
HAL Id: hal-03750387
https://univ-evry.hal.science/hal-03750387v1

Submitted on 7 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

An integrated approach for a new flexible multi-product
disassembly line balancing problem

Peng Hu, Feng Chu, Ming Liu, Shijin Wang, Peng Wu

To cite this version:
Peng Hu, Feng Chu, Ming Liu, Shijin Wang, Peng Wu. An integrated approach for a new flexible
multi-product disassembly line balancing problem. Computers and Operations Research, 2022, 148,
pp.105932. �10.1016/j.cor.2022.105932�. �hal-03750387�

https://univ-evry.hal.science/hal-03750387v1
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

An integrated approach for a new flexible multi-product

disassembly line balancing problem

Peng Hua,b, Feng Chua, Ming Liuc, Shijin Wangc, Peng Wub

aLaboratoire IBISC, Univ Évry, Université Paris-Saclay, Évry, France
bSchool of Economics & Management, Fuzhou University, Fuzhou, Peoples Republic of China
cSchool of Economics & Management, Tongji University, Shanghai, Peoples Republic of China

Abstract

Flexible disassembly line design for end-of-life (EOL) products is a key issue in the re-

manufacturing industry. However, existing studies for disassembly line balancing have

not simultaneously considered multiple EOL products, the identical parts of these prod-

ucts and uncertainty during disassembly, which are important characteristics of flexible

disassembly lines. The present study addresses a new flexible multi-product disassembly

line balancing problem in which 1) disassembly schemes need to be selected, 2) a work-

station can disassemble multiple EOL products, 3) identical parts of multiple products

can be treated as identical tasks, and 4) only partial probability distribution informa-

tion of processing times is known. For the problem, an integrated approach is developed,

which is composed of a chance-constrained program, a distribution-free model, efficient

valid inequalities and an exact lifted cut-and-solve method. Numerical experiments are

conducted on an illustrative example, 10 instances based on realistic products and 480

randomly generated instances with up to 20 products, 400 tasks and 86 workstations.

Computational results show that the proposed valid inequalities can reduce about 75%

computational time of the original model, and the lifted cut-and-solve method needs

only 17.53% and 40.65% of the computational times required by the CPLEX and the

classic cut-and-solve method, respectively.

Keywords: Disassembly line balancing, Multi EOL product, Chance-constrained

programming, Valid inequalities, Cut-and-solve method

1. Introduction

Sustainable development has received extensive attention in recent years owing to

the wide awareness of saving non-renewable resources and protecting the environment.

Email address: hupeng723@gmail.com (Peng Hu)

As an important branch of sustainable industries, the remanufacturing industry aims

to create new economic, social, and environmental values by appropriately managing

end-of-life (EOL) products. Disassembly is an important process in remanufacturing

industries, and it widely exists in many recovery industries. Many vehicle companies,

such as BMW, have disassembled EOL vehicles to remanufacture high-value components

such as engines, starter motors, and alternators for many years (Thierry et al., 1995).

Some electronic manufacturers, such as Apple and Dell, have set up disassembly lines

for remanufacturing the multiple EOL electric products (Xu et al., 2019; Ndubisi et al.,

2020).

Increasing demand for customized products results in various new products, and the

scale of EOL products and their variants is rapidly expanding in the recycling market.

Thus, the traditional single-product disassembly line is inappropriate and uneconomical

to disassemble such increasing EOL product variants. In the latest review, Özceylan et al.

(2019) point out that the researchers are expected to concentrate more on the consider-

ation of multi-product to be disassembled in the future. Moreover, with the increasing

variety of end-of-life products entering the recycling streams, Paksoy et al. (2013) state

that investigating multi-product disassembly lines can offer better insight into practical

disassembly issues. In addition, Fang et al. (2019) point out that multi-product line

satisfies variant disassembly demand and reduces line building and maintaining costs.

In the real application, Apple developed a disassembly line called Daisy to dismantle 9

iPhone variants and recycle high-quality components and metal materials in 2016 (N-

dubisi et al., 2020). These multiple EOL products may have identical components that

can be disassembled by the same machine or workstation to save material resources and

improve disassembly line performance. For example, the Engine Electronic Control Unit

(ECU) is one of the most valuable electronic devices of EOL vehicles (Cucchiella et al.,

2016). In Figure 1, there are two types of ECUs (A and B). They have 4 identical parts,

i.e., front plastic casing (1), left metal piece (2), right metal piece (3), rear metal casing

(4), and different printed circuit boards (5 or 6). Because of the complicated and un-

certain disassembly environments for EOL products and their variants, the designing of

flexible disassembly lines that simultaneously consider multiple products, their identical

parts and uncertainty during disassembly is a great challenge, although disassembly line

balancing problems have been studied for two decades.

Approximately 96% of related studies in the literature concentrate on the single-

product disassembly line balancing problem (DLBP) according to Özceylan et al. (2019).

Multi-product DLBPs, also called mixed-model DLBP in most existing studies, have

been investigated for the last 10 years. A mixed-model disassembly line means a disas-

2

ECU A ECU B

Front plastic

casing (1) Metal piece (2)

Rear metal casing (4)Printed circuit board (5)

Metal piece (3)
Front plastic

casing (1) Metal piece (2)

Rear metal casing (4)Printed circuit board (6)

Metal piece (3)

Figure 1: The example of two Toyota Vitz ECUs (Environmental Affairs Division, 2017)

sembly line that can handle more than one type of EOL product (Paksoy et al., 2013).

Some of these studies examine deterministic multi-product DLBPs (Ilgin et al., 2017;

Fang et al., 2019). Some works investigate multi-product DLBPs with uncertainty. A-

grawal et al. (2008) study a stochastic mixed-model DLBP and sequencing problem, in

which the uncertain task processing time follows a normal distribution, but disassem-

bly scheme selection is ignored. Fang et al. (2020a) address a stochastic mixed-model

DLBP with parallel robots in each workstation, in which only the interval of task pro-

cessing time is given, and the disassembly scheme is predetermined. Liu et al. (2022)

investigate a stochastic multi-product DLBP with limited distributional information of

task processing time. Compared with our study, 1) They assume that one workstation

can only dismantle one type of product, while one workstation can dismantle multiple

products in our study. 2) They assume that the first two moments of task processing

times are known, while in our study, the mean, standard deviation and upper bound of

task processing times are known. 3) They formulate the problem by a distributionally

robust model with a CVaR constraint, while we formulate the problem by a joint chance

constraint. 4) In terms of solution method, they develop a cutting-plane method and an

approximation method, while in our study, a lifted cut-and-solve method is proposed. In

addition, these studies do not consider identical parts of EOL products, except the study

with a deterministic environment (Ilgin et al., 2017). Pioneering works have advanced

multi-product DLBP related research, but the characteristics of flexible multi-product

disassembly lines, such as disassembly scheme selection, identical parts of EOL products

and uncertainty during disassembly, have not been considered simultaneously.

The present study investigates a new flexible multi-product disassembly line bal-

ancing problem in which 1) disassembly schemes need to be selected, 2) a workstation

and a disassembly scheme are capable of disassembling multiple EOL products, 3) iden-

tical parts of multiple products can be treated as identical tasks, and 4) only partial

probability distribution information of processing times is known. This study focuses

on proposing a novel approach to disassembly multiple EOL products, which aids oper-

3

ation managers in decision-making and improving the performance of the disassembly

process. For the problem, an integrated approach is designed, which is composed of

an appropriate chance-constrained program, an approximated distribution-free model,

efficient valid inequalities, and a lifted cut-and-solve method. The developed approach

is tested on an illustrative example, 10 instances based on realistic products and 480

randomly generated instances. The experiment results show that the approach can solve

large-scale instances with up to 20 products, 400 tasks, and 86 workstations. The results

of the present study provide the following main contributions.

- A new flexible multi-product DLBP is investigated, in which disassembly scheme

selection, identical parts of EOL products and uncertain processing time are con-

sidered simultaneously;

- An integrated approach according to the problem characteristics is designed to

solve the studied problem. Notably, the experimental results show that valid in-

equalities save approximately 75% of computational time on average, and the av-

erage computational time of the lifted cut-and-solve method is only approximately

17.5% of the time needed by the commercial solver CPLEX version 12.9;

- The proposed approach can solve large-scale instances with up to 20 EOL products,

400 tasks, and 86 workstations.

The remainder of this paper is organized as follows. Section 2 provides a litera-

ture review. Section 3 describes the studied problem and proposes a new joint chance-

constrained program. Based on problem properties, the proposed model is approximately

transformed into a distribution-free model and valid inequalities are developed in Section

4. An exact lifted cut-and-solve method is proposed in Section 5. Numerical experiments

are conducted in Section 6 to evaluate the performances of the distribution-free model,

the valid inequalities, and the lifted cut-and-solve method. Section 7 provides conclusion

and future research directions.

2. Literature review

DLBP has been widely studied in the last two decades, and most existing works

address the single-product DLBP (Altekin et al., 2008; Bentaha et al., 2014; Ren et al.,

2017; Li et al., 2019; Kucukkoc, 2020; Edis, 2021). Because this work studies the multi-

product DLBP, we focus on multi-product DLBP related studies in the literature.

4

First, the multi-product DLBP is classified into two categories, deterministic and

uncertain. For deterministic multi-product DLBP, Ilgin et al. (2017) examine a multi-

objective mixed-model DLBP in which the same parts of different EOL products are

disassembled by so-called common tasks with processing times that may be differen-

t between EOL products. Their study assumes that the disassembly schemes of EOL

products are predetermined. A mixed-integer linear programming model is proposed

for the problem. Then a linear physical programming method is proposed to solve

their problem. Fang et al. (2019) investigate a robotic mixed-model DLBP with par-

allel robots in each workstation to simultaneously minimize four objectives, the cycle

time, total energy consumption, peak workstation energy consumption and the number

of robots used. Identical parts of multiple EOL products are not considered in their

study. A mixed-integer linear program is proposed to formulate the studied problem,

and a knowledge-leveraging evolutionary algorithm is designed to solve it. Moreover,

they extend their study by considering energy resource constraints (Fang et al., 2020b).

A mixed-integer linear programming model is constructed for the problem, and an ε-

constraint method based NSGA-II algorithm is proposed to solve it.

