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Abstract

In this paper we focus on improving object detection performance in terms of recall. We propose a post-detection stage during
which we explore the image with the objective of recovering missed detections. This exploration is performed by sampling object
proposals in the image. We analyze four different strategies to perform this sampling, giving special attention to strategies that
exploit spatial relations between objects. In addition, we propose a novel method to discover higher-order relations between groups
of objects. Experiments on the challenging KITTI dataset show that our proposed relations-based proposal generation strategies
can help improving recall at the cost of a relatively low amount of object proposals.
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1. Introduction

Object detection methods have become very effective at lo-
calizing object instances in images. Different methods have
been proposed, ranging from methods that model the appear-
ance of the object as it is projected on the 2D image space
[12, 16, 20, 22] to methods that reason about physical prop-
erties of the objects in the 3D scene [38, 50]. All these methods
have one thing in common: they rely completely on appearance
features, e.g. color, shape or texture, to describe the objects of
interest. If the object is clearly visible in the image, appear-
ance cues can be very strong. Unfortunately, appearance-based
approaches cannot cope well with more difficult cases, such as
small object instances or highly occluded ones. In spite of some
efforts in this direction (e.g. Frankenclassifier [33], Occlusion
Patterns [39], Occlusion Boundaries [24]), these mostly remain
undetected, resulting in reduced recall. In a real world setting,
highly cluttered scenes and therefore small and occluded ob-
jects are actually quite common - probably more common than
in typical benchmark datasets which are often object-focused
(e.g. because they have been collected by searching images that
have the object name mentioned in the tags).

In recent years, several works [11, 13, 23, 36, 40] have pro-
posed the use of contextual information. These works typically
follow a two-stage pipeline during testing. First, a set of de-
tections is collected using an appearance-based detector. Then,
using a pre-learned context model, out-of-context detections are
filtered-out. This strategy has been effective at improving object
detection, specifically, in terms of precision. On the downside,
objects missed by the object detector are not recovered, which
leaves no room for improvement in terms of recall. A possible
explanation for this tendency, is that the high-precision low-
recall area is often considered the more interesting part of the
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Figure 1: Object detections collected: a) after running a standard appearance-
based detector, b) after sampling 100 context-based object proposals post detec-
tion. Notice how we manage to recover many of the initially missed detections.
Matched annotations are marked in blue, missed detections in red and matching
object proposals in green (Best viewed in color).

precision-recall curve [4, 31]. Methods are optimized and typi-
cally perform well in this region. The high-recall low-precision
area, on the other hand, receives little attention – as if we all
have come to accept there is some percentage of object in-
stances that are just too hard to be found. A very different view
is common in the work on class-independent object proposals
detection (e.g. objectness [1, 2], selective search [44], edge
boxes [51], deepProposals [19] or deepBoxes [28]). When the
object class is unknown, no-one expects a high precision, and
it is only natural to focus on recall instead. A common evalua-
tion protocol in this context is the obtained recall as a function
of the number of window proposals per image. Here, we adopt
the same evaluation scheme, but now for standard supervised
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object detection.
In a sense, this work is similar to [45] which also focuses on

recall instead of precision. The goal is to find as many object
instances as possible, even if this comes at a cost, in the form of
many false positives (low precision). Because of the lower pre-
cision, we refer to the detections as ’object proposals’, as in the
class-independent object detection work. This reflects the idea
that further verification (e.g. using other modalities, other view-
points or higher resolution imagery) may be required to sepa-
rate the true positives from the many false positives – a process
which may be application dependent and is out-of-scope of this
work. We compare various strategies to generate object pro-
posals: i) a sliding-window baseline, ii) two methods for class-
independent object proposals (selective search [44] and edge
boxes [51]), and iii) two class-specific context-based schemes.
Different from [45], which exploits intrinsic appearance fea-
tures, we focus on context cues from other objects in the scene.
Multiple objects in a scene often appear in particular spatial
configurations. This means that detecting one object also pro-
vides information about possible locations of other objects. We
start from a few high-confidence appearance-based detections
and use these as seeds based on which other likely object loca-
tions are identified. We explore one method that uses pairwise
relations, and propose a new topic-based method that builds on
higher-order spatial relations between groups of objects. We
have found that, based on very simple features, relative loca-
tion and pose, our method is able to discover arrangements
between objects that resemble those found in the real world.
Furthermore, it does not enforce restrictions on the number of
objects participating in each of the higher-order relations. For
simplicity, we assume the ground plane to be known, both for
the baselines as for the newly proposed context-based schemes.
However, note that if needed, these can be estimated in differ-
ent ways (e.g. [5, 23]). We show that our method is able to
bring significant improvement to standard object detectors. For
example, notice how in Fig. 1.b we manage to recover many of
the initially missed detections (Fig. 1.a). This is achieved at a
relatively low cost of just 100 additional object proposals.

The remainder of this paper is organized as follows: Sec. 2
presents related work. In Sec. 3 we present the details of the
analysis and of the methods for generating object proposals.
Experiments, results and discussions are presented in Sec. 4.
Then, Sec. 6 addresses the current limitations of the proposed
method. Finally, Sec. 7 concludes this paper.

2. Related Work

The analysis presented in this paper lies at the intersection of
class-independent and context-based class-specific object de-
tection. These two groups of work constitute the axes along
which we position our work.

2.1. Context-based class-specific object detection
Contextual information, in the form of relations between ob-

jects, has been successfully exploited to improve object detec-
tion performance in terms of precision [11, 13, 16, 40]. How-
ever, objects missed by the object detector are not recovered.

This, in consequence, leaves no room for improvement in terms
of recall. One work that tries to increase recall is the co-
detection work of [6]. They exploit detections of the same ob-
ject instances in multiple images to generate bounding boxes.
Our work, on the other hand, operates on a single image. Dif-
ferent from [34], our method does not require an image segmen-
tation step. Furthermore, our contextual models are defined in
3D space. This last aspect also separates our method from [30].
This makes our models easier to transfer to other datasets with
other camera viewpoints and gives them some level of inter-
pretability which can be exploited in other applications, e.g. au-
tonomous driving or robotic manupulation. Different from [48],
which models human-object interactions, our context models
are more flexible since the majority of the related objects may
not occur in the scene, whereas in [48], the objects and the parts
of the body are always present. Additionally, our work differs
from [11, 13, 16, 40] in that we consider higher-order relations
whereas most of the methods that exploit relations between ob-
jects focus on the pairwise case. Recently, a small group of
works [10, 36, 49] that consider higher order relations has been
proposed. In [10], a Pure-Dependency [26] framework is used
to link groups of objects. In [36], objects are grouped by clus-
tering pairwise relations between them. The work of [49] is able
to reason about higher-order semantics in the form of traffic pat-
terns. Different from these works, our topic-based method to
discover higher-order relations does not require the number of
participating objects to be predefined [26]. Furthermore, ob-
jects do not need to be “near” in the space defined by pairwise
relations in order to be covered by the same higher-order rela-
tion [36]. Finally, our method does not require scene-specific
cues ( e.g. lane presence, lane width or intersection type), or
motion information [49].

