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Abstract

Let G be a graph, and let u, v, and w be vertices of G. If the distance
between u and w does not equal the distance between v and w, then w is said
to resolve u and v. The metric dimension of G, denoted β(G), is the cardinality
of a smallest set W of vertices such that every pair of vertices of G is resolved
by some vertex of W . The threshold dimension of a graph G, denoted τ(G),
is the minimum metric dimension among all graphs H having G as a spanning
subgraph. In other words, the threshold dimension of G is the minimum metric
dimension among all graphs obtained from G by adding edges. If β(G) = τ(G),
then G is said to be irreducible; otherwise, we say that G is reducible. If H is
a graph having G as a spanning subgraph and such that β(H) = τ(G), then H
is called a threshold graph of G.

The first main part of the paper has a geometric flavour, and gives an
expression for the threshold dimension of a graph in terms of a minimum number
of strong products of paths (each of sufficiently large order) that admits a
certain type of embedding of the graph. This result is used to show that there
are trees of arbitrarily large metric dimension having threshold dimension 2.
The second main part of the paper focuses on the threshold dimension of trees.
A sharp upper bound for the threshold dimension of trees is established. It is
also shown that the irreducible trees are precisely those of metric dimension
at most 2. Moreover, if T is a tree with metric dimension 3 or 4, then T has
threshold dimension 2. It is shown, in these two cases, that a threshold graph
for T can be obtained by adding exactly one or two edges to T , respectively.
However, these results do not extend to trees with metric dimension 5, i.e.,
there are trees of metric dimension 5 with threshold dimension exceeding 2.

1 Introduction

Slater [11], being motivated by the problem of uniquely determining the location of
an intruder in a network, first introduced the notion of ‘resolvability’ in graphs. For
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vertices x and y of a graph G, let dG(x, y) denote the distance between x and y in G.
We write d(x, y) in place of dG(x, y) if G is clear from context. A vertex w is said to
resolve a pair u, v of vertices in G if d(u,w) 6= d(v,w). A set W ⊆ V (G) of vertices
resolves the graph G, and we say that W is a resolving set for G, if every pair of
vertices of G is resolved by some vertex of W . A smallest resolving set of G is called
a basis of G, and its cardinality is called the metric dimension of G, denoted β(G).
Since being introduced by Slater [11], and independently by Harary and Melter [6],
the metric dimension has been studied extensively. It is well-known that the problem
of determining the metric dimension of a graph is NP-hard; see, for example, the
proof of Khuller et al. [9]. This suggests studying the problem of finding the metric
dimension for special classes of graphs, and developing heuristics for approximating
this invariant. A formula for the metric dimension of trees has been (re)discovered
several times [3, 6, 11]. A variety of applications and a substantial collection of
publications that emphasize both the theoretical and computational aspects of this
invariant are highlighted, for example, in the works of Cáceres et al. [2] and Belmonte
et al. [1]. When we say dimension in this paper, unless qualified, we are referring to
the metric dimension.

The question of how the metric dimension of a graph relates to that of its sub-
graphs has been considered by Chartrand et al. [3] and Khuller et al. [9]. In par-
ticular, Chartrand et al. [3] proved that for every ǫ > 0, there is a graph H, and a
subgraph G of H, such that β(H)/β(G) < ǫ. Khuller et al. [9] established a lower
bound for the metric dimension of a graph in terms of its clique number. It is nat-
ural to ask by how much, if at all, we can reduce the metric dimension of a graph
by adding edges. In other words, for a given graph G, what is the smallest metric
dimension among all graphs that contain G as a spanning subgraph? We let U(G)
denote the set of all graphs H that contain G as a spanning subgraph.

Definition 1.1. The threshold dimension of a graph G, denoted τ(G), is the mini-
mum metric dimension among all graphs H that contain G as a spanning subgraph,
i.e., we have τ(G) = min{β(H) : H ∈ U(G)}. A graph H ∈ U(G) of metric dimen-
sion τ(G) is called a threshold graph of G.

For a graph G, let G denote the complement of G. The graph obtained from G
by adding a set E ⊆ E

(

G
)

of edges to G is denoted by G + E. For a single edge
e ∈ E

(

G
)

, we use the notation G+ e in place of G+ {e}. Evidently, we may write

τ(G) = min{β(G +E) : E ⊆ E
(

G)
)

}.

The threshold dimension of G (and the threshold dimension of any spanning
subgraph of G) gives a lower bound for the metric dimension of G. This suggests
the problem of determining those graphs for which this lower bound is achieved.

Definition 1.2. A graph G is said to be irreducible if β(G) = τ(G); otherwise, the
graph G is said to be reducible.
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Before we proceed, we give some examples. It is well-known that for every n ≥ 2,
and every connected graph G of order n, we have

1 ≤ β(G) ≤ n− 1,

with equality on the left if and only if G ∼= Pn, and equality on the right if and only
if G ∼= Kn. For every n ≥ 2, the path Pn, the unique connected graph of order n
and dimension 1, is irreducible. Further, since the path Pn does not contain any
other connected graph of order n as a spanning subgraph, we see that all connected
graphs of order n and dimension 2 are also irreducible. At the other extreme, the
complete graph Kn, the unique connected graph of order n and dimension n− 1, is
trivially irreducible since U(Kn) = {Kn}. However, graphs of order n and dimension
n − 2 need not be irreducible. For example, for n ≥ 5 and s ∈ {1, . . . , n − 1}, the
complete bipartite graph Ks,n−s has dimension n − 2, but the addition of a single
edge produces a graph of dimension n− 3.

Chartrand et al. [3] proved that if T is a tree of order at least 3, then for every
edge e ∈ E

(

T
)

, we have β(T )− 2 ≤ β(T + e) ≤ β(T )+1. For a graph G, we will be
interested in whether there exists a single edge e ∈ E

(

G
)

such that β(G+e) < β(G).
If such an edge does exist, then G is obviously reducible, but we will see that this
is not a necessary condition for reducibility.

In Section 3, we provide a geometric interpretation of the threshold dimension
of a graph in terms of a minimum number of strong products of paths (each of
sufficiently large order) that admit a certain type of embedding of the graph. We
apply this result to demonstrate that there are trees of arbitrarily large dimension
with threshold dimension 2. Finally, we compare the threshold dimension to the
strong isometric dimension, see [4], which is also defined in terms of embeddings in
strong products of paths.

In Section 4, we focus on the threshold dimension of trees. We first determine
a sharp upper bound for the threshold dimension of every tree of order n. We then
show that if T is a tree with β(T ) ≥ 3, then there is an edge e ∈ E

(

T
)

such that
β(T + e) < β(T ). For every tree T with dimension 4, we show that there is a set of
two edges whose addition to T produces a graph with dimension 2. Thus, if a tree
T has β(T ) ∈ {2, 3, 4}, then τ(T ) = 2. Finally, we show that there are trees with
dimension 5 having threshold dimension strictly greater than 2.

2 Preliminaries

For a graph G, let diam(G) denote the diameter of G, i.e., the maximum distance
between a pair of vertices of G. The k-neighbourhood of a vertex v in G, denoted
Nk(v), is the set of vertices in G which are distance exactly k from v, i.e., we have
Nk(v) = {x ∈ V (G) : d(x, v) = k}. The notation N(v) is used in place of N1(v).
For a set W of vertices of G, the W -neighbourhood of a vertex v in G is defined as
NW (v) = N(v) ∩W .
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If G1, G2, . . . , Gk are graphs, then their strong product is the graph

G1 ⊠G2 ⊠ · · ·⊠Gk =
k

⊠
i=1

Gi,

with vertex set {(x1, x2, . . . , xk) : xi ∈ V (Gi)}, and for which two distinct vertices
x = (x1, x2, . . . , xk) and y = (y1, y2, . . . , yk) are adjacent if and only if for every
1 ≤ i ≤ k, either xiyi ∈ E(Gi) or xi = yi. The distance between x and y in
G1 ⊠G2 ⊠ · · · ⊠Gk is given by max{dGi

(xi, yi) : 1 ≤ i ≤ k}. For a graph G, we let
G⊠,k denote the kth power of G with respect to the strong product, i.e., we have

G⊠,k =
k

⊠
i=1

G.

