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Abstract

A graph is locally irregular if no two adjacent vertices have the same degree. A
locally irregular edge-coloring of a graph G is such an (improper) edge-coloring that
the edges of any fixed color induce a locally irregular graph. Among the graphs
admitting a locally irregular edge-coloring, i.e., decomposable graphs, only one is
known to require 4 colors, while for all the others it is believed that 3 colors suffice.
In this paper, we prove that decomposable claw-free graphs with maximum degree
3, all cycle permutation graphs, and all generalized Petersen graphs admit a locally
irregular edge-coloring with at most 3 colors. We also discuss when 2 colors suffice
for a locally irregular edge-coloring of cubic graphs and present an infinite family
of cubic graphs of girth 4 which require 3 colors.

Keywords: locally irregular edge-coloring, locally irregular graph, subcubic graph, generalized

Petersen graph, cycle permutation graph

1 Introduction

A graph is locally irregular if no two adjacent vertices have the same degree. A locally
irregular edge-coloring (or a LIEC for short) of a graph G is such an edge-coloring that
the edges of any fixed color induce a locally irregular graph. Since K2 is not a locally
irregular graph, every LIEC is necessarily improper. Hence, there are graphs (e.g., odd
paths and odd cycles) that do not admit a LIEC. If a graph does admit a LIEC, we call it
decomposable. The smallest number of colors such that a decomposable graph G admits
a LIEC is called the locally irregular chromatic index and denoted by χ′irr(G).

The locally irregular edge-coloring was introduced in 2015 by Baudon et al. [2] who
were motivated by the well-known (1-2-3)-Conjecture proposed in [6]. Since then, a
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number of results were published. The first to establish a constant upper bound of 328
for the locally irregular chromatic index of decomposable graphs were Bensmail, Merker,
and Thomassen [4]. Their bound was further improved to 220 by Lužar, Przyby lo, and
Soták [8], who combined the decomposition presented in [4] with a result on decomposition
of bipartite graphs to odd subgraphs presented in [7].

It turned out that only a few colors usually suffice for a LIEC of a decomposable graph,
and so Baudon et al. [2] conjectured that every decomposable graph admits a LIEC using
at most 3 colors. Their conjecture was just recently rejected by Sedlar and Škrekovski [11]
who presented the graph H0 with χ′irr(H0) = 4 (see Figure 1).

Figure 1: The graph H0 with χ′irr(H0) = 4.

The graph H0 is a cactus graph and after establishing that all decomposable cacti
except H0 admit a LIEC with at most 3 colors [13] (see also [12]), Sedlar and Škrekovski
proposed a revised conjecture.

Conjecture 1.1 (Sedlar and Škrekovski [13]). For every connected decomposable graph
G, not isomorphic to H0, it holds that χ

′
irr(G) ≤ 3.

Regarding decomposable graphs admitting locally irregular edge-colorings using at
most 3 colors, it was shown that, e.g., k-regular graphs for k ≥ 107 [2], graphs with
minimum degree at least 1010 [9], trees [3], and unicyclic graphs [11] are such.

In this paper, we focus on graphs with maximum degree 3. In [8], the authors proved
the following.

Theorem 1.2 (Lužar, Przyby lo, and Soták [8]). For every decomposable graph G with
maximum degree 3 it holds that χ′irr(G) ≤ 4.

It remained an open question whether 3 colors are always sufficient. We partially
answer this by proving that the answer is affirmative for decomposable claw-free graphs
with maximum degree 3 in Section 3, and for cycle permutation graphs and generalized
Petersen graphs in Section 4.

We additionally study cubic graphs that do not admit a LIEC using at most 2 colors.
It is already known that every cubic bipartite graph G has χ′irr(G) ≤ 2 [2]. This motivated
us to investigate properties of (cubic) graphs which do not admit a LIEC with at most 2
colors. We present the results in Section 5.

2 Preliminaries

In this section, we present terminology, notation, and auxiliary results that we are using
in our proofs.
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First, by a k-LIEC we refer to a locally irregular edge-coloring with at most k colors.
For a k-LIEC σ of G, we denote by diσ(u) the number of edges incident with a vertex u
and colored with i; if the coloring σ is clear from the context, we only write di(u). If two
vertices are incident with the same number of edges of some color, we say that they have
the same color degree.

A k-vertex (a k+-vertex) is a vertex of degree k (at least k). A k-path P = v1, . . . , vk+1

is pendant in a graph G if dG(v1) = 1, dG(vk+1) ≥ 2, and dG(vi) = 2 for i = 2, . . . , k. By
a k-thread (a k+-thread) in a graph G we refer to a subgraph T of G isomorphic to the
k-path (a k+-path), in which all vertices have degree 2 also in G.

As described in [2], decomposable graphs have a very specific structure. In particular,
the graphs which are not decomposable are odd paths, odd cycles, and graphs from the
family T defined recursively as follows:

• the triangle is in T ;

• every other graph in T is constructed by taking an auxiliary graph F which might
either be an even path or an odd path with a triangle glued to one end, then choosing
a graph G ∈ T containing a triangle with at least one vertex v of degree 2, and
finally identifying v with a vertex of degree 1 in F .

Note that all graphs in T have maximum degree 3 and so any graph G with ∆(G) ≥ 4 is
decomposable.

3 Claw-free graphs

In this section, we consider claw-free graphs with maximum degree 3 and show that if
such a graph is decomposable, then it admits a 3-LIEC.

Theorem 3.1. For every decomposable claw-free graph G with maximum degree 3 it holds
that

χ′irr(G) ≤ 3 .

Proof. We prove the theorem by contradiction. Let G be a minimal counterexample to the
theorem in terms of the number of edges; i.e., G is a connected decomposable subcubic
claw-free graph with the minimum number of edges such that χ′irr(G) > 3. We first
establish several structural properties of G.

Claim 1. G does not contain a pendant 2-path, i.e., in G, there is no edge uv with
d(u) = 1 and d(v) = 2.