Another related work is [29] where two methods are pro-
posed to learn spatio-temporal rules of moving agents from
video sequences. This is done with the goal of learning tempo-
ral dependencies between activities and allows interpretations
on the observed scene. Our method is similar to [29] in that
both methods perform spatial reasoning and both methods are
evaluated in a street scene setting. Different from [29] which
aims at building scene-specific models, the models produced by
our method are specific to the object classes of interest and not
scene-dependent. Furthermore, while [29] focuses more on mo-
tion (flow) cues, our method focuses on instance-based features
(location & pose). Moreover, the method from [29] requires
video sequences and operates in the 2D image space while our
method runs on still images and operates in the 3D space.

2.2. Class-independent object detection

Another group of work operates under the assumption that
there are regions in the image that are more likely to contain
objects than others. Based on this assumption, the problem is
then to design an algorithm to find these regions. Following
this idea, [1] proposed a method where windows were randomly
sampled over the image. Following the sampling, a “general”
classifier was applied to each of the windows. This classifier re-
lied on simple features such as appearance difference w.r.t. the

http://dx.doi.org/10.1016/j.cviu.2016.08.007


This is the author’s version of an article accepted for publication. Changes were made to this version by the publisher prior to publication.
The final version of record is available at: http://dx.doi.org/10.1016/j.cviu.2016.08.007

surrounding or having a closed contour and was used to mea-
sure the objectness of a window. In [1], windows with high ob-
jectness are considered to be more likely to host objects. Later,
[14] proposed a similar method with the difference that their
method generated object proposals from an initial segmenta-
tion step. This produced better aligned object proposals. Sim-
ilarly, [44] proposed a selective search method which exploits
the image structure, in terms of segments, to guide the sampling
process. In addition, their method imposes diversity by consid-
ering segment grouping criteria and color spaces with comple-
mentary properties. Recently, [51] proposed a novel objectness
measure, where the likelihood of a window to contain an object
is proportional to the number of contours fully enclosed by it. A
common feature of this group of work is that their precision is
less critical. The number of generated proposals is anyway only
a small percentage of the windows considered by traditional
sliding window approaches. On the contrary, these methods fo-
cus on improving detection recall by guiding the order in which
windows are evaluated by later class-specific processes. In [3],
these ideas were integrated in a context-based detection setting
where new proposals are generated sequentially based on pre-
viously observed proposals following a class-specific context
model. Inspired by these methods we propose to complement
a traditional object detector with an object proposal generation
step. The objective of this additional step is to improve detec-
tion recall even at the cost of more false positives. Different
from [3], which just returns a single window per image (thus
detecting a single object instance), we generate several win-
dows per image with the objective of recovering as many ob-
ject instances as possible. Moreover, our context information is
object-centered.

Recently, [32] proposed “location relaxation”, a two-stage
detection strategy where candidate regions of the image are
identified using coarse object proposals generated from bottom-
up segmentations. Then, based on these proposals, a top-down
supervised search is performed to precisely localize object in-
stances. Similar to [32] we propose a two-stage strategy to im-
prove object detection. However, instead of focusing on refin-
ing object localization our focus is on maximizing the number
of detected instances. In this aspect, the proposed method and
the work from [32] complement each other since the proposed
method can be used to coarsely localize object instances while
the strategy from [32] can be used to improve localization ac-
curacy. Another difference, is that while the method from [32]
uses local class-specific models to improve the localization of
a specific object instance, our method uses context models to
explore candidate locations of other instances.

3. Proposed Method

The proposed method can be summarized in 2 steps: In a first
stage, we run a traditional object detector which produces a set
of object detections. Then, in a second stage, we sample a set
of object proposals aiming to recover object instances possibly
missed during the first stage.

3.1. Class-specific object detection

The main goal of this work is to recover missed object in-
stances after the initial detection stage has taken place. Given
this focus on the post-detection stage, for the object detection
stage we start from an off-the-shelf detector. In practice, given
a viewpoint-aware object detector, i.e. a detector that predicts
the bounding box and viewpoint of object instances, we collect
a set of 2D object detections o = {o1, o2, ..., on} where each ob-
ject detection oi = (bi, αi, si) is defined by its detection score si,
its predicted viewpoint αi and its 2D bounding box coordinates
bi = (x1i, y1i, x2i, y2i).

3.2. Object Proposal Generation Methods

Traditional appearance-based object detectors have proven
to be effective to detect objects o with high confidence for the
cases when objects of interest are clearly visible. At the same
time, for small or highly-occluded object instances its predic-
tions are less reliable resulting in a significant number of object
instances being missed. To overcome this weakness we pro-
pose, as a post-detection step, to sample (class-specific) object
proposals o′ with the goal of recovering missed detections. We
analyze four strategies to generate these proposals, as discussed
in the next four sections.

Relaxed Score Detector
A first, rather straightforward method to recover missed de-

tections consists of further reducing the threshold τ used as cut-
off in the object detector. This is a widely used strategy, even
though it usually does not increase recall that much. We refer to
this strategy as Relaxed Score Detector. This strategy consists
of the original object detector with non-maximum suppression
(NMS) performed with default settings while reducing drasti-
cally the threshold τ for the detection score.

Relaxed NMS Detector
In addition, we define an alternative strategy to relax the ob-

ject detector. Instead of lowering the threshold τ, we remove
the non-maximum suppression step present in most object de-
tectors (including the one used in our experiments). For a given
threshold value, this results in many more object proposals be-
ing generated. This allows to detect objects highly-occluded
by other objects of the same class. We refer to this strategy as
Relaxed NMS Detector.