For the uncertain multi-product DLBP, Altekin et al. (2008) study a stochastic multi-

objective mixed-model U-shaped DLBP where the task processing time follows a normal

distribution. The authors assume that the EOL products have no identical parts and

that the disassembly schemes are predetermined. A non-linear stochastic programming

model is formulated for the problem. A collaborative ant colony optimization algorithm

is proposed to solve the problem. Paksoy et al. (2013) investigate a multi-objective

mixed-model DLBP with fuzzy objectives, in which EOL products have no identical

parts. For the problem, a mixed-integer linear programming model is proposed and

solved using the commercial solver LINGO 11.0. Two different fuzzy programming

approaches, binary fuzzy goal programming and fuzzy multi-objective programming,

are applied to address multiple objectives. Fang et al. (2020a) recently investigate a

stochastic multi-objective mixed-model DLBP with bounded task processing time, in

which products are disassembled by parallel robots in each workstation. However, the

disassembly scheme selection and identical parts of EOL products are not considered

in their study. A mixed-integer linear program is proposed for the problem, where the

stochastic task processing times are represented by interval numbers. An evolutionary

simulated annealing algorithm is developed to solve the problem. Liu et al. (2022)

study a stochastic multi-product DLBP with workforce assignment. The uncertain task

processing time is represented by partial information of the probability distribution, i.e.,

the mean and covariance matrix. Each workstation in their study can only handle one

5

type of EOL product. A stochastic program with conditional value-at-risk constraints is

developed for the problem. Valid inequalities are proposed to reduce the solution space,

but their efficiency is not evaluated. An exact cutting-plane method is proposed to

solve this problem. Yin et al. (2022) recently study a multi-product partial DLBP with

parallel robots in each workstation to minimize the cycle time, energy consumption,

and improved hazardous index. In their study, the uncertain task processing times

are described by interval numbers. But the disassembly schemes of EOL products are

predetermined, and identical parts of EOL products are not considered. A mixed-integer

programming model is established for the studied problem. Then, a multi-objective

hybrid driving algorithm is proposed to solve the problem.

Table 1: Comparisons of related studies on multi-product DLBP

Existing work
Problem setting Modelling Valid Solution

Deterministic Stochastic Fuzzy DSS MIP ODM method inequality method

Ilgin et al. (2017) X X X MIPM LPP+Solver

Fang et al. (2019) X X X MIPM Metaheuristic1

Fang et al. (2020b) X X X MIPM Metaheuristic2

Paksoy et al. (2013) X X X MIPM BFGP+FMOP+Solver

Altekin et al. (2008) ND X SPM Metaheuristic3

Fang et al. (2020a) Interval X MIPM Metaheuristic4

Liu et al. (2022) MCM X DRM-CVaR X Exact method1

Yin et al. (2022) Interval X MIPM Metaheuristic5

This work MDU X X X DFM-C X Exact method2

ND: Normal distribution of task processing time; MCM: the mean and covariance matrix of task processing time; MDU: the mean, standard deviation
and upper bound of task processing time; DSS: Disassembly schemes selection; ODM: One workstation can disassemble multiple products; MIP: Multiple
products have identical parts; MIPM: Mixed integer linear programming model; SPM: Stochastic programming model; DFM-CVaR: Distributionally robust
model with CVaR constraint; DFM-C: Distribution-free model with chance constraint; BFGP: Binary fuzzy goal programming; FMOP: Fuzzy multi-
objective programming; LPP: Linear physical programming; Metaheuristic1: Knowledge-leveraging evolutionary algorithm; Metaheuristic2: ε-constraint
method based NSGA-II algorithm; Metaheuristic3: Collaborative ant colony optimization algorithm; Metaheuristic4: Simulated annealing; Metaheuristic5:
Multi-objective hybrid driving algorithm; Exact method1: Cutting-plane method; Exact method2: Lifted cut-and-solve method.

Table 1 summarises the related studies on multi-product DLBPs and shows the

differences between existing works and the present study. We can find that (1) the

stochastic multi-product DLBP with partial distributed information is rarely studied, (2)

the main characteristics of a flexible disassembly line are not simultaneously considered,

and (3) most constructed models are solved using commercial solvers or metaheuristics,

but few studies develop exact methods.

3. Problem description and formulation

This section states and formulates the flexible multi-product DLBP using a joint

chance-constrained program.

Consider that a set of EOL products have to be disassembled. The disassembly of

identical parts of these products should be accomplished using identical tasks. To depict

6

the studied problem, we use the ECU example mentioned in the Introduction. In Figure

2, the two products (denoted by A and B) have two alternative disassembly schemes that

are represented by different colors, red and blue for A, and black and green for B. The

underlined parts 5 and 6 are printed circuit boards and are assumed to be hazardous.

A disassembly task and a subassembly (disassembly state) are represented by © and

�, respectively. I and N represent the sets of disassembly tasks and subassemblies,

respectively. Specifically, N1 and N2 denote the initial subassemblies of A and B, and

NFA and NFB represent the final states of A and B, respectively. T k
i means that task

i can be executed k times because it belongs to k products. For example, T 2
10, and T 2

13

are identical tasks and maybe executed twice because of identical parts of A and B.

Moreover, tasks 6, 7, 11, 12 with gray color are assumed to be hazardous because they

handle hazardous parts 5 and 6. For the studied problem, the basic assumptions are

summarized as follows:

{4,5}

{2,3}

N1{1,2,3,4,5}

T2
1

T3
1

T1
1

T4
1

N2{1,2,3,4,6}

N5

{2,3,4,6}

N6

{1,3,4,6}

N4

{2,3,4,5}

N3

{1,3,4,5}

T7
1

T6
1

T5
1

T8
1 N9

{3,4,6}

N8

{2,3,4}

N7

{3,4,5}
T9

1

T11
1

T10
2 N11

{2,4}

T12
1N10

{4,5}

N12

{3,4}

T13
2

T14
1

NFA{{1},{2},

{3},{4},{5}}

NFB{{1},{2},

{3},{4},{6}}

A

B

Figure 2: Disassembly schemes of products A and B

(1) EOL products may have identical parts, and the disassembly of these identical

parts can be accomplished by identical tasks;

(2) An EOL product can have several disassembly schemes that are known in advance,

but only one scheme can be selected;

(3) During disassembly, the given task precedence relationships in a disassembly

scheme must be respected;

(4) Task processing times are assumed to be mutually independent and uncertain,

and only their limited probability distribution information is available, i.e., the mean,

standard deviation and upper bound;

(5) A predetermined cycle time C must be respected with a given risk level α, i.e.,

the probability that the task processing times of all workstations exceed the cycle time

is less than α;

7

(6) One workstation can disassemble several tasks of multiple EOL products, and

workstations are independent and homogeneous.

(7) Some parts are assumed to be hazardous and need specific treatments with a

supplementary cost (McGovern & Gupta, 2007a; Bentaha et al., 2015), and the hazardous

tasks are independent of disassembly schemes.

The flexible multi-product DLBP consists of optimal selection of a disassembly

scheme for each EOL product, determination of the workstations to be opened and

assignment of tasks to opened workstations respecting task precedence relationships and

cycle time within a given risk level. The objective is to minimize the total disassembly

cost, including the open workstation cost and cost of handling hazardous tasks.

Before the problem formulation, the related notations are presented as follows:

Indices:

i : index of disassembly tasks;

j, j′ : index of workstations;

n : index of subassembly nodes;

Parameters:

J : set of workstations;

I : set of disassembly tasks;

H : set of hazardous tasks and H ⊂ I;

N0: set of initial subassembly nodes;

N : set of subassembly nodes including initial subassembly nodes, N0 ⊂ N ;

Pn : set of immediate predecessors of subassembly node n, where n ∈ N ;

Sn : set of immediate successors of subassembly node n, where n ∈ N ;

ti : stochastic processing time of task i, where i ∈ I;

ki : the maximum number of times that task i can be executed, where i ∈ I;

C : the cycle time of all workstations;

α : a given risk level (probability) that the task processing time exceeds the cycle

time for all workstations;

CF : the cost for opening a workstation;

CH : the cost for handing a hazardous task.

Decision variables:

xij : non-negative integer variable, number of times of task i is assigned to workstation

j, where i ∈ I, j ∈ J ;

yj : binary variable, equal to 1 if workstation j is open, 0 otherwise, where j ∈ J .

8

For the problem, a joint chance-constrained program P1 is formulated as follows:

P1: min CF

∑

j∈J

yj + CH

∑

i∈H

∑

j∈J

xij (1)

s.t.
∑

i∈Sn

∑

j∈J

xij = 1, ∀n ∈ N0 (2)

∑

j∈J

xij ≤ ki, ∀i ∈ I (3)

∑

i∈Sn

∑

j∈J

xij =
∑

i∈Pn

∑

j∈J

xij , ∀n ∈ N\N0 (4)

∑

i∈Sn

j′∑

j=1

xij ≤
∑

i∈Pn

j′∑

j=1

xij , ∀n ∈ N\N0, ∀j′ ∈ J (5)

∑

i∈I

xij ≤
∑

i∈I

kiyj , ∀j ∈ J (6)

yj−1 ≥ yj , ∀j ∈ J\{1} (7)

Pr

(
∑

i∈I

tixij ≤ C, ∀j ∈ J

)
≥ 1− α (8)

yj ∈ {0, 1}, ∀j ∈ J (9)

xij nonnegative integer, ∀i ∈ I, j ∈ J (10)

Objective (1) minimizes the total cost, including the workstation opening cost and

the extra cost for handling hazardous tasks. Constraints (2) mean that only one task is

selected at the beginning of disassembly for each EOL product. Constraints (3) indicate

that task i may be executed at most ki times. Constraints (4) ensure the flow conser-

vation of each subassembly, i.e., equality of the executed times of preceding tasks and

succeeding tasks of each subassembly. Naturally, constraints (2) and (4) can guarantee

that only one disassembly scheme is selected for each EOL product. Constraints (5) re-

spect the precedence relationships of tasks. Constraints (6) guarantee that a task may be

assigned to a workstation only when the workstation is opened. Constraints (7) number

the opened workstations from small to large and avoid empty workstations. Constraint

(8) ensures the joint probability that the task processing time does not exceed the cycle

time for all workstations is greater than or equal to 1-α. Constraints (9) - (10) define

the domains of decision variables.

The above-mentioned joint chance-constrained model P1 is stochastic and non-linear

because of its stochastic task processing time ti, i ∈ I, and the joint chance constraint

(8). To efficiently solve the studied problem, P1 is approximately transformed into a

9

distribution-free model P2 in Section 4.