See [5] for more background on graph products.
Let G and H be graphs. A map ϕ : V (G) → V (H) is called an embedding of G in

H if it is injective and preserves the edge relation (i.e., for all vertices x, y ∈ V (G),
if xy ∈ E(G), then ϕ(x)ϕ(y) ∈ E(H)). The map ϕ is an isometric embedding of
G in H if dG(u, v) = dH(ϕ(u), ϕ(v)) for all u, v ⊆ V (G). Note that an isometric
embedding of G in H is necessarily an embedding of G in H. If G is a subgraph
of H, then we say that G is isometric in H if dG(u, v) = dH(u, v) for all vertices
u, v ∈ V (G), i.e., if the inclusion map from V (G) to V (H) is an isometric embedding
of G in H.

For a graph G and a subset W ⊆ V (G), we let G[W ] denote the subgraph of G
induced by W . For an embedding ϕ of G in H, we let ϕ(G) = H[ϕ(V (G))], i.e.,
ϕ(G) is the subgraph of H induced by the range of ϕ. Clearly, the graph ϕ(G) is
isomorphic to the graph G′ ∈ U(G) with vertex set V (G′) = V (G) and edge set
E(G′) = {xy : ϕ(x)ϕ(y) ∈ E(ϕ(G))}.

The metric dimension of trees is well understood, and a metric basis for a tree
can be constructed in polynomial time. We require some terminology and notation
to describe this procedure. Let T be a tree. A vertex v of degree at least 3 in T is
called a major vertex. A leaf u is said to be a terminal vertex of the major vertex
v if d(u, v) < d(u,w) for all other major vertices w of T . If u is a terminal vertex
of v, then the maximal path of T containing u but not v is called a limb at v. The
terminal degree of v, denoted ter(v), is the number of terminal vertices of v. The
following was proven by Slater [11], and independently by Harary and Melter [6]. A
different proof was provided by Chartrand et al. [3].

Theorem 2.1. Let T be a tree that is not isomorphic to a path, and let S be the set

of exterior major vertices of T . Then β(T ) =
∑

v∈S(ter(v) − 1). Moreover, a basis

for T can be constructed by selecting, for each exterior major vertex v with terminal

degree at least 2, exactly one vertex from all but one of its limbs.

It follows that if T is a tree with β(T ) ≥ ℓ, then T must have more than ℓ leaves.
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3 A geometric interpretation of the threshold dimen-

sion

In this section, we present a geometric interpretation of the threshold dimension of
a graph, in terms of certain embeddings in strong products of paths. Throughout
this section, we let V (Pn) = {0, . . . , n− 1}. Thus, the vertices of P⊠,k

n are k-tuples
over the set {0, . . . , n − 1}. Our choice of notation for the vertex set of Pn makes

calculating distances in P⊠,k
n particularly simple.

Fact 3.1. If x = (x1, . . . , xk) and y = (y1, . . . , yk) are in V
(

P⊠,k
n

)

, then

d(x, y) = max{|xi − yi| : 1 ≤ i ≤ k}.

In particular, if x and y are distinct, then they are adjacent if and only if |xi−yi| ≤ 1
for every 1 ≤ i ≤ k.

Our choice of notation for V (Pn) is also important because the vertices of Pn

will correspond to distances, and hence vertices of P⊠,k
n will correspond to vectors

of distances. Let G be a connected graph with resolving set W = {w1, w2, . . . , wk}.
Then every vertex x ∈ V (G) is uniquely determined by its vector of distances to
vertices in W , given explicitly by (dG(w1, x), dG(w2, x), . . . , dG(wb, x)). We first
show that the map sending every vertex x to this vector of distances to W is an
embedding of G in P⊠,k for some sufficiently large path P .

We will then show that if W is a resolving set for some graph H ∈ U(G), then
there is an embedding ϕ of G in P⊠,k for some sufficiently large path P , such that
for every vertex x ∈ V (G), we have that ϕ(x) is exactly the vector of distances in
ϕ(G) from ϕ(x) to the vertices of ϕ(W ). We first give a formal definition of the
embeddings that we have just described.

Definition 3.2. Let G be a graph, let W = {w1, w2, . . . , wk} be a subset of V (G),
and let P be a path. A W -resolved embedding of G in P⊠,k is an embedding ϕ of G
in P⊠,k such that for every x ∈ V (G), we have

ϕ(x) =
(

dϕ(G)(ϕ(w1), ϕ(x)), . . . , dϕ(G)(ϕ(wk), ϕ(x))
)

,

i.e., for every 1 ≤ i ≤ k, the ith coordinate of ϕ(x) is exactly the distance between
ϕ(wi) and ϕ(x) in ϕ(G).

Given a graph G with a resolving set W , we will see that one can define a W -
resolved embedding of G by mapping each vertex x ∈ V (G) to its vector of distances
to vertices in W (see Figure 1). However, this is not the only way that a W -resolved
embedding of a graph G may arise. Figure 2 shows a W -resolved embedding of a
graph G in which W is not a resolving set for G. Note, however, that ϕ(W ) is a
resolving set for the graph ϕ(G) in this case. In particular, this means that W is a
resolving set for the graph G′ ∈ U(G) corresponding to ϕ(G). We will see that this
observation is true in general. The main result of this section is the following.
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w1 w2

(a) The graph G.
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(b) The embedding ϕ of G in
P5 ⊠ P5.
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4
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(c) The graph ϕ(G).

Figure 1: A {w1, w2}-resolved embedding ϕ of G in P5 ⊠ P5, defined by ϕ(x) =
(dG(w1, x), dG(w2, x)) for all x ∈ V (G).

w1 w2

(a) The graph K1,5.

0
0

1

1

2

2

(b) The embedding ϕ of K1,5

in P3 ⊠ P3.

0
0

1

1

2

2

(c) The graph ϕ(K1,5).

Figure 2: A {w1, w2}-resolved embedding ϕ of K1,5 in P3 ⊠ P3.

Theorem 3.3. Let G be a connected graph of diameter D, and let W = {w1, w2, . . . ,
wk} ⊆ V (G). Then W is a resolving set for some graph H ∈ U(G) if and only if

there is a W -resolved embedding of G in P⊠,k
D+1.

The following corollary is immediate, and gives a geometric interpretation of the
threshold dimension.

Corollary 3.4. Let G be a connected graph of diameter D. Then τ(G) is the

minimum cardinality of a set W ⊆ V (G) such that there is a W -resolved embedding

of G in P
⊠,|W |
D+1 .

Before we proceed with the proof of Theorem 3.3, we prove that, given a con-
nected graph G of diameter D with resolving set W , the map which sends every
vertex to its vector of distances to W is in fact a W -resolved embedding of G in
P⊠,k
D+1.

Lemma 3.5. Let G be a connected graph of diameter D with resolving set W =
{w1, w2, . . . , wk} ⊆ V (G). Then there is a W -resolved embedding of G in P⊠,k

D+1.
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Proof. Define ϕ : V (G) → V
(

P⊠,k
D+1

)

by

ϕ(x) = (dG(w1, x), dG(w2, x), . . . , dG(wk, x))

for all x ∈ V (G). Since W resolves G, it follows immediately that ϕ is injective.