3D Sliding Window
This is a 3D counterpart of the 2D sliding window approach

used by traditional detectors (e.g. [16]). This approach is in-
spired by the work of Hoiem et al. [23]. We assume the ex-
istence of a ground plane that supports the objects of inter-
est. Given the ground plane, we densely generate a set of 3D
object proposals O′ = {O′1, ...,O

′
m} resting on it for each of the

discrete orientations θk = {θ1, ..., θK }. Each 3D object proposal,
O′ = (X,Y,Z, L,W,H, θ), is defined by its 3D location (X,Y,Z), its
physical length, width and height (L,W,H) and its orientation θ
in the scene. We define the length, width and height (L,W,H) of
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the proposed 3D object proposals O′ as the mean values of an-
notated 3D objects in the training set. We drop the 3D location
coordinate Y since all the 3D object proposals are assumed to
be supported by the ground plane, hence Y = 0 for all the pro-
posals. Then, once we have generated all the 3D objects that
can physically be in the scene, using the camera parameters we
project each of the 3D object proposals O′ to the image space,
assuming a perspective camera model, producing a set of 2D ob-
ject proposals o′. Specifically, each 2D proposal o′ is obtained
by projecting each of the corners of the 3D proposal O′, and se-
lecting the 2D points that enclose the rest. Note that due to the
box representation, objects with opposite orientations (orienta-
tion difference = 180◦) will project onto the same 2D bounding
boxes. For this reason we only generate proposals for a smaller
set of K/2 discrete viewpoints.

Class Independent Object Proposals
Here we follow the strategy of generic, class-independent,

object proposal generators. A crucial part of this strategy is to
define a proper objectness measure to be able to estimate how
likely it is for a window defined over an image to contain an
object of any class. In this analysis we evaluate the effective-
ness of this strategy to recover missed detections. Particularly,
we use the Selective Search [44] and Edge Boxes [51] meth-
ods. See [25] for a benchmark of methods for detecting class
independent object proposals.

3.3. Class-specific Context-based Object Proposals

In this strategy we generate a set of object proposals o′ as a
function o′ = f η(o) of the object detections o predicted by the
appearance-based detector. The function f η enforces contextual
information in the form of relations between object instances.
This way, all the proposals o′ sampled from f η follow a distri-
bution of relations previously seen in the training data where η
is the number of object instances participating in the relation.
This produces a relation-driven search where given a seed ob-
ject oi object proposals o′ are sampled at locations and with
poses that satisfy these relations. In this paper we propose two
relation-driven functions: f 2 for the case of objects being asso-
ciated by pairwise relations, and f + for the case when objects
are associated by higher-order relations.

From 2D object detections to 3D objects in the scene. In this
work, reasoning about relations between objects is performed in
the 3D scene. For this reason, we first need to project the object
detections used as seeds on the 3D scene using the groundplane.
We define the objects O = {O1,O2, ...,On} as 3D volumes that lie
within this 3D space. Each object Oi = (Xi,Yi,Zi, Li,Wi,Hi, θi, si),
is defined by its 3D location coordinates (Xi,Yi,Zi), its size
(Li,Wi,Hi), its pose θi in the 3D scene and its confidence score
si. We assume that all the objects rest on a common ground
plane, so Yi = 0 for all the objects. For brevity, we drop the Y

term, then each object is defined as Oi = (Xi,Zi, Li,Wi,Hi, θi, si). In
order to define the set of 3D objects O from the set of 2D objects
o, we execute the following procedure: first, given a set of an-
notated 3D objects, we obtain the mean size (length,width and

height) of the objects in the dataset. Second, assuming a cali-
brated camera, we densely generate a set of 3D object proposals
O′ over the ground plane, very similar the 3D Sliding Windows
method from Sec. 3.2 . Third, each of the 3D object propos-
als from O′ is projected in the image plane producing a set of
2D proposals o′. Then, for each object detection oi we find its
corresponding proposal o′i by taking the proposal with highest
intersection over union score, as proposed in Pascal VOC Chal-
lenge [15]. Finally, we use the 3D location (X′i ,Z

′
i ) from the 3D

proposal O′i from which o′i was derived and the viewpoint angle
αi, predicted by the detector, to estimate the pose angle θi of the
object Oi in the scene. As a result, we obtain a set of 3D objects
defined as Oi = (Xi,Zi, Li,Wi,Hi, θi, si).

Pairwise Relations ( f 2). Pairwise relations between 3D objects
are computed as proposed in [35]. Following the procedure
from [35] we define camera-centered (CC) pairwise relations
by centering the frame of reference in the camera. Then, from
this frame of reference we measure relative location and orien-
tation values between object instances. Alternatively, we de-
fine object-centered (OC) relations in which, first, we center
the frame of reference on each of the object instances and then
measure the relative values between them. As a result, we ob-
tain a set of relations R for each image. Each pairwise relation
ri j is defined as ri j = (rX , rZ , rθ), where (rX , rZ ) represent the rel-
ative location of the object and rθ represents the relative pose
between the object instances. We compute pairwise relations
between each pair of objects within each image of the training
set. Then, using kernel density estimation (KDE) we model the
distribution p(ri j). This is a simple method that manages to find
some common arrangements in which pairs of objects co-occur.
See Fig. 2 for some examples. During the proposal genera-
tion stage, we sample a set of relations r′ from this distribution.
Then, for each seed object O we generate object proposals O′

following the sampled relations r′. Finally, the 3D object pro-
posals O′ are projected into the image plane producing the 2D
object proposals o′.

Higher-order Relations Discovery ( f +). Given a set of training
images containing objects occurring in a scene, our goal is to
discover the underlying higher-order relations that influence the
location and orientation in which each object instance occurs
w.r.t. each other. A similar problem, of discovering abstract
topics t = {t1, t2, ..., tT } that influence the occurrence of words
w within a document d, is addressed by Topic Models [8] [21].
Motivated by this similarity we formulate our higher-order rela-
tion discovery problem as a topic discovery problem. Accord-
ing to the topic model formulation, a document di can cover
multiple topics tk and the words w that appear in the document
reflect the set of topics tk that it covers. From the perspective of
statistical natural language processing, a topic tk can be viewed
as a distribution over words w; likewise, a document d can be
considered as a probabilistic mixture over the topics t.