Proof. Since G is decomposable, by the definition of T , also the graph G′ = G \ {u, v} is
decomposable. Thus, by the minimality, G′ admits a 3-LIEC σ′ which induces a partial
3-LIEC σ of G with only the two edges incident with v being non-colored. Let w be the
neighbor of v distinct from u. Since w is incident with at most two colored edges, there
is a color α ∈ {1, 2, 3} such that dα(w) = 0, and so we can set σ(vw) = σ(uv) = α, hence
extending σ to all edges of G, a contradiction. �

Claim 2. G does not contain any 3-cycle incident with two 2-vertices.
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Proof. Suppose the contrary and let C = v1v2v3 be a 3-cycle with d(v1) = d(v2) = 2.
Clearly, d(v3) = 3; let u be the neighbor of v3, distinct from v1 and v2. By the construction
of T , the graphG′ = G\{v1, v2, v3} is decomposable and it admits a 3-LIEC, which induces
a partial 3-LIEC σ of G, where the edges v1v2, v2v3, v1v3, and uv3 are non-colored. We may
assume that d1(u) = 0. Then, we complete the coloring σ by setting σ(uv3) = σ(v1v3) = 1
and σ(v1v2) = σ(v2v3) = 2, a contradiction. �

Claim 3. G does not contain any 4-cycle incident with two consecutive 2-vertices.

Proof. Suppose the contrary and let C = v1v2v3v4 be a 4-cycle with d(v1) = d(v2) = 2.
Since ∆(G) = 3, we also assume that d(v3) = 3, and since G is claw-free, d(v4) = 3 and
there is a vertex u adjacent to v3 and v4.

Suppose that G′ = G \ {v2, v3} is decomposable. Then, G′ admits a 3-LIEC which
induces a partial 3-LIEC σ of G where only the edges v1v2, v2v3, v3v4, and uv3 are non-
colored. We may assume that σ(v1v4) = σ(uv4) = 1 and d2(u) = 0. Hence, we can
complete the coloring by coloring the edges v1v2, v2v3, v3v4, and uv3 with color 2, a
contradiction.

If G′ is not decomposable, then G′′ = G \ {v1, v2, v3} is decomposable and it admits a
3-LIEC which induces a partial 3-LIEC σ of G where the edges v1v2, v1v4, v2v3, v3v4, and
uv3 are non-colored. Now, we may assume that σ(uv4) = 1 and d2(u) = 0. We complete
the coloring by coloring the edges v2v3, v3v4, and uv3 with color 2, and the edges v1v2,
v1v4 with 3, a contradiction. �

Claim 4. G does not contain any 2+-thread.

Proof. Suppose the contrary and let u and v be adjacent 2-vertices in G. In particular,
without loss of generality, we choose the pair in such a way that the second neighbor of
u is a 3-vertex w. We label the vertices as depicted in Figure 2. By Claim 2, w 6= z, and
since G is claw-free, the two neighbors w1 and w2 of w, distinct from u, are adjacent. We
additionally assume that d(w1) ≤ d(w2).

u v zw

w2

w1w′
1

w′
2

1

Figure 2: A 2+-thread in G is reducible. We depict vertices of nonspecified
degrees as empty circles and possibly nonexisting edges dashed, where the
vertices incident only to dashed edges may also not exist. Note also that
w′1 = w′2 is possible.

Let G′ be the graph obtained from G by contracting the edges uv and uw. By Claim 3,
z is not adjacent to w, and consequently, G′ is a simple graph. Note that ∆(G′) = 3 and
by construction of T , G′ is also decomposable. Moreover, by the minimality, G′ admits
a 3-LIEC σ′ which induces a partial 3-LIEC σ of G where only the edges uv and uw are
non-colored. Without loss of generality, we may assume that σ(vz) = 1. We show that
σ always extends to a 3-LIEC of G by considering the cases regarding the colors of ww1

and ww2.
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Case 1. The color of vz does not appear at w, i.e., d1(w) = 0. Note that this case
implies that at least one of w1 and w2 is a 3-vertex, so d(w2) = 3. If σ(ww1) = σ(ww2),
then we color the edges uw and uv with the color distinct from σ(ww1) and σ(vz), and
we are done. Thus, we may assume, without loss of generality, that σ(ww1) = 2 and
σ(ww2) = 3. Moreover, by the assumption that d(w2) = 3 and the symmetry, we may
also assume that σ(w1w2) = 2 and thus d3(w2) = 2.

Now, we consider three subcases regarding the colors incident with w1. First, if either
d(w1) = 2 or d2(w1) = 2 and d3(w1) = 1, then we recolor ww1 and w1w2 with 1, and color
uw and uv with 2. Second, if d2(w1) = 2 and d1(w1) = 1, then there are two possibilities.
If d1(w′1) = 3, then we set σ(w1w2) = 1 and σ(ww1) = σ(uw) = σ(uv) = 3. If d1(w′1) = 2,
then we proceed as in the first subcase. Third, if d2(w1) = 3, then we again consider
the colors incident with w′1. If d2(w′1) = 1, then we set σ(ww1) = σ(uw) = σ(uv) = 3.
Otherwise, d2(w′1) = 2 and we again color the edges as in the first subcase.

Case 2. d1(w) = 1. In this case, we set σ(uv) = 1 and consider four subcases.

Case 2.1. Suppose that d(w1) = 2 and σ(ww1) = 1. Then d1(w1) = 1 since σ is
a LIEC of G′. We may therefore assume that σ(ww2) = σ(w1w2) = 2. Thus, setting
σ(ww1) = σ(uw) = 3 extends σ to all edges of G, a contradiction.

Case 2.2. Suppose that d(w1) = 2 and σ(ww2) = 1. Then, we may assume that
σ(ww1) = σ(w1w2) = 2 and σ(w2w

′
2) = 3 (in the case when d(w2) = 2, we proceed as in

Case 2.1). Thus, we may set σ(ww2) = 2 and σ(ww1) = σ(uw) = 3, a contradiction.

Case 2.3. Suppose that d(w1) = 3 and d1(w1) = 3. Note that, by the symmetry, this
covers also the case with d(w1) = 3, d1(w2) = 3. Next, we may assume that σ(ww2) = 2.
If d1(w′1) = 1, then we set σ(ww1) = σ(uw) = 2 (note that σ(w2w

′
2) = 2, thus d1(w2) 6=

d1(w1)). Otherwise, d1(w′1) = 2 and we set σ(w1w2) = 2 and σ(ww1) = σ(ww2) =
σ(uw) = 3, a contradiction.