4. Distribution-free model and valid inequality

In this section, based on problem analysis, the joint chance-constrained programming

model P1 is transformed into a distribution-free model P2 and valid inequalities are

proposed to tighten its solution space.

4.1. Distribution-free model

To transform P1 into an approximated distribution-free model, the joint chance con-

straint (8) in P1 needs to be transformed into individual chance constraints based on the

assumption that workstations are independent of each other and task processing times

are mutually independent in Section 3. To this end, βj is introduced to represent the

individual risk level for respecting the cycle time of workstation j, ∀j ∈ J , and the joint

chance constraint (8) can be equivalently transformed to (11) and (12) as follows:

Pr

(
∑

i∈I

tixij ≤ C

)
≥ 1− βj , ∀j ∈ J (11)

∏

j∈J

(1− βj) = 1− α (12)

where 0 ≤ βj ≤ 1, ∀j ∈ J .

Constraints (11) mean that the workload of workstation j respects the cycle time with

at least a possibility of 1−βj . Constraint (12) establishes the relationship between βj and

α. According to the commonly used method for determining the value of individual risk

level (Bentaha et al., 2015; Zheng et al., 2018), which assumes equality of all individual

risk levels, parameter βj is calculated by βj = 1 − |J|
√
1− α, ∀j ∈ J , where |J | is the

number of workstations.

With given information of the stochastic task processing time ti, the mean µi = E[ti],

the standard deviation σi and the upper bound µi(1+bi), where bi is the limited deviation

ratio to the mean, and similar to Ng (2014) and Zheng et al. (2018), the stochastic task

processing time can be expressed as:

ti = µi(1 + Zi), ∀i ∈ I (13)

where Zi is the deviation ratio to the mean of the task processing time and is limited

by bi, i.e., Zi ≤ bi.

Therefore, the individual chance constraints (11) are reformulated as:

Pr

(
∑

i∈I

µi(1 + Zi)xij ≤ C

)
≥ 1− βj , ∀j ∈ J (14)

10

To construct the distribution-free model, constraints (14) are approximately trans-

formed to the following constraints:
∑

i∈I

(µi + νi)xij ≤ C, ∀j ∈ J (15)

where νi is an auxiliary parameter that reflects the uncertainty of task processing time

ti, which will be explained later.

Then, distribution-free model P2 is proposed as follows.

P2: min CF

∑

j∈J

yj + CH

∑

i∈H

∑

j∈J

xij

s.t. (2)− (7), (9), (10), (15)

As long as the value of νi is determined, P2 becomes a mixed-integer linear program

that may be solved using a commercial solver, such as CPLEX, at least for small-sized

instances. If the following proposition is true, νi can be pre-determined.

Proposition 4.1. As long as any νi satisfies the following equation

f(νi) := min
λi>0

{
e−λiνi/µi

(
1 +

E[Z2
i]

b2i
(eλibi − λibi − 1)

)
− βj

}
= 0 (16)

then, any solution of P2 must satisfy the individual chance constraints (14).

Proof. See Appendix A.

The value of νi can be obtained by solving equality (16). To determine νi, Algorithm

1 is presented.

Algorithm 1 Calculation of the value of νi

Input: µi, bi, σ
2
i , νi = 0, λi = 0.001

1: fvalue = f̂(νi, λi) = e−λiνi/µi

(
1 +

E[Z2

i]

b2i
(eλibi − λibi − 1)

)
− βj ;

2: while fvalue > 0.001 do

3: if f ≤ 1 then

4: λi = λi + 0.001;
5: fvalue = f̂(νi, λi);
6: else

7: νi = νi + 0.1;
8: λi = 0.001;
9: fvalue = f̂(νi, λi);

10: end if

11: end while

Output: The value of νi

11

The basic idea of the algorithm is to determine a combination of (νi, λ) that satisfies

f̂(νi, λi) = 0. Although P2 is a mixed-integer linear programming model once νi is

fixed, P2 is still NP-hard because the deterministic single-product DLBP is NP-hard

(McGovern & Gupta, 2007b). Therefore, effective valid inequalities to improve P2 are

proposed in the next section.

4.2. Improved distribution-free model

This section presents two valid inequalities to tighten the solution space of model

P2.

4.2.1. Valid inequality 1

The first valid inequality attempts to limit the number of workstations to be opened.

To propose the valid inequality, we relax the assumption that one workstation can ex-

ecute several tasks of different EOL products in model P2 to form its relaxed model

P2
′
, in which one workstation executes the tasks of only one EOL product. P (indexed

by p) denotes the set of EOL products and |Jp| denotes the number of workstations

required for product p in a feasible solution of P2
′
.
∑
p∈P

|Jp| denotes the total number of

workstations of the feasible solution of P2
′
. The following proposition is formulated.

Proposition 4.2. Let
∑
j∈J

yj be the number of opened workstations in a feasible solution

of P2, then the following inequality:

V I1 :
∑

j∈J

yj ≤
∑

p∈P

|Jp| (17)

is a valid inequality for P2.

Valid inequality 1 shows that a feasible solution of model P2 exists in which the

number of open workstations is not greater than
∑
p∈P

|Jp|. Therefore, the number of

opened workstations in an optimal solution of P2 does not exceed
∑
p∈P

|Jp|.

Proof. See Appendix B.

To determine
∑
p∈P

|Jp|, Algorithm 2 is proposed below. Lp (indexed by l), Ipl and T

are the disassembly scheme set of product p, the task set of disassembly scheme l in Lp

and the available time of a workstation, respectively. |J l
p| denotes the number of open

workstations of disassembly scheme l of product p. Let ci = µi+νi denote the processing

time of task i, ∀i ∈ I. Recall that µi is the mean task processing time and νi reflects the

uncertainty of task processing time.

12

Algorithm 2 Upper bound determination for opened workstations
∑
p∈P

|Jp|

Input: Disassembly schemes of EOL products (Lp, ∀p ∈ P), task processing times
(ci, ∀i ∈ I), cycle time C

1: p = 1;
2: while (p ≤ |P |) do
3: l = 1, |Jp| = 0;
4: while (l ≤ |Lp|) do
5: stationnum = 1, i = 1, T = C;
6: while (i ≤ |Ipl |) do
7: if ci ≤ T then

8: T = T − ci, i = i+ 1;
9: else

10: stationnum = stationnum + 1, T = C;
11: end if

12: end while

13: |J l
p| = stationnum;

14: if |J l
p| > |Jp| then

15: |Jp| = |J l
p|;

16: end if

17: l = l + 1;
18: end while

19: p = p+ 1;
20: end while

Output: The value of
∑
p∈P

|Jp|

Algorithm 2 contains three loops: Lines 6 to 12 calculate the number of workstations

of disassembly scheme l of product p in a feasible solution of P2
′
, Lines 4 to 18 determine

|Jp| = max
l∈Lp

{
|J l

p|
}
, and Lines 2 to 20 obtain

∑
p∈P

|Jp|.

4.2.2. Valid inequality 2

The second valid inequality determines the workstations to which disassembly tasks

cannot be assigned due to their precedence relationships. The task precedence rela-

tionship implies that a task cannot be executed before its predecessors and after its

successors. For simplicity, let PT l
i and ST l

i denote the sum of processing times of the

predecessors and successors of task i in disassembly scheme l, respectively, where l ∈ Li

and Li is the disassembly scheme set containing task i. Consequently, the minimum

numbers of workstations for predecessors and successors of task i, npi and nsi may be

determined by the following formulas: npi = min
l∈Li

{
⌈PT l

i /C⌉
}
and nsi = min

l∈Li

{
⌈ST l

i /C⌉
}
,

13

recall that C is the cycle time and ⌈x⌉ is the smallest integer greater than or equal to x.

Without loss of generality, the second valid inequality can be analyzed via the case

illustrated in Figure 3, in which tasks are numbered and represented by ©. The il-

lustrated EOL product has two disassembly schemes that contain 11 tasks, and the

corresponding processing times (ci = µi + νi) are set as 8, 7, 8, 5, 4, 7, 6, 8, 5, 9, and

7 seconds. With the assumption in Section 3, only one scheme of a product can be

selected. For the green scheme (l = 1), task 7 has predecessors {1, 2, 3} and successor

{8, 9}, and we obtain PT 1
7 = c1 + c2 + c3 = 23 seconds and ST 1

7 = c8 + c9 = 13 seconds.

Similarly for the blue scheme (l = 2), we have PT 2
7 = c4 + c5 + c6 = 16 seconds and

ST 2
7 = c10 + c11 = 16 seconds. We suppose that the cycle time is 10 seconds, and we

have Jmax = 6 according to Algorithm 1. Therefore, np7 = min(⌈23/10⌉, ⌈16/10⌉) = 2

and ns7 = min(⌈13/10⌉, ⌈16/10⌉) = 2. Task 7 cannot be assigned before workstation

np7 = 2 and after workstation |Jmax| − ns7 + 1 = 5. Therefore, for model P2, we have

x71 = x76 = 0 and the following proposition.

e (b):

5 6

8

1110

2 3

7

1

4

9

Figure 3: An illustration of valid inequality 2

Proposition 4.3. With the pre-determined
∑
p∈P

|Jp| by Algorithm 2, the following in-

equality:

V I2 : xij = 0, ∀i ∈ I, j < npi, j >
∑

p∈P

|Jp| − nsi + 1 (18)

is a valid inequality for P2.

Valid inequality 2 excludes the task-workstation assignments that are not in a feasible

solution of P2. Specifically, task i ∈ I cannot be assigned before workstation npi and

after workstation
∑
p∈P

|Jp| − nsi + 1.

Proof. See Appendix C.

4.2.3. Improved distribution-free model

The numerical experiments in Section 6 show that the model with VI1 and VI2

performs best. Therefore, an improved model of P2 is presented:

P3: min CF

∑

j∈J

yj + CH

∑

i∈H

∑

j∈J

xij

14

s.t. (2)− (7), (9), (10), (15), (17), (18)

Although the improved model P3 is tighter than P2, it is still time-consuming for

large-scale instances. Therefore, an exact lifted cut-and-solve method is proposed in the

next section to efficiently solve model P3.

5. Lifted cut-and-solve method

This section presents an exact improved cut-and-solve (CS) method (termed lifted

CS). The CS method is first introduced by Climer & Zhang (2006) to solve the asymmet-

ric traveling salesman problem. CS method is a particular branch and bound algorithm.