In order to meet this formulation in our particular setting,
given a set of training images, we first compute pairwise rela-
tions ri j between all the objects Oi within each image as before.
Then, for each object Oi we define a document di where the
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Figure 2: Distribution of pairwise relations for cars with the same pose (a,c) and opposite pose (b,d) respectively. Top row corresponds to object-centered (OC)
relations while the bottom row corresponds to camera-centered (CC) relations.
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Figure 3: Some of the discovered relational topics from an object-centered perspective. For each topic, the reference object is in the center and colored in black.
The related objects are presented with their occurrence likelihood color-coded in jet scale. Notice how the discovered topics resemble traffic scenarios from urban
scenes. For visualization purposes, each object is being plotted with average size of the annotations in the training set of images. We only show the top 10 most
likely words per topic. (Best viewed in color).
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words w are defined by the pairwise relations ri j that have the
object Oi as the source object. Additionally, we experiment with
an alternative way to compute the pairwise relations between
objects. Specifically, we run tests with a variant of the relative
pose attribute of the relation where instead of considering the
pose of the target object we consider the orientation of its elon-
gation only (similar to [37] ). This orientation is less affected by
errors during prediction, since traditional pose estimators tend
to make mistakes by confusing opposite orientations, e.g. front-
back, left-right, etc.

In order to make the set of extracted pairwise relations R ap-
plicable within the topic model formulation we quantize them
into words (although word-free topic models have been pro-
posed as well [41]). To this end, we discretize the space de-
fined by the relations R by (W/2,W/2, θd) where W is the average
width of the annotated 3D objects in the training set, and θd is
a predefined number of discrete poses of the object, 8 in our
experiments. At this point, we are ready to perform topic mod-
elling in our data. Here we use Latent Dirichlet Allocation [8]
for topic modelling. For inference, we follow a Gibbs sampling
method as in [21]. Our main goal is to identify the set of topics t
that define higher-order arrangements between objects O in the
scene. In our experiments we extract 16 topics from our docu-
ments d. Fig 3 shows a top view of a subset of the discovered
topics when considering object-centered pairwise relations as
words. Notice how some of the topics resemble common traffic
patterns of cars in urban scenes. These topics represent the un-
derlying higher-order relations that we claim influence the way
in which objects tend to co-occur.

During the object proposal generation stage, we assume that
each 3D object Oi, estimated from the seed object detection oi,
is related with the object proposals O′ under higher-order rela-
tions. For simplicity, we assume that all the higher-order rela-
tions (topics) are equally likely to occur. Object proposals O′

are then generated by sampling the word distributions p(w|t)
given each of the topics t. Finally the sampled 3D object pro-
posals O′ are projected to the image plane, yielding o′. The as-
sumptions made at this stage have three desirable effects. First,
object proposals are sampled in such a way that they follow the
higher-order relations between objects. Second, the exploration
process gives priority to the most likely proposals from each of
the discovered higher-order relations, see Fig. 3. Third, we are
able to reason about higher-order relations even for the scenario
when just one object detection oi was collected by the detector.

4. Evaluation

Experiment details: We perform experiments on the KITTI ob-
ject detection benchmark [17]. This dataset constitutes a perfect
testbed for our analysis since it covers a wide variety of diffi-
cult scenarios ranging from object instances with high occlu-
sions to object instances with very small size. Furthermore, it
provides precise annotations for objects in the 2D image and in
the 3D space, including their respective viewpoints and poses.
In our experiments, and in contrast to standard procedure on
the KITT object detection benchmark [17], we consider all the
object instances occurring on the images independently of their

size, level of occlusion and/or truncation. Since this is a bench-
mark dataset, annotations are not available for the test set. For
this reason, we focus our experiments on the training set. Using
the time stamps of the dataset, we split the data into two non-
overlapping subsets of equal size. The first subset is used for
training, the second subset is used to evaluate the performance
of our method. We focus on cars as the class of interest given
its high occurrence within this dataset which makes it appro-
priate for reasoning about relations between objects. We focus
our evaluation on images with two or more objects, where it is
possible to define such relations. This leaves us with two sub-
sets consisting of 2633 images each that are used for training
and testing, respectively. Matching between annotated objects
and object proposals is evaluated based on the intersection over
union (IoU) criterion from Pascal VOC [15]. We report as eval-
uation metric the recall as a function of the number of object
proposals generated per image, as is often used for evaluating
object proposal methods. In this analysis we use mainly the
LSVM-MDPM-sv detector from [18] to collect the initial set of
object detections. LSVM-MDPM-sv is an extension of the De-
formable Parts-based model (DPM) detector [16] where a com-
ponent is trained for each of the discrete object viewpoints to
be predicted. In this case, LSVM-MDPM-sv is trained to predict
eight viewpoints.

As baselines we use the Relaxed Score Detector, the Relaxed
NMS Detector, the 3D Sliding Window proposals, the propos-
als generated by Selective Search [44] and Edge Boxes [22].
For the case of class-specific context-based proposals, we eval-
uate one method based on pairwise relations, Pairwise, and
two methods based on higher-order relations, HOR and HOR-
Elongation, where the latter is the variant based on object elon-
gation orientation instead of object pose. For all the context-
based strategies, for the special case when no seed objects are
available, i.e. images where the object detector was unable to
find detections above the threshold (12% of the images) , we
fallback to the 3D Sliding Window strategy and consider the
proposals proposed by this strategy for that image. We evaluate
the changes in performance when considering camera-centered
(CC) relations vs. object-centered (OC) relations.

Exp.1: Relations-based Object Proposals
In this first experiment we focus on evaluating the strategies

based on relations between objects. We consider as seed objects
for our strategies the object detections collected with the detec-
tor [18]. Fig. 4.a presents performance on the range of [0,1000]
generated object proposals.

