
Temporal Modelling and Management of Normative
Documents in XML Format ?

Fabio Grandia,∗, Federica Mandreolib, Paolo Tiberiob

aIEIIT.BO-CNR and Dipartimento di Elettronica, Informatica e Sistemistica, Alma Mater
Studiorum - Universit̀a di Bologna, Viale Risorgimento 2, I-40136, Bologna, Italy

bDipartimento di Ingegneria dell’Informazione, Università di Modena e Reggio Emilia,
Via Vignolese 905/b, I-41100, Modena, Italy

Abstract

In this paper, we present the results of a research project concerning the temporal manage-
ment of normative texts in XML format. In particular, four temporal dimensions (publica-
tion, validity, efficacy and transaction times) are used to correctly represent the evolution
of norms in time and their resulting versioning. Hence, we introduce a multiversion data
model based on XML schema and define basic mechanisms for the maintenance and re-
trieval of multiversion norm texts. Finally, we describe a prototype management system
which has been implemented and evaluated.

Key words: Temporal database, Web information management, Legal information system,
XML

1 Introduction

Time is one of the main aspects characterizing several real world facets and phe-
nomena. The ability to model the temporal dimension of the real world and to re-
spond within time constraints to changes in the real world as well as to application-
dependent operations is essential to many computer applications. The management
of norms represents one of such applications as temporal concerns are ubiquitous

? This work has been partially supported by the MIUR-40% Project: “La dinamica della
norma nel tempo: aspetti giuridici ed informatici”.∗ Corresponding author. Tel.: +39-051-2093555, fax: +39-051-2093540.

Email addresses:fgrandi@deis.unibo.it (Fabio Grandi),
mandreoli.federica@unimo.it (Federica Mandreoli),
tiberio.paolo@unimo.it (Paolo Tiberio).

Preprint submitted to Elsevier Science 9 July 2004

in the law domain [32]. With the term “norm” or “normative document” we intend
in this paper any kind of Law, Act, Decree, Provision, Regulation etc. with statu-
tory effects as officially produced by lawgiving and government activities. Time in
normative systems has become a central topic of the cultural and political debate
and is of fundamental concern to legal informatics. The law is under increasing
pressure to keep pace with social change: normative texts and amendments follow
one another in time and get overlapped. Moreover, the route to e-Government (e.g.
[38,15]) pushes administrations for providing access to services for publication and
exchange of norms on the Web.

In the context of database research, the management of time has been extensively
studied in the last decades [36,14]. In particular, many efforts have been devoted to
add time support to database models and system functionalities. Temporal database
systems provide special facilities for storing, querying, and updating historical
and/or future data. In this context, two time dimensions are usually considered:
valid time and transaction time [22]. Valid time is the time of the real world and de-
notes the time a fact is true in reality. Transaction time is the time of the system and
denotes the time during which the fact is present in the database as stored data. In
order to make a more complete picture, two other temporal dimensions have been
considered useful for advanced applications: event time [25] (also called decision
time in [28]), which is the occurrence time of events that initiate and/or terminate
the validity of some fact in the real world, and availability time [9], which is the
time some fact is available in the information system. By the way, the first relational
query language providing for temporal queries (only considering valid time), that
is LEGOL 2.0 [23] which appeared in the 1970’s, was developed to support legal
applications.

Moreover, in the database research community, there is a much current interest
in representing and querying semi-structured data. For example, database-resident
data can be published as static or dynamic XML documents, which can then be
viewed on Web browsers and processed by various Web-based applications, also
executing queries written in languages such as XPath [40] and XQuery [41]. As
a consequence, several works took into account change, versioning, evolution and
also explicitly temporal aspects, in semi-structured and XML-based data manage-
ment [19,18], often applying conceptual tools and techniques developed by tempo-
ral database research. However, such approaches are not straightforwardly appli-
cable to the legal application domain because of the specificity of the data seman-
tics and operation requirements. In the context of legal computer science, previous
approaches already dealt with the reconstruction ofconsolidatednorm texts, con-
sisting of their current temporal version [33]. One temporal dimension was usually
considered in such approaches.

In this paper, we present the results of the research activity we carried out in the
context of the multi-disciplinary project “The dynamics of norms in time: legal
and informatics aspects” co-funded by the Italian Ministry of University. Such a

2

project emphasizes, from a legal point of view, the necessity for a rigorous, ef-
fective and efficient management of time-varying norm texts. In this context, the
main objective of our work has been the development of a computer system for the
temporal management of multiversion norms represented as XML documents and
made available on the Web. To this end, we developed a temporal XML data model
which uses four time dimensions to correctly represent the evolution of norms in
time and their resulting versioning. The model, which will be presented in Section
2, is equipped with basic operators for the modification and retrieval of multiver-
sion norm texts, which will be described in Sections 3 and 4, respectively. For the
efficient exploitation of the data model, a system prototype has been implemented
and evaluated as described in Section 5. Preliminary results were also presented in
[21]. Related works are discussed in Section 6, whereas conclusions can be found
in Section 7.

2 The temporal data model

In this section, we present the XML-based temporal data model we propose for the
representation and management of versioned normative texts. The model supports
multiple temporal dimensions, all involved in the law application lifecycle.

The existence of multiple versions of norms is a consequence of the dynamics of
the legislative activity. Assume a norm N1 has been in force since 2000. Further
assume that a norm N2, which modifies norm N1 by replacing its Article 1, was
passed in 2002 (for this modification, N2 is called theactive norm, while N1 is
called thepassive norm). After the modification takes effect, N1 has two versions:
the former, say v1, corresponding to its initial text, and the latter, say v2, with the
new contents of Article 1 as replaced by N2. Both versions are important from
an application point of view. Of course, the most important version of N1 is v2,
which corresponds to the form in which N1 currently belongs to the regulations and,
thus, must be enforced now (such a version, produced by the application of all the
modifications the norm underwent so far, is the one calledconsolidated version).
However, also v1 is of an utmost application importancenow: if a Court has to pass
judgment today on some fact committed in 2001, the version of N1 which must
be applied to the case is the one that was in force then, that is v1. Hence, a legal
information system should be able to retrieve or reconstruct on demand any version
of a given norm to meet common application requirements.

Moreover, a realistic scenario is far more complex than the one described above,
because of the coexistence of multiple interacting time dimensions which rule the
actual life of versions. For example, although N2 has been in force and its mod-
ification on N1 has taken effect since 2002 (so that actually v2 hasvalidity from
2002), it might be the case that the modified Article 1 explicitly contains the sen-
tence: “The present Article becomes effective from 2003”. In such a case, v2 must

3

not be applied during 2002: though valid, it has noefficacyyet. Hence, v1 must still
be applied during 2002, whereas v2 starts to be actually applied from 2003 only.
Therefore, validity and efficacy of versions are different time notions in the law
field.

Notice that similar cases, although they might seem quite odd, are not such unusual
indeed. For instance, in order to prepare the national regulations to the introduction
of the Euro currency (whose circulation officially has begun on 2002, January 1st),
several norms concerning the Euro were issued in Italy and in other European coun-
tries in 2000 and 2001. Although such norms came into force before 2002, they all
explicitly stated that some of their provisions were effective from 2002 only. By
the way, some of such norms were also modified, even several times, before they
became applicable (and eventually some of their versions have never been applied
at all).

Last but not least, when norms are stored in a legal information system, another
specific time dimension comes into action. For example, it might be the case that
a public servant takes a wrong decision in settling an affair by following the pro-
visions of a norm he/she retrieves from the system, if the returned consolidated
version is actually out-of-date: the decision was taken while a modified version of
the norm was already in force, whereas the modification has been recorded in the
system only later (retroactively). Hence,transactiontime is needed to keep track of
the update activity in the system and, in our case, to ascertaina posteriorithat the
correct version was stored retroactively and, thus, the public servant acted in good
faith.

Therefore, in order to draw a complete picture and meet all application require-
ments, the time dimensions we consider are the following:

Publication time. It is the time of publication of the norm on the Official Journal.
It has the same semantics as event time (and availability time, as the two time
dimensions, in such a context, coincide). It is a global and unchangeable property
for the whole norm contents and, thus, it will be treated separately.

Validity time. It is the time (some part of) the norm is in force (in the Italian
regulations, usually a norm is in force from the publication date plus 15 days on,
until its validity is changed by a subsequent act). It has the semantics of valid
time, as it represents the time the norm actually belongs to the regulations in the
real world.

Efficacy time. It is the time (some part of) the norm can be applied to a concrete
case. It usually corresponds to the validity of norms, but it can be the case that
an abrogated norm continues to be applicable to a limited number of cases. Until
such cases cease to exist, the norm continues its efficacy in the real world though
no longer in force.

Transaction time. It is the time (some part of) the norm is stored in a computer
system. Obviously, it has the same semantics of transaction time as in temporal

4

databases.

The first time dimension, publication time, is a global property of the document
which cannot be changed after publication and, thus, is not involved in the version-
ing mechanism. Disregarding publication time, the other three dimensions above
are “orthogonal” as far as document versioning is concerned. Notice that validity
and efficacy time both have the semantics of valid time but represent different and
independent valid time notions. As a matter of fact, validity and efficacy time come
out generally independent as a consequence of the legislative practice (although
validity and efficacy areusuallyin the future with respect to the time the modifica-
tions are applied, retroactive modifications cannot be excludeda priori). Moreover,
transaction time depends on a completely independent information system mainte-
nance activity (i.e. versions can be stored retro- or even pro-actively with respect to
their validity/efficacy).