Compared with the branch, bound and remember (BB&R) algorithm (Sewell & Jacob-

son, 2012), which is an extension of the branch and bound algorithm that remembers

all the searched sub-problems and has a new dominance rule based on the memorized

sub-problems, there are the following differences: 1) At each node, the BB&R considers

all sub-problems, while the CS needs to consider only two sub-problems; 2) The BB&R

memories the information related to all explored sub-problems, but the CS memories

only the best solution and its objective value. Hence, the CS method can reduce the

size of the search tree and memory required. The CS method has been successfully

used to solve many combinatorial optimization problems, such as facility location (Yang

et al., 2012; Gadegaard et al., 2018), and lane reservation (Fang et al., 2013; Wu et al.,

2017). In the following, the basic procedure of the CS method is first presented, and

improvements are proposed to solve the studied problem.

The iterative procedure of the CS method is described as follows. At the (i − 1)-th

iteration, a Piercing Cut (PCi−1) is constructed based on the linear relaxed solution

of a Dense Problem (DPi−1). At the i-th iteration, PCi−1 cuts the solution space of

DPi−1 into two sub-spaces that correspond to a Sparse Problem (SPi) and a new Dense

Problem (DPi). SPi generally has a small solution space and may be exactly solved

to yield a new feasible solution of the original problem. The current best upper bound

(UB) may be updated. DPi often has a large solution space, and its relaxed problem

is generally solved to obtain a lower bound (LB) of the original problem. DP0 is the

original problem. The process continues until the current LB is greater than or equal

to the best UB. Then, the solution of the best UB is output as an optimal solution of

the original problem.

The efficiency of the CS method primarily depends on the effectiveness of the PC, the

quality of the LB and the speed for solving sparse problems. To enhance the performance

of the CS method for solving model P3, the present work devises a new lifted CS method.

15

Particularly, 1) a constructive heuristic (Algorithm 3) is proposed to obtain an initial

UB that may be an optimal solution of the original problem, while a traditional CS

does not do it. 2) double PCs (PC1
i−1, PC2

i−1) based on partially linear relaxation are

proposed at each iteration to obtain a better LB, while in the traditional CS, only

one PC is proposed at each iteration, and the solution space of SP may still be large

and time-consuming. 3) SP is further divided into two sub-problems (SP 1
i , SP

2
i) by a

second PC for an efficient resolution, whereas SP is solved directly in the classical CS.

The framework and search tree of the lifted CS method are outlined in Figures 4 and 5,

respectively.

The next sections present the heuristic for obtaining an initial UB, the double PCs

and the formulations of sparse and dense problems.

 ‐ ‐
 ‐ ‐

‐

‐

Initialize i = 0, DP0 = P3

Output UB and its optimal solution

If UB≤ LBi

If UB≤ LBi

Call Algorithm 3 to solve DP0 to obtain UB

Formulate SPi and DPi by PCi‐11

 Formulate SPi1 and SPi2 by PCi‐12

Exactly solve SPi1 and SPi2 to obtain UBi1 and
UBi

2
, then update UB=min{UB, UBi

1 , UBi2}

Solve relaxed model DPi' to
obtain LBi , PCi1 and PCi2

Yes

No

No

Yes

Formulate and solve relaxed model DP0' to
obtain LBi , PCi1 and PCi2

i=i+1

‐

Figure 4: The framework of lifted cut-and-solve
method

Iteration 1

DP0=P3

DP1SP1

SP1
1

SP1
2

Iteration i

SPi

SPi
1

SPi
2

DPi

.

.

.

 ‐ ‐
 ‐ ‐

PC0
1

PC0
2

PCi‐1
1

PCi‐1
2

 ≤

 ≤

 ‐

 ‐

DPi‐1

.

.

.

Figure 5: The search tree of lifted cut-and-solve
method

5.1. Heuristic to determine an initial UB

The main purpose of the proposed heuristic is to select a disassembly scheme with

the minimum sum of task processing times for each EOL product, open workstations

for product p one at a time, p = 1, ..., |P |, and assign the related tasks to workstations

respecting task precedence relationships and cycle time constraints.

Note that I lp denotes the ordered task set in which the precedence relationships of

tasks are respected for l ∈ Lp, and Lp is the disassembly scheme set of product p. Recall

16

that ci = µi + νi denotes the processing time of task i, ∀i ∈ I. The proposed heuristic is

summarised as follows.

Algorithm 3 The heuristic to obtain an upper bound

Input: ci, ∀i ∈ I lp; I
l
p, ∀l ∈ Lp, p ∈ P

1: Set p = 1;
2: while p ≤ |P | do
3: for l = 1 → |Lp| do
4: Calculate Tl =

∑
i∈Ilp

ci;

5: end for

6: I∗p = I l
∗

p , where l∗ = argmin
l∈Lp

{Tl};
7: p = p+ 1;
8: end while

9: Set j = 0, T = 0, IP =
⋃
p∈P

I∗p ;

10: while (i ≤ |IP |) do
11: if cIP [i] ≤ T then

12: T = T − cIP [i];
13: xIP [i]j = 1, i = i+ 1;
14: else

15: j = j + 1;
16: yj = 1, T = C;
17: end if

18: end while

19: Calculate UB = CF
∑
j∈J

yj + CH
∑
i∈H

∑
j∈J

xij ;

Output: An UB and its corresponding solution

Algorithm 3 consists of two parts. Lines 1 to 8 select the disassembly scheme with the

minimum sum of task processing times for each EOL product, and Lines 9 to 18 decide

the workstations to be opened and assign the selected tasks to the opened workstations.

5.2. Double piercing cuts

Existing CS methods generally define one PC, and the corresponding SP may still be

difficult to solve. The double PCs (PC1
i−1, PC2

i−1) at the (i−1)-th iteration are designed

based on an optimal solution of linear relaxation of DPi−1 in this study, denoted as

(x̃ij , ỹj). Note that the objective function value is primarily determined by the number

of workstations to be opened, i.e.,
∑
j∈J

yj . Because the cost of handling hazardous tasks

is the same regardless of which disassembly scheme is selected. A better LB may be

obtained with the partial relaxation of DPi−1. Preliminary experiments show that task

17

i has a larger probability of being assigned to workstation j in the optimal solution of

P3 when x̃ij has a large value. Therefore, we propose 1) a partial relaxation strategy

for DPi−1, 2) the first PC with the value of ỹj , 3) the second PC with the value of x̃ij .

At the (i − 1)-th iteration, with an optimal solution of the relaxed DPi−1, the first

piercing cut, PC1
i−1, can be defined as follows.

∑

yj∈Ω1

i−1

yj = 0 (19)

where Ω1
i−1 = {yj |ỹj = 0, ∀j ∈ J}.

Let Ii−1 denote the set of tasks whose values of x̃ij are fractions. For any task

i ∈ Ii−1, the combination of task i assigned to workstation j, i.e., (i, j) corresponding to

the largest values of x̃ij is presented below:

Ψi−1 =

{
(i, j)|(i, j) = arg max

i∈Ii−1,j∈J
{x̃ij}

}
(20)

Consequently, the second piercing cut PC2
i−1 can be defined as follows:

∑

xij∈Ω2

i−1

xij ≤ li−1 − 1 (21)

where Ω2
i−1 = {xij |(i, j) ∈ Ψi−1} and li−1 is an integer that takes the value of

∑
(i,j)∈Ψi−1

⌈x̃ij⌉.

The first piercing cut (PC1
i−1) divide the current DPi−1 into two sub-problems DPi

and SPi. The second piercing cut (PC2
i−1) further divide SPi into two sub-problems

SP 1
i and SP 2

i . The formulations of sparse and dense problems are presented below.

5.3. Sparse and dense problem formulations

According to the above defined double PCs, the formulations of the dense problem

(DPi) at the i-th iteration can be presented as follows.

DPi : min CF

∑

j∈J

yj + CH

∑

i∈H

∑

j∈J

xij

s.t. (2)− (7), (9), (10), (15), (17), (18)
∑

yj∈Ω1

i−1

yj ≥ 1 (22)

Two sparse problems SP 1
i and SP 2

i are defined as follows:

SP 1
i : min CF

∑

j∈J

yj + CH

∑

i∈H

∑

j∈J

xij

s.t. (2)− (7), (9), (10), (15), (17), (18)

18

∑

yj∈Ω1

i−1

yj = 0 (19)

∑

xij∈Ω2

i−1

xij ≥ li−1 (23)

SP 2
i : min CF

∑

j∈J

yj + CH

∑

i∈H

∑

j∈J

xij

s.t. (2)− (7), (9), (10), (15), (17), (18)
∑

yj∈Ω1

i−1

yj = 0 (19)

∑

xij∈Ω2

i−1

xij ≤ li−1 − 1 (21)

To better understand the proposed method, the ECU example mentioned in the

Introduction is given below. In the example, there are 2 products and 14 tasks with

processing times (in seconds) of {30, 35, 45, 35, 35, 20, 18, 35, 31, 38, 50, 20, 25, 25}.
The costs of opening a workstation (CF) and handling a hazardous task (CH) are 3 and

2 dollars, respectively. There are 6 workstations available, and the cycle time C is 90

seconds. The detailed process of the lifted cut-and-solve method is depicted below in

Figure 6.

Solve relaxation model DP0(P3) to get
a lower bound (LB)

Obtain model SP1

Piercing Cut 1

Obtain model DP1

y4+y5=0 y4+y5≥ 1

Solve model SP11 Solve model SP12

Piercing Cut 2

 x32+x72≥ 2 x32+x72≤ 1

UB=16

No feasible
solution

UB=13

LB=13

Step 1: Call heuristic
to obtain a feasible

solution

T9
1

T12
1

T1
1

T5
1

T3
1

T7
1

T10
2

T13
2

workstation 1 workstation 2 workstation 3 workstation 4

Cost=16 dollars, open 4 workstations (y1=y2=y3=y4=1)

Step 2: Relax decision
variables xij, call cplex
to solve relaxation

model (DP0)

T9
1

T12
1

T1
1

T5
1

T10
2

T13
2

workstation 1 workstation 2 workstation 3

Cost=13 dollars, open 3 workstations (Note: y1=y2=y3=1, x31=0.4, x32=0.6, x71=0.4, x72=0.6)

T3
1

T7
1

T3
1

T7
1

Step 3: Formulate the first piercing cut (PC1): y4+y5=0; the second piercing cut (PC2):
x32+x72≤1;

Step 4: Add two constraints (based on piercing cuts) y4+y5=0, x32+x72≥ 2; call cplex to
solve the model (SP11)

Note: No feasible solution

Step 5: Add two constraints
(based on piercing cuts)

y4+y5=0, x32+x72≤ 1; call cplex
to solve the model (SP12)

T6
1

T7
1

T2
1

T3
1

T10
2

workstation 1 workstation 2 workstation 3

T10
2

T13
2

T13
2

Cost=13 dollars, open 3 workstations (Note: the obtained cost equals the cost of
relaxed model, which means the optimal solution is found)

Call Algorithm 3 to get an upper
bound (UB)

UB=16

LB=13

Step 1

Step 2

Step 3

Step 4 Step 5

√

Figure 6: The detailed process of the algorithm for solving the instance

Next, to evaluate the performance of the proposed lifted CS method, numerical

experiments are performed, and the results are presented in Section 6.