Case 2.4. Suppose that d(w1) = 3 and d1(w1) = 1 with σ(ww1) = 1. Note that,
by the symmetry, this covers also the case with d(w1) = 3, d1(w2) = 1 and σ(ww2) = 1.
Next, we may assume that σ(ww2) = 2. We consider three cases regarding the colors
incident with w1. First, if d2(w1) = 2, then we set σ(ww1) = σ(uw) = 3. Second, if
d3(w1) = 2, then we set σ(ww1) = σ(uw) = 2. Third, suppose that d2(w1) = d3(w1) = 1.
Note that in this case σ(w1w2) = 2 and σ(w1w

′
1) = 3, otherwise σ is not a LIEC of G′.

If σ(w2w
′
2) = 1 and d3(w′1) = 2, then we set σ(w1w2) = σ(ww1) = 3 and σ(uw) = 2. If

σ(w2w
′
2) = 1 and d3(w′1) = 3, then we set σ(w1w2) = 3 and σ(ww1) = σ(uw) = 2. Next,

if σ(w2w
′
2) = 3, then we set σ(w1w2) = 1 and σ(uw) = 2. Otherwise, σ(w2w

′
2) = 2. In

that case, if d2(w′2) = 2, then we set σ(w1w2) = σ(ww2) = 1 and σ(ww1) = σ(uw) = 2.
Therefore, d2(w′2) = 1. If d3(w′1) = 2, then we set σ(ww1) = σ(w1w2) = σ(uw) = 3.
Otherwise d3(w′1) = 3 and we set σ(ww1) = 3 and σ(uw) = 2. Thus, σ can be extended
to all edges of G, a contradiction.

Case 3. d1(w) = 2. By the symmetry, we may assume that σ(w1w2) = σ(w2w
′
2) =

2. First, if d1(w1) = 2 and d1(z) = 1, then we set σ(ww2) = σ(uw) = 3 and σ(uv) = 1.
Second, if d1(w1) = 1 and d1(z) = 2, then we set σ(uw) = σ(uv) = 2. Third, if d1(w1) = 2
and d1(z) = 2, then we can set σ(w1w2) = 1 and σ(ww2) = σ(ww1) = σ(uw) = σ(uv) = 2.
Fourth, if d1(w1) = 1 and d1(z) = 1, then we first set σ(uv) = 1. Note that σ(w1w

′
1) = 3

and we consider two cases with respect to d3(w′1). If d3(w′1) = 3, then we set σ(ww1) =
σ(ww2) = σ(uw) = 3. Otherwise, d3(w′1) = 2 and we set σ(ww2) = 2 and σ(w1w2) =
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σ(ww1) = σ(uw) = 3. Thus, σ can always be extended to all edges of G, a contradiction.
�

Claim 5. G does not have a non-trivial bridge.

Proof. Suppose the contrary and let uv be a bridge in G with d(u) > 1 and d(v) > 1.
The graph G \ {uv} has exactly two connected components; let Gu be the component
containing u and Gv the component containing v. By Claim 4, at least one of u and v
is a 3-vertex, say d(u) = 3. Moreover, Claim 1 and the fact that G is claw-free imply
that each of Gu and Gv is either isomorphic to a triangle (which is not possible due to
Claim 2) or has maximum degree equal to 3.

Suppose first that d(v) = 2 and let w be the neighbor of v distinct from u. Let
G′u = Gu ∪ {uv}. By Claims 4 and 1, d(w) = 3. This means that ∆(G′u) = ∆(Gv) = 3.
By the construction of graphs in T , neither G′u nor Gv are in T (no graph in T has a
pendant edge with one endvertex of degree 3) and thus both are decomposable and claw-
free. Therefore, by the minimality, G′u and Gv admit 3-LIEC σu and σv, respectively. It
is easy to see that a permutation of colors in σv such that σu(uv) 6= σv(vw) induces a
3-LIEC of G, a contradiction.

So, we may assume that d(v) = 3. Let G′u = Gu ∪ {uv} and G′v = Gv ∪ {uv}. As
deduced above, both G′u and G′v are decomposable (and claw-free). Therefore, if Gu

is decomposable, then there is a 3-LIEC of G induced by colorings of Gu and G′v, and
similarly, if Gv is decomposable, then there is a 3-LIEC of G induced by colorings of G′u
and Gv. We may thus assume that neither Gu nor Gv are decomposable and consequently,
both are in T . In that case, G is also in T and thus non-decomposable, a contradiction.

�

Claim 6. G does not contain adjacent triangles.

Proof. Suppose the contrary and let uwz and vwz be two adjacent triangles in G. If
d(u) = 2 (and by the symmetry, if d(v) = 2), then, by Claim 5, G is a graph on at most
5 vertices, which is trivially 2-colorable.

Thus, d(u) = d(v) = 3. Let u′ and v′ be the neighbors of u and v, respectively, both
distinct from w and z. If either uu′ or vv′ is a pendant edge, then, by Claim 5, G is a
graph on at most 6 vertices, which is 2-colorable. Thus, we may assume that neither uu′

nor vv′ is a bridge.
In the case when u′ = v′, we have that G is a K4 with one edge subdivided (as G is

claw-free), which admits a 3-LIEC.
So we may assume that u′ 6= v′. First observe that if u′ and v′ are adjacent, then none

of them is a 2-vertex or incident with a pendant edge, since G would be a decomposable
graph on at most 7 vertices (in the case when u′ and v′ have a common neighbor) by
Claim 5, or not a claw-free graph. Therefore, u′ and v′ are not adjacent and none of them is
adjacent to a 1-vertex. Now, let G′ be the graph obtained from G by removing the vertices
w and z, and identifying u and v into a single vertex x. Note that G′ is claw-free and
decomposable. Since G is bridgeless, G′ is also bridgeless, which implies that there exists a
path between u′ and v′ not containing the edges uu′ and vv′. Therefore, by the minimality,
G′ admits a 3-LIEC σ′ which induces a partial 3-LIEC σ of G, where σ(uu′) = σ′(xu′) and
σ(vv′) = σ′(xv′). Without loss of generality, we consider two cases. First, suppose that
σ(uu′) = σ(vv′) = 1. Then, we set σ(uw) = σ(vw) = σ(wz) = 1 and σ(uz) = σ(vz) = 2,
hence extending σ to G, a contradiction. Second, suppose that σ(uu′) = 1 and σ(vv′) = 2.
If d1(u′) = 3, then we set σ(uw) = σ(vw) = σ(wz) = 1 and σ(uz) = σ(vz) = 3.
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Thus, we may assume that d1(u′) = 2. Then, we set σ(uw) = σ(uz) = σ(vw) = 1 and
σ(wz) = σ(vz) = 3. Thus, we can always extend σ to all edges of G, a contradiction. �

Claim 7. G does not contain any 4-cycle adjacent to two triangles.