2.1 Representation of Time and Multiversion Norms

As for many other countries, the textual structure of Italian norms is based on a
contents-section-article-paragraph hierarchy. Our data model encodes the hierar-
chical organization of normative texts into the tree-like inner structure of XML
documents conforming to an XML schema [42]. Such an encoding is enriched with
timestamping metadata modelling the temporal aspects of normative texts.

Our temporal model supports lossless updates at any level of the hierarchy by
means oftemporal versionsrepresenting the results of the changes normative texts
undergo. Thetimestampof a version represents itstemporal pertinenceas a subset
of the tridimensional space validity× efficacy× transaction. The temporal perti-
nence of a version can be represented by atemporal element[16,22], that is a dis-
joint union of tridimensional time intervals, each obtained as the Cartesian product
of one time interval (open to the right) for each of the supported temporal dimen-
sions. Since any norm version is potentially subject to changes with respect to all
the three time dimensions, we will express right-unlimited time intervals as[t, UC),
whereUC means “Until Changed”, though such a symbol is often used in the tem-
poral database literature [22] for transaction time only (whereas, e.g. “forever” or
∞ is used for valid time). Actually, norms in force usually have a continued validity
and efficacy until such properties are changed by a subsequent act of the legislator.
Publication time, which is a constant and global document property, is not included
in the version timestamping mechanism.

The adoption of timestamps made up of temporal elements instead of tridimen-
sional intervals avoids the duplication of version contents in the presence of a tem-
poral pertinence with a complex shape. For example, consider a version v1 with
initial pertinenceP1 = [t1, UC) × [t1, UC) × [t1, UC) and a modification produc-

5

publication – R
vt_Start – R
vt_End – O
tt_Start – R
tt_End – O
et_Start – R
et_End – O

num – R

type – R

num – R

num – R

num – R

vt_Start – R
vt_End – O
tt_Start – R
tt_End – O
et_Start – R
et_End – O

 num – R
an_ref – O

vt_Start – R
vt_End – O
tt_Start – R
tt_End – O
et_Start – R
et_End – O

vt_Start – R
vt_End – O
tt_Start – R
tt_End – O
et_Start – R
et_End – O

vt_Start – R
vt_End – O
tt_Start – R
tt_End – O
et_Start – R
et_End – O

 num – R
an_ref – O

 num – R
an_ref – O

 num – R
an_ref – O

TA

headings

TA

headings

TA

TA
ver

norm

title contents

section

ver

article

ver

paragraph

ver

Fig. 1. The XML-schema for the representation of norms in time

ing a new version v2 with pertinenceP2 = [t2, UC) × [t2, UC) × [t2, UC) (with
t2 > t1). The time pertinence left to v1 after the modification isP1 \ P2, which
can be decomposed into a minimal number of three non-overlapping tridimen-
sional intervals (e.g.[t1, UC) × [t1, UC) × [t1, t2), [t1, UC) × [t1, t2) × [t2, UC) and
[t1, t2) × [t2, UC) × [t2, UC)). Hence, if we used interval timestamps, at least three
copies of v1 would be required to cover the region. Indeed, we make the union of
such intervals and produce a single temporal element to timestamp a single copy of
v1. In other words, we preferred to store different versions only once with a com-
plex timestamp rather than storing multiple copies of them with a simple times-

6

tamp. We will show in Section 5 how such a design choice paid off in terms of
improved retrieval performance.

As far as the norm hierarchical structure is concerned, timestamps can occur at any
level of the hierarchy and obey to an ancestor-descendant inheritance semantics.
In particular, the timestamps of any node are inherited by its descendants, unless
redefined. Redefinitions can only involve a restriction of the inherited values. In
other words, the timestamps owned by each version must be contained in the times-
tamps of its parent. Finally, the temporal pertinence of sibling versions must be
disjoint, that is at each level at most one version is associated to any tridimensional
time point (orchronon[22]). A typical example of the inheritance and redefinition
mechanism, which actually comes out of the modification dynamics, is the follow-
ing. Let us consider a node with a single version v with time pertinenceP , which is
initially inherited by all the (single-version) descendant nodes of v, once created. If
one child of v is then modified, its single version v′ with pertinenceP is “replaced”
by two versions, v′ with pertinenceP ′ and v′′ with pertinenceP ′′, where v′′ and
P ′′ are the outcome and the temporal pertinence of the modification, respectively,
andP ′ ∪ P ′′ = P . In general, the inheritance and redefinition mechanism can be
formalized as follows:

Definition 1 (inheritance) If the versionv with pertinenceP of a noden hasm
children n1, n2, . . . , nm, where childni hask versions vi1,vi2, . . . ,vik with perti-
nencePi1, Pi2, . . . , Pik, respectively, we have, for alli, the following constraints:

⋂

1≤j≤k

Pij = ∅ (pertinence disjunction)

⋃

1≤j≤k

Pij ⊆ P (pertinence inclusion)

2

Similar relationships, which extend the hierarchical organization of XML doc-
uments with temporal semantics, have also been adopted by other authors (e.g.
[1,17]).

The XML Schema [42] we are going to introduce comes out as a quite unfaithful
translation and extension of one of the DTDs published by the “Norma in Rete”
(Norm on Network) [29] working group. The “Norma in Rete” initiative has been
jointly promoted by the Italian agency for the introduction of information technol-
ogy in public administrations (AIPA) and the Ministry of Justice, and is framed to
supply the missing link between information technology and the public administra-
tion in the field of legimatics. The project has a major role in trying to overcome
the fragmentation affecting online availability of norms by means of the introduc-
tion of standards, mainly based on XML-related technologies, for publication and
exchange of norms on the network.

The full version of our XML schema is depicted in Figure 1, where “R” and “O”

7

norm [num=”247/1999” type=”Law”]

contents[vt_start=”2000-01-01” et_start=”2000-01-01” tt_start=”2000-01-10” publication=”1999-12-15”]

Cereals
importation ver[num=”1”]

section[num=”1”]

ver [num=”1”]

Import from
Communitarian

countires

article[num= “1”] article[num= “2”]

ver[num= “1”]

paragraph[num= “1”]

Import from Spain

ver [num= ”1”]

Import from countries
outside EC

title

headings

headings paragraph[num= “2”]

ver [num= ”2” an_ref=”LD135/2000”]

TA[vt_start=”2000-01-01” et_start=”2000-01-01” tt_start=”2000-01-10” tt_end=”2000-06-01”]

TA[vt_start=”2000-06-01” et_start=”2000-06-01” tt_start=”2000-06-10”]

Sec. 1 Art. 1 Par. 2
after modification

section[num=”2”]

ver [num=”1”]

headings article[num= “1”]

ver[num= “1”]

paragraph[num= “1”]

ver [num= ”1”] ver [num= ”2” an_ref=”L107/2001”]

Sec. 2 Art. 1 Par. 2
before modification

Sec. 2 Art. 1 Par. 2
after modification

TA[vt_start=”2000-01-01” et_start=”2000-01-01” tt_start=”2000-01-10” tt_end=”2000-07-15”]

TA[vt_start=”2000-06-01” vt_end=”2001-07-05” et_start=”2000-06-01” et_end=”2000-07-05” tt_start=”2000-07-15”]

Sec. 1 Art. 1 Par. 2
before modification

TA[vt_start=”2000-07-05” et_start=”2000-07-05” tt_start=”2000-07-15”]

TA[vt_start=”2000-01-01” vt_end=”2001-06-01” et_start=”2000-01-01” tt_start=”2000-06-10”]

(a) The tree-like structure of a sample document

VT

TT

2000-01-01

2000-01-10

Section 1

Article 1

2000-06-01

2000-06-10 Contents

Paragraph 2 v.2 Paragraph 2 v.1

(b) Hierarchical representation of temporal pertinence

Fig. 2. An example of multiversion XML document

symbols near attribute names stand for “required” and “optional”, respectively,
and one-to-many relationships are denoted with arrows ending with a diamond.
The dashed boxes represent optional elements (headings). As norms are iden-
tified by a (type, number) pair (e.g. type=“Law”, number=“27/2003”) the meta-
level of normative texts is rooted at anorm top element, characterized bytype
andnum(ber) attributes, which includes thetitle andcontents elements. The
contents element has attributes defining global temporal properties: an attribute
publication storing the publication date of the norm and also temporal at-

8

tributes which define a tridimensional bounding box for all the timestamps the doc-
ument contains and which is used as a summary temporal pertinence of the whole
norm for faster query processing. Then, at each level of the contents-section-article-
paragraph hierarchy, it is possible to represent one or more temporal versions by
means of thever elements, whose attributenum represents the version number
whereasan_ref is the reference to the active norm whose enforcement caused the
versioning. Each version is characterized by a temporal element-type timestamp,
which is defined by the union of theTA XML elements the version contains. Each
TAelement represents a tridimensional time interval whose boundaries are encoded
asTAattribute values: validity (vt start andvt end), efficacy (et start and
et end), and transaction time (tt start andtt end). The “end” attribute as-
sociated to each dimension (e.g.vt end) is optional and its absence represents a
UC value denoting, thus, a right-unlimited interval. For instance, the XML element:
<TA vt start="2000-01-01" vt end= "2003-12-31" et start=
"2000-01-01" tt start="1999-12-20" /> represents the tridimensional
interval: [2000/01/01, 2003/12/31)× [2000/01/01, UC)× [1999/12/20, UC).

Notice that the XML Schema encodes only those aspects of our model which are
directly supported by an off-the-shelf XML document validator. Advanced features
of the model, like correctness of the inheritance and redefinition mechanism, can-
not be embedded in an XML Schema definition and are explicitly enforced by our
management application, thanks to a careful definition of the semantics of the mod-
ification operators.