Further, for every pair of distinct vertices x and y in P⊠,k
D+1, if ϕ(x)ϕ(y) 6∈ E

(

P⊠,k
D+1

)

,

then we must have |dG(wi, x) − dG(wi, y)| > 1 for some i ∈ {1, . . . , k}, and thus

xy 6∈ E(G). So ϕ is an embedding of G in P⊠,k
D+1.

It remains to show that

ϕ(x) =
(

dϕ(G)(ϕ(w1), ϕ(x)), dϕ(G)(ϕ(w2), ϕ(x)), . . . , dϕ(G)(ϕ(wk), ϕ(x))
)

for all x ∈ V (G). We claim that dϕ(G)(ϕ(wi), ϕ(x)) = dG(wi, x) for all i ∈ {1, . . . , k}
and all x ∈ V (G), from which the desired statement follows. Let i ∈ {1, . . . , k} and
let x ∈ V (G). First of all, since ϕ(G) obviously contains a copy of G as a subgraph,
we must have dG(wi, x) ≥ dϕ(G)(ϕ(wi), ϕ(x)). On the other hand, since ϕ(G) is a

subgraph of P⊠,k
D+1, we have from Fact 3.1 that

dϕ(G)(ϕ(wi), ϕ(x)) = max{|dG(wj , x)− dG(wj , wi)| : 1 ≤ j ≤ k}

≥ |dG(wi, x)− dG(wi, wi)|

= dG(wi, x).

We conclude that dϕ(G)(ϕ(wi), ϕ(x)) = dG(wi, x), which completes the proof of the
lemma.

We now proceed with the proof of the main result of this section.

Proof of Theorem 3.3. (⇒) Suppose that W is a resolving set for some graph H ∈

U(G). By Lemma 3.5, there is a W -resolved embedding ϕ of H in P⊠,k
D+1. We show

that ϕ is also a W -resolved embedding of G in P⊠,k
D+1. By definition, we must have

ϕ(x) =
(

dϕ(H)(ϕ(w1), ϕ(x)), . . . , dϕ(H)(ϕ(wk), ϕ(x))
)

for all x ∈ V (H). Since G is a spanning subgraph of H, we have V (G) = V (H), and

the map ϕ is also an embedding of G in P⊠,k
D+1; if xy ∈ E(G), then xy ∈ E(H), and

in turn ϕ(x)ϕ(y) ∈ E
(

P⊠,k
D+1

)

. Further, we clearly have ϕ(G) = ϕ(H), so

ϕ(x) =
(

dϕ(H)(ϕ(w1), ϕ(x)), . . . , dϕ(H)(ϕ(wk), ϕ(x))
)

=
(

dϕ(G)(ϕ(w1), ϕ(x)), . . . , dϕ(G)(ϕ(wk), ϕ(x))
)

.

We conclude that ϕ is a W -resolved embedding of G in P⊠,k
D+1.
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(a) The embedding ϕ of L3n in Pn ⊠ Pn.
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(b) The graph ϕ(L3n).

Figure 3: A W -resolved embedding ϕ of the graph L3n in Pn ⊠ Pn. The vertices of
W are coloured white.

(⇐) Let ϕ be a W -resolved embedding of G in P⊠,k
D+1. From the definition of W -

resolved embedding, we know that ϕ is injective, and that

ϕ(x) =
(

dϕ(G)(ϕ(w1), ϕ(x)), dϕ(G)(ϕ(w2), ϕ(x)), . . . , dϕ(G)(ϕ(wk), ϕ(x))
)

for all x ∈ V (G). Therefore, every vertex ϕ(x) ∈ V (ϕ(G)) is uniquely determined
by its distances in ϕ(G) to members of the set ϕ(W ) = {ϕ(w1), . . . , ϕ(wk)}, i.e.,
the set ϕ(W ) is a resolving set for ϕ(G). It follows that W is a resolving set
for the corresponding graph H ∈ U(G) with edge set E(H) = {xy : ϕ(x)ϕ(y) ∈
E(ϕ(G))}.

3.1 Applications

We now discuss some applications of Theorem 3.3 and Lemma 3.5. First of all,
Theorem 3.3 helped us to find trees of arbitrarily high metric dimension that have
threshold dimension 2. Let L3n be the tree obtained from the path Pn by attaching
two leaves to each vertex of Pn. By Theorem 2.1, we have β(L3n) = n. Figure 3
illustrates a W -resolved embedding of L3n in Pn+1 ⊠ Pn+1, where |W | = 2, so we
conclude that τ(L3n) = 2. Thus, we have the following.

Proposition 3.6. For every integer b > 2, there is a tree T with β(T ) = b and

τ(T ) = 2.

The following corollary of Proposition 3.6 is a strengthening of a result of Char-
trand et al. [3], which states that for every ǫ > 0, there exists a graph H and a
connected subgraph G of H such that β(H)/β(G) < ǫ.
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Corollary 3.7. For every ǫ > 0, there exists a graph G such that τ(G)/β(G) < ǫ,
i.e., there exists a graph H and a connected spanning subgraph G of H such that

β(H)/β(G) < ǫ.

While the embedding defined in the proof of Lemma 3.5 is simple, it can be used
to establish several known results. We include short, intuitive proofs of these results
to emphasize the usefulness of Lemma 3.5.

Corollary 3.8. Let G be a connected graph of order n and diameter DG. If G is a

subgraph of H, then β(H) ≥
⌈

logDG+1 n
⌉

.

Proof. Let DH be the diameter of H and suppose β(H) = b. Then there is a set
W ⊆ V (H) of cardinality b that resolves H. By Lemma 3.5, there is a W -resolved

embedding of H in P⊠,b
DH+1. So G is also embedded in this strong product.

For every 1 ≤ i ≤ b, let mi denote the minimum ith co-ordinate and Mi the
maximum ith co-ordinate among all vertices of G in this embedding. Since G has
diameter DG, we see that Mi ≤ min{mi + DG,DH}. For 1 ≤ i ≤ b, let Pi be the
subpath of P induced by the vertices mi,mi + 1, . . . ,Mi. Then G is embedded in
the strong product P1 ⊠ P2 ⊠ . . . ⊠ Pb of paths each of order at most DG + 1. It
follows that (DG + 1)b ≥ n.

The following result was proven by Hernando et al. [7]. The specific case b = 2
was also proven by Javaid et al. [8] and Sudhakara et al. [10]. It has often been used
to establish a lower bound on the metric dimension of a given graph.

Corollary 3.9. Let G be a connected graph of diameter D with resolving set W =
{w1, . . . , wb}. Then for every 1 ≤ i ≤ b, and every 1 ≤ k ≤ D, we have |Nk(wi)| ≤
(2k + 1)b−1.

Proof. By symmetry, it suffices to show that |Nk(w1)| ≤ (2k + 1)b−1 for all 1 ≤

k ≤ D. Let ϕ be the W -resolved embedding of G in P⊠,b
D+1 defined in the proof of

Lemma 3.5 as follows:

ϕ(x) = (dG(w1, x), dG(w2, x), . . . , dG(wb, x)) .

Suppose that x ∈ Nk(w1), or equivalently, that dG(w1, x) = k. Then for all 2 ≤ i ≤
b, by the reverse triangle inequality, we have

|dG(wi, w1)− dG(wi, x)| ≤ dG(w1, x) = k.