Proof. Suppose the contrary and let uw1z1 and vw2z2 be triangles in G adjacent to the
4-cycle C = w1w2z2z1. A similar reasoning as in Claim 6 shows that either G is a graph
on at most 9 vertices admitting a 3-LIEC or d(u) = d(v) = 3 with uu′, vv′ ∈ E(G) (where
u′ and v′ are again the neighbors of u and v, respectively, not incident with C), u′ 6= v′,
and u′, v′ are 2+-vertices. Moreover, by Claim 5, neither uu′ nor vv′ is a bridge, neither
u′ nor v′ is adjacent to a 1-vertex, and u′ is not adjacent to v′.

Now, let G′ be the graph obtained from G by removing the vertices of C, and
identifying u and v into a single vertex x. By a similar reasoning as in Claim 6 we
have that G′ is claw-free and decomposable. Furthermore, by the minimality, G′ ad-
mits a 3-LIEC σ′ which induces a partial 3-LIEC σ of G, where σ(uu′) = σ′(xu′) and
σ(vv′) = σ′(xv′). Without loss of generality, we again consider two cases. First, suppose
that σ(uu′) = σ(vv′) = 1. Then, we set σ(uw1) = σ(w1w2) = σ(w1z1) = σ(vz2) = 1,
σ(uz1) = σ(z1z2) = 2, and σ(vw2) = σ(w2z2) = 3, hence extending σ to G, a contradic-
tion. Second, suppose that σ(uu′) = 1 and σ(vv′) = 2. Then, we set σ(uw1) = σ(uz1) =
σ(vw2) = σ(vz2) = 3, σ(w1w2) = σ(w1z1) = 1, and σ(w2z2) = σ(z1z2) = 2. Again, we
extended σ to all edges of G, a contradiction. �

Claim 8. G does not contain a triangle incident with a 2-vertex or incident with a pendant
edge.

Proof. Suppose to the contrary that uvw is a triangle in G with either d(u) = 2 or u
having a neighbor u′ distinct from v and w such that d(u′) = 1. If also d(v) = 2 or v is
adjacent to a pendant vertex, then the same holds for w by Claim 5 (but satisfying the
requirement that G is decomposable). In all these cases, it is easy to verify that G is a
graph on at most 6 vertices which has a 3-LIEC.

Therefore, we may assume that d(v) = d(w) = 3. Let v′ and w′ be the third neighbors
of v and w, respectively. Since G is bridgeless, so is G′ = G\{u} (if u′ exists we remove it
as well) and thus G′ is decomposable. Observe also that G′ is claw-free and therefore, by
the minimality, G′ admits a 3-LIEC σ′, which induces a partial 3-LIEC σ of G with only
the edges incident with u being non-colored. Without loss of generality, we may assume
that σ(vv′) = σ(vw) = 1 and σ(ww′) = 2. We complete the coloring of G by coloring the
edges (two or three if u′ exists) incident with u by color 3, a contradiction. �

From Claims 1 and 8 we also infer that G has minimum degree at least 2.

Claim 9. Every pair of adjacent 3-vertices in G has a common neighbor, i.e., no two
adjacent vertices are incident with distinct triangles.

Proof. Suppose the contrary and let uvw and xyz be triangles in G with w and z being
adjacent. We adopt the labeling of the vertices as depicted in Figure 3. Note that by
Claims 6 and 8, u′ and v′ exist and are distinct, and similarly, x′ and y′ exist and are
distinct.

Now, consider the graph G′ = G \ {w}. Since G is bridgeless, G′ is connected. More-
over, there is a path P between u′ and v′ containing neither uu′ nor vv′ in G and thus P
is also contained in G′. This means that G′ contains a cycle of length more than 3, and
therefore G′ is decomposable. Thus, by the minimality, G′ admits a 3-LIEC σ′, which
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v

zw

u′

v′

x

y

x′

y′

Figure 3: Two connected triangles do not appear in G.

induces a partial 3-LIEC σ of G with only the edges incident with w being non-colored.
We will show that we can always extend σ to all edges of G.

Without loss of generality, we may assume that σ(uu′) = σ(uv) = 1 and σ(vv′) = 2.
If d3(z) = 0, then we color the edges incident with w by color 3 and we are done. So, we
may also assume that σ(xz) = 3. Now we consider cases regarding the color of yz.

Suppose first that σ(yz) = 3. Then, d3(x) = d3(y) = 1 and we set σ(wz) = 3. If
d1(u′) = 1, then we set σ(uw) = 1 and σ(vw) = 3, a contradiction. So, d1(u′) = 3 and we
consider the colors around v′. If d2(v′) = 2, then we set σ(uw) = 3 and σ(uv) = σ(vw) = 2,
a contradiction. Finally, if d2(v′) = 3, then we set σ(uw) = 1, σ(uv) = 2, and σ(vw) = 3,
a contradiction.

Second, suppose that σ(yz) = 1. We set σ(wz) = σ(vw) = 2 and consider two
subcases. If d2(v′) = 3, then we set σ(uw) = 2. Otherwise, if d2(v′) = 2, then set
σ(uw) = 1 and set σ(uv) = 2, a contradiction.

Third, suppose that σ(yz) = 2. If d3(x) = 3, then we color all edges incident with w by
3 and we are done. Similarly, if d2(y) = 3, then we set σ(wz) = 2 and σ(uw) = σ(vw) = 3,
a contradiction. Therefore, d3(x) = 2 and d2(y) = 2. Suppose first that σ(xy) = 3. Then,
σ(yy′) = 2. If σ(xx′) = 1, then we set σ(xy) = 2 and σ(yz) = 3, which brings us to the
setting resolved in the first case, a contradiction. If σ(xx′) = 2, then we recolor xy and
xz to 1, and color the edges incident with w by 3, a contradiction.