Example 1 Figure 2.a shows the tree-like structure of a document conforming to
the temporal XML schema. The Law 247/1999 concerns the cereal importation
and contains two sections, three articles and four paragraphs. It has been published
on 1999/12/15 and is valid from 2000/1/1 (it has been recorded in the system on
2000/1/10). Only (two) paragraphs underwent punctual modifications and thus have
more than one version. For this reason, all parts but paragraphs inherit the times-
tamps from thecontents tag. For the paragraphs, instead, it is necessary to ex-
plicit the temporal attributes since they are redefined by the corresponding versions.
Paragraph 2 of Sec. 1, Art. 1 has been modified by the “LD135/2000” Legislative
Decree, in force since 2000/6/1 (modification recorded on 2000/6/10). Paragraph 1
of Sec. 2, Art. 1 has been modified by the “L107/2001” Law, in force since 2001/7/5
(modification recorded on 2001/7/15).

Notice that, in the former case the old version continues to be applicable (e.g. to
the cases for which it was applicable before the modification), whereas in the latter
case the modifying Law has stated that the old version is definitely no longer ap-
plicable (hence, efficacy time has been stopped to 2001/7/5 like validity). In both
cases, the temporal elements correctly map the temporal pertinence of the text be-
fore the modification on a tridimensional space (validity× efficacy× transaction).
In particular, Fig. 2.b shows the projection on the bidimensional space validity×
transaction of the containment relationship (due to inheritance) between the tem-

9

poral pertinence of the versions in the path to the second paragraph. In the figure,
the different levels of the document hierarchy are represented on the z-axis, v. is
used in place of version (e.g. Paragraph 2 v. 1 corresponds to the version number
1 of the Paragraph number 2) and the dotted line on the second version of the sec-
ond paragraph shows how the temporal pertinence has been represented as union
of disjoint intervals, each of which corresponds to aTA element. 2

3 Managing the dynamics of norms

During its lifespan, a normative text usually undergoes several modifications. As
a consequence, the ability to correctly and efficiently managing the dynamics of
norms is essential for many legal information systems. On the other hand, the ver-
sioning of norms is a quite complex task. Each modification is enforced by an active
norm which contains a reference to the portion of the passive norm to be modified
and specifies the kind of modification to be applied. Such relationship is known as
normativenexusas it connects the active with the passive norm. The modifications
of interest in the legistic application field include abrogation, textual substitution or
integration, prorogation and suspension [34,32]. Moreover, each modification may
affect a different portion of the passive norm, ranging from a single word (or even
a single punctuation sign) to the whole text contents. Informally, abrogation, sub-
stitution and integration consist of the deletion, update and insertion of some text
in a norm, respectively. Prorogation and suspension consist of the enlargement and
restriction, respectively, of the validity (or efficacy) of some norm portion without
affecting the text.

In order to provide a compact but complete, modular support to the management
of norm modifications, instead of introducing one operator for each kind of modi-
fications, we equipped the model with two basic operators on which all the modi-
fications of interest can be mapped:changeText andchangeT ime. The former is
devoted to implement an explicit textual modification, that is the replacement of (a
part of) the contents of a passive norm with a new text, possibly empty. By means
of this operator, it is possible to perform abrogations, suspensions, and textual sub-
stitutions and integrations. The latter implements pure temporal modifications as
it affects the temporal pertinence of (some part of) the passive norm in order to
support prorogations. In both cases, the updates are performed in a lossless way
by means of an accurate management of the versions and their temporal pertinence
making up the history of the document contents. The granularity of versioning is
the single node in the XML document tree. In this way, we are able to support
modifications occurring at any level of the hierarchical structure of norm texts.

In the following, we will show the algorithms underlying the implementation of
the two operators,changeText and changeT ime, and describe their properties.
Before doing it, we introduce some notation and the basic functions used by the

10

algorithms.

3.1 Notation

The two operators act on norms complying with the XML schema of Fig. 1 and thus
on XML documents similar to the example in Fig. 2. In particular, modifications
occurring at any level of the tree-like inner structure of documents are supported by
performing punctual updates on the nodes of the tree. XML nodes are univocally
identified by paths which can be specified by means of the XPath [40] language.
For instance, the path expression:

/norm[@num="12/2004" and @type="Law"]/section[@num="1"]

identifies the node corresponding to the first section of the Law number 12/2004. In
order to work on tree nodes, our algorithms make use of the following basic func-
tions: parent : Node → Node, children : Node → {Node}, addChild :
Node × Tree → Tree. Theparent (q) andchildren (q) functions return the
parent and the set of children of the nodeq, respectively, whereasaddChild (q, t)
returns the tree obtained by adding the argument treet as child of the nodeq.

As far as the temporal aspects are concerned, two basic functions are necessary for
the pertinence management. The functionrestrictTimestamps deletes from
the temporal pertinence of a given version the part that overlaps a given temporal
element. Moreover, as the inheritance semantics of our temporal model requires
that the pertinence of each version is contained in that of its parent, the function
is recursively applied to each version in the subtree rooted at the initial version.
For instance, in Fig. 3 the restriction of the temporal pertinence of the version

VT

TT
Article 1
version 1

Paragraph 2
version 2

Paragraph 2
version 1

level

Fig. 3. Effect of the restriction of the temporal pertinence of a version on that of its
sub-versions

number 1 of Article 1 caused by the deletion of the part overlapping the temporal
element represented by two white rectangles also requires the “propagation” with
timestamp restiction to the underlying level(s) corresponding to the versions 1 and
2 of Paragraph 2.

11

TherestrictTimestamps code is shown in Fig. 4. Given a version identified

function restrictTimestamps(te, $m)
(1) P = ∅;
(2)for each $n in $m/ta
(3) P = P ∪ [$n/@vt start,$n/@vt end)

×[$n/@et start,$n/@et end)× [$n/@tt start,$n/@tt end);
(4)if (P ∩ te 6= ∅)
(5) P = coalesce(P \ te);
(6) set timestamps of $m to P ;
(7) for each $d in children(children($m))

restrictTimestamps(te,$d);

Fig. 4. TherestrictTimestamps function

by the path$mand a temporal elementte, in steps 2-3, it determines the temporal
pertinenceP of the version by incrementally adding the tridimensional intervals
embedded in theta tags. If P overlapste (step 4), step 5 determines the new
temporal pertinence obtained by excluding fromP the portion overlapped byte
and step 6 updates the XML document by updating the timestamps of$mwith the
new temporal pertinence. Notice that the difference between two temporal elements
involved in step 5 must be computed carefully in order to obtain another temporal
element as a result.

Fact 1 Let Pi =
⋃

1≤j≤ni
Iij, where allIij are multidimensional intervals, be two

temporal elements (i ∈ {1, 2}). Then the differenceP1 \ P2 can be computed as⋃
1≤j≤n1

I1j \ P2 and it is a temporal element ifI1j \ P2 is a temporal element for
eachj.

Thus, in therestrictTimestamps evaluation, the exclusion of the portion
overlapped byte is applied to each tridimensional temporal interval making upP .
In this way, each interval ofP is simply transformed into a smaller one, or it needs
splitting into two or more tridimensional intervals, if the non-overlapped region
has a complex shape. If such splitting only produces non-overlapping intervals, the
result is a temporal element, according to Fact 1.

For instance, the exclusion of the interval[5, 7) × [3, 8) × [6, UC) from [1, UC) ×
[1, UC)× [1, UC) can be expressed as[1, UC)× [1, UC)× [1, 6)∪ [1, UC)× [1, 3)×
[6, UC) ∪ [1, 5) × [8, UC) × [6, UC) ∪ [5, UC) × [8, UC) × [6, UC)[1, 5) × [3, 8) ×
[6, UC) ∪ [7, UC)× [3, 8)× [6, UC), which is a temporal element since the unioned
intervals are non-overlapping.

Moreover, in order to minimize the number of intervals after splitting, coalesc-
ing [22] can also be applied to merge adjacent temporal intervals. For example,

12

the decomposition of the difference result above is not optimal, as the intervals
[1, 5) × [8, UC) × [6, UC) and [5, UC) × [8, UC) × [6, UC) can be coalesced into
[1, UC)× [8, UC)× [6, UC) to produce a minimal decomposition1 . Therefore, coa-
lescing, as effected in step (5) of the algorithm in Fig. 4, minimizes the number of
tridimensional intervals for representing a temporal pertinence and, as such, repre-
sents a space optimization.

Finally, the function recursively applies itself to the first descending versions (step
7). Notice that they are the grandchildren of$mas the XML schema of our model
requires a contents/section/article/paragraph node between the given version and
each of them. The algorithm avoids accessing the descendants of such versions for
which the pertinence does not need updates. More precisely, thanks to the inheri-
tance semantics, if the temporal pertinence of a given version does not overlapte
then its first descending versions do not overlap too, as there is a containment rela-
tionship, and so on. These observations allows us to state the fact which follows.

Fact 2 TherestrictTimestamps function is correct, that is the output is an
XML document complying with the temporal model introduced in Sec. 2 and, in
particular, with the inheritance semantics.

Hence the following proposition shows the time complexity of therestrictTimestamps
function.

Proposition 3.1 In the worst case, the complexity of therestrictTimestamps
function is linear in the number of nodes in the XML document in the subtree rooted
at $m.