It follows that there are at most 2k+1 possible values for the ith coordinate dG(wi, x)
of ϕ(x), for all 2 ≤ i ≤ b. We conclude that |Nk(w1)| ≤ (2k + 1)b−1.
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3.2 Comparing the threshold dimension and the strong isometric

dimension

By Corollary 3.4, the threshold dimension of a graph G is the smallest integer k for
which there is a W -resolved embedding of G in P⊠,k for some set W ⊆ V (G) of
cardinality k and some sufficiently large path P . Thus, it is natural to ask how the
threshold dimension of G compares to the strong isometric dimension of G, denoted
sdim(G), and defined as the minimum integer k such that there is an isometric
embedding of G in P⊠,k for some path P . See [5, Chapter 15] for a brief survey of
results on the strong isometric dimension.

Given a graph G and a set W ⊆ V (G) of cardinality k, a W -resolved embedding
of G in P⊠,k need not be isometric. See, for example, the embeddings shown in
Figure 1 and Figure 2, neither of which is isometric. Note that if W is a resolving
set for G, then the W -resolved embedding of G defined in the proof of Lemma 3.5
preserves the distance between vertices w ∈ W and v ∈ V (G), but it does not
necessarily preserve the distance between every pair of vertices of V (G) −W . See,
for example, the embedding shown in Figure 1.

It is also easy to see that an isometric embedding of G in P⊠,k need not be
a W -resolved embedding of G for any set W ⊆ V (G) of cardinality k. Take, for
example, any embedding ϕ of the complete graph K4 in P2 ⊠ P2, which is clearly
isometric (as it must be an isomorphism). Since we must have ϕ(x) = (0, 0) for
some x ∈ V (K4), we see immediately that ϕ is not a W -resolved embedding for any
set W ⊆ V (K4).

Indeed, there is no general order relation between τ(G) and sdim(G). We have
already observed that τ(Kn) = n − 1, while it is well-known that sdim(Kn) =
⌈log2(n)⌉ (see [5, Theorem 15.4]). On the other hand, for n ≥ 4, the cycle Cn

has τ(Cn) = β(Cn) = 2, and sdim(Cn) = ⌈n/2⌉ (see [4]). Overall, it appears that
the threshold dimension and the strong isometric dimension of a graph are rather
distinct measures.

4 The threshold dimension and reducibility of trees

In this section we focus on the threshold dimension of trees. We begin by establishing
a sharp upper bound on the threshold dimension of every tree of order n. For every
positive integer n, we define g(n) to be the least nonnegative integer d such that
2d + d ≥ n. Note that g(n) ≤ log2(n) for all n.

Theorem 4.1. Let T be a tree of order n ≥ 1. Then τ(T ) ≤ g(n), and this bound

is sharp.

Proof. If β(T ) ≤ g(n), then the result follows immediately. So suppose that β(T ) ≥
g(n). By Theorem 2.1, it follows that T must have more than g(n) leaves. Let W
be a set of exactly g(n) leaves of T . We show that there is a graph H ∈ U(G) for
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which every vertex in the set V (T ) −W has a distinct W -neighbourhood in H. It
follows that W is a resolving set for H, and hence τ(T ) ≤ |W | = g(n), as desired.

Let X = V (T )−W . By the definition of g(n), we have n ≤ 2|W |+ |W |, and this
means that

|X| = n− |W | ≤ 2|W |.

Thus, we have |X| ≤ |P(W )|, where P(W ) is the power set of W . We think of
the set P(W ) as the set of all possible W -neighbourhoods of vertices in X. Let
X1 =

{

x ∈ V (T )−W : NT
W (x) 6= ∅

}

, and X2 =
{

x ∈ V (T )−W : NT
W (x) = ∅

}

.
Since W is a set of leaves of T , we see that if x, y ∈ X1, then NT

W (x) ∩NT
W (y) = ∅,

and hence NT
W (x) and NT

W (y) are distinct. Let M =
{

NT
W (x) : x ∈ X1

}

, and let
N = P(W ) − M. Since |X| ≤ P(W ), we can assign to every vertex x ∈ X2

a unique subset Sx ∈ N . For every x ∈ X2, let Ex = {xw : w ∈ Sx}. Let
E = ∪x∈X2

Ex. Then in the graph G+E, we have NG+E
W (x) = Sx for every x ∈ X2.

Since NG+E
W (x) = NT

W (x) for every x ∈ X1, we see that every vertex x ∈ X has
a unique W -neighbourhood in G + E. We conclude that W is a resolving set for
G+ E, and hence τ(T ) ≤ g(n).

Finally, we illustrate sharpness of the bound by showing that τ(K1,n−1) ≥ g(n).
Let H ∈ U(K1,n−1). Then H is a connected graph of diameter 2. By a result of
Chartrand et al. [3, Theorem 1], we have β(H) ≥ g(n). Since H was an arbitrary
graph in U(K1,n−1), we conclude that τ(K1,n−1) ≥ g(n).

We now show that every tree with dimension at least 3 is reducible. In fact,
we show that for every tree with dimension at least 3, there is a single edge whose
addition to the tree decreases the dimension. To aid us in our discussions, we
introduce some more terminology. Before proceeding, we encourage the reader to
revisit the terminology introduced immediately before Theorem 2.1.

Let T be a tree that is not isomorphic to a path. We say that a limb L of T is
adjacent to a vertex v in T if some endnode of L is adjacent to v in T , i.e., if the
leaf of T contained in L is a terminal vertex of v. The core of T , denoted c(T ), is
the tree obtained from T by deleting all of its limbs. Note that every leaf of c(T )
must be adjacent to at least two limbs of T , and hence must have terminal degree
at least two in T . For a vertex x of T , let C1, ..., Ck be the components of T − x.
Then the branches of T at x are the induced subgraphs Bi = T [V (Ci) ∪ {x}] for
i ∈ {1, . . . , k}.

Theorem 4.2. Let T be a tree with β(T ) ≥ 3. Then there exists an edge e ∈ E
(

T
)

such that β(T + e) < β(T ).

Proof. We consider two cases.

Case 1: There is an exterior major vertex v of T with terminal degree at least 3.

Let B1, ..., Bk be the branches of T at v. Without loss of generality, we may assume
that B1 and B2 are paths. Let T

′ = T [V (B3)∪· · ·∪V (Bk)]. Let vi be the neighbour
of v in Bi for all i ∈ {1, 2}. By Theorem 2.1, there is a basis W of T that contains
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T ′ v

v1

v2

Figure 4: The tree T in Case 1 of the proof of Theorem 4.2

v1 and v2. Since β(T ) ≥ 3, the basis W must also contain some vertex u of T ′. Let
F = T + v1v2. See Figure 4 for an illustration of T (and F ), with the new edge v1v2
drawn as a dashed line. We claim that W ′ = W − {v1} resolves F .

Let x and y be distinct vertices of F . We will show that some vertex of W ′

resolves x and y. Firstly, if x = v, then x lies on either a shortest u − y path (if
y ∈ V [B1]∪V [B2], or a shortest v2−y path (if y ∈ V [T ′]). So either u or v2 resolves
x and y. Thus, in all subsequent cases we may assume that neither x nor y is equal
to v.

Suppose that x ∈ V (Bi) and y ∈ V (Bj). Without loss of generality, we may
assume that i ≤ j. If i > 1, then x and y lie in the graph T ′′ = F [V (B2) ∪
V (T ′)] = T [V (B2) ∪ V (T ′)]. Evidently, the tree T ′′ is an isometric subgraph of F .
By Theorem 2.1, the set W ′ is a resolving set for T ′′, and hence W ′ resolves x and
y in F .