Therefore, we may assume that σ(xy) = 2. If σ(yy′) = 1, then we set σ(xy) = 3,
σ(xz) = 2, and color the edges incident with w by 3, a contradiction. Finally, if σ(yy′) =
3, we recolor xy and yz to 1 and consider two subcases regarding the colors at v′. If
d2(v′) = 3, then we color the edges incident with w by 2, a contradiction. If d2(v′) = 2,
then we set σ(uw) = 1, σ(uv) = 2, and color the non-colored edges incident with w by 2,
a contradiction. �

From the above properties of G, it follows that every 2-vertex in G has two neighbors
of degree 3, every triangle is incident only with 3-vertices, and every pair of adjacent 3-
vertices is incident with the same triangle. This means that by contracting every triangle
in G to a single vertex, we obtain a bipartite graph H with partition (A,B), where all
vertices in A have degree 3 and all vertices in B have degree 2. By König’s Theorem, H
admits a proper 3-edge-coloring σH , which induces a partial 3-LIEC coloring σ of G with
the edges of triangles being non-colored. Note that every 2-vertex in G is incident with
edges of distinct colors, and observe also that in every triangle T = uvw, the three edges
incident with the vertices u, v, and w not belonging to T have distinct colors, say 1, 2,
and 3, respectively. Thus, we can color the edges of T by setting σ(uv) = 1, σ(vw) = 2,
and σ(uw) = 3. By coloring every triangle in such a way, we can thus extend the coloring
σ to all edges of G, a contradiction. This completes the proof.
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4 Cycle permutation graphs and generalized Petersen

graphs

In this section, we deal with two well-known families of cubic graphs; namely, cycle
permutation graphs and generalized Petersen graphs. We begin with definitions.

Let G and H be disjoint graphs on n vertices for n ≥ 3, with V (G) = {v0, v1, . . . , vn−1}
and V (H) = {u0, u1, . . . , un−1}. Let φ : V (G)→ V (H) be a bijection between the vertices
of G and H. The generalized permutation graph Pφ(G,H) is a graph with the vertex set
V (G) ∪ V (H) and the edge set E(G) ∪ E(H) ∪ {viφ(vi) | for i ∈ {0, . . . , n− 1}}. In the
case G = H = Cn, Pφ(Cn, Cn) is called a cycle permutation graph. Note that cycle
permutation graphs are cubic.

The generalized Petersen graph P (n, k), with k < n
2
, is a cubic graph with the ver-

tex set V (P (n, k)) = {u0, u1, . . . , un−1, v0, v1, . . . , vn−1} and the edge set E(P (n, k)) =
{uiui+1, uivi, vivi+k | 0 ≤ i ≤ n− 1} (indices are taken modulo n).

Let R2
n be the family of all simple 2-regular graphs on n vertices. For any R ∈ R2

n

and any bijection φ : V (Cn)→ V (R), we call Pφ(Cn, R) a ring permutation graph. Note
that the union of all cycle permutation graphs and all generalized Petersen graphs is a
subset of ring permutation graphs.

The main result of this section is the following.

Theorem 4.1. For any ring permutation graph G it holds that χ′irr(G) ≤ 3.

Before we prove Theorem 4.1, we introduce some additional notation and establish
three auxiliary properties.

A shrub is a tree rooted at a vertex r such that d(r) = 1; the only neighbor of the
root r is denoted r+. An edge coloring σ of a shrub T is an almost locally irregular 2-
edge-coloring (or a 2-ALIEC for short) if it is a 2-LIEC of G or the edge rr+ is the only
edge of color σ(rr+) incident with r+ and σ restricted to the edges of G− r is a 2-LIEC
of G − r. We already mentioned that in [2] it was shown that every decomposable tree
T has χirr(T ) ≤ 3. In [3], trees were investigated further, and the authors showed that
every shrub admits a 2-ALIEC. We will use this fact to prove the following lemma (note
that the fact also follows from the proof of Lemma 3.1, the case p = 2, in [3]).

Lemma 4.2. If a tree T contains an edge uv with d(u) = 1 and d(v) = 3, then χ′irr(T ) ≤ 2.

Proof. Suppose to the contrary that T does not admit a 2-LIEC. Let T be a shrub with
the root u, and let v1, v2 be the neighbors of v distinct from u. By [3, Theorem 3.2],
T admits a 2-ALIEC σ with colors from {1, 2}. Without loss of generality, σ(uv) = 1,
σ(vv1) = σ(vv2) = 2, and σ induces a 2-LIEC of T ′ = T − u. We will show that we can
modify σ to obtain a 2-LIEC of the whole shrub T .

Let T1 be the component of T − v containing v1 to which we add the edge vv1, and
similarly, let T2 be the component of T − v containing v2 to which we add the edge vv2.
Clearly, we cannot recolor uv with color 2, as that would imply that T admits a 2-LIEC.
Therefore, at least one from v1 and v2, say v1, is incident with three edges of color 2.
Now, we swap the colors 1 and 2 in T1 to obtain a coloring σ′. Note that either σ′ is a
2-LIEC of T or d2σ′(v2) = 1. But in the latter case, we recolor uv with color 2 and we are
done.

Lemma 4.3. If a tree T contains a pendant (2k − 1)-path, then χ′irr(T ) ≤ 2.
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Proof. Let T be a tree with a pendant (2k − 1)-path P = v1, . . . , v2k. We proceed by
induction on the length of P . If k = 1, then T contains an edge v1v2 with d(v1) = 1 and
d(v2) = 3, and hence it admits a 2-LIEC by Lemma 4.2. So suppose that k ≥ 2. In this
case, we can split T into the shrub T ′ = T−{v1, . . . , v2k−2} and the path P ′ = v1, . . . , v2k−1.
Both of them admit a 2-LIEC: T ′ by Lemma 4.2 and P ′ since it has an even length. Since
the two colorings can easily be combined into a 2-LIEC of T (by setting distinct colors
for v2k−2v2k−1 and v2k−1v2k), we are done.