Proof. TherestrictTimestamps function, given the node$mcorresponding
to the version to be modified, updates the temporal pertinence of$mand goes down
to the descendants of$m, if necessary. Notice that the function works in a depth-
first manner and, thus, each node in the subtree rooted at$mis visited at most once.
Notice that the worst case happens when the restriction has to be propagated up to
all the leaves of the subtree rooted at$m. 2

The other function for the pertinence management is theextendTimestamps
which extends the temporal pertinence of a given version by adding a given tem-
poral element. Moreover, as the inheritance semantics of our model requires both
the pertinence of sibling versions to be disjoint and the pertinence of each version
to be contained in that of its parent, it also restrict the pertinence of each version
which is sibling of the newly added one and recursively applies itself to the ances-
tor versions. In particular, as shown in Fig. 5, it works on the version identified by
the path$mand first it determines the temporal pertinenceP of the version (steps

1 In general, there is no unique minimal representation of temporal elements by multi-
dimensional intervals. However, all our implemented algorithms are designed to always
obtain and efficiently maintain one minimal representation.

13

function extendTimestamps(te, $m)
(1) P = ∅;
(2)for each $n in $m/ta
(3) P = P ∪ [$n/@vt start,$n/@vt end)

×[$n/@et start,$n/@et end)× [$n/@tt start,$n/@tt end);
(4)if not (te ⊆ P)
(5) te = coalesce (P ∪ te);
(6) set timestamps of $m to P ;
(7) for each $d in children(parent($m))

restrictTimestamps(te,$d);
(8) extendTimestamps(te,parent(parent($m));

Fig. 5. TheextendTimestamps function

1-3), then, ifP does not already include the temporal elementte, it updatesP by
addingte and then assigns the resultingP to $mas timestamp. Notice that step 5
performs the union of two temporal elements and that such an operation not neces-
sarily produces a temporal element, as the pertinence should be. For this reason, an
explicit coalescing operation is required (actually, coalescing is applied to the de-
composition resulting from the evaluation of(P \te)∪te, which eliminates overlap
regions).

Finally, steps 7 and 8 have been included in order to comply with the inheritance
semantics. In particular, step 7 restricts the pertinence of the versions which are
siblings of the newly added one by calling therestrictTimestamps function.
The correctness of such operation is ensured by the fact that the function recursively
applies itself to the descendant versions, if necessary. Step 8 recursively applies it-
self to the ancestor version of$mwhich, in the tree representation, is the grandpar-
ent of$m. The algorithm avoids accessing the ancestor of such versions for which
the pertinence does not need updates. More precisely, thanks to the inheritance se-
mantics, if the temporal pertinence of a given version has not been extended then its
first ascending version does not need to be extended too, thanks to the containment
relationship, and so on. Such observations allow us to state the fact which follows.

Fact 3 The extendTimestamps function is correct, that is the output is an
XML document complying with the temporal model introduced in Sec. 2 and, in
particular, preserving the inheritance semantics.

The complexity of theextendTimestamps function is shown in the following
proposition.

Proposition 3.2 In the worst case, the complexity of theextendTimestamps
function is linear in the number of nodes in the XML document.

Proof. TheextendTimestamps function, given the node$mcorresponding to
the version to be modified, updates the temporal pertinence of$mand that of its

14

siblings by calling therestrictTimestamps function. In the worst case, such
an operation is linear in the number of nodes in the subtrees rooted at each of the
$m siblings. Moreover, the function goes upwards by recursively applying itself
to the ancestor versions of$m. In any case, each node is visited at most once as
the intersection between the siblings of each node and the siblings of its parent is
always empty. Finally, notice that the worst case happens when$m is a leaf and it
is required to go upwards until the root of the document is reached. 2

3.2 Modification algorithms

This subsection is devoted to the presentation of the algorithms defining the op-
erational semantics of the two basic operators of our model:changeText and
changeT ime.

The former operator has been included in the temporal XML model in order to
support textual modifications occurring at any level of the hierarchical structure of
documents.changeText performs a lossless update of the structural element of the
normative text to be modified by essentially creating a new temporal version. More-
over, in order to comply with the inheritance constraints, it also accommodates the
temporal pertinence of:

• the sibling versions, as their pertinence should be disjoint;
• the ancestor and descendant versions, as the pertinence of each version should

be contained in the pertinence of its parent.

As far as the pertinence of the newly added version is involved, the efficacy and
validity time are specified by means of input parameters according to the provi-
sions of the active norm, whereas the transaction time semantics forces the interval
[now, UC) (now is the current chronon [22]) to be assigned as transaction time
pertinence. Indeed, the transparent management of transaction time allows the sys-
tem to keep track of when the modifications were applied for archival and auditing
purposes.

The algorithm implementingchangeText is shown in Fig. 6. As input parameters,
changeText requires a path$p identifying the node to be modified, the validity
and efficacy temporal element to be assigned to the new version, specified by the
parameter

⋃
1≤i≤n[vtsi

, vtei
) × [etsi

, etei
), the new XML texttxt, the number of

the versionvnum and a reference to the active norman. Starting from the root of
the passive norm, the algorithm goes along the tree down to the node rooting the
portion undergoing modification and it updates such a node by adding the new ver-
sion (step 5) with temporal pertinence

⋃
1≤i≤n[vtsi

, vtei
)× [etsi

, etei
)× [now, UC).

Moreover, in order to comply with the inheritance semantics, the algorithm updates
the temporal pertinence of the versions which are siblings (steps 1-2) and ancestors
(step 4) of the newly added one, if necessary. More precisely, as the temporal per-

15

Algorithm changeText($p, text, vnum, an,
⋃

1≤i≤n[vtsi , vtei)× [etsi , etei))
(1) for each node $c in $p/ver
(2) restrictTimestamps(

⋃
1≤i≤n[vtsi , vtei)× [etsi , etei)× [now, U C), $c);

(3) if(text not NULL)
(4) extendTimestamps(

⋃
1≤i≤n[vtsi , vtei)× [etsi , etei)× [now, U C), parent($p));

(5) addChild($p,
<ver num= vnum an rif= an>

<ta vt start= vts1 vt end= vte1 et start= ets1 et end= ete1

tt start= now />
...
<ta vt start= vtsn vt end= vten et start= etsn et end= eten

tt start= now />
text

</ver>);

Fig. 6. ThechangeText algorithm

tinence of sibling versions must be disjoint, for each version which is sibling of
the newly added one, therestrictTimestamps function is called in order to
exclude from the temporal pertinence of such version that of the newly added one.
Similarly, by calling theextendTimestamps function, we extend the pertinence
of the parent version for which it is required to add the new pertinence.

The content of the new version is a snapshot text in XML format which must com-
ply with the contents-section-article-paragraph hierarchy of our XML schema. In
this way, versioning can be performed at any level of the hierarchical structure of
the document. Moreover, the addition of the new version and the corresponding ex-
tension of the ancestor’s pertinence is performed if and only if the XML text is not
empty (step 4). Otherwise, when the XML text is empty, it only restricts the perti-
nence of the already existing versions by excluding the temporal element specified
by the parameter

⋃
1≤i≤n[vtsi

, vtei
)× [etsi

, etei
). In this way, thechangeText oper-

ator can be used to perform a suspension or an abrogation when the ending values
for the validity and efficacy time are set toUC.

ThechangeText algorithm is correct as it produces an XML document complying
with the XML schema and the inheritance semantics of our model. Its complexity
is instead shown in the following Proposition.

Proposition 3.3 In the worst case, the complexity of thechangeText algorithm is
linear in the number of nodes in the XML document.

Proof. The changeText algorithm acts on the nodes in the XML document by
means of theextendTimestamps and restrictTimestamps functions.
The latter is applied to the versions which are descendant of the node$p under-
going the textual modification and its complexity is thus linear in the number of
nodes rooted at$p . On the other hand, the former is applied to the version which

16

Algorithm changeTime($p, (vt, et, tt),
⋃

1≤i≤n[vtsi , vtei)× [etsi , etei))
(1) $v=select($p, vt, et, tt);
(2) extendTimestamps(

⋃
1≤i≤n[vtsi , vtei)× [etsi , etei)× [now, U C), $v);

Fig. 7. ThechangeT ime algorithm

is $p ’s parent version (version of$p in the following). Notice that, as already
shown in Proposition 3.2, theextendTimestamps function could act on the
subtrees rooted at the versions which are siblings of the version of$p and recur-
sively on the version which is ancestor of the version of$p . Thus, the two functions,
extendTimestamps andrestrictTimestamps , will never act on the same
set of nodes and the algorithm visits each node of the XML document at most once.
2

The other operator, namedchangeT ime, is devoted to the extension of the tem-
poral pertinence of an existing document portion. Such operator too requires a
path expression $p denoting the portion of the passive norm requiring temporal
pertinence extension. Moreover, it also requires a set of temporal coordinates (i.e.
a tridimensional time point(vt, et, tt)) to select the version to be modified, and
the new validity and efficacy to be assigned to the selected version, expressed
as a bidimensional temporal element

⋃
1≤i≤n[vtsi

, vtei
) × [etsi

, etei
). The code is

shown in Fig. 7. As the previous operator, it works by first identifying the node
corresponding to the document portion undergoing modification. Then, in step 1,
it selects the node$v corresponding to the version of$p for which the temporal
modification is required. If it exists, such a version is the only one whose tem-
poral pertinence contains the time point(vt, et, tt). Indeed, as the temporal per-
tinence of sibling versions must be disjoint, each time point is contained in the
timestamp of at most one version. Then it adds the new tridimensional temporal
element

⋃
1≤i≤n[vtsi

, vtei
) × [etsi

, etei
) × [now, UC) to the temporal pertinence of

the selected version, by calling theextendTimestamps function, which also
ensures that the resulting document complies with the inheritance semantics. As
thechangeT ime operator only makes us of theextendTimestamps function,
it can be easily shown that its complexity is in the worst case linear in the number
of nodes of the XML document.