19

6. Numerical experiments

Numerical experiments are performed on an illustrative example, 10 instances based

on realistic products and 480 randomly generated instances to evaluate the performance

of the proposed integrated approach. The program is coded using the C++ program-

ming language in Microsoft Visual Studio 2019. All numerical experiments are per-

formed on a personal computer with Core I5 and 3.20 GHz CPU with 12GB RAM.

All models in Sections 6.1, 6.3, 6.4 and model P3 in Section 6.5 are solved using the

CPLEX solver version 12.9. The CPLEX code and instance data are available on https :

//www.researchgate.net/publication/359266654 Instance data and cplex code.

6.1. An illustrative example

In this part, the example of the engine ECU mentioned in the Introduction is in-

vestigated to test our models and methods. The disassembly schemes of the two ECUs

are shown in Figure 2, which contain 14 tasks and 12 subassemblies. The mean task

processing times (in seconds) are {30, 35, 45, 35, 35, 20, 18, 35, 31, 38, 50, 20, 25, 25}.
The upper bound, standard deviation and risk level are 0.1, 0.01 and 5%, respectively.

The costs of opening a workstation and handling a hazardous task are 3 and 2 dollars,

respectively. Assume that there are 6 workstations available, and the cycle time C is 90

seconds.

Figure 7 reports the results of the illustrative instance. In the optimal solution, 3

workstations are opened, and the total cost is 13 dollars. For product A, the selected

disassembly scheme contains tasks {1, 5, 9, 12}, and the selected disassembly scheme of

product B contains tasks {3, 7, 10, 13}, corresponding to the blue and black lines in

Figure 2, respectively.

Workstation 1 Workstation 2 Workstation 3

T1
1 T3

1
T5

1
T7

1
T10

2
T13

2 T9
1

T12
1

Figure 7: The result of the illustrative example

6.2. Instance data and parameter setting

This paper is the first to study the multi-product DLBP with identical parts and

stochastic task times. Since there is no standard data set that can be directly used, we

generate 10 instances based on 7 realistic EOL products from previous literature (see

Table 2) by emerging different EOL products to generate the multi-product instances,

which is similar to Fang et al. (2020b) and Liu et al. (2022). The basic information

20

of these multi-product instances is summarized in Table 3, where each instance scale is

primarily determined by three parameters, i.e., the number of products |P |, the number

of tasks |I|, and the number of available workstations |J |.

Table 2: Information of realistic EOL products

Number EOL product Reference

1 Hand light Tang et al. (2002)
2 Compass Bentaha et al. (2012)
3 Ballpoint pen Lambert (1999)
4 Sample product Koc et al. (2009)
5 Piston and connecting rod Bentaha et al. (2013)
6 Radio set Lambert (1999)
7 Automatic pencil Ma et al. (2011)

Table 3: Information of the multi-product in-
stances based on realistic EOL products

Number Products |P | |I| |J |
1 1,2 2 20 10
2 1,3 2 30 10
3 1,2,3 3 40 15
4 2,3,4 3 53 15
5 1,2,3,4 4 63 20
6 2,3,4,5 4 78 20
7 1,2,3,4,5 5 88 25
8 2,3,4,5,6 5 108 25
9 1,2,3,4,5,6 6 118 30
10 2,3,4,5,6,7 6 145 30

Moreover, to thoroughly evaluate the performances of the integrated method, 96

problem sets, each with 5 instances, for a total of 480 instances are randomly generated.

For each EOL product, 20% of tasks are set as identical tasks, and 20% are set as haz-

ardous tasks. The mean task processing times (µi) (in seconds) are randomly generated

from [10, 50] consistent with He et al. (2020). Similar to Ng (2014), the upper bound and

standard deviation of the task processing time (bi, E[Z2
i]) are set as (0.1, 0.01), (0.2, 0.05)

and (0.3, 0.10) to represent different uncertainty levels. As in Bentaha et al. (2015) and

He et al. (2020), the unit fixed cost of a workstation CF and the unit cost for handling

hazardous task CH are set as 3 and 2 dollars, respectively. The risk level α and the cycle

time C are set as 5% and 90 seconds, respectively. The input parameters are summarized

in Table 4.

21

Table 4: Input parameters of random instances

Parameters Values

Number of products (|P |) 2, 4, ..., 20
Number of tasks (|I|) 20, 40, ..., 400
number of available workstations (|J |) 6, 10, ..., 86
Cost to open a workstation (CF) (dollars) 3
Cost to handle a hazardous task (CH) (dollars) 2
Cycle time (C) (seconds) 90
Risk level (α) 5%
Mean task times (µi) (seconds) [10,50]
(bi, E[Z2

i
]) (0.1, 0.01), (0.2, 0.05), (0.3, 0.10)

6.3. Evaluation of the distribution-free model

The approximated distribution-free model P2 (solved via CPLEX) is evaluated by

comparison with the corresponding deterministic model (DM)(solved via CPLEX) and

a sampling average approximation (SAA) method (see Appendix D for its presentation).

The task processing times of the DM are set as the means of the stochastic ones in P2.

The task processing times in SAA are assumed to follow normal distributions, in which

their means and standard deviations are identical to these values in P2. The number of

samples is set to 20 based on preliminary experiments. Numerical experiments are first

performed on the realistic EOL products instances.

Tables 5-7 report the computational results of realistic EOL product instances under

3 uncertainty levels, where ObjDM , TDM , ObjSAA, TSAA and ObjP2, TP2 denote the

average objective values and computational times of DM, SAA and P2, respectively.

Specially, the computational time unit is seconds denoted by s. We can observe that

the average objective value of the DM is the smallest, which takes the value of 29.5,

and the objectives of SAA and P2 are almost the same. On the other hand, the SAA

requires more computational time than P2 and DM. Moreover, with the increase of the

uncertainty, the objective values and the computational times also increase. Therefore,

in general, more workstations are needed to deal with the uncertain task times.

To have an observation of the performances on different methods, experiments are

further conducted on random instance sets with up to 6 products, 120 tasks and 30

workstations. Computational results are illustrated in Figures 8-10, in which sub-figures

(a) and (b) report the objective values and computational times of DM, SAA and P2,

respectively. The detailed results are presented in Tables E1-E3 in Appendix E. Figures

8-10 show that the curves of the objective values of P2 and SAA almost overlap, and

they are superior to the values of DM. This result indicates that the solution qualities of

P2 and SAA are nearly identical, and DM proposes a better solution because there are

22

Table 5: The results of realistic EOL product instances with (bi = 0.1, E[Z2

i] = 0.01)

DM SAA P2

Instance (P, I, J) ObjDM TDM (s) ObjSAA TSAA(s) ObjP2 TP2(s)

1 (2,20,10) 14.2 0.10 14.2 0.20 14.8 0.09
2 (2,30,10) 19.0 0.19 20.8 1.05 21.4 0.16
3 (3,40,15) 22.8 0.35 24.0 2.29 24.0 0.36
4 (3,53,15) 22.8 0.43 25.6 17.60 25.6 0.66
5 (4,63,20) 29.6 2.35 30.2 18.78 31.4 2.69
6 (4,78,20) 27.8 1.14 29.6 305.60 29.6 1.21
7 (5,88,25) 34.0 2.83 37.0 2411.27 37.0 2.68
8 (5,108,25) 36.4 4.47 37.4 2782.47 39.4 11.99
9 (6,118,30) 43.8 4.99 45.8 3626.41 47.4 8.40
10 (6,145,30) 44.8 8.72 50.8 4837.71 54.0 17.50

Average - 29.5 2.56 31.5 1400.35 32.5 4.58

Table 6: The results of realistic EOL product instances with (bi = 0.2, E[Z2

i] = 0.05)

DM SAA P2

Instance (P, I, J) ObjDM TDM (s) ObjSAA TSAA(s) ObjP2 TP2(s)

1 (2,20,10) 14.2 0.10 16.0 0.30 15.4 0.10
2 (2,30,10) 19.0 0.19 23.2 2.41 22.6 0.22
3 (3,40,15) 22.8 0.35 25.8 12.77 26.4 0.41
4 (3,53,15) 22.8 0.43 28.2 153.42 27.6 0.88
5 (4,63,20) 29.6 2.35 32.6 6824.53 33.2 0.87
6 (4,78,20) 27.8 1.14 30.8 119.36 32.6 11.04
7 (5,88,25) 34.0 2.83 38.5 2333.57 40.0 3.33
8 (5,108,25) 36.4 4.47 43.0 5148.70 41.2 11.56
9 (6,118,30) 43.8 4.99 49.8 6283.63 49.8 32.48
10 (6,145,30) 44.8 8.72 51.7 7218.16 54.0 15.26

Average - 29.5 2.56 34.0 2209.69 34.3 7.61

no uncertain factors. Based on Tables E1-E3, the average gaps of the objective values

between DM and P2 can be calculated by the formula (ObjP2−ObjDM)/ObjDM ×100%.

The gaps under the 3 uncertainty levels are 7.72%, 16.44% and 24.83%, respectively,

which indicate that the gaps increase with levels of uncertainty. Sub-figures (b) shows

that the curves of the computational times of P2 and DM almost overlap, and the

computational time of SAA increases sharply. The average computational times of the

SAA are 474, 313 and 258 times of those needed by P2 under 3 different uncertainty

levels. These results indicate that DM and P2 perform better than SAA in terms of

computational time.