Discussion: Strategies based on CC higher-order relations
seem to dominate the results. They achieve around 10% higher
recall than all other methods over a wide range of the curve.
This can be attributed to the fact that higher-order relations con-
sider object arrangements with more than two participating ob-
jects. This allows them to spot a larger number of areas that
are likely to contain objects. In addition, higher-order rela-
tions cover a wider neighborhood, whereas the pairwise rela-
tions have a more “local” coverage (i.e. they explore mostly a
small neighborhood around the seed detections). As a result,
strategies based on higher-order relations are able to explore a
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Figure 4: Recall vs. number of generated proposals for our Relations-based methods a) when all the object detections reported by the detector are used as seed
objects, and b) when only the top scoring object detection reported by the detector is used as seed object. Comparison with non-contextual strategies using: c) a
traditional matching criterion (IoU>0.5), and d) using a stricter matching criterion (IoU>0.75).

large part of the image. This is more visible in the range [0,500]
of the sampled proposals, where recall from methods based on
higher-order relations increases faster than for pairwise rela-
tions. This can be further verified in Fig. 5. A deeper inspec-
tion of the qualitative results (Fig. 5) produced by our methods
reveals a particular trend on how it addresses object instances
of different sizes. Our method first focuses on objects in the
3D vicinity of the seed objects, i.e. with similar projected 2D
size. Eventually, objects with different 2D sizes to the seeds are
explored.

Further we note that strategies based on CC relations have
superior performance compared to their OC counterparts. This
can be partly attributed to the fact that proposals sampled fol-
lowing OC relations are affected by errors during the prediction
of the pose of the seed object. Moreover, the camera setup in
the KITTI dataset is fixed, introducing low variability in the CC
relations. In a scenario with higher variability on camera view-
points we expect OC relations to have superior performance
over CC relations. In addition, for the case of CC relations, the
higher-order relations where the elongation orientation is con-
sidered are slightly better, albeit only marginally so. This can
be attributed to the fact that the orientation of the elongation

of an object is less affected by errors in the pose estimation.
Moreover, by defining CC relations we also avoid the noise in-
troduced in the pose of the seed objects.

Despite the difference in performance between the proposed
strategies, it is remarkable that we are able, on average, to dou-
ble the initial recall obtained by the object detector by following
relatively simple strategies. This suggests that object proposal
generation should not be employed solely as a pre-detection
step as it is commonly found in the literature [1, 14, 44, 51].
Furthermore, this suggests that there is some level of interoper-
ability between object detection and object proposal generation
methods.

Exp.2: Starting from a Single Object Seed

This experiment is similar to the previous experiment with
the difference that for each image we only consider the top
scoring object detection as seed object. As stated earlier,
appearance-based detectors can be reliable at levels of high pre-
cision and low recall. The objective of this experiment is to
measure what performance can be achieved if we start from
the most reliable seed object only. Similar to the previous ex-
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Figure 5: Object proposals generated in chronological order using the context-based strategy based on camera-centered higher-order relations. Matched object
annotations are marked in blue, missed detections are marked in red and matching object proposals are color-coded in green. First row, seed objects collected with
the object detector [18]; second row, results after sampling 100 object proposals; and third row, results after sampling 1000 object proposals (Best viewed in color).
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periment, Fig. 4.b shows performance on the range of [0,1000]
generated object proposals.

Discussion: A quick inspection of Fig. 4.b shows similar
trends as the ones observed in the previous experiment. How-
ever, different from the previous experiment, recall is relatively
lower in the range of [0,100] proposals. This is to be expected
since we start from a smaller pool of seed objects. However,
it is surprising to see how we can achieve nearly similar per-
formance from 400 proposals upwards by just starting from a
single seed object. This further supports the idea of interoper-
ability between object detectors and object proposal generators.

Exp.3: Comparison with non-contextual strategies

Next, we compare the performance of the relations-based
strategies w.r.t. the non-contextual methods of Section 3.2. We
consider as relation-based strategies the CC variants only since,
in the previous experiments, they achieved higher performance
than their OC counterparts. As non contextual strategies we
consider the Relaxed Score Detector, the Relaxed NMS Detec-
tor, the 3D Sliding Window, Selective Search [44], and Edge
Boxes [51]. We report results considering all the detections as
seed objects in Fig. 4.c.

Discussion: We notice that the contextual strategies based on
higher-order relations have a superior performance than all the
other strategies. Interestingly, a clear difference can be noted
between the performance of contextual and non-contextual
strategies. Except for the Relaxed Score Detector, in the range
of [0,200], all the contextual strategies achieve superior perfor-
mance than the non-contextual counterparts. This suggests that
indeed contextual information is useful for an early exploration
of regions of the image that are likely to host instances of the
objects of interest. By observing the performance of the ’Re-
laxed’ versions of our local detector, we can verify the effect
that the score threshold and NMS steps have on the obtained
recall. As can be noted in Fig. 4.c, when reducing the detection
score threshold (Relaxed Score Detector), the set of hypotheses
predicted for each image is much lower (<200 per image) than
when the NMS step is reduced (Relaxed NMS Detector). Due to
its stricter NMS step, the Relaxed Score Detector produces less
overlapping hypotheses, hence performing a faster exploration
of the image space. This is evident since it reaches relatively
high recall (∼0.5) at the cost of less than 50 proposals per im-
age. On the downside, due to its limited number of predicted
hypotheses, this recall is not able to increase significantly. On
the contrary, when the NMS step is removed, the Relaxed NMS
Detector reaches the 0.5 recall of the Relaxed Score Detector at
∼200 proposals per image and is able to reach up to a recall of
0.7 later on the curve.

Exp.4: Proposal Localization/Fitting Quality

In this experiment we measure the quality of the object pro-
posal to localize and fit the region of the recovered object in-
stance. For this purpose, in this experiment we employ a stricter
matching criterion [15] of at least 0.75 IoU between the bound-
ing boxes of the object annotations and the object proposals,
respectively. This is inspired by [25], where it is claimed

that a 0.5 IoU is insufficient for evaluating object proposals.
We evaluate the performance of the same, contextual and non-
contextual, strategies from Exp.3. In Fig. 4.d we report results
considering all the detections as seed objects with stricter IoU
measure.