As a final remark, notice that we did not include an operator performing the restric-
tion of the temporal pertinence of (a part of) the passive norm. Indeed, temporal
restriction can be performed by means of thechangeText operator, whenever a
suspension or an abrogation is required, or by means of thechangeT ime operator,
whenever the portion of the temporal pertinence to be deleted has to be substituted
by the temporal pertinence of another version.

Notice that after modifications effected via thechangeT ime operator, no trace of
the active norm is kept in the modified document. In order to keep a reference to
the active norm after a pure temporal modification (e.g. an efficacy suspension),

17

thechangeText operator should indeed be used to create a new version, with the
same textual content as the old one, to which the new timestamps and the active
norm reference are assigned. However, this solution gives rise to version duplica-
tion and, thus, it is not the preferred solution in our system. As a matter of fact,
the implementedchangeT ime operator has an optional parameteran which can
be used to add additional active norm references to the modified version (as values
of an ref2 , an ref3 ,... attributes in thever element, which have not included
in the XML Schema of Fig. 1 for the sake of simplicity).

4 Querying normative documents

Legal text repositories are usually managed by means of traditional information re-
trieval techniques. In particular, users are allowed to access the repository contents
by means of keyword-based queries expressing the subjects they are interested in
[8].

We have extended such a framework by offering the possibility of expressing tem-
poral specifications, which are used to select and reconstruct temporally consistent
versions of the normative acts of interest. In this way, we allow users to interact
with the temporal aspects of the normative acts, which become essential, for in-
stance, when they want to know the text version(s) applicable in a given period, or
access the current consolidated version, or retrieve a snapshot in the past or in the
future of the normative acts they are interested in. To this purpose, temporal support
is required at query level. From a technical point of view, the reconstruction of tem-
porally consistent document version(s), corresponds to atimeslicingoperation: in
particular, the reconstruction of all the consolidated versions qualifying for a given
(multidimensional) time period corresponds to the execution ofsequenced queries
in [17], that is queries applied independently at each point in time in order to return
a consistent history.

According to the requirements of a legal information system managing time-varying
normative texts, our model supports queries involving timeslicing and having the
following XQuery [41] format:

FOR $a IN path
WHERE constraints on $a
RETURN const-tree(document($a), temporal specs)

The FOR...WHERE construct follows the XQuery syntax and specifies selec-
tion constraints on the variable$a iterating over the nodes returned by the XPath
expressionpath . Search keywords can be specified by means of the function
contains [43] in the WHEREclause (e.g.contains($a,’sailing’)). In
theRETURNclause, the operator “const-tree() ” is devoted to the reconstruc-

18

tion of the versions of the XML documents containing the selected nodes and which
are temporally consistent with the specifications in the “temporal specs ” ex-
pression. More precisely, the “temporal specs ” expression defines the tem-
poral conditions the versions of interest must satisfy, as a conjunction of elemen-
tary selection predicates on the values of the four supported temporal dimensions.
In accordance with a common syntax adopted for temporal query languages (e.g.
TSQL2 [35]), each elementary predicate has the form “dimension [NOT] op
VALUE”, whereNOTis an optional keyword negating the meaning of the compari-
son operatorop , anddimension can bePUBLICATION, VALIDITY , EFFICACY
or TRANSACTION, in order to specify a selection condition on the corresponding
time pertinence of versions in a normative text. The kind of the operatorop and the
type ofVALUEwhich can be used depends on the involved temporal dimension.

Since the publication time of a norm is a single date, it can be compared with
another date by means of theop operators=, PRECEDESandFOLLOWS. Other-
wise, it can be compared with an interval of dates by means of theop operator
CONTAINED-IN. In the former caseVALUEis a date in the form’yy-mm-dd’ ,
whereas in the latter case it is a an interval built from its bounding dates with the
function PERIOD(’yy1-mm1-dd1’,’yy2-mm2-dd2’) . Examples of valid
expressions involving publication time are, thus,PUBLICATION = ’2002-01-
01’ andPUBLICATION CONTAINED-IN PERIOD(’2002-01-01’,’2002-
05-01’) .

The other three temporal dimensions, validity, efficacy and transaction time, have
temporal elements as values and, thus, can be compared both with single dates and
intervals. In fact, interval-basedop operatorsPRECEDES, FOLLOWS, =, OVERLAPS,
MEETS, MET-BY, CONTAINSandCONTAINED-IN can be used either with inter-
vals or with dates, as dates can be perceived as special cases of intervals. Examples
of valid expressions involving these temporal dimensions are, thus,VALIDITY
OVERLAPS ’2002-01-01’ andTRANSACTION MEETS PERIOD(’2002-
01-01’,’2002-05-01’) . The semantics of the operators introduced above
is the standard one (i.e. the same as defined for the TSQL2 language [35]). Fi-
nally, we do not require the “temporal specs ” expression to contain a tem-
poral condition for each of the four dimensions. Whenever a temporal condition
is missing, the query is evaluated by means of default conditions:PUBLICATION
CONTAINED-IN PERIOD(’0000-01-01’, ’UC’) selecting every version
with respect to publication time,TRANSACTION CONTAINS ’NOW’selecting
the current versions with respect to transaction time, andVALIDITY CONTAINED-
IN PERIOD(’0000-01-01’,’UC’) selecting every version with respect to
validity time. If a selection condition involving efficacy time is not specified, the
same condition used for valid time is also used for efficacy time selection.

Example 2 The following query asks for the current (w.r.t. transaction time) ver-
sion(s), whose validity contains the date 1999/1/1, of the normative acts published
before 2001/1/1 and containing the word “sailing” in their paragraphs:

19

FOR $a IN //article/paragraph
WHERE contains ($a, ’sailing’)
RETURN const-tree(document($a),

VALID CONTAINS ’1999-01-01’ and
PUBLICATION PRECEDES ’2001-01-01’)

In this case default values are used for efficacy and transaction time:EFFICACY
CONTAINS ’1999-01-01’ and TRANSACTION CONTAINS ’NOW’ . 2

The “const-tree() ” operator takes as inputdocument($a) , that is all the
XML documents containing a qualifying node, and the temporal specifications.
Hence, it reconstructs the documents by selecting –at each level of the hierarchy–
the portions whose temporal pertinence satisfies the specifications. The result is in
general a time-varying document (i.e. a “thick” timeslice) as it may contain several
qualifying versions for the same elements. Notice that, in some cases depending
on the temporal selection predicates, since nodes are visited in a depth-first or-
der, the inheritance semantics allows us to prune out portions of the XML trees
which surely are “non interesting”. For instance, if the temporal specification is
VALIDITY OVERLAPS PERIOD(’2000-01-01’,’2000-
12-31’) , when the query engine comes across a node whose temporal pertinence
does not satisfy the temporal specifications (e.g. its validity starts from 2002), then
the sub-tree rooted at such a node can be pruned out as the temporal pertinence of
all its nodes is contained in that of the root and, thus, cannot satisfy the specifica-
tion.

5 Prototype Implementation and Evaluation

The model described in the previous section has been implemented in a prototype
system for the management and maintenance of a collection of time-varying norms.
The system is able to store norms encoded as XML documents and efficiently ac-
cess them by answering queries which can involve both temporal constraints and
search keywords. In its current implementation, the prototype manages large collec-
tions of XML documents with the aid of the XML document management facilities
offered by Oracle 9i [37].

In the following, we will illustrate the details of the prototype system, describe
the XML document collections and sample queries used in our experiments and,
finally, assess the results of the experiments we conducted.

20

5.1 The prototype system

Our prototype system has been implemented by means of a stratum approach, in
which a stratum accepts:

• time-varying normative texts to be stored, which must be represented as XML
documents complying with the XML schema defined in our model;

• modifications on the stored normative texts expressed by means of the operators
described in Sec. 3;

• query expressions which can involve both temporal constraints and search key-
words as specified in Sec. 4.

The stratum then maps each request to a semantically equivalent expression to be
passed to an XQuery engine. Once the XQuery engine performs the required task
and delivers its results, the stratum can also perform some additional processing
before returning the results to the users. The advantage of this approach is that we
can fully exploit the capabilities of an off-the-shelf XQuery engine, including its
query optimization features. Moreover, the adoption of a DBMS with XML doc-
ument management facilities as XQuery engine, allows us to efficiently manage
large collections of normative texts and to ensure full compatibility with already
existing applications in the legal field which usually employ a relational database.
On the other hand, existing XQuery engines do not know anything about the tem-
poral semantics. The stratum is thus devoted to the management of the temporal
aspects of our model, in order to provide a complete support to the manipulation of
time-varying normative acts.