Moreover, we utilize the Wilcoxon signed-rank test, a flexible non-parametric sta-

23

Table 7: The results of realistic EOL product instances with (bi = 0.3, E[Z2

i] = 0.1)

DM SAA P2

Instance (P, I, J) ObjDM TDM (s) ObjSAA TSAA(s) ObjP2 TP2(s)

1 (2,20,10) 14.2 0.10 16.6 0.33 17.2 0.11
2 (2,30,10) 19.0 0.19 24.4 3.19 24.4 0.16
3 (3,40,15) 22.8 0.35 27.0 34.31 28.2 0.63
4 (3,53,15) 22.8 0.43 28.6 115.71 28.6 0.73
5 (4,63,20) 29.6 2.35 36.2 1528.23 36.2 2.91
6 (4,78,20) 27.8 1.14 33.2 233.04 33.2 2.79
7 (5,88,25) 34.0 2.83 42.0 4097.66 42.4 134.70
8 (5,108,25) 36.4 4.47 44.0 5444.01 43.6 68.44
9 (6,118,30) 43.8 4.99 54.0 7874.54 53.3 15.27
10 (6,145,30) 44.8 8.72 56.7 9235.37 55.5 100.11

Average - 29.5 2.56 36.3 2856.64 36.3 32.58

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11 12

O
b

je
ct

iv
e

v
al

u
e

Instance set

DM

SAA

P2

(a) Objective value

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

1 2 3 4 5 6 7 8 9 10 11 12

C
o
m

p
u
ta

ti
o
n
al

 t
im

e(
s)

Instance set

DM

SAA

P2

(b) Computational time

Figure 8: Comparison results with (bi = 0.1, E[Z2

i] = 0.01)

0

10

20

30

40

50

60

13 14 15 16 17 18 19 20 21 22 23 24

O
b

je
ct

iv
e

v
al

u
e

Instance set

DM

SAA

P2

(a) Objective value

0

1,500

3,000

4,500

6,000

7,500

9,000

10,500

13 14 15 16 17 18 19 20 21 22 23 24

C
o
m

p
u
ta

ti
o
n
al

 t
im

e
(s

)

Instance set

DM

SAA

P2

(b) Computational time

Figure 9: Comparison results with (bi = 0.2, E[Z2

i] = 0.05)

tistical hypothesis test (Garćıa et al., 2009), to compare the performance of the three

methods. The principle of the Wilcoxon signed-rank test is to calculate the differences

between the two compared methods and analyze these differences to test if they are sta-

tistically significantly different. We prefer the Wilcoxon test because it does not assume

the normality of the samples (Chica et al., 2010) and it has already been demonstrated

to help analyze the behavior of evolutionary algorithms, and it has been well adopted in

24

0

10

20

30

40

50

60

25 26 27 28 29 30 31 32 33 34 35 36

O
b

je
ct

iv
e

v
al

u
e

Instance set

DM

SAA

P2

(a) Objective value

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

25 26 27 28 29 30 31 32 33 34 35 36

C
o

m
p

u
ta

ti
o

n
al

 t
im

e
(s

)

Instance set

DM

SAA

P2

(b) Computational time

Figure 10: Comparison results with (bi = 0.3, E[Z2

i] = 0.1)

the disassembly line balancing problems (Fang et al., 2019; Li et al., 2020).

The null-hypothesis H0 is that the compared two methods have equal performance.

The significance level considered in all the tests to be presented is p = 0.05. A p-value

is smaller than 0.05, denoting a rejection of the null-hypothesis, i.e., the compared two

methods perform significantly differently. The results of the Wilcoxon test are illustrated

in Table 8. We can obtain that DM outperforms P2 and SAA statistically because the p-

values are smaller than 0.0001. In comparison, P2 and SAA are not statistically different

in terms of the objective values according to the p-value of 0.3047.

Table 8: Results of Wilcoxon signed-rank test for three different methods

Negative difference Positive difference Equal difference
(A > B) (A < B) (A = B) p-value

Compared pairs Number Ranks Number Ranks Number Ranks

A = DM,B = P2 0 0 34 595 2 - < 0.0001
A = DM,B = SAA 0 0 35 630 1 - < 0.0001
A = P2, B = SAA 5 31 4 31 27 - 0.3047

DM: deterministic model solved via CPLEX; P2: P2 model solved via CPLEX; SAA: sampling average
approximation method

6.4. Evaluation of valid inequalities

To evaluate the proposed valid inequalities, numerical experiments are performed on

realistic EOL products instances and randomly generated instance sets with up to 10

products, 200 tasks and 46 workstations.

Table 9 reports the computational results of realistic EOL product instances, in which

columns 2 and 3 represent the instance parameters and objective values. Columns 3-6

represent the computational times of model P2, P2 with valid inequality 1 (P2+VI1), P2

with valid inequality 2 (P2+VI2) and P2 with valid inequalities 1 and 2 (P2+VI1+VI2),

which are denoted by TP2, TP2+V I1, TP2+V I2, and TP2+V I1+V I2, respectively. From

25

Table 9, we can see that the average computational times of these 4 models are 2.56,

1.75, 1.74, and 1.46 seconds, respectively. It indicates that the proposed two inequalities

are valid.

Table 9: Computational results of valid inequalities on realistic EOL product instances

Instance (P, I, J) Obj TP2(s) TP2+V I1(s) TP2+V I2(s) TP2+V I1+V I2(s)

1 (2,20,10) 14.2 0.10 0.09 0.07 0.05
2 (2,30,10) 19.0 0.19 0.10 0.10 0.11
3 (3,40,15) 22.8 0.35 0.24 0.17 0.19
4 (3,53,15) 22.8 0.43 0.31 0.22 0.22
5 (4,63,20) 29.6 2.35 1.58 1.98 1.09
6 (4,78,20) 27.8 1.14 0.75 0.53 0.50
7 (5,88,25) 34.0 2.83 1.55 1.51 1.45
8 (5,108,25) 36.4 4.47 2.40 1.68 1.66
9 (6,118,30) 43.8 4.99 3.83 4.51 3.45
10 (6,145,30) 44.8 8.72 6.66 6.70 5.92

Average - 29.5 2.56 1.75 1.74 1.46

Moreover, the results of random instances are reported in Figure 11 and Table E4

in Appendix E. Specifically, the curves in Figure 11 represent the computational time

ratios that are calculated via the formula Ri = Ti/TP2×100%, where i = P2, P2+V I1,

P2 + V I2 and P2 + V TI1 + V I2. The results show that each proposed inequality can

save computational time, and P2+VI1+VI2 (P3) is the most efficient. Specifically, the

average computational time ratios of P2+VI1, P2+V2 and P2+VI1+VI2 (P3) are only

33.93%, 33.80% and 25.17%, respectively. Therefore, the performance of model P3, i.e.,

P2+VI1+VI2 (P3), is verified.

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0

C
o
m

p
u
ta

ti
o
n
al

 t
im

e
ra

ti
o

Instance set

RP2

RP2+VI1

RP2+VI2

RP2+VI1+VI2 (P3)

Figure 11: Comparison of valid inequalities

6.5. Evaluation of the lifted CS method

The proposed lifted CS method is first tested on realistic EOL product instances,

and then tested on 20 small-scale instance sets with up to 10 products, 200 tasks and

26

46 workstations and 20 large-scale instance sets with up to 20 products, 400 tasks and

86 workstations. The proposed method is compared with P3 solved by CPLEX (version

12.9) and a classic CS method.

Table 10 reports the results on instances based on realistic products. Columns 3-5

illustrate the computational times of the CPLEX, the classic CS method and the lifted

CS method, which are represented by TP3, TCS and TLCS , respectively. From Table

10, we can observe that all instances are solved within a short time, and the average

computational times of CPLEX, classic CS method, and lifted CS method are 1.46, 0.71,

and 0.55 seconds, respectively. It implies that the lifted CS method can efficiently solve

the instances and can reduce 62.3% of the computational time required by CPLEX on

average.

Table 10: Computational results of lifted cut-and-solve method on re-
alistic EOL product instances

Instance set (P, I, J) Obj TP3(s) TCS(s) TLCS(s)

1 (2, 20, 10) 14.2 0.05 0.11 0.06
2 (2, 30, 10) 19.0 0.11 0.16 0.11
3 (3, 40, 15) 22.8 0.19 0.27 0.10
4 (3, 53, 15) 22.8 0.22 0.30 0.19
5 (4, 63, 20) 29.6 1.09 1.08 0.81
6 (4, 78, 20) 27.8 0.50 0.38 0.35
7 (5, 88, 25) 34.0 1.45 0.89 0.50
8 (5, 108, 25) 36.4 1.66 0.70 0.69
9 (6, 118, 30) 43.8 3.45 1.07 0.87
10 (6, 145, 30) 44.8 5.92 2.19 1.78

Average - 29.5 1.46 0.71 0.55

The experimental results on random instances are illustrated in Figure 12, and sub-

figures (a) and (b) report the results of small-scale and large-scale instances, respectively.

Sub-figure (a) shows that the computational times of all methods are less than 40 sec-

onds and the curves of TCS and TLCS are below the TP3 curve in most cases, except

for instances 1-4. Table E5 in Appendix E indicates that the average computational

times of CPLEX, classical CS method and lifted CS method are 7.79, 3.64 and 1.84 sec-

onds, respectively. This result signifies that the lifted CS method globally outperforms

CPLEX and the classical CS method. For large-scale instances, sub-figure (b) shows

that the computational times of all 3 methods increase with instance set size, but the

computational time of the lifted CS method increases much slowly than the classical

CS method and CPLEX. Notably, CPLEX and the classical CS method cannot propose

feasible solutions for instance sets 37-40 and instance sets 39-40 within 50,000 seconds.

27

The computational times of these instances are presented by dotted lines. Table E6 in

Appendix E shows that the average computational times of CPLEX, the classical CS

and the lifted CS methods are 6356.84, 1657.09 and 673.23 seconds, respectively. For

instance sets 1-36, the lifted CS method needs only 17.53% and 40.65% of the computa-

tional times required by the CPLEX and the classic CS method, respectively.