Discussion: Recall values obtained in this experiment are
significantly reduced now that matching an object is a more
complicated task. The performance of the Relaxed NMS Detec-
tor is surprisingly high. This can be attributed to the fact that
with the non-maximum suppression step removed the Relaxed
NMS Detector is able to exhaustively explore the areas where
appearance has triggered a detection. This is further confirmed
when comparing its performance with the one of the Relaxed
Score Detector. Due to its stricter NMS step, the Relaxed Score
Detector is not able to explore possible bounding box variants
occurring on a candidate region, thus resulting in poorer hy-
pothesis bounding box matching. In addition, we notice that
pairwise relations are now outperforming the higher-order alter-
natives in the range of [500,1000] proposals/image. This may be
caused by the discrete nature of the words in the topic models
which are used to discover higher-order relations. As a result,
the proposals generated from higher-order relations are spa-
tially sparser than the ones produced by pairwise relations. The
strategies based on pairwise relations tend to first concentrate
on regions of high density before exploring other areas. This
is why we notice improvements in the range [500,1000] and not
earlier. These observations hint at a possible weakness of our
relation-based strategies to generate object proposals. On one
hand, relation-based proposals have some level of sparsity em-
bedded, in our case, either by vector quatization of the relational
space or by assuming mean physical sizes for the objects in
the scene, when reasoning in 3D. This can be a weakness com-
pared to the exhaustive Relaxed NMS Detector strategy, when
the objective is to have fine localization. On the other hand,
relation-based strategies seem to be better suited for “spotting”
the regions where the objects of interest might be. This is sup-
ported by their superior recall in Exp.1. This further motivates
our idea of a joint work of object detectors and object proposal
generators.

Exp.5: Measuring Detection Performance
While the results obtained in the previous experiments show

a significant improvement in recall, it is arguable whether the
cost of decreased precision is acceptable. We argue that, in
systems with various sources of information (multimodal sen-
sors, multi-cameras or image sequences) it is desirable to de-
tect the majority of the objects since the pool of detections can
be further reduced by imposing consistency along the different
sources. In order to get a notion of the potential of the pro-
posed methods for the object detection task, we will now follow
the traditional object detection evaluation protocol. We report
Mean Average Precision (mAP) as performance metric and use
the standard matching criterion from Pascal VOC (IoU>0.5). First,
we report the performance for the raw set of object proposals
(1000 objects/image) from the previous experiments. Second,
aiming at reducing the number of false positives per image and
at having a comparison w.r.t. state-of-the-art detection methods,
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we re-score the raw set of objects using appearance features.
For this purpose, we follow the R-CNN strategy [20]. Given a
set of object proposals, we compute CNN features for each pro-
posal and then classify each region using a linear SVM. As an
additional step, linear regression is performed in order to fix
bounding box localization errors. In this experiment we con-
sider the set of objects from the previous experiments as the
proposals to be classified. Finally, we follow the SPP-CNN alter-
native from [22] which has comparable detection performance
to R-CNN at a fraction of processing speed. In addition, we split
the performance of our CNN-based baselines showing the per-
formance after SVM classification and after performing bound-
ing box regression, respectively. See Table 1 for some quantita-
tive results. In Figure 6 we present the precision-recall curves.
Following the experimental protocol presented in this section,
we present performance curves for SVM classification (Figure
6.a) and for bounding box regression (Figure 6.b). See Figure
7 for some qualitative examples from this experiment.

Discussion: We notice that when the set of raw objects is
considered, our relations-based methods lead the performance
table. This group of methods is followed by the Relaxed NMS
Detector, the class-independent methods and the random meth-
ods, respectively. This shows that at this “raw” level, the pro-
posed relations-based methods are better suited to cope with
the variations in object appearance caused by occlusions and
changes on scale and viewpoint. For the case when appearance-
based re-scoring is performed, it is important to notice that the
combination of SPP-CNN with Selective Search proposals cor-
responds to the state-of-the-art method proposed in [22]. Fur-
thermore, as mentioned earlier, this is a speeded-up version of
R-CNN [20]. We can notice that the proposed relations-based
methods produce an improvement of ∼5 percentage points (pp)
over R-CNN (Selective Search + SPP-CNN). Furthermore, the
comparable good results based on the Relaxed NMS Detector
proposals suggests that using a weaker detector as proposal
generator can boost the results obtained with SPP-CNN features.
While not at the core of our paper, this seems an interesting
observation. In addition, when comparing the difference in per-
formance within the SPP-CNN setup, it is clear that our relations-
based methods benefit more from bounding box refinement (∼13
pp improvement) than the appearance-based Relaxed NMS De-
tector (∼7 pp). This further confirms our observation made in the
previous experiments that context-based proposals are better at
spotting regions of the image likely to contain the objects while
appearance-based approaches are better suited for finer local-
ization. An additional difference between the performance of
the Relaxed NMS Detector and the relations-based methods lies
in their processing times. In their current state, the evaluated
baselines, e.g. Relaxed NMS Detector and the relations-based
methods, have a processing bottleneck in the way in which the
seed hypotheses are obtained. Since for the Relaxed NMS De-
tector the set of hypotheses is high (∼1000 hypotheses), its pro-
cessing time is much higher than the relations-based methods
which usually start from a set of ∼7 seed object hypotheses.
This difference in processing times will be further discussed in
Section 5.

a

b

Figure 6: Object detection Mean Average Precision (mAP) performance of
CNN-based methods. Precision-Recall curves showing the performance ob-
tained a) after SVM classification, and b) after bounding box regression.

SPP-CNN
Baseline Raw SVM class. bbox regress.
3D Sliding Window 31.30 21.11 33.53
Random 2D Windows 30.97 18.00 24.63
Selective Search 31.40 33.50 43.50
Edge Boxes 31.29 35.12 39.63
CC-Pairwise 36.37 21.44 31.19
CC-HOR 37.68 34.20 48.19
CC-HOR-Elongation 36.25 34.30 48.40
Relaxed NMS Detector 34.40 42.77 48.27

Table 1: Detection performance. Mean Average Precision (mAP).

Exp.6: Comparison w.r.t. the State-of-the-Art

In order to further evaluate the strength of our context-based
methods at recovering missed object instances, in this experi-
ment we evaluate its performance when starting from a state-
of-the-art method for object detection, i.e. the Faster R-CNN
detector [43]. In this experiment we define three methods, the
Vanilla Faster R-CNN detector which is the the original version
of the detector as proposed in [43], with default parameters for
detection score threshold and non-maximum suppression. As
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Figure 7: Qualitative examples from the CNN-based methods for object detection. For each image the detection score of each hypothesis is color-coded in jet
scale. We show the examples for the methods from [22] (SPP-CNN + Selective Search [44]) and the proposed camera-centered higher-order relations method
(CC-HOR-Elongation). We show the hypotheses predicted a) after SVM classification, and b) after bounding box regression (Best viewed in color).
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second set of method s we have the relaxed versions (Relaxed
Score and Relaxed NMS) of the detector. Finally, we have our
context-based methods where each of the hypotheses produced
by the Vanilla R-CNN detector are enriched with viewpoint pre-
dictions using a multiclass SVM classifier trained from CNN
features [27] computed from annotated instances in the dataset.
Something important to note, is that this classifier is not perfect:
it achieves a training cross validation accuracy of 0.4. How-
ever, its performance is above chance levels so it can give us
an idea of the viewpoint (or at least the elongation angle) of
an object. Similar to the experiments reported earlier, we used
the hypotheses collected by the Faster RCNN detector, with de-
fault settings, as seed objects. Based on these hypotheses we
sample context-based object proposals. Similar to the previous
experiments, for the case when no seed objects are available,
i.e. images where the object detector was unable to find detec-
tions above the threshold (1% of the images), we fallback to
the 3D Sliding Window strategy and consider the proposals pro-
posed by this strategy for that image. We report performance in
terms of Recall as a function of the number of sampled object
proposals (see Figure 8).