Lemma 4.4. If a tree T contains a (2k + 1)-thread incident with two vertices of degree
3, then χ′irr(T ) ≤ 2.

Proof. Let T be a tree with a (2k + 1)-thread v1, . . . , v2k+1 such that v1 has a 3-neighbor
u1 and v2k+1 has a 3-neighbor u2. We split T into two shrubs T1 and T2, where T1 is the
component of T−v2 containing u1 and T2 is the tree induced by the edges in E(T )\E(T1).
Both shrubs admit a 2-LIEC: T1 by Lemma 4.2 and T2 by Lemma 4.3. Combining the
two colorings (by setting distinct colors for u1v1 and v1v2), we obtain a 2-LIEC of T .

Now, we are ready to prove the theorem.

Proof of Theorem 4.1. Let G = Pφ(Cn, R) be a ring permutation graph. Label the ver-
tices of the cycle Cn (consecutively) with v1, . . . , vn. Let R be composed of k cycles,
denoted Ci,`i for i ∈ {1, . . . , k}, where `i denotes the length of the cycle, and label the

vertices of the cycle Ci,`i (consecutively) with vi,1, . . . , vi,`i . Note that
∑k

i=1 `i = n.
Now, consider the spanning subgraph S of G, with the edge set defined such that for

every i ∈ {1, . . . , k}:

(a) if `i is even, then E(Ci,`i) ⊂ E(S) and φ−1(vi,2j)vi,2j ∈ E(S) for j = 1, . . . , `i
2

;

(b) if `i is odd, then E(Ci,`i)\{vi,1vi,`i} ⊂ E(S), φ−1(vi,2j)vi,2j ∈ E(S) for j = 1, . . . , `i−1
2

,
and φ−1(vi,`i)vi,`i ∈ E(S).

(Note that S may contain some isolated vertices.) The vertices of Cn can therefore be
divided into three sets:

• X1 = {v ∈ V (Cn) | dS(v) = 0}, i.e., the vertices that are not incident with any edge
of S.

• X2 = {v ∈ V (Cn) | ∃i : `i is odd and v = φ−1(vi,`i)}, i.e., the vertices whose neigh-
bors in S have degree 2.

• X3 = V (Cn) \ (X1 ∪X2), i.e., the vertices whose neighbors in S have degree 3.

Note that X1 and X3 are non-empty, and |X2| is equal to the number of odd cycles in R.
Moreover, note that S is locally irregular.

Suppose now that there is an edge uv of the cycle Cn such that u ∈ X1 and v ∈ X3.
Then the graph S ′ = S ∪ {uv} is also locally irregular, and so χ′irr(S

′) = 1. Otherwise, if
there is no edge in Cn with endvertices from X1 and X3, then there is an edge e = uv of
the cycle Cn such that u ∈ X2 and v ∈ X3. Let u = φ−1(vi,`i) for some i (note that `i is
odd). Now, replace the edge uvi,`i in S with the edge φ−1(vi,1)vi,1. In this way, we have
that u ∈ X1 and v ∈ X3. Thus, the graph S ′ = S ∪ {uv} is again locally irregular and
thus χ′irr(S

′) = 1.
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We finalize the proof by considering the graph T ′ = G \ E(S ′) and showing that it
admits a 2-LIEC. It is easy to see that T ′ is a tree. If any cycle in R has length at least
4, then T ′ contains an edge with endvertices of degree 1 and 3, and so, by Lemma 4.2, it
admits a 2-LIEC, implying that G admits a 3-LIEC. Thus, we may assume that all cycles
in R have length 3, meaning that n = 3k and |X1| = |X2| = |X3| = k (recall that the
sets are defined in the graph S). Since the edge uv from Cn is added to S ′, we have that
|E(T ′) ∩ E(Cn)| = 3k − 1 ≡ k − 1 mod 2 and the number of 3-vertices in T ′ is k − 1 (all
of them belong to X1).

If in T ′ there is a 3-vertex incident with a pendant (2t + 1)-path, for some positive
integer t, then, by Lemma 4.3, T ′ admits a 2-LIEC. If in T ′ there are two 3-vertices joined
by a (2t+ 1)-thread (i.e., a (2t+ 2)-path), then, by Lemma 4.4, T ′ also admits a 2-LIEC.
Otherwise, every pendant path has even length and every path between two 3-vertices has
odd length. Note that on every pendant path, there are precisely two edges not belonging
to Cn, and thus even number of edges from Cn belong to pendant paths. This means, since
there are k−2 (odd) paths between 3-vertices of T ′, that |E(T ′)∩E(Cn)| ≡ (k−2) mod 2,
a contradiction. This completes the proof.

5 Remarks on 2-colorability

In this section we focus on graphs which do not admit a 2-LIEC. First, let us consider
graphs with minimum degree 1. Baudon et al. [2] showed that there are infinitely many
trees which require 3 colors for a locally irregular edge-coloring. On the other hand, all
trees with ∆(G) ≥ 5 admit a 2-LIEC [3, Theorem 3.3].

Similarly, for graphs with minimum degree 2, there also exists an infinite family of
graphs which do not admit a 2-LIEC [10]. For example, the graph H depicted in Figure 4
has χ′irr(H) = 3; in fact, every graph G composed of two adjacent vertices u and v
additionally connected with k ≥ 2 paths of lengths 4t + 1 for any t ≥ 1 has χ′irr(G) = 3.
Note that graphs in the described family can have arbitrarily high maximum degree and
arbitrarily high girth. Moreover, they are all bipartite and thus the ones with even degrees
of u and v provide examples for a negative answer to Question 1 asked in [8].

u v

Figure 4: The bipartite graph H with minimum degree 2 and χ′irr(H) = 3.

In the remainder of this section, we focus on graphs with minimum degree 3; in
particular, cubic graphs.

A result on the detection number of graphs due to Havet et al. [5] implies that deciding
whether a cubic graph admits a 2-LIEC is NP-complete. Our goal here is to determine
properties of cubic graphs allowing the 2-colorability. For example, it is known that every
regular bipartite graph with minimum degree at least 3 (and hence every cubic bipartite
graph) admits a 2-LIEC [2, 5]. On the other hand, not even all generalized Petersen
graphs are such, e.g., χ′irr(P (7, 2)) = 3.
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One may thus naturally ask which are the conditions causing a cubic graph not to
admit a 2-LIEC. The following proposition asserts that, e.g., adjacent diamonds in a
graph are one of them.