XML Docum ents

XML
repository

U pdate ProcessorPreprocessing

XML Docum ent
Textual or Tem poral
C hange

Query

Inverted Index

Query Processor

XML Documents

Fig. 8. The overall system architecture

The overall architecture is depicted in Fig. 8. The stratum consists of the three com-
ponents shown as Preprocessing, Query Processor and Update Processor modules,
whereas the temporal XML documents are stored in the XML repository. More
precisely, they are maintained as CLOBs into a table having the following schema:

21

tnorms(ID, XML-DOC, TYPE, PUBLICATION, VT-START, VT-END,
ET-START, ET-END, TT-START, TT-END)

Every tuple in this relation represents a temporal XML document whose textual
contents are stored in theXML-DOCcolumn. The table also contains additional
columns storing timestamping metadata:PUBLICATION, VT-START, VT-END,
ET-START, ET-END, TT-START, andTT-END. The timestamp attributes have
the same values as the timestamping tags associated with thecontents tag. The
inheritance semantics of our model guarantees that they represent the summary
time values of the whole norm text (i.e. a minimal bounding box for all the times-
tamps contained in the document). The addition of such metadata is aimed at im-
proving the efficiency of query execution by introducing a preliminary document
filtering phase based on the temporal predicates specified in the query. Moreover,
all the timestamps which are not present in the input documents but which can be
implicitly derived, owing to the semantics of inheritance, are explicited at every
level of the document hierarchy before storage. In this way, by fully exploiting the
potentialities of the XML query engine provided by Oracle 9i, we further speed
up the processing of queries when conditions on temporal values are specified at
different levels of the document tree structure. The extraction of document meta-
data and the explicitation of timestamps are performed once by the Preprocessing
module shown in Fig. 8 when new documents are inserted in the system.

Moreover, in order to speed up the retrieval by keywords, an inverted index has been
built on the contents of selected XML elements (heading andparagraph).

When a query having the form shown in Sec. 4 is issued to the system, the Query
processor module first maps the request onto a SQL query to be submitted to the
Oracle query engine. When it receives back the results, the module eventually per-
forms a temporal slicing of the qualifying XML documents in order to publish the
only versions which are consistent with the conditions expressed in the temporal
specifications of the query.

In the first phase, the “static” part of the query (i.e. theFOR...WHERE... part)
is translated into SQL calls in a straightforward way. Moreover, in this phase, we
also exploit the fact that the temporal slicing process produces empty results for
all the documents containing no version which satisfies the temporal conditions. In
fact, the temporal metadata columns of thetnorms table saves us from accessing
such normative acts, which otherwise should undergo a quite useless postprocess-
ing phase to be eliminated. The temporal conditions are thus translated into SQL
calls, which cause a quick elimination of all the tuples of thetnorms table repre-
senting normative documents which cannot qualify for the temporal selection.

Example 3 In the first phase, the query shown in Ex. 2 is translated into the follow-
ing XML/SQL query complying with the Oracle query language syntax and where
the$cur date variable corresponds to the date the query is issued to the system:

22

SELECT L.XML-DOC.extract(’//article’).getStringVal()
FROM tnorms L
WHERE (VT-START <= ’01-JAN-1999’)
AND (VT-END is null OR VT-END >= ’01-JAN-1999’)
AND (ET-START <= ’01-JAN-1999’)
AND (ET-END is null OR ET-END > ’01-JAN-1999’)
AND (TT-START <= $cur date)
AND (TT-END is null OR VT-END >= $cur date)
AND (PUBLICATION <= ’01-JAN-2001’)
AND CONTAINS (L.XML-DOC, ’sailing WITHIN paragraph’) > 0

2

Finally, whenever the query issued to the system contains temporal specifications,
the query processor module takes each qualifying tuple and performs a temporal
slicing on it by means of theconst-tree operator.

The last element of the stratum is the Update Processor module which is devoted
to the management of changes that normative texts undergo during their life-cycle.
Modification requests can be submitted to such a module where the maintenance
of the XML repository is performed by programs implementing thechangeText
andchangeTime algorithms.

For portability purposes, the stratum has been implemented in Java. In particu-
lar, we used JDOM for the navigation of the XML documents as required by
the implementation of theconst-tree operator and of thechangeText and
changeTime algorithms.

5.2 Document collections and queries

For our performance evaluation experiments, we used different document collec-
tions of increasing size: 24MB (1000 documents), 50MB (2000 documents) and
120MB (5000 documents) having an average, minimum and maximum document
size of 24KB, 2KB and 125KB, respectively. The document collections are syn-
tectic and have been created with a document generator we developed to deeply
test the system performance. In particular, the generator creates one temporal XML
document at a time by taking as inputs the width of the document tree, the number
of versions, and a list of words. On the basis of such parameters, it generates an
XML document consistent with our XML schema and, in particular, conforming to
the inheritance semantics, by randomly inserting the required number of versions
in the document tree and by randomly choosing words from the submitted list to
fill the paragraph contents.

23

1

10

100

1000

10000

100000

1000000

Q1 Q2 Q3 Q4 Q5 Q6

ti
m

es
 (

in
 m

ill
is

ec
on

ds
)

24MB 50MB 120MB

(a) Computing time using thetnorm
table

1

10

100

1000

10000

100000

1000000

Q1 Q2 Q3 Q4 Q5 Q6

ti
m

es
 (

in
 m

il
li

se
co

n
d

s)

24MB 50MB 120MB

o
u

t
o

f
m

em
o

ry

o
u

t
o

f
m

em
o

ry

o
u

t
o

f
m

em
o

ry

(b) Computing time using thePnorm
table

Fig. 9. Selection of normative acts (logarithmic scale)

Query processing experiments were conducted by submitting six types of queries:

• query types q1 and q2 represent searches by a variable number of keywords. In
particular, in q1 keywords are only specified on thecontents subtree, whereas
in q2 keywords are specified both on thetype attribute and on thecontents
subtree;

• query type q3 contains temporal conditions on the four dimensions, transaction,
validity, efficacy and publication time;

• query types q4, q5, and q6 mix the previous ones and contain both keywords
and temporal conditions involving different document parts and temporal dimen-
sions.

5.3 Experiments

In order to evaluate the effectiveness of the system, we conducted a number of
exploratory experiments by running the prototype described above on a 600Mhz
Intel Pentium III processor with 256MB of main memory and a SCSI disk. In this
paper, we report and discuss the most meaningful tests performed on the three XML
document sets.

We first tested the system performance in query processing by separately evaluat-
ing the following two phases: the retrieval of the qualifying normative texts and the
temporal reconstruction of their contents (corresponding to a temporal slicing oper-
ation). In the first phase, only those normative texts satisfying the static part and the
temporal constraints specified in the submitted query are selected. Fig. 9.a shows
(with logarithmic scale) the average computing time in milliseconds required to
process four queries for each of the six types on the three document sets. For the
smallest document set, the computing time ranges form 343 milliseconds up to

24

1.096 seconds, whereas, for the biggest document set, the computing time ranges
from 1.432 seconds up to 4.064 seconds. From our experiments we can state that
the presence of temporal constraints does not disrupt the system performance, even
when a large number of documents is selected, as it happens for the queries of type
q3 where the average number of selected documents is 1568 (over 5000). More-
over, the computing time grows sub-linearly with the number of documents, thus,
showing the scalability of the system. In order to evaluate the improvement given
by the temporal metadata columns of thetnorm table, we compared our approach
with a “naive” approach consisting in the direct access to the XML documents. To
this end, we recorded the normative documents into a simpler table without meta-
data columnsPtnorm(ID,XML-DOC) and we fully relied for the selection of the
normative texts on the Oracle XML engine, by translating the temporal conditions
into XPath conditions on the temporal attributes in thecontents element. The
average computing time in this case is shown in Fig. 9.b. As we expected, the com-
puting time for the first two query types, which do not involve temporal attributes,
is the same, which means that the addition of the metadata columns does not affect
the system efficiency. On the other hand, efficiency improvement given by the ex-
ploitation of the metadata columns is evident for the other four query types, where
our approach is even 127 times faster than the naive approach for the two smallest
collections, whereas the naive approach fails in processing queries involving tem-
poral constraints on the biggest collection (types q3, q4, and q5). This is due to the
fact that, in processing pure temporal queries (type q3) or mixed queries involving
keywords non very selective (types q4 and q5), the relational query engine works
better than the XML query engine and the inverted indexes built on the XML col-
umn are very little useful or even useless. On the other hand, we also evaluated the
time taken to insert XML documents in the two tablestnorm andPtnorm and to
update the related indexes. The evaluation concerns the insertion of 1, 10 and 30
documents (average document size 24KB) into the two tables and the consequent
update of the inverted index. The overhead required for the extraction of the infor-
mation to be inserted in the metadata columns of the tabletnorm is about 35% in
the worst case corresponding to the insertion of one document at a time (from 278
seconds to 376 milliseconds) and it decreases as the number of inserted documents
increases up to 12% for the insertion of about 30 documents (from 6376 seconds to
7163 seconds).

As far as the temporal reconstruction of normative texts is concerned, we evaluated
the computing time required to process 30 normative texts of different sizes (from
2KB to 140 KB) and containing a different number of versions (from 3 to over 50).
For these documents,cons-tree takes 1 second on an average. Such an outcome
is also due to the fact that the temporal pertinence is represented by temporal ele-
ments. If we adopted temporal intervals, any version whose pertinence is the union
of intervals would be substituted by different redundant versions with the same con-
tent, timestamped with a single interval. In such a case, documents would be larger
and the time taken for the temporal reconstruction would obviously increase. We
also implemented such an alternative approach and compared it with the temporal

25

element-based approach. We noticed that any normative text undergoing modifica-
tions (about 3) at different levels is three times larger on average when temporal
intervals are adopted in place of temporal elements. In such a way, the average size
of the documents managed by the system reaches 250KB. The difference between
the two alternatives for the temporal reconstruction is not particularly remarkable
(passing from 1 second to 1.2 second). The most important aspect to be considered
is the main memory space thecons-tree function needs during its execution: it
is even 3.5-4 times the dimension of the document (we use JDOM to navigate XML
documents) and thus processing one 250KB XML document requires about 1MB.
It follows that in order to process many requests, the system might recur to virtual
memory, with an unavoidable dramatic performance degradation. As far as modifi-
cations are concerned, thechangeText andchangeT ime operations take more or
less the same computing time ascons-tree . This is due to the fact that most of
the time is used for the XML tree navigation which is approximately the same in
the two cases.