Discussion: Clearly, the Faster RCNN detector achieves
better performance (achieving an initial Recall ∼0.55) than the
DPM-based detector used earlier in our experiments (which
achieved an initial Recall ∼0.35). As a result, the proposed
context-based methods are fed with better seed objects result-
ing in a boost in performance (now being able to reach a recall
of ∼0.9). Note that, as was stressed earlier, this is achieved by
using noisy object viewpoint estimates. We believe that a state-
of-the-art method for viewpoint estimation, e.g. [9], can help
to boost the performance of the proposed context-based meth-
ods further. In this experiment we also note the same trend on
the performance of the different methods when using a stricter
intersection over union (IoU) matching criterion (Figure 8.b).

5. Processing times

Regarding processing times, each of the methods in Table 1
considers the same number of proposals/image. This leads
to similar processing times during the appearance-based re-
scoring (classification/regression). Hence, the difference in the
processing time between the evaluated methods is determined
by their respective methods to generate object proposals. As
mentioned earlier, the proposal generation process of the pro-
posed method consists of two steps: a) class-specific object
seed detection, and b) context-based proposal generation.

In its current state, the bottleneck of the proposed method
lies in the seed detection step which is handled by an off-the-
shelf detector [18]. Class-specific object seed detection takes
on average 20 seconds/image when using the detector at de-
fault settings. For the second step, given that the context mod-
els have been computed offline (Section 3.2), the execution of
the proposed method can be summarized into three main pro-
cesses, i.e. 2D-3D projection, topic assignment and object pro-
posal sampling; which all scale linearly w.r.t. the number of
desired object proposals. These processes take approximately
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Figure 8: Recall vs. number of generated proposals for our Relations-based
methods when seed objects are collected with the Faster RCNN detector [43]
at default settings. For reference, we also report the performance of the Re-
laxed Score/NMS detectors. We report performance when using : a) a tradi-
tional matching criterion (IoU>0.5), and b) using a stricter matching criterion
(IoU>0.75).

0.5, 0.1 and 1 seconds/image, respectively, giving a total of 1.6
seconds/image for the sampling of context-based proposals.

For the case of the Relaxed NMS Detector, the object detec-
tor needs to be evaluated for a large set of windows. Note that
compared to the proposed method, the number of hypotheses
collected by the off-the-shelf detector is very high in the Re-
laxed NMS Detector. This increases the processing within the
off-the-shelf detector [18] to 30 seconds/image and further in-
creases the bottleneck mentioned earlier.

Note that the computation times presented above are ob-
tained by performing only CPU-based computations. More-
over, for both the proposed method and the Relaxed NMS De-
tector, this problem can be alleviated by using faster detectors,
e.g. [7, 22, 43]. This is supported by our experiments based
on the Faster RCNN detector [43] ( Section 4, Exp.6) where
on the one hand the detection of seed objects takes ∼0.17 sec-
onds/image while on the other hand the relaxed NMS detector
takes ∼1.12 seconds/image.
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6. Limitations and Future Work

Even though we have shown that the proposed method is ef-
fective at recovering object instances missed after an initial de-
tection step, there are several aspects in which the proposed
method can be improved. In this section we look at these
weak points and suggest directions for addressing them in fu-
ture work. Currently, our evaluation is focused on grounded
objects of a single-class, i.e. the car class on a groundplane.
Even though, our relations-based models can be extended to
cover other classes not necessarily on the groundplane, e.g. by
adding the relative Y location rY and related object class rC as
relation attributes, making this extension comes with the cost
of requiring additional training data. As was presented in Sec-
tion 3.3, the proposed methods to generate context-based pro-
posals learn relations between objects from training data. Thus,
as the definition of pairwise relations gets more complex, more
representative training data would be required in order to cover
all the new scenarios that might be possible with the new ex-
tended pairwise relations model. In this regard, further ex-
periments should be performed to verify the performance of
these extended models. In addition, by being class-specific,
our method may not scale properly if a large number of object
classes need to be detected. In this regard, we suggest the usage
of our method for structured scenarios with a reduced number
of classes, e.g. autonomous driving and indoor object detec-
tion, or as a detector for specific scene-types. Considering a
specific type of setting or scene, will reduce the number of ob-
ject classes that need to be analyzed during test time making the
scalability aspect less critical.

Regarding the object seed detection step, in its current state,
our method requires a detector that provides a viewpoint as part
of its output. This requirement can be alleviated by modifying
the relations-based models to focus on spatial relations (ignor-
ing the relative pose information). This change comes at the
cost of less interpretable context models. A more promissing
solution follows the recent line of work from [9, 42] which
focuses on registering 3D (CAD) models to objects depicted
in 2D images. As is presented in [9], this registration can
be successfully exploited to enrich detected object hypotheses
(bounding boxes) with information related to viewpoint. Given
the increasing amount of 3D models appearing everyday, meth-
ods like [9] clearly address the requirement of having object de-
tections with predicted viewpoint. Moreover, as was presented
on Exp.6 (Section 4), even when using a relatively simple, and
noisy, viewpoint estimator (CNN featuress+SVM) decent per-
formance can be achieved by the proposed method.

As presented in Figure 4.d, when focusing on fine object lo-
calization, using an exhaustive dense Relaxed NMS Detector
outperforms the proposed method. In order to improve the per-
formance of the proposed method on the fine localization task,
inspired by [32], we propose to follow a top-down approach
in which given a set of object seeds we generate a set of initial
relations-based proposals from which proposals with controlled
variations are sampled. Size and location of these additional
proposals are ruled by statistical data related to the class of in-
terest and the spatial location of other objects in the scene.