0

8

16

24

32

40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

C
o
m

p
u
ta

ti
o
n
al

 t
im

e
(s
)

Instance set

TP3

TCS

TLCS

(a) Instances with up to 10 products, 200 tasks
and 46 available workstations

10

100

1000

10000

30000

50000

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

C
o
m

p
u
ta

ti
o
n
al

 t
im

e
(s

)

Instance set

TP3

TCS

TLCS

(b) Instances with up to 20 products, 400 tasks
and 86 available workstations

Figure 12: Comparison with P3 and the classic CS method

In summary, the proposed lifted CS method is more efficient than CPLEX and the

classical CS method, particularly for large-scale instances.

7. Conclusions and future research work

This paper examines a new flexible multi-product DLBP by considering identical

parts of multiple products and uncertain task processing times, in which only partial

information of their probability distribution is known. To efficiently solve the problem,

an integrated approach is devised in which 1) the problem is formulated using an appro-

priate joint chance-constrained model, 2) a distribution-free model is proposed based on

problem analysis, 3) efficient valid inequalities are developed to reduce the solution space

of the distribution-free model, and 4) a new lifted CS method is provided to solve the

problem. Numerical experiments demonstrate the high performance of the integrated

approach.

In this study, we consider uncertain task processing times in the disassembly line

balancing problem but ignore that uncertain hazardous risk of a component may co-

exist in reality. We focus on the line balancing problem, while the sequences of tasks

that may result in operation direction changes are ignored. Consequently, the cost of

operation direction changes are not considered. Due to the NP-hardness of the problem,

the proposed exact method is still time-consuming for large-size instances. Therefore,

one future research direction is to consider uncertain task times and the hazardous risk

28

of a component. Another possible research direction is integrating the sequence of disas-

sembly tasks into the line balancing problem. In addition, developing metaheuristics or

problem-specific heuristics may be another promising direction. Besides, the constraint

programming (CP) model, as one of the powerful paradigms for solving combinatorial

optimization problems, may be applied to solve the studied problem.

Acknowledgements

This work was partially supported by the China Scholarship Council (202006650025),

the China Franco-Chinese Cai Yuanpei project (Grant No. 43956QF), the National

Natural Science Foundation of China (Grant No. 71871159, 72071144), the Humanities

and Social Science Foundation of the Chinese Ministry of Education (21YJA630096),

and the 2nd Fujian Young Eagle Program Youth Top Talent Program.

References

Agrawal, S. et al. (2008). A collaborative ant colony algorithm to stochastic mixed-model

u-shaped disassembly line balancing and sequencing problem. International Journal

of Production Research, 46 , 1405–1429.

Altekin, F. T., Kandiller, L., & Ozdemirel, N. E. (2008). Profit-oriented disassembly-line

balancing. International Journal of Production Research, 46 , 2675–2693.

Bentaha, M. L., Battäıa, O., & Dolgui, A. (2012). A stochastic formulation of the

disassembly line balancing problem. In IFIP International Conference on Advances

in Production Management Systems (pp. 397–404). Springer.

Bentaha, M. L., Battäıa, O., & Dolgui, A. (2013). A decomposition method for stochastic

partial disassembly line balancing with profit maximization. In 2013 IEEE Interna-

tional Conference on Automation Science and Engineering (CASE) (pp. 404–409).

IEEE.

Bentaha, M. L., Battäıa, O., & Dolgui, A. (2014). A sample average approximation

method for disassembly line balancing problem under uncertainty. Computers & Op-

erations Research, 51 , 111–122.

Bentaha, M. L., Battäıa, O., Dolgui, A., & Hu, S. J. (2015). Second order conic ap-

proximation for disassembly line design with joint probabilistic constraints. European

Journal of Operational Research, 247 , 957–967.

29

Chica, M., Cordon, O., Damas, S., & Bautista, J. (2010). Multiobjective constructive

heuristics for the 1/3 variant of the time and space assembly line balancing problem:

ACO and random greedy search. Information Sciences, 180 , 3465–3487.

Climer, S., & Zhang, W. (2006). Cut-and-solve: An iterative search strategy for combi-

natorial optimization problems. Artificial Intelligence, 170 , 714–738.

Cucchiella, F., DAdamo, I., Rosa, P., & Terzi, S. (2016). Scrap automotive electronics:

A mini-review of current management practices. Waste Management & Research, 34 ,

3–10.

Edis, E. B. (2021). Constraint programming approaches to disassembly line balancing

problem with sequencing decisions. Computers & Operations Research, 126 , 105111.

Environmental Affairs Division, T. M. C. (2017). Vehicle recycling. https://global.

toyota/pages/global_toyota/sustainability/report/kururisa_en.pdf.

Fang, Y., Chu, F., Mammar, S., & Che, A. (2013). An optimal algorithm for automated

truck freight transportation via lane reservation strategy. Transportation Research

Part C: Emerging Technologies , 26 , 170–183.

Fang, Y., Liu, Q., Li, M., Laili, Y., & Pham, D. T. (2019). Evolutionary many-objective

optimization for mixed-model disassembly line balancing with multi-robotic worksta-

tions. European Journal of Operational Research, 276 , 160–174.

Fang, Y., Ming, H., Li, M., Liu, Q., & Pham, D. T. (2020a). Multi-objective evolutionary

simulated annealing optimisation for mixed-model multi-robotic disassembly line bal-

ancing with interval processing time. International Journal of Production Research,

58 , 846–862.

Fang, Y., Xu, H., Liu, Q., & Pham, D. T. (2020b). Evolutionary optimization us-

ing epsilon method for resource-constrained multi-robotic disassembly line balancing.

Journal of Manufacturing Systems, 56 , 392–413.

Gadegaard, S. L., Klose, A., & Nielsen, L. R. (2018). An improved cut-and-solve algo-

rithm for the single-source capacitated facility location problem. EURO Journal on

Computational Optimization, 6 , 1–27.

Garćıa, S., Molina, D., Lozano, M., & Herrera, F. (2009). A study on the use of non-

parametric tests for analyzing the evolutionary algorithms behaviour: a case study on

the cec2005 special session on real parameter optimization. Journal of Heuristics , 15 ,

617–644.

30

He, J., Chu, F., Zheng, F., Liu, M., & Chu, C. (2020). A multi-objective distribution-free

model and method for stochastic disassembly line balancing problem. International

Journal of Production Research, 58 , 5721–5737.

Ilgin, M. A., Akçay, H., & Araz, C. (2017). Disassembly line balancing using linear

physical programming. International Journal of Production Research, 55 , 6108–6119.

Koc, A., Sabuncuoglu, I., & Erel, E. (2009). Two exact formulations for disassembly

line balancing problems with task precedence diagram construction using an AND/OR

graph. IIE Transactions, 41 , 866–881.

Kucukkoc, I. (2020). Balancing of two-sided disassembly lines: Problem definition,

MILP model and genetic algorithm approach. Computers & Operations Research,

124 , 105064.

Lambert, A. (1999). Linear programming in disassembly/clustering sequence generation.

Computers & Industrial Engineering , 36 , 723–738.

Li, J., Chen, X., Zhu, Z., Yang, C., & Chu, C. (2019). A branch, bound, and remember

algorithm for the simple disassembly line balancing problem. Computers & Operations

Research, 105 , 47–57.

Li, Z., Çil, Z. A., Mete, S., & Kucukkoc, I. (2020). A fast branch, bound and remember

algorithm for disassembly line balancing problem. International Journal of Production

Research, 58 , 3220–3234.

Liu, X., Chu, F., Zheng, F., Chu, C., & Liu, M. (2022). Distributionally robust and

risk-averse optimisation for the stochastic multi-product disassembly line balancing

problem with workforce assignment. International Journal of Production Research,

60 , 1973–1991.

Luedtke, J., & Ahmed, S. (2008). A sample approximation approach for optimization

with probabilistic constraints. SIAM Journal on Optimization, 19 , 674–699.

Ma, Y.-S., Jun, H.-B., Kim, H.-W., & Lee, D.-H. (2011). Disassembly process planning

algorithms for end-of-life product recovery and environmentally conscious disposal.

International Journal of Production Research, 49 , 7007–7027.

McGovern, S., & Gupta, S. (2007a). Combinatorial optimization analysis of the unary

np-complete disassembly line balancing problem. International Journal of Production

Research, 45 , 4485–4511.

31

McGovern, S. M., & Gupta, S. M. (2007b). A balancing method and genetic algorithm

for disassembly line balancing. European Journal of Operational Research, 179 , 692–

708.

Ndubisi, N. O., Nygaard, A., & Chunwe N, G. (2020). Managing sustainability tensions

in global supply chains: specific investments in closed-loop technology vs blood metals.

Production Planning & Control , 31 , 1005–1013.

Ng, M. (2014). Distribution-free vessel deployment for liner shipping. European Journal

of Operational Research, 238 , 858–862.

Özceylan, E., Kalayci, C. B., Güngör, A., & Gupta, S. M. (2019). Disassembly line

balancing problem: a review of the state of the art and future directions. International

Journal of Production Research, 57 , 4805–4827.

Paksoy, T., Güngör, A., Özceylan, E., & Hancilar, A. (2013). Mixed model disassembly

line balancing problem with fuzzy goals. International Journal of Production Research,

51 , 6082–6096.

Qiu, F., & Wang, J. (2014). Chance-constrained transmission switching with guaranteed

wind power utilization. IEEE Transactions on Power Systems , 30 , 1270–1278.

Ren, Y., Yu, D., Zhang, C., Tian, G., Meng, L., & Zhou, X. (2017). An improved

gravitational search algorithm for profit-oriented partial disassembly line balancing

problem. International Journal of Production Research, 55 , 7302–7316.

Sewell, E. C., & Jacobson, S. H. (2012). A branch, bound, and remember algorithm for

the simple assembly line balancing problem. INFORMS Journal on Computing , 24 ,

433–442.

Tang, Y., Zhou, M., Zussman, E., & Caudill, R. (2002). Disassembly modeling, planning,

and application. Journal of Manufacturing Systems, 21 , 200–217.

Thierry, M., Salomon, M., Van Nunen, J., & Van Wassenhove, L. (1995). Strategic issues

in product recovery management. California Management Review , 37 , 114–136.

Wu, P., Che, A., Chu, F., & Fang, Y. (2017). Exact and heuristic algorithms for rapid

and station arrival-time guaranteed bus transportation via lane reservation. IEEE

Transactions on Intelligent Transportation Systems , 18 , 2028–2043.

32

Xu, F., Li, Y., & Feng, L. (2019). The influence of big data system for used prod-

uct management on manufacturing–remanufacturing operations. Journal of Cleaner

Production, 209 , 782–794.