So we may assume that i = 1. If j = 1, then x and y are clearly resolved by v2.
If j = 2, observe that if dF (u, x) = dF (u, y), then dF (v2, y) < dF (v2, x), so x and
y are resolved by either u or v2 in F . Finally, if j ≥ 3, then we claim again that
x and y are resolved by either u or v2 in F . Suppose otherwise that we have both
dF (u, x) = dF (u, y) and dF (v2, x) = dF (v2, y). Then we have

dF (v, x) = dF (v2, x) = dF (v2, y) = dF (v, y) + 1.

It follows that

dF (u, y) = dF (u, x) = dF (u, v) + dF (v, x) = dF (u, v) + dF (v, y) + 1,

and this is impossible since we must have dF (u, v) + dF (v, y) ≥ dF (u, y).
We conclude that W ′ resolves F . Since |W ′| = |W |− 1, this completes the proof

in this case.

Case 2: The terminal degree of every exterior major vertex of T is at most 2.

In this case, every exterior major vertex contributes at most 1 to the dimension of
T . Since β(T ) ≥ 3, the tree T must have at least three vertices of terminal degree
2, all of which must belong to the core c(T ) of T . Note that every leaf of c(T ) must
have terminal degree exactly 2. If c(T ) is not a path, then consider the core c(c(T ))
of c(T ). If c(c(T )) is non-trivial, let v be a leaf of c(c(T )); otherwise let v be the
unique vertex of c(c(T )). Then in c(T ), the vertex v is adjacent to at least two limbs
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T ′ v

v1

v2

v
′
2

v
′
1

d1

d1

Figure 5: The tree T in Subcase 2.1 of the proof of Theorem 4.2. Note that every
internal vertex of both the vv1-path and the vv2-path may be adjacent to a single
limb – these limbs are not drawn.

of c(T ). Let v1 and v2 be the leaves of c(T ) at the ends of two of these limbs. If
c(T ) is a path, then let v1 and v2 be the leaves of c(T ), and let v be any other vertex
in c(T ). We have two subcases.

Subcase 2.1: No internal vertex of the v1v2-path has terminal degree 2 in T .

Let B1, B2, . . . , Bk be the branches of T at v, and assume that v1 ∈ V (B1) and
v2 ∈ V (B2). Let T

′ = T [V (B3) ∪ · · · ∪ V (Bk)]. For i ∈ {1, 2}, let v′i be a neighbour
of vi that lies on a limb of T (see Figure 5).

By Theorem 2.1, there is a basisW for T that contains v′1 and v′2. Since β(T ) ≥ 3,
there must be some vertex u ∈ W that lies in T ′−v. Let dT (v, v

′
i) = di for i ∈ {1, 2}.

We may assume that d1 ≤ d2. Let (v =)z0z1 · · · zd2(= v′2) be the vv′2-path in T . Let
F be obtained from T by joining v′1 and zd1 , i.e., F = T + v′1zd1 . The new edge is
shown as a dashed line in Figure 5. Let W ′ = W −{v′1}. We claim that W ′ resolves
F .

Let x and y be distinct vertices in T . We will show that x and y are resolved
by some vertex of W ′. By an argument as in Case 1, we may assume that neither x
nor y is equal to v. Suppose that x ∈ Bi and y ∈ Bj , and without loss of generality,
assume that i ≤ j. The case that i > 1 is handled just as in Case 1, so we may
assume that i = 1.

First suppose that j = 1. We claim that x and y are resolved in F by either
u or v′2. Suppose towards a contradiction that dF (u, x) = dF (u, y) and dF (v

′
2, x) =

dF (v
′
2, y). Then we have dF (v, x) = dF (v, y) and dF (v

′
1, x) = dF (v

′
1, y). From the

first of these two observations we see that dT (v, x) = dF (v, x) = dF (v, y) = dT (v, y).
So v′1 must resolve x and y in T . However, from the second observation we see that
dT (v

′
1, x) = dF (v

′
1, x) = dF (v

′
1, y) = dT (v

′
1, y), contradicting the fact that v′1 resolves

x and y in T .
Suppose next that j = 2. Again, we claim that x and y are resolved in F by
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either u or v′2. Suppose otherwise that dF (u, x) = dF (u, y) and dF (v
′
2, x) = dF (v

′
2, y).

Let x′ be the vertex closest to x on the vv′1-path of T , and let y′ be the vertex closest
to y on the vv′2-path of T . Then we have

dF (u, x) + dF (v
′
2, x) =

[

dF (u, v) + dF (v, x
′) + dF (x

′, x)
]

+
[

dF (v
′
2, v

′
1) + dF (v

′
1, x

′) + dF (x
′, x)

]

= dF (u, v) + 2dF (x
′, x) +

[

dF (v, x
′) + dF (x

′, v′1) + dF (v
′
1, v

′
2)
]

= dF (u, v) + 2dF (x
′, x) + dF (v, v

′
2) + 1,

and

dF (u, y) + dF (v
′
2, y) =

[

dF (u, v) + dF (v, y
′) + dF (y

′, y)
]

+
[

dF (v
′
2, y

′) + dF (y
′, y)

]

= dF (u, v) + 2dF (y
′, y) +

[

dF (v, y
′) + dF (v

′
2, y

′)
]

= dF (u, v) + 2dF (y
′, y) + dF (v, v

′
2).

Since dF (u, x) + dF (v
′
2, x) = dF (u, y) + dF (v

′
2, y), we obtain

2dF (x
′, x) + 1 = 2dF (y

′, y),

which is impossible.
Finally, suppose that j ≥ 3. Again, we claim that x and y are resolved in F by

either u or v′2. Suppose otherwise that dF (u, x) = dF (u, y) and dF (v
′
2, x) = dF (v

′
2, y).

Let x′ be the vertex closest to x on the vv′1-path of T , and let y′ be the first vertex
that lies on both the yv-path and the uv-path in T . Note that y′ ∈ T ′, and we may
have y′ ∈ {u, v, y}. Then we have

dF (u, x) + dF (v
′
2, x) =

[

dF (u, v) + dF (v, x
′) + dF (x

′, x)
]

+
[

dF (v
′
2, v

′
1) + dF (v

′
1, x

′) + dF (x
′, x)

]

= dF (u, v) + 2dF (x
′, x) +

[

dF (v, x
′) + dF (x

′, v′1) + dF (v
′
1, v

′
2)
]

= dF (u, v) + 2dF (x
′, x) + dF (v, v

′
2) + 1,

and

dF (u, y) + dF (v
′
2, y) =

[

dF (u, y
′) + dF (y

′, y)
]

+
[

dF (v
′
2, v) + dF (v, y

′) + dF (y
′, y)

]

= dF (u, v) + 2dF (y
′, y) + dF (v, v

′
2).

Since dF (u, x) + dF (v
′
2, x) = dF (u, y) + dF (v

′
2, y), we obtain

2dF (x
′, x) + 1 = 2dF (y

′, y),

which is impossible.

Subcase 2.2: Some internal vertex of the v1v2-path has terminal degree 2 in T .
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T ′ w

w
′

v2

v
′
2

Figure 6: The tree T in Subcase 2.2 of the proof of Theorem 4.2. Note that every
internal vertex of the wv2-path may be adjacent to a single limb – these limbs are
not drawn.

Suppose without loss of generality that the v2v-path contains a vertex of terminal
degree 2 in T other than v2. Let w be the first such vertex on the v2v-path. Let v

′
2 be

one of the neighbours of v2 that lies on a limb of T , and let w′ be one of the neighbours
of w that lies on a limb of T . Let B1, B2, . . . , Bk be the branches of T at w, such
that w′ ∈ V (B1),v2 ∈ V (B2), and B3 is a path, and let T ′ = T [V (B4)∪· · ·∪V (Bk)].
By Theorem 2.1, there is a basis W of T that contains w′, v′2, and some vertex
u ∈ V (T ′). Let F be the graph obtained from T by joining w′ and the neighbour
of w in B2 (see Figure 6, where the new edge is shown as a dashed line). We claim
that W ′ = W −{w′} is a resolving set for F . This claim is established by the proof
of Subcase 2.1, with v and v1 both replaced by w, and v′1 replaced by w′.