6 Related Work and Discussion

In recent years, a crop of research work addressed temporal and versioning aspects
in the Web and, in particular, in the management of XML documents. Actually,
about 240 of the papers listed in the bibliography [18] could be considered related
work. Therefore, we will just briefly recall some of the aspects which are somehow
related with our work (and cite a couple of papers which are chosen as represen-
tatives of the field) and discuss more in detail only the few papers which are more
strictly related with our approach.

In a broad literature, the main focus of some approaches is on the representation
and management of changes, where different versions of data are produced by up-
dates. In these approaches, temporal attributes are often used to timestamp stored
versions (e.g. [5,1]). They represent the time the updates were applied and, thus,
have the (implicit) semantics of transaction time with respect to the system where
the changes are effected. On the other hand, several works also considered manage-
ment of changes and versioning without taking into account temporal aspects (e.g.
[39,6]).

Other approaches considered the classical notion of valid time (e.g. [20,44]). For
example, the “Valid Web” approach [20] is an infrastructure designed to repre-
sent and manage temporal Web documents (i.e. documents containing historical
information, with timestamps explicitly encoded by the document authors to as-
sign validity to information contents). Temporal documents can then be selectively
browsed, in accordance with a user-supplied temporal period of interest. Some ap-
proaches also considered a bitemporal data model, that is supporting both valid and
transaction time (e.g. [13,26]).

26

Other papers also considered a Web usage specific temporal dimension: navigation
time, which concerns the interaction of users during their browsing of Web sites
(e.g. [2,12]). Temporal aspects were also considered in the context of Web ware-
houses (e.g. [4,30]), mainly with reference to the time the source Web sites were
navigated in order to build the warehouse and, thus, representing a sort of “validity”
for the collected Web pages.

Some authors also considered multidimensional XML documents, where time can
be included in the adopted versioning dimensions (e.g. [27,45]), presenting general
data models, query languages and implementation solutions. However, the speci-
ficity of the four time dimensions and of the manipulation operations involved in
the legal domain, prevented us from an adoption or an attempt to a simple extension
of such solutions.

In addition to the definition of temporal XML data models and query languages,
some works also took into account physical organization and efficient implemen-
tation issues (e.g. [45,7,31]). Proposed query languages and implementation solu-
tions can also consider updates, but consistency of the outcomes with respect to a
DTD or XML Schema is not usually considered in such approaches.

On the other hand, the paper [24] deals with the problem of consistently updat-
ing XML documents with respect to an XML Schema. The proposed solution is
based on techniques, implemented as a light-weight middleware system, for rewrit-
ing generic XQuery updates into safe ones by embedding constraint-checking sub-
queries. A somehow “dual” approach is presented in [3], where DTDs are incre-
mentally changed in order to keep pace with the independent evolution of XML
documents. Obviously, such an approach could not be used in a context where
the available schema corresponds to important application-dependent integrity con-
straints, as in our case.

Palmirani and Brighi present in [33] a legal document management system, called
Norma-System, with limited temporal support. The core of Norma-System is an
editor for drafting normative texts, which supports implicit document versioning
on the basis of the modifications applied via the editor. The user-defined markup
also involves temporal information, including publication, validity and efficacy
time. Temporal query support is basically provided though a consolidation mod-
ule, which helps the user to reconstruct consistent norm versions with respect to
validity time. The other time dimensions can be used, at query level, as additional
search fields in full-text search.

The paper [17] presents a temporal XML query language,τXQuery, with which
the authors add temporal support to XQuery by extending its syntax and seman-
tics. The temporal support concerns the valid time dimension and three kinds of
temporal queries are considered: current, sequenced, and representational. The au-
thors also suggest an implementation based on a stratum approach to exploit the

27

availability of XQuery implementations. With respect to their query classification,
in our work we support current and sequenced temporal queries. Furthermore, we
not only implemented our temporal query processor by leveraging existing XQuery
engines, as suggested in [17], but also by exploiting the potentialities of a relational
DBMS query engine. As shown in Sec. 5, such an approach allows us to improve
the performance of our system in the query processing phase and to cope with a
very large collection of XML documents.

In [11], the authors study the problem of consistently deriving a scheme for man-
aging the temporal counterpart of non-temporal XML documents, starting from the
definition of their schema. In particular, they introduce a data model and an archi-
tecture, called XSchema, which derives from a non-temporal schema: a temporal
schema, a temporal annotation and a physical annotation. The annotations specify
which portion(s) of the XML documents can vary over time, how the documents
can change and where timestamps should be placed. In our work, we use an XML
schema to encode the hierarchical organization of normative texts. Such an en-
coding is enriched with timestamping metatadata complying with an inheritance
semantics. The derivation of our XML schema could also be thought as the out-
come of a design process similar to the one described in [11], if we started from a
snapshot XML schema corresponding to the base structure of a non-temporal (non-
versioned) norm text and, then, we augmented it with versioning and timestamping
metadata in order to accommodate time-varying data. As to the involved annota-
tion, using the terminology of [11], our XML Schema supports, at each level of the
document hierarchy, elements varying over transaction time and valid time, whose
lifetime is described as a continuous state, and whose content can change over time.
On the other hand, our data model also support a temporal element which is not in-
cluded in the options of the temporal annotation in [11], and we have two different
temporal dimensions, validity time and efficacy time, which both have the same
semantics as valid time in [11] but need independent management.

7 Conclusions

The management of norms and their dynamics requires the adoption of temporally
enhanced data models and systems. In this paper, we introduced a temporal XML
data model which is able to capture the semantics of norms evolving in time and
represent their multiple versions with respect to publication, validity, efficacy and
transaction times. The model is based on an XML schema which allows the in-
troduction of timestamping metadata at each level of the hierarchical structure of
normative documents which are subject to change, up to the granularity of a single
paragraph. A well-defined inheritance semantics rules the interaction between the
different levels of the norm structural hierarchy and the temporal pertinence of the
versions. Norm text modifications are dealt with by means of two basic operators
which implement lossless changes through a careful management of versions and

28

timestamps. Moreover, the model extends conventional searches by keyword with
the possibility of specifying additional temporal constraints the retrieved normative
documents must satisfy. Finally, a prototype supporting the model has been imple-
mented and evaluated. The preliminary experimental results on query performance
which have been reported in the paper are encouraging.

Out of this context, our work covers a broader interest as we developed a tempo-
ral and text-centric application system with IR capabilities, which gave us the op-
portunity of studying the interaction of (multiple) temporal aspects having a well
founded semantics with the structural properties of XML documents. Hence, our
approach can provide useful solutions also for other web-based advanced applica-
tions with similar requirements (e.g. temporal management of clinical data [9,10]).

In future investigations, in order to improve the performance of our system, we plan
to move from the stratum approach described in this paper, that is an implementa-
tion on-top of an existing XML-enabled system, to the design and development
of a specific XML engine. In particular, we are interested in considering alterna-
tive highly-optimized solutions for physical storage of temporal XML documents,
indexing and query processing. For instance, solutions based on XML document
decomposition and execution of structural joins seem promising starting points for
future extensions of our approach. Our future plans also include the possibility to
test the effectiveness of our solutions against a real legal text repository, rather than
against collections of syntectic documents as it was for the prototype. Gathering the
feedback from real users would also be very interesting in such a context. Moreover,
we will explore the possibility to adapt our approach to other application domains
too.

8 Acknowledgments

The authors want to thank Marco Bergonzini, who helped in implementing the
system and run the experiments.

References

[1] T. Amagasa, M. Yoshikawa, S. Uemura, A data model for temporal XML documents,
in: Proc. of DEXA 2000, Lecture Notes in Computer Science, vol. 1873 (Springer,
Berlin, 2000) 334–344.

[2] J. Andersen, A. Giversen, A. H. Jensen, R. S. Larsen, T. B. Pedersen, J. Skyt,
Analyzing clickstreams using subsessions, in: Proc. of DOLAP 2000 (ACM, New
York, 2000) 25–32.

29

[3] E. Bertino, G. Guerrini, M. Mesiti, L. Tosetto, Evolving a Set of DTDs According
to a Dynamic Set of XML Documents, in: Proc. of XMLDM’02, Lecture Notes in
Computer Science, vol. 2490 (Springer, Berlin, 2002) 45–66.

[4] Y. Cao, E.-P. Lim, W. Ng, On warehousing historical Web information, in: Proc. of ER
2000, Lecture Notes in Computer Science, vol. 1921 (Springer, Berlin, 2000) 253–266.

[5] S.S. Chawathe, S. Abiteboul, J. Widom, Managing historical semistructured data,
Theory and Practice of Object Systems 5 (3) (1999) 143–162.

[6] S.-Y. Chien, V. Tsotras, C. Zaniolo, Version management of XML documents, in: The
World Wide Web and Databases, Third International Workshop – Selected Papers,
Lecture Notes in Computer Science, vol. 1997 (Springer, Berlin, 1997) 184–200.

[7] S.-Y. Chien, V. Tsotras, C. Zaniolo, Efficient management of multiversion XML
documents, VLDB Journal 11 (4) (2002) 332–353.

[8] C. Ciampi, R. Nannucci, eds., ITLaw - Information Technology and the Law. An
International Bibliography (1958-2001) - 2002 Edition, cd-rom (2002).