Proposition 5.1. If a cubic graph G contains two diamonds connected with an edge as
a subgraph, then χ′irr(G) ≥ 3.

u4 u1

u2

u3u3

v1

v2

v3

v4

Figure 5: A cubic graph with two diamonds connected with an edge does
not admit a 2-LIEC.

Proof. Suppose the contrary and let G be a cubic graph containing two adjacent diamonds
(with the vertices labeled as depicted in Figure 5) and let σ be a 2-LIEC of G with the
colors from {1, 2}. It is easy to see that G does not contain any monochromatic 3-cycle,
otherwise at least two vertices of this 3-cycle would have the same color degree in σ.

Now, without loss of generality, we may assume that σ(u1v1) = 1. If σ(v1v2) =
σ(v1v3) = 2, then σ(v2v3) = 1, otherwise we obtain a monochromatic 3-cycle. Moreover,
exactly one of the edges v2v4 and v3v4 has color 1, otherwise d1(v2) = d1(v3). Without loss
of generality let σ(v2v4) = 1 and σ(v3v4) = 2, but then d2(v1) = d2(v3), a contradiction.

Therefore, at least one of the edges v1v2 and v1v3 has color 1 and, by the symmetry, at
least one of the edges u1u2 and u1u3 has color 1. Since σ is a 2-LIEC, one of the vertices
u1 and v1 is incident with two edges of color 1 and the other with three edges of color 1,
say d1(v1) = 2 and d1(u1) = 3. Then σ(u2u3) = 2 and, by the same reasoning as above,
σ(u2u4) 6= σ(u3u4). However, regardless of the color used on the edge incident with u4
distinct from u2u4 and u3u4, we obtain two adjacent vertices with the same color degree,
a contradiction.

In the proof of the NP-completness of deciding whether a cubic graph admits a 2-
LIEC, many 3-cycles (even diamonds) are used. So, one may ask what happens if short
cycles, particularly triangles, are forbidden. The next theorem shows that there exists an
infinite family of (cycle permutation) graphs with girth at least 4 which do not admit a
2-LIEC.

Before stating the theorem, we define the graphs in the above-mentioned family. The
graph XIn is a graph comprised of two cycles v1, . . . , v3n and u1, . . . , u3n with additional
edges v3iu3i+1, v3i+1u3i, and v3i+2u3i+2 for all i ∈ {0, . . . , n − 1} (indices taken modulo
3n). Note that g(XIn) = 4 for all n ≥ 2.

Theorem 5.2. For every positive integer k, we have χ′irr(XI2k) = 2 and χ′irr(XI2k+1) = 3.

Proof. The graph XIn consists of n subgraphs induced on the vertices v3i, u3i, v3i+1, u3i+1,
v3i+2, and u3i+2 with four half-edges incident with the vertices v3i, u3i, v3i+2, and u3i+2,
for i ∈ {0, . . . , n− 1}. We call each such configuration an XI-subgraph of XIn.

Next, we consider all possible 2-LIECs of an XI-subgraph (for clarity, we use colors
from {a, b}). To the vertices v3i, u3i, v3i+2, and u3i+2 we assign values ck such that
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c ∈ {a, b} is the color used on the half-edge incident with the corresponding vertex and
k ∈ {1, 2, 3} is the number of edges of color c incident with this vertex (including the
half-edge). This way, we can encode every 2-LIEC of an XI-subgraph with a quadruple
(p, q, r, s) in which the components correspond to the values ck of the vertices v3i, u3i,
v3i+2, and u3i+2, respectively, where p, q, r, s ∈ {a1, a2, a3, b1, b2, b3}. For example, the
XI-subgraph in Figure 6 has a 2-LIEC coloring with the code (a3, a3, a1, b3).

v3i v3i+1 v3i+2

u3i u3i+1 u3i+2

a a

a

a a

a

ab

b b

b

Figure 6: An XI-subgraph of XIn with a 2-LIEC with the code
(a3, a3, a1, b3).

Let RXI denote the set of all codes of 2-LIECs of an XI-subgraph. We use the sym-
metries of the XI-subgraph to prove the following.

Claim 10. If (p, q, r, s) ∈ RXI, then also {(p, q, s, r), (q, p, r, s), (q, p, s, r)} ⊂ RXI.

Proof. It is easy to see that (p, q, s, r) ∈ RXI, since there exists an isomorphism from the
2-LIEC (p, q, r, s) to the 2-LIEC (p, q, s, r) by swapping the vertices v3i+1, u3i+1 and the
vertices v3i+2, u3i+2. Similarly, there exists an isomorphism from the 2-LIEC (p, q, r, s) to
the 2-LIEC (q, p, r, s) by swapping the vertices v3i, u3i. Finally, by composing the above
two isomorphisms, we infer that (q, p, s, r) ∈ RXI. �

We proceed by noting that (a3, a2, r, s) /∈ RXI for arbitrary r, s ∈ {a1, a2, a3, b1, b2, b3}.
On the other hand, (a2, a2, a3, b1), (a2, a2, a3, a2) ∈ RXI, hence for some pairs {p, q} there
exist more than one suitable pairs {r, s}.

By Claim 10, it suffices to consider only the codes (p, q, r, s), in which p ≥ q and r ≥ s
(using the ordering a3 ≥ a2 ≥ a1 ≥ b1 ≥ b2 ≥ b3). We call such codes ordered codes.
There are 24 ordered codes in RXI:

(a3, a3, a1, b3), (a2, a2, a3, b1), (a2, a2, a2, a1), (a2, a2, a2, b2), (a2, a2, b1, b2), (a1, a1, a2, b2),

(a3, b2, a3, b2), (a3, b2, b2, b3), (a3, b3, a3, a2), (a3, b3, b2, b3), (a2, b1, a2, b3), (a2, b1, b2, b3),

(a2, b2, a2, a1), (a2, b2, b1, b2), (a2, b3, a3, a2), (a2, b3, a2, b3), (a1, b2, a3, a2), (a1, b2, a3, b2),

(b1, b1, a2, b2), (b2, b2, a2, a1), (b2, b2, a2, b2), (b2, b2, a1, b3), (b2, b2, b1, b2), (b3, b3, a3, b1).