Remark 4.3. In Case 2 of the proof of Theorem 4.2, we assumed that T had no
vertices of terminal degree greater than 2. However, this assumption was not im-
portant to the proof of Subcase 2.1 or Subcase 2.2. Indeed, the only fact about the
subtree T ′ used in the proof of either subcase is that T ′ contains some vertex in the
chosen resolving set for T .

If a tree T is reducible, then we necessarily have β(T ) ≥ 3, and hence by The-
orem 4.2, there is a single edge whose addition to T produces a graph with lower
dimension than T . We remark that this does not hold for graphs in general. For
example, consider the graph G shown in Figure 7(a). One can show that β(G) = 3,
and that for every edge e ∈ E

(

G
)

, we have β(G + e) = 3. However, the graph G
is reducible. There is a graph H ∈ U(G) obtained from G by adding two particular
edges (see Figure 7(b)) such that β(H) = 2.

The following is an immediate consequence of Theorem 4.2.

Corollary 4.4. If T is a tree with β(T ) = 3, then τ(T ) = 2.

Our next result takes this one step further; we show that if β(T ) = 4, then
τ(T ) = 2.
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(a) A graph G with β(G) = 3. (b) A graph H ∈ U(G) with β(H) = 2.

Figure 7: A reducible graph for which the addition of any single edge does not
reduce the dimension.

Theorem 4.5. Let T be a tree with β(T ) = 4. Then there exists a set E = {e1, e2}
of cardinality 2 such that β(T + E) = 2.

Proof. Let T be a tree with β(T ) = 4. We consider four cases, based on the number
of vertices with terminal degree at least 2 in T , which is at most four.

Case 1: T has exactly one vertex v with terminal degree at least 2. This case is
illustrated in Figure 8.

In this case, we must have ter(v) = 5. Let B1, ..., B5 be the five branches of T at
v, all of which must be paths. For every i ∈ {1, 2, 3, 4, 5}, let vi be the vertex of
Bi adjacent to v. Let e1 = v1v2, e2 = v3v4, and F = T + {e1, e2}. We show that
{v1, v4} is a basis for F .

Let x, y be any two distinct vertices of F . Let H1 = F − (V (B2) − v), and let
H2 = F − (V (B3) − v). Note that H1 and H2 are isometric subgraphs of F . From
Case 1 of the proof of Theorem 4.2, we see that {v1, v4} is a basis for both H1 and
H2. So if x and y both belong to H1, or both belong to H2, then they are resolved
by the set {v1, v4}. So we may assume, without loss of generality, that x ∈ V (B2)−v
and y ∈ V (B3)−v. If v1 resolves x and y, then we are done, so suppose that v1 does
not resolve x and y. Let k = dF (v1, x) = dF (v1, y). Then we have dF (v4, x) = k+ 1
and dF (v4, y) = k − 1, so we conclude that v4 resolves x and y.

v

v1

v2v3

v4

v5

Figure 8: The tree T in Case 1 of the proof of Theorem 4.5.

Case 2: T has exactly two vertices v1 and v2 with terminal degree at least 2.

In this case, we have ter(v1)+ter(v2) = 6. For i ∈ {1, 2}, let Bi1, Bi2, . . . , Bi ter(vi) be
the branches of T at vi that are paths. For every i ∈ {1, 2} and j ∈ {1, . . . , ter(vi)},
let vij be the neighbour of vi that lies in the branch Bij . We deal with two subcases.
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Subcase 2.1: ter(v1) = 4 and ter(v2) = 2. This case is illustrated in Figure 9(a).

Let w be the neighbour of v1 on the v1–v2 path in T . Let e1 = v11v12, e2 = v14w,
and F = T + {e1, e2}. We show that {v11, v21} is a basis for F .

Let x, y be any two distinct vertices of F . Let H1 = F − (V (B12) − v1) and
H2 = F − (V (B14)− v1). Note that H1 and H2 are isometric subgraphs of F .

Assume first that x and y belong to H1. By Remark 4.3, the argument used in
Subcase 2.2 of Theorem 4.2 establishes that the set {v11, v21} is a resolving set for
H1. Assume next that x and y belong to H2. From Case 1 of Theorem 4.2, we see
that the set {v11, v21} is a resolving set for H2. So if x and y both belong to H1, or
both belong to H2, then x and y are resolved by {v11, v21} in F . So we may assume,
without loss of generality, that x belongs to B12 − v1, and y belongs to B14 − v1.
Suppose that v11 does not resolve x and y. Let k = dF (v11, x) = dF (v11, y) and
ℓ = dF (v1, v2). Then we have dF (v21, x) = k + ℓ + 1 and dF (v21, y) = k + ℓ − 1,
from which we conclude that v21 resolves x and y. So if v11 does not resolve x and
y, then v21 does.

v1

v11

v12

v13

v14

w v2

v21

v22

(a) Subcase 2.1

v1

v11

v12

v13

v2

v21

v22

v23

(b) Subcase 2.2

Figure 9: The tree T in Case 2 of the proof of Theorem 4.5. Note that every internal
vertex of the v1–v2 path in T may be adjacent to a single limb – these limbs are not
drawn.

Subcase 2.2: ter(v1) = ter(v2) = 3. This case is illustrated in Figure 9(b).

Let e1 = v11v12, e2 = v21v22, and F = T + {e1, e2}. We show that {v11, v21} is a
basis for F .

Let x, y be any two distinct vertices of F . Let H1 = F − (V (B12) − v1) and
H2 = F − (V (B22) − v2). Then H1 and H2 are isometric subgraphs of F , and
from Case 1 of Theorem 4.2, the set {v11, v21} resolves both H1 and H2. So we
may assume, without loss of generality, that x belongs to B12− v1, and y belongs to
B22−v1. Suppose that v11 does not resolve x and y. Let k = dF (v11, x) = dF (v11, y)
and ℓ = dF (v1, v2). Then we have dF (v21, x) = k+ ℓ+1 and dF (v21, y) = k− ℓ− 1,
from which we conclude that v21 resolves x and y.

Case 3: T has exactly three vertices v1, v2, and v3 with terminal degree at least 2.
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In this case, we must have ter(v1) + ter(v2) + ter(v3) = 7. For i ∈ {1, 2, 3}, let
Bi1, Bi2, . . . , Bi ter(vi) be the branches of T at vi that are paths. For every i ∈ {1, 2}
and j ∈ {1, . . . , ter(vi)}, let vij be the neighbour of vi that lies in the branch Bij .

Let S be the core of T . Since every leaf of S must have terminal degree at least
2 in T , we see that S has at most three leaves. We consider two subcases relative
to S.

Subcase 3.1: S has exactly three leaves. This case is illustrated in Figure 10(a).

Then exactly one vertex v of S has degree 3, and every branch of S at v is a path.
In this case, the leaves of S must be v1, v2, and v3. For i ∈ {1, 2, 3}, let Bi be the
branch of T at v containing vi, and let di = dT (v, vi). Without loss of generality,
assume that ter(v1) = ter(v2) = 2, that ter(v3) = 3, and that d1 ≤ d2. Let w be the
vertex on the v–v21 subpath of T that is distance d1+1 from v in T . Let e1 = v31v32,
e2 = v11w, and F = T + {e1, e2}. We show that {v21, v31} is a basis for F .

