset Bin-to-bin distance Dbin HSBDbin Dbin HSBDbin

DATASET-1 L1 0.65± 0.02 0.71± 0.01 0.76± 0.02 0.79± 0.01

L2 0.63± 0.03 0.69± 0.02 0.75± 0.03 0.78± 0.02

χ2 0.59± 0.02 0.65± 0.02 0.72± 0.03 0.75± 0.02

DATASET-2 L1 0.67± 0.02 0.72± 0.01 0.77± 0.02 0.86± 0.02

L2 0.64± 0.01 0.70± 0.02 0.76± 0.02 0.83± 0.01

χ2 0.61± 0.02 0.68± 0.03 0.73± 0.01 0.76± 0.02

DATASET-3 L1 0.63± 0.01 0.66± 0.01 0.73± 0.01 0.76± 0.01

L2 0.60± 0.03 0.63± 0.01 0.73± 0.02 0.75± 0.01

χ2 0.58± 0.02 0.62± 0.02 0.71± 0.01 0.73± 0.02

the weighted harmonic mean F of the F-measures
(weighted by the cardinals of the thematic classes),
and the Kappa index [31] defined as:

K =
Pr(a)− Pr(e)

1− Pr(e)
(24)

where Pr(a) is the relative agreement among the
observers, and Pr(e) is the hypothetical probability
of chance agreement. The Kappa index takes value in
[0, 1] and decreases as the classification is in disagree-
ment with the ground-truth map. We have computed
this index using the strategy proposed in [5].

5.3.3 Results
These different indexes have been used to quantita-
tively evaluate the clustering results obtained with
HSBD and to compare them to the results obtained
with classical bin-to-bin distances. We present here-
after both local and global evaluation results.

The local evaluation results obtained on the three
datasets are presented in Figure 6. From these graphs,
one can see that the F-measure scores obtained for
each extracted class are always higher when the K-
MEANS algorithm is run with the HSBD distance
instead of its corresponding bin-to-bin distance Dbin.
In particular, the best scores have been obtained when
the HSBD distance is run with the Manhattan DL1

distance as sub-distance, while the worst scores have
been obtained when HSBD is run with the χ2 as
sub-distance. However, the scores obtained with the
χ2 as sub-distance remain always higher than those
obtained by using only standard bin-to-bin distances.
Such local evaluation results mean that the HSBD
distance enables to enhance the precision and the
recall of the results.

The global evaluation results obtained on the three
datasets are presented in Table 6. They lead to the
same observations as previously. Best global evalu-
ation scores obtained are always higher when the
K-MEANS algorithm is run with the HSBD distance
instead of its corresponding bin-to-bin distance Dbin.

Furthermore, the best scores have been obtained when
the HSBD distance is run with the DL1 sub-distance.

From these different results, one can see that the
proposed distance outperforms the classical bin-to-bin
ones when comparing semantic nominal histograms.
Finally, such validations, in the context of geograph-
ical data classification, emphasize the relevance and
usefulness of HSBD for data mining tasks.

6 CONCLUSION AND PERSPECTIVES

This article has presented a new distance dedicated to
compare nominal histograms equipped with a dissim-
ilarity matrix modelling the semantic proximity rela-
tions between the bins. Thanks to a hierarchical strat-
egy, this distance enables to consider the multilevel
semantic correlations between the bins. Moreover, by
opposition to cross-bin distances (which can handle
such histograms), it inherits from the low computa-
tional cost of bin-to-bin distances, while keeping the
advantages of cross-bin ones, namely robustness to
histogram translation and histogram bin size issues.

To validate this distance, we have applied it to the
clustering of geographical data. The results appear
to be sufficient to further accurately perform both
supervised classification or object recognition tasks.
This seems to validate the relevance of the proposed
distance and the soundness of the approach.

This work opens up several perspectives and differ-
ent research directions. From a methodological point
of view, we plan to study more formally the possible
behaviors of the sub-distance function dk in order
to enhance the distance computational cost. Further-
more, it could be relevant to integrate an approach
enabling to help the user for building the dissimilarity
matrix. Indeed, by asking him for constraint examples
between the data (e.g., must-link or cannot-link con-
straints), semi-supervised clustering approaches could
be used to learn the α values. From an applicative
point of view, this distance could be used for several
applications, including the classification of large text
datasets or the clustering of symbolic patterns.
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