Regarding the assumptions made on the proposed method,
having a calibrated camera might sound as a strong assumption.
However, note that existing works [5, 23, 46, 47] have proposed
several methods to perform this calibration.

In this work we have focused our evaluation on the KITTI
dataset [17]. As stated in Section 4, this dataset constitutes a
perfect testbed for our analysis since it covers a wide variety of
difficult scenarios, e.g. object instances with high occlusions,
object instances with very small size, etc. Furthermore, it pro-
vides precise annotations from objects in the 2D image and in
the 3D space, including their respective viewpoints and poses.
Finally, most of the images of the KITTI dataset contain more
than one instance of the class of interest, i.e. car, which is neces-
sary for learning the relations between objects. As future work,
further evaluation of the proposed method should be performed
as new datasets showing similar properties to the KITTI dataset
appear.

Finally, comparing the performance of both the Relaxed
Score and Relaxed NMS detectors, suggests that a proper bal-
ance between their thresholds, i.e. NMS and detection score
threshold, can be obtained in order to improve detection perfor-
mance. This somehow goes against the common practice of fo-
cusing on the detection score threshold alone and leaving NMS
as a fixed post-processing step. Moreover, a good balance be-
tween the two relaxed methods may produce a better set of seed
objects for our context-based method for generating proposals.

7. Conclusions

In this paper we have shown that sampling class-specific
context-based object proposals is an effective way to recover
missed detections. The potential of our method to improve de-
tection is shown by our straightforward CNN extension which
achieves improved performance over state-of-the-art CNN-
based methods. Our experimental results suggest that object
proposal generation should not be employed solely as a pre-
detection step as it is commonly found in the literature. Fur-
thermore, we show relations-based strategies are better suited
for spotting regions that contain objects of interest rather than
achieving fine localization. In addition, our novel method to
discover higher-order relations is able to recover semantic pat-
terns such as traffic patterns found in urban scenes. Future work
will focus on investigating the complementarity of the proposed
strategies as well as proper ways to integrate them.
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[29] D. Küttel, M. D. Breitenstein, L. J. V. Gool, V. Ferrari, What’s going on?
discovering spatio-temporal dependencies in dynamic scenes, in: CVPR,
2010.

[30] B. Li, T. Wu, S.-C. Zhu, Integrating context and occlusion for car detec-
tion by hierarchical and-or model, in: ECCV, 2014.

[31] H. Li, L. Chen, Removal of false positive in object detection with contour-
based classifiers, in: ICIP, 2010.

[32] C. Long, X. Wang, M. Y. Gang Hua, Y. Lin, Accurate object detection
with location relaxation and regionlets re-localization, in: ACCV, 2014.

[33] M. Mathias, R. Benenson, R. Timofte, L. Van Gool, Handling occlusions
with franken-classifiers, in: ICCV, 2013.

[34] R. Mottaghi, X. Chen, X. Liu, N.-G. Cho, S.-W. Lee, S. Fidler, R. Ur-
tasun, A. Yuille, The role of context for object detection and semantic
segmentation in the wild, in: CVPR, 2014.

[35] J. Oramas M, L. De Raedt, T. Tuytelaars, Allocentric pose estimation, in:
ICCV, 2013.

[36] J. Oramas M, L. De Raedt, T. Tuytelaars, Towards cautious collective
inference for object verification, in: WACV, 2014.

[37] J. Oramas M, T. Tuytelaars, Scene-driven cues for viewpoint classification
of elongated object classes, in: BMVC, 2014.

[38] B. Pepik, P. V. Gehler, M. Stark, B. Schiele, 3d2pm - 3d deformable part
models., in: ECCV, 2012.

[39] B. Pepik, M. Stark, P. V. Gehler, B. Schiele, Occlusion patterns for object
class detection, in: CVPR, 2013.

[40] R. Perko, A. Leonardis, A framework for visual-context-aware object de-
tection in still images, CVIU 114 (6) (2010) 700–711.

[41] K. Rematas, M. Fritz, T. Tuytelaars, Kernel density topic models: Visual
topics without visual words, in: NIPS Workshops, 2012.

[42] K. Rematas, C. Nguyen, T. Ritschel, M. Fritz, T. Tuytelaars, Novel views
of objects from a single image, arxiv:1602.00328 [cs.cv] (2015).

[43] R. G. J. S. Shaoqing Ren, Kaiming He, Faster R-CNN: Towards real-time
object detection with region proposal networks, in: NIPS, 2015.

[44] J. R. R. Uijlings, K. E. A. van de Sande, T. Gevers, A. W. M. Smeulders,
Selective search for object recognition, IJCV 104 (2) (2013) 154–171.

[45] A. Vedaldi, V. Gulshan, M. Varma, A. Zisserman, Multiple kernels for
object detection, in: ICCV, 2009.

[46] G. Wang, H.-T. Tsui, Z. Hu, F. Wu, Camera calibration and 3d recon-
struction from a single view based on scene constraints, Image and Vision
Computing 23 (3) (2005) 311 – 323.

[47] M. Wilczkowiak, E. Boyer, P. Sturm, Camera calibration and 3d recon-
struction from single images using parallelepipeds, in: ICCV, 2001.

[48] B. Yao, F. Li, Modeling mutual context of object and human pose in
human-object interaction activities, in: CVPR, 2010.

[49] H. Zhang, A. Geiger, R. Urtasun, Understanding high-level semantics by
modeling traffic patterns, in: ICCV, 2013.

[50] M. Z. Zia, M. Stark, K. Schindler, Are cars just 3d boxes? - jointly esti-
mating the 3d shape of multiple objects, in: CVPR, 2014.

[51] C. Zitnick, P. Dollár, Edge boxes: Locating object proposals from edges,
in: ECCV, 2014.

http://dx.doi.org/10.1016/j.cviu.2016.08.007

	1 Introduction
	2 Related Work
	2.1 Context-based class-specific object detection
	2.2 Class-independent object detection

	3 Proposed Method
	3.1 Class-specific object detection
	3.2 Object Proposal Generation Methods
	3.3 Class-specific Context-based Object Proposals

	4 Evaluation
	5 Processing times
	6 Limitations and Future Work
	7 Conclusions