Let x, y be any two distinct vertices of F . Let H1 = F − (V (B1) − v) and
H2 = F − (V (B32)− v3). Note that H1 and H2 are isometric subgraphs of F . From
Case 1 of Theorem 4.2, we see that {v21, v31} is a basis for H1. From Subcase 2.1 of
Theorem 4.2, we see that {v21, v31} is a basis for H2. So we may assume, without
loss of generality, that x belongs to B1− v, and y belongs to B32− v3. Let x

′ be the
vertex closest to x on the v–v11 path of T . Suppose that v21 does not resolve x and
y. Let k = dF (v3, y). Then dF (v31, y) = k as well. We also have

1 + d2 + d3 + k = dF (v21, y) = dF (v21, x) = 1 + d2 − d1 + dF (v11, x
′) + dF (x

′, x).

It follows that

dF (x
′, x) = d3 + k + d1 − dF (v11, x

′) ≥ d3 + k,

since d1 ≥ dF (v11, x
′). But then

dF (v31, x) = 1 + d3 + dF (v, x
′) + dF (x

′, x)

≥ 1 + 2d3 + k + dF (v, x
′)

> 1 + 2d3 + k.

So we have dF (v31, x) > k = dF (v31, y), and we conclude that v31 resolves x and y.

Subcase 3.2: S has exactly two leaves, i.e., S is a path.

In this case, both leaves of S must belong to the set {v1, v2, v3}. Without loss of
generality, assume that v1 and v2 are the leaves of S, and that ter(v1) ≥ ter(v2).
The vertex v3 must lie on the v1–v2 path in T . We consider two further subcases.

Subcase 3.2.1: ter(v3) = 2. This case is illustrated in Figure 10(b).

Let w be the neighbour of v3 on the v1–v3 path in T . Let e1 = v11v12, e2 = v31w,
and F = T + {e1, e2}. We show that {v11, v21} resolves F .

Let x, y be any two distinct vertices of F . Let H1 = F − V (B12 − v1) and
H2 = F − (V (B31)− v3). Note that H1 and H2 are isometric subgraphs of F . From
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vv3

v31

v32

v33

v2

v1

v22

v21

v11

v12

w

(a) Subcase 3.1

v1 v2

v3

v11

v12

v13

v21

v22

v32v31

w

(b) Subcase 3.2.1

v3

v31

v32

v33

v2

v1

v22

v21

v11

v12

w

(c) Subcase 3.2.2

Figure 10: The tree T in Case 3 of the proof of Theorem 4.5. Note that for every
i, j ∈ {1, 2, 3}, every internal vertex of the vi–vj path in T may be adjacent to a
single limb – these limbs are not drawn.
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Subcase 2.1 of Theorem 4.2, we see that {v11, v21} is a basis for H1. From Case 1 of
Theorem 4.2, we see that {v11, v21} is a basis for H2. So we may assume, without
loss of generality, that x belongs to B12 − v1, and y belongs to B31 − v3. If v11
does not resolve x and y, then let k = dF (v11, x) = dF (v11, y). Then dF (v21, x) =
d(v21, v1) + k, while dF (v21, y) = dF (v21, v3) + k − d(v1, v3) < dF (v21, x), and hence
x and y are resolved by v21.

Subcase 3.2.2: ter(v3) = 3. This case is illustrated in Figure 10(c).

We may assume that d1 = dT (v1, v3) ≤ dT (v2, v3). Let w be the vertex on the
v3–v21 path that is distance d1 + 1 from v3. Let e1 = v11w, e2 = v31v32, and
F = T + {e1, e2}. We claim that {v21, v31} is a basis for F . The proof is the same
as that of Subcase 3.1, with v set equal to v3. (Note that the proof still works with
d3 = d(v, v3) = 0.)

Case 4: T has exactly four vertices v1, v2, v3, and v4 with terminal degree at least 2.

In this case, we must have ter(vi) = 2 for all i ∈ {1, 2, 3, 4}. For i ∈ {1, 2, 3, 4}, let
Bi1 and Bi2 be the branches of T at vi that are paths, and for j ∈ {1, 2}, let vij be
the neighbour of vi in Bij. Let S be the core of T . Since every leaf of S must be
an exterior major vertex with terminal degree at least 2, we see that S can have at
most four leaves.

Subcase 4.1: S has exactly two leaves. This case is illustrated in Figure 11(a).
Without loss of generality, let v1, v2, v3, v4 appear in that order on S. So v1 and
v4 are the leaves of S. Let w be the neighbour of v2 on the v1–v2 path of T , and
let z be the neighbour of v3 on the v3–v4 path. Let e1 = v21w, e2 = v31z and
F = T + {e1, e2}. We show that {v11, v41} is a basis for F .

Let x, y be any two distinct vertices of F . Let H1 = F − (V (B21) − v2) and
H2 = F − (V (B31) − v3). Note that both H1 and H2 are isometric subgraphs of
F . From Subcase 2.2 of Theorem 4.2, we see that {v11, v41} is a resolving set for
both H1 and H2. So we may assume, without loss of generality, that x belongs to
B21 − v2, and y belongs to B31 − v3. Let d12 = dF (v1, v2), d23 = dF (v2, v3), and
d34 = dF (v3, v4). Let k = dF (v21, x) and ℓ = dF (v31, y). Suppose that v11 does not
resolve x and y. Then 1+ d12 + k = 1+ d12 + d23 +1+ ℓ, and hence k = d23 + ℓ+1.
Since dF (v41, y) = d34 + ℓ+ 1, we have

dF (v41, x) = 1 + d34 + d23 + k + 1

= 2 + d34 + d23 + (d23 + ℓ+ 1)

= (2 + 2d23) + (d34 + ℓ+ 1)

> dF (v41, y).

So if v11 does not resolve x and y, then v41 does.

Subcase 4.2: S has exactly three leaves. This case is illustrated in Figure 11(b).

Then there is a single vertex v of degree 3 in S. Without loss of generality, suppose
that v1, v3, and v4 are leaves of S, and that v2 is an internal vertex of S. Without
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(c) Subcase 4.3.1
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(d) Subcase 4.3.2

Figure 11: The tree T in Case 4 of the proof of Theorem 4.5. Note that for every
i, j ∈ {1, 2, 3, 4}, every internal vertex of the vi–vj path in T may be adjacent to a
single limb – these limbs are not drawn.
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loss of generality, assume that v2 is on the the v–v1 path of T . Note that it is
possible that v2 = v.

For i ∈ {1, 2, 3, 4}, let di = dT (v, vi). Without loss of generality, assume that
d3 ≤ d4. Let w be the neighbour of v2 on the v1–v2 subpath of T , and let z be the
vertex distance d3 + 1 from v on the v-v4 subpath of T . Let e1 = v21w, e2 = v31z,
and F = T + {e1, e2}. We show that {v11, v41} is a resolving set for F .

Let x, y be any two distinct vertices of F . Let B3 be the branch of T at v
containing v3. Let H1 = F − (V (B3)− v) and H2 = F − (V (B21)− v2). Note that
H1 and H2 are isometric subgraphs of F . From Subcase 2.2 of Theorem 4.2, we
see that {v11, v41} is a basis for H1. From Subcase 2.1 of Theorem 4.2, we see that
{v11, v41} is a basis for H2.

So we may assume, without loss of generality, that x belongs to B3 − v, and y
belongs to B21 − v2. Let x′ be the vertex on the v–v31 path of T that is closest to
x in T . Let k = dT (v21, y). Then

dF (v11, x) = 1 + d1 + dF (v, x
′) + dF (x

′, x),

dF (v41, x) = 1 + d4 − dF (v, x
′) + 1 + dF (x

′, x),

dF (v11, y) = 1 + d1 − d2 + k, and

dF (v41, y) = 1 + d4 + d2 + 1 + k.