[9] C. Combi, A. Montanari, Data models with multiple temporal dimensions: Completing
the picture, in: Proc. CAiSE 2001, Lecture Notes in Computer Science, vol. 2068
(Springer, Berlin, 2001) 187–202.

[10] C. Combi, L. Portoni, F. Pinciroli, Visualizing temporal clinical data on the WWW, in:
Proc. of the Joint European Conf. on Artificial Intelligence in Medicine and Medical
Decision Making (AIMDM’99), Aalborg, Denmark, 1999, pp. 301–314.

[11] F. Currim, S. Currim, C.E. Dyreson, R. Snodgrass, A Tale of Two Schemas: Creating
a Temporal Schema from a Snapshot Schema withτXSchema, in: Proc. EDBT 2004,
Lecture Notes in Computer Science, vol. 2992 (Springer, Berlin, 2004) 348–365.

[12] E. Damiani, B. Oliboni, E. Quintarelli, L. Tanca, Modeling users’ navigation history,
in: Proc. of Intl’ Workshop on Intelligent Techniques for Web Personalisation (in conj.
with IJCAI-01), Seattle, WA, 2001.

[13] C.E. Dyreson, M.H. B̈ohlen, C.S. Jensen, Capturing and querying multiple aspects of
semistructured data, in: Proc. VLDB ’99 (Morgan Kaufmann, San Francisco, 1999)
290–301.

[14] O. Etzion, S. Jajodia, S.M. Sripada, eds., Temporal Databases - Research and practice,
Lecture Notes in Computer Science, vol. 1399 (Springer, Berlin, 1998).

[15] European Commission e-Government home page,http://europa.eu.int/
information society/eeurope/2005/all about/egovernment/
index en.htm .

[16] S. Gadia, A homogeneous relational model and query languages for temporal
databases, ACM Trans. on Database Systems 13 (3) (1988) 418–448.

[17] D. Gao, R.T. Snodgrass, Temporal slicing in the evaluation of XML queries, in: Proc.
of VLDB 2003 (Morgan Kaufmann, San Francisco, 1999) 632–643.

30

[18] F. Grandi, An annotated bibliography on temporal and evolution aspects in the
World Wide Web, Tech. Rep. TR-75,TIMECENTER, http://www.cs.auc.dk/
TimeCenter/ (2003).

[19] F. Grandi, Introducing an annotated bibliography on temporal and evolution aspects in
the World Wide Web, ACM Sigmod Record 33 (2) (2004).

[20] F. Grandi, F. Mandreoli, The Valid Web: an XML/XSL infrastructure for temporal
management of Web documents, in: Proc. ADVIS’2000, Lecture Notes in Computer
Science, vol. 1909 (Springer, Berlin, 2000) 294–303.

[21] F. Grandi, F. Mandreoli, P. Tiberio, M. Bergonzini, A temporal data model and system
architecture for the management of normative texts, in: Proc. of the 11th Natlional
Conf. on Advanced Database Systems (SEBD), Cetraro, Italy, 2003, pp. 169–178.

[22] C.S. Jensen, C.E. Dyreson et al., The Consensus Glossary of Temporal Database
Concepts - February 1998 Version, in: O. Etzion, S. Jajodia, S. Sripada, eds., Temporal
Databases — Research and Practice, Lecture Notes in Computer Science, vol. 1399
(Springer, Berlin, 1998) 367–405.

[23] S. Jones, P. Mason, R. Stamper, Legol 2.0: A relational specification language for
complex rules, Information Systems 4 (4) (1979) 293–305.

[24] B. Kane, H. Su, E. Rundensteiner, Consistently updating XML documents using
a incremental constraint check queries, in: Proc. ECDM 2002, Lecture Notes in
Computer Science, vol. 2784 (Springer, Berlin, 2003) 39–50.

[25] S.-K. Kim, S. Chakravarthy, Modeling time: Adequacy of three distinct time concepts
for temporal data, in: Proc. ER’93, Lecture Notes in Computer Science, vol. 823
(Springer, Berlin, 1993) 475–491.

[26] M. Manukyan, L. Kalinichenko, Temporal XML, in: Proc. of 5th East European Conf.
on Advances in Databases and Information Systems (ADBIS ’01) – Vol. 1, Research
Communications, Vilnius, Lithuania, 2001, pp. 143–155.

[27] T. Mitakos, M. Gergatsoulis, Y. Stavrakas, E. Ioannidis, Representing time-dependent
information in multidimensional XML, in: Proc. of 23rd Intl Conf. on Information
Technology Interfaces (ITI 2001), Pula, Croatia, 2001, pp. 111–116.

[28] M.A. Nascimento, M. Eich, Decision time for temporal databases, in: Proceedings
of the 2nd International Workshop on Temporal Representation and Reasoning
(TIME’95), Melbourne Beach, FL, 1995, pp. 157–162.

[29] Norma in rete (Norm on network),http://www.normainrete.it .

[30] K. Nørvåg, Temporal XML data warehouses: Challenges and solutions, in: Proc. of
Workshop on Knowledge Foraging for Dynamic Networking of Communities and
Economies, Shiraz, Iran, 2002.

[31] K. Nørvåg, Supporting temporal text-containment queries in temporal document
databases, Data & Knowledge Engineering 49 (1) (2004) 105–125.

31

[32] F. Ost, M. Van Hoecke, eds., Time and Law. Is the Nature of Law to Last (Bruylant,
Bruxelles, 1998).

[33] M. Palmirani, R. Brighi, Norma-system: A legal document system for managing
consolidated acts, in: Proc. of DEXA 2002, Lecture Notes in Computer Science, vol.
2453 (Springer, Berlin, 2002) 310–320.

[34] A. Pizzorusso, The maintenance of the Book of Laws and other studies on Legislation
(Giappichelli, Torino, 1999) (in Italian).

[35] R.T. Snodgrass, ed., I. Ahn, G. Ariav, D. Batory, J. Clifford, C.E. Dyreson, R. Elmasri,
F. Grandi, C. Jensen, W. Käfer, N. Kline, K. Kulkarni, T.C. Leung, N. Lorentzos,
J.F. Roddick, A. Segev, M. Soo, S.M. Sripada, The TSQL2 Temporal Query Language
(Kluwer, New York, 1995).

[36] A.U. Tansel, J. Clifford, V. Gadia, S. Jajodia, A. Segev, R.T. Snodgrass, eds., Temporal
Databases: Theory, Design and Implementation (Benjamin/Cummings, Redwood City,
1993).

[37] The Oracle 9i database,http://otn.oracle.com/products/oracle9i/
content.html .

[38] U.S. president’s e-government initiatives,
http://www.whitehouse.gov/omb/egov/ .

[39] F. Vitali, D. Durand, Using versioning to support collaboration on the WWW, World
Wide Web Journal 1 (1) (1996) 37–50.

[40] W3C, XML path language (XPath) 2.0,http://www.w3.org/TR/xpath20/ .

[41] W3C, XQuery 1.0: An XML Query Language,http://www.w3c.org/TR/
xquery/ .

[42] W3C, XML Schema,http://www.w3.org/XML/Schema .

[43] W3C, XQuery 1.0 and XPath 2.0 Functions and Operators,http://www.w3.org/
TR/xquery-operators/ .

[44] F. Wang, C. Zaniolo, Preserving and querying histories of xml-published relational
databases, in: Proc. ECDM 2002, Lecture Notes in Computer Science, vol. 2784
(Springer, Berlin, 2003) 26–38.

[45] R.K. Wong, F. Lam, M. Orgun, Modelling and manipulating multidimensional data in
semistructured databases, World Wide Web 4 (1-2) (2001) 79–99.

32

Fabio Grandi is currently an Associate Professor in the Faculty of Engineering of the
University of Bologna, Italy. Since 1989 he has worked at the CSITE center of the Italian
National Research Council (CNR) in Bologna in the field of neural networks and temporal
databases, initially supported by a CNR fellowship. In 1993 and 1994 he was an Adjunct
Professor at the Universities of Ferrara, Italy, and Bologna. He joined his current depart-
ment (Dept. of Electronics, Computer Science and Systems) as a Research Associate in
1994. His scientific interests include temporal databases, storage structures, access cost
models, WWW extensions. He received a Laurea degree in Electronics Engineering and
a PhD in Electronics Engineering and Computer Science from the University of Bologna.
Further information can be found at http://www-db.deis.unibo.it/∼fgrandi/.

Federica Mandreoli is currently a Research Associate at the Department of Information
Engineering of the University of Modena and Reggio Emilia, Italy. Her research inter-
ests include information retrieval, multi-database systems, semantic web, object-oriented
databases and schema versioning. She holds a Laurea degree in Computer Science and a
PhD in Electronics Engineering and Computer Science from the University of Bologna.
She is member of the Association for Computer Machinery (ACM). Further information
can be found at http://www.isgroup.unimo.it/federica.asp.

Paolo Tiberio is currently Full Professor of Computer Science in the Enginneering Faculty
of the University of Modena and Reggio Emilia, Italy. He was also Research Associate
from 1970 and Professor from 1976 to 1998 with the Department of Electronics, Computer
Science and Systems of the University of Bologna, visiting scientist at the University of
Michigan, Ann Arbor, in 1971 and with ”System R” and related projects of the IBM Re-
search Center, S.Jose, California, in 1978, 1981 and 1984. His present research interests are
temporal and multimedia databases and digital libraries. He received his Laurea degree in
Electronic Engineering from the University of Pisa, Italy. Further information can be found
at http://www.isgroup.unimo.it/tiberio.asp.

33