In a 2-LIEC of XIn, codes of two consecutive XI-subgraphs (i.e., subgraphs connected
by two edges represented by the four half-edges) must be carefully combined. Namely, the
adjacent half-edges must have the same color, but their endvertices must have distinct
color degree. For example, the XI-subgraph colored (a3, a3, a1, b3) can be connected to
the XI-subgraph colored (a2, b2, a2, a1). In fact, in this case, they can also be connected
in the reverse order, implying that we can color any even number of XI-subgraphs, and
thus χ′irr(XI2k) = 2 for k ≥ 1.

Next, note that if the half-edges incident with v3i and u3i have the same color c, then
dc(v3i) = dc(u3i). Moreover, there is no code (p, q, a3, a1), (p, q, b1, b3), or (p, q, r, r) in
RXI for any r ∈ {a1, a2, a3, b1, b2, b3}. Hence, if an XI-subgraph is colored (a2, a2, r, s) or
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(b2, b2, r, s), then there is no coloring for the previous XI-subgraph that could be combined
with the two codes above. Thus, colorings of XI-subgraphs with codes of types (a2, a2, r, s)
and (b2, b2, r, s) are not used in any 2-LIEC of XIn.

We thus have 16 possible ordered codes, which we label as follows:

c1 = (a3, a3, a1, b3), c2 = (a2, b2, b1, b2), c3 = (a2, b2, a2, a1), c4 = (b3, b3, a3, b1),

c5 = (a3, b2, a3, b2), c6 = (a2, b1, a2, b3), c7 = (a1, b2, a3, b2), c8 = (a2, b3, a2, b3),

c9 = (a2, b1, b2, b3), c10 = (a3, b2, b2, b3), c11 = (a2, b3, a3, a2), c12 = (a1, b2, a3, a2),

c13 = (b1, b1, a2, b2), c14 = (a3, b3, a3, a2), c15 = (a3, b3, b2, b3), c16 = (a1, a1, a2, b2).

We construct a digraph D (depicted in Figure 7) with the vertex set c1, . . . , c16 and an
arc between vertices ci and cj if the code ci can be connected to the code cj.

c1

c2

c3

c4

c5

c6 c7

c8

c9 c10 c11 c12

c13

c14

c15

c16

Figure 7: The digraph D. In red, we depict bidirectional arcs.

Note that D consists of seven strong components (for strong connectivity of digraphs
we refer to [1], Section 1.5) with the vertex sets C1 = {c1, c2, c3, c4}, C2 = {c5, c6, c7, c8},
C3 = {c9}, C4 = {c10}, C5 = {c11}, C6 = {c12}, and C7 = {c13, c14, c15, c16}. Moreover,
all strong components are bipartite, and therefore D does not contain any oriented odd
cycle. This in turn means that there is no 2-LIEC of XI2k+1 for any k ≥ 1. Note that, by
Theorem 4.1, χ′irr(XI2k+1) = 3, since XIn is a cycle permutation graph.

Theorem 5.2 shows that there exists an infinite family of cubic graphs with girth 4
which do not admit a 2-LIEC. So, one may ask whether having girth at least 5 suffices
for a cubic graph to admit a 2-LIEC. Using computer, we tested all cubic graphs with
girth at least 4 on at most 24 vertices, and determined the number of graphs which do
not admit a 2-LIEC (see Table 1).
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g(G)\n 6 8 10 12 14 16 18 20 22 24

≥ 4 0 0 1 2 2 0 1 0 4 0

≥ 5 - - 0 1 2 0 0 0 2 0

Table 1: The number of cubic graphs G on small number of vertices and
girth at least 4/at least 5 with χ′irr(G) = 3.

We found five graphs with girth 5, which do not admit a 2-LIEC; two of them are
the generalized Petersen graphs GP (7, 2) and GP (11, 2), depicted in Figure 8, and the
other three are depicted in Figure 9. Note that these five graphs are the only known not
2-LIEC colorable cubic graphs of girth at least 5.

Figure 8: The generalized Petersen graphs GP (7, 2) (left) and GP (11, 2)
(right) do not admit a 2-LIEC.

We computationally verified that these two are the only generalized Petersen graphs
on at most 46 vertices that do not admit a 2-LIEC and this encouraged us to propose the
following.

Conjecture 5.3. For every generalized Petersen graph G with girth at least 5, with the
exception of GP (7, 2) and GP (11, 2), we have that χ′irr(G) = 2.

Based on computational evidence, we also believe the following.

Conjecture 5.4. There exist g0 and n0 such that every connected cubic graph G with
girth g(G) ≥ g0 and |V (G)| ≥ n0 admits a 2-LIEC.

As mentioned above, g0 ≥ 5 and if g0 = 5 then n0 > 22. We also note that the
conjecture might be true for large enough odd girth, i.e., for graphs with short even cycles
allowed.

6 Conclusion

In this paper we proved that decomposable subcubic graphs from some particular classes
admit a 3-LIEC and many of them even a 2-LIEC. While there are still many decompos-
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Figure 9: Three cubic graphs of girth 5 on 12, 14, and 22 vertices, which
are not generalized Petersen graphs and do not admit a 2-LIEC.

able subcubic graphs for which the bound of 3 colors remains open, we do believe that 3
is the correct bound and, in light of Conjecture 1.1, we propose a weaker version.

Conjecture 6.1. For every decomposable graph G with maximum degree 3 it holds that
χ′irr(G) ≤ 3.

Regarding locally irregular edge-coloring, many questions remain open; we conclude
by recalling two of them regarding bipartite graphs.

Question 6.2 (Baudon, Bensmail, and Sopena [3], Question 5.1). Is the problem of
deciding whether a bipartite graph admits a 2-LIEC NP-complete?

Question 6.3 (Bensmail, Merker, and Thomassen [4], Question 5.1). Does there exist a
bipartite graph G with minimum degree 3 and χ′irr(G) > 2?

Recall that there are bipartite graphs of minimum degree 2 and arbitrarily large girth
which do not admit a 2-LIEC (see Figure 4).
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