Suppose that x and y are not resolved by {v11, v41}. Then we have dF (v11, x) =
dF (v11, y) and dF (v41, x) = dF (v41, y). Thus we have

dF (v11, x) + dF (v41, x) = dF (v11, y) + dF (v41, y),

from which it follows that k = dF (x, x
′). However, then we have

dF (v11, x) = 1 + d1 + dF (v, x
′) + k > 1 + d1 + k ≥ dF (v11, y),

which is a contradiction.

Subcase 4.3: S has exactly four leaves.

In this case, the four leaves of S must be the exterior major vertices v1, v2, v3,
and v4. We consider two further subcases.

Subcase 4.3.1: S contains exactly two major vertices u and v. This case is illus-
trated in Figure 11(c).

In this case, both u and v must have degree 3 in S. Without loss of generality,
we may assume that v1 and v2 lie on distinct limbs of u in S, while v3 and v4 lie
on distinct limbs of v in S. Let d1 = dT (u, v1), d2 = dT (u, v2), d3 = dT (v, v3),
and d4 = dT (v, v4). We may assume that d2 ≤ d1 and d3 ≤ d4. Let w be the
vertex distance d2 + 1 from u on the u–v11 subpath of T , and let z be the vertex
distance d3 + 1 from v on the v–v41 subpath of T . Let e1 = v21w, e2 = v31z, and
F = T + {e1, e2}. We show that {v11, v41} resolves F .
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Let x, y be any two distinct vertices of F . Let B2 be the branch of T at u
containing v2 and let B3 be the branch of T at v containing v3. Let H1 = F −
(V (B2) − u), and let H2 = F − (V (B3) − v). Note that H1 and H2 are isometric
subgraphs of F . From Subcase 2.1 of Theorem 4.2, the set {v11, v41} resolves both
H1 and H2. So we may assume, without loss of generality, that x is in B2 − u, and
y is in B3 − v.

Let x′ be the vertex on the u–v2 path of T that is closest to x, and let y′ be the
vertex on the v–v3 path of T that is closest to y. Let k = dF (u, x

′), ℓ = dF (v, y
′),

and m = dF (u, v). Note that both k and ℓ must be positive. Then we have

dF (v11, x) = 2 + d1 − k + dF (x
′, x),

dF (v41, x) = 1 + d4 +m+ k + dF (x
′, x),

dF (v11, y) = 1 + d1 +m+ ℓ+ dF (y
′, y), and

dF (v41, y) = 2 + d4 − ℓ+ dF (y
′, y).

Suppose that x and y are not resolved by the set {v11, v41}. Then we have dF (v11, x) =
dF (v11, y) and dF (v41, x) = dF (v41, y). Thus we have

dF (v11, x) + dF (v41, x) = dF (v11, y) + dF (v41, y),

from which it follows that dF (y, y
′) = dF (x, x

′). Now since

2 + d1 − k + dF (x
′, x) = dF (v11, x) = dF (v11, y) = 1 + d1 +m+ ℓ+ dF (y

′, y),

we find that k+ℓ+m = 1. However, since k and ℓmust be positive, this is impossible.

Subcase 4.3.2: S contains a single major vertex v. This case is illustrated in
Figure 11(d).

Then v has degree 4 in S. For i ∈ {1, 2, 3, 4}, let di = dT (v, vi). We may assume
that d2 ≤ d1 and d3 ≤ d4. Let w be the vertex distance d2 + 1 from v on the v–v11
subpath of T , and let z be the vertex distance d3 + 1 from v on the v–v41 subpath
of T . Let e1 = v21w, e2 = v31z, and F = T + {e1, e2}. We claim that {v11, v41}
resolves F . The proof is the same as the proof of Subcase 4.3.1, with u set equal to
v. (Note that the proof still works with m = dF (u, v) = 0.)

We have shown that if T is a tree with dimension 2, 3 or 4, then T has threshold
dimension 2. This result does not extend to trees of dimension 5, as the graph K1,6

has metric dimension 5 and threshold dimension 3. One way to see this is to use the
following upper bound on the order n of a graph with dimension b and diameter D,
proven by Hernando et al. [7]:

n ≤

(⌊

2D

3

⌋

+ 1

)b

+ b

⌈D/3⌉
∑

i=1

(2i− 1)b−1 (1)
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Figure 12: A W -resolved embedding of any subdivision of K1,6.

In particular, if G is a graph of dimension 2 and diameter 2, then |V (G)| ≤ 6. It
follows that no graph in U(K1,6) has dimension 2. Are there other trees of dimension
5 and threshold dimension greater than 2? While we show that every subdivision
of K1,6 has threshold dimension 2, we are able to construct some other examples of
trees with dimension 5 and threshold dimension greater than 2.

Let T be a tree obtained by subdividing at least one edge of K1,6. Let v be the
vertex of degree 6 in T , and let L be a component of T of order at least 2. Then for
some sufficiently large path P , an embedding ϕ of T in P ⊠P is shown in Figure 12.
One can verify that ϕ is in fact a W -resolved embedding of T in P ⊠ P , where the
vertices of W are coloured white. Note that L is the only component of T that must
have order at least 2 in order for this property to hold.

Now consider the recursive sequence of trees {Tk}k≥1 whose first four members
are illustrated in Figure 13. It is straightforward to verify that for every k ≥ 1, the
tree Tk has dimension 5, diameter 2k, and order (5k+2)(k+1)/2. By an argument
similar to the one used above for K1,6, one can show that the trees T2, T3, and T4

have threshold dimension greater than 2. However, this is not the case for T5. A
W -resolved embedding of the tree T5 in P11 ⊠P11 is shown in Figure 14. Hence, by
Theorem 3.3, we have τ(T5) = 2.

In fact, one can show that for all k ≥ 5, the tree Tk satisfies (1) for b = 2.
However, it does not immediately follow that τ(Tk) = 2 for all k ≥ 5. We provide
an example which illustrates that a tree T of diameter D may satisfy (1) for b = 2,
and still not have threshold dimension 2. Let T be the tree obtained by subdividing
every edge of the star K1,8 exactly once. Then T has diameter 4 and order 17, so
(1) holds for T in the case b = 2. However, it can be verified that T has threshold
dimension at least 3.
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(a) The tree T1. (b) The tree T2. (c) The tree T3. (d) The tree T4.

Figure 13: The first four trees of the recursive sequence {Tk}k≥1.

(a) The tree T5.
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(b) An embedding of T5 in P11⊠P11.

Figure 14: A W -resolved embedding of the tree T5. The vertices of W are coloured
white.

5 Conclusion

We have not considered the computational complexity of determining the threshold
dimension of a graph. For a graph G and a positive integer b, consider the following
decision problems:

(a) Is there a set B ⊆ V (G) such that B is a basis for some graph H ∈ U(G)?

(b) Is there a graph H ∈ U(G) and a set B ⊆ V (G) of cardinality b such that B
resolves H?

While it is easy to see that Problem (b) is in NP, it is not immediately clear whether
or not Problem (a) is in NP. We ask the following questions.
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Question 5.1. Is Problem (a) NP-hard, even for trees? Is Problem (b) NP-
complete, even for trees?

In Section 4, we demonstrated that every tree with dimension 2, 3, or 4 must
have threshold dimension 2. While we gave some examples of trees of dimension 5
and threshold dimension greater than 2, no infinite family of trees with dimension
5 and threshold dimension greater than 2 is known. We suspect that the following
question has a positive answer.

Question 5.2. Are there only finitely many trees T with β(T ) = 5 and τ(T ) > 2?
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