Yang, Z., Chu, F., & Chen, H. (2012). A cut-and-solve based algorithm for the single-

source capacitated facility location problem. European Journal of Operational Re-

search, 221 , 521–532.

Yin, T., Zhang, Z., Zhang, Y., Wu, T., & Liang, W. (2022). Mixed-integer program-

ming model and hybrid driving algorithm for multi-product partial disassembly line

balancing problem with multi-robot workstations. Robotics and Computer-Integrated

Manufacturing , 73 , 102251.

Zheng, F., He, J., Chu, F., & Liu, M. (2018). A new distribution-free model for dis-

assembly line balancing problem with stochastic task processing times. International

Journal of Production Research, 56 , 7341–7353.

33

Appendix A.

Before demonstrating Proposition 4.1, Lemmas 1 and 2 are introduced (refer to Ng

(2014)).

Firstly, Lemma 1 is introduced below to describe the relationship between Zi and bi.

Lemma 1. For any λ > 0, the following inequality must hold:

E[eλZi] ≤ 1 +
E[Z2

i]

b2i
(eλbi − λbi − 1) (A.1)

Proof. By the definition of the mean task processing time, we have µi = E[ti] = E[µi(1+

Zi)]. Thus, it follows that E[Zi] = 0. Then, eλbi can be expressed as 1+λbi+
∞∑

m=2

(λbi)
m

m!

(according to the Taylor series expansion). Because Zi ≤ bi and bi > 0,

E[eλZi] = 1 +

∞∑

m=2

λmE[Zm
i]

m!

≤ 1 + E[Z2
i]

∞∑

m=2

λmE[bm−2
i]

m!

= 1 +
E[Z2

i]

b2i

∞∑

m=2

λmbmi
m!

= 1 +
E[Z2

i]

b2i
(eλbi − λbi − 1) (A.2)

Next, Lemma 2 is proposed to depict the relationship between E[Z2
i] and σ2

i .

Lemma 2. With the given standard deviation of task processing time σi, we have

E[Z2
i] =

σ2

i

µ2

i

.

Proof. Let D[ti] denote the variance of processing time of task i, we have:

D[ti] = D[µi(1 + Zi)]

= µ2
iD[Zi] (A.3)

Note that E[Zi] = 0, hence D[Zi] = E[Z2
i] − (E[Zi])

2 = E[Z2
i]. Accordingly, the

following equation

D[ti] = µ2
iE[Z2

i] (A.4)

must hold, thus E[Z2
i] =

σ2

i

µ2

i

.

Now, we provide the proof of Proposition 4.1.

34

Proof. Given a feasible solution xij obtained by (15), i.e.,
∑
i∈I

(µi+νi)xij ≤ C, ∀j ∈ J , if
∑
i∈I

µi(1 + Zi)xij > C, it must follow that
∑
i∈I

µiZixij >
∑
i∈I

νixij . Moreover, if µiZi > νi,

it must follows that
∑
i∈I

µiZixij >
∑
i∈I

νixij . Hence, for simplicity,
∑
i∈I

µiZixij >
∑
i∈I

νixij

is conservatively approximated by µiZi > νi, so the following inequality must hold:

Pr

(
∑

i∈I

µi(1 + Zi)xij > C

)
≤ Pr (µiZi > νi) , ∀j ∈ J (A.5)

Obviously, we have Pr (µiZi > νi) = Pr
(
eλZi > eλνi/µi

)
. Then, using the Markov

inequality: Pr(X ≥ a) ≤ E(X)
a , where X ≥ 0, and a > 0. Let X = eλZi and a = eλνi/µi .

With Lemma 1, we have

Pr
(
eλZi > eλνi/µi

)
≤ e−λνi/µiE[eλZi]

≤ e−λνi/µi

(
1 +

E[Z2
i]

b2i
(eλbi − λbi − 1)

)
(A.6)

Since A6 is valid for any λ > 0, the following inequality must holds:

Pr

(
∑

i∈I

µi(1 + Zi)xij > C

)
≤ min

λ>0
e−λνi/µi

(
1 +

E[Z2
i]

b2i
(eλbi − λbi − 1)

)
, ∀j ∈ J

(A.7)

Recall constraints (14) that can be rewritten as:

Pr

(
∑

i∈I

µi(1 + Zi)xij > C

)
< βj , ∀j ∈ J (A.8)

We can always find a λ such that the right sides of (A7) and (A8) to be equal, we

can obtain

min
λ>0

e−λνi/µi

(
1 +

E[Z2
i]

b2i
(eλbi − λbi − 1)

)
− βj = 0, ∀j ∈ J (A.9)

So any νi satisfies A9, then any solution xij of P2 must satisfy the individual chance

constraint (14).

Appendix B.

Proof. Valid inequality I indicates that the number of opened workstations of an optimal

solution of P2 does not exceed
∑
p∈P

|Jp|. Suppose that
∑
j∈J

y
′′

j denotes the optimal number

of workstations of P2 and
∑
j∈J

y
′′

j >
∑
p∈P

|Jp|. Let
∑
j∈J

y
′

j denote the optimal number of

workstations of P2
′
, and we have

∑
p∈P

|Jp| ≥
∑
j∈J

y
′

j . Thus,
∑
j∈J

y
′′

j >
∑
j∈J

y
′

j . As P2
′
is

the relaxed model of P2, we can always find another optimal number of workstations

35

of P2, denoted as
∑
j∈J

y∗j that is smaller than or equal to
∑
j∈J

y
′

j . Apparently, we have

∑
j∈J

y∗j ≤
∑
j∈J

y
′

j <
∑
j∈J

y
′′

j . So it is contradictory to the assumption that
∑
j∈J

y
′′

j is the

optimal number of workstations of P2. Thus, (17) is a valid inequality of P2.

Appendix C.

Proof. Valid inequality II means that task i cannot be assigned to the workstations

smaller than npi or larger than
∑
p∈P

|Jp| − nsi + 1. Suppose that there exists an optimal

solution ζ of model P2 with xij 6= 0, in which j < npi or j >
∑
p∈P

|Jp| − nsi + 1.

Naturally, we can always find a solution ζ
′
that the processors of task i needs at least

npi−1 workstations. Thus, it can be observed that solution ζ
′
requires less workstations

than the optimal solution ζ. It is apparently contradictory with our former assumption.

Hence, (18) is valid for model P2.

Appendix D.

The model with SAA method mainly refers to Luedtke & Ahmed (2008) and Qiu

& Wang (2014). Before the approximated model, some new parameters are introduced

below:

Ω : the set of randomly generated Monte Carlo samples;

η : index of each sample;

zηj : binary variable, equal to 1 if the workload of workstation j ∈ J exceeds the

cycle time under sample η ∈ Ω, 0 otherwise ;

M : a big positive number;

The approximated model using SAA method is proposed in the following:

P4: min CF

∑

j∈J

yj + CH

∑

i∈H

∑

j∈J

xij

s.t. (2)− (7), (9), (10)
∑

i∈I

ti(η)xij −Mzηj ≤ C, ∀j ∈ J, ∀η ∈ Ω (D.1)

∑

η∈Ω

∑

j∈J

zηj ≤ ⌊|Ω|α⌋ (D.2)

zηj ∈ {0, 1}, ∀j ∈ J, ∀η ∈ Ω (D.3)

Constraints D.1 guarantee that the workloads of all workstations will not exceed the

cycle time under all samples by adding a binary variable zηj . Constraint D.2 restricts the

36

sum value of zηj , which is determined by the scale of Monte Carlo samples |Ω| and the

probability α, where ⌊x⌋ means the largest integer that does not exceed x. Constraints

D.3 define the domains of decision variables.

Appendix E.

The detailed computational results for random instances with three uncertainty levels

(bi, E[Z2
i]) in Section 6.3 are reported in Tables E1-E3. The detailed computational

results of valid inequality evaluation in Section 6.4 are reported in Table E4. The

detailed computational results for evaluating the lifted cut-and-solve method in Section

6.5 are reported in Tables E5-E6.

Table E.1: The results of random instances with (bi = 0.1, E[Z2

i] = 0.01)

DM SAA P2

Instance (P, I, J) ObjDM TDM (s) ObjSAA TSAA(s) ObjP2 TP2(s)

1 (2,20,6) 17.8 0.08 17.8 0.12 17.8 0.13
2 (2,20,10) 17.8 0.10 18.4 0.22 17.8 0.12
3 (2,40,10) 14.8 0.13 16.6 0.33 16.6 0.15
4 (2,40,14) 14.8 0.10 16.6 0.36 16.6 0.13
5 (4,40,14) 29.6 0.41 32.6 6.16 32.6 0.37
6 (4,40,18) 29.6 0.50 32.6 10.92 32.6 0.39
7 (4,80,18) 29.0 0.92 30.8 11.10 30.8 1.13
8 (4,80,22) 29.0 0.92 30.8 26.06 30.8 1.01
9 (6,60,22) 45.6 2.02 49.2 1538.67 49.2 2.56
10 (6,60,26) 45.6 2.57 49.8 3708.64 49.2 2.60
11 (6,120,26) 42.0 3.58 45.6 5568.77 45.6 14.00
12 (6,120,30) 42.0 5.93 45.0 6918.61 45.0 14.95

Average - 29.8 1.44 32.2 1482.50 32.1 3.13

37

Table E.2: The results of random instances with (bi = 0.2, E[Z2

i] = 0.05)

DM SAA P2

Instance (P, I, J) ObjDM TDM (s) ObjSAA TSAA(s) ObjP2 TP2(s)

13 (2,20,6) 17.8 0.08 19.6 0.14 20.2 0.12
14 (2,20,10) 17.8 0.10 20.2 0.25 20.2 0.12
15 (2,40,10) 14.8 0.13 17.2 0.41 17.2 0.17
16 (2,40,14) 14.8 0.10 17.2 0.42 17.2 0.13
17 (4,40,14) 29.6 0.41 35.6 28.69 35.6 0.40
18 (4,40,18) 29.6 0.50 35.0 35.44 35.0 0.49
19 (4,80,18) 29.0 0.92 33.8 261.50 33.8 1.34
20 (4,80,22) 29.0 0.92 33.8 348.12 33.8 1.16
21 (6,60,22) 45.6 2.02 52.8 4641.25 52.2 7.85
22 (6,60,26) 45.6 2.57 52.2 6717.90 52.2 12.35
23 (6,120,26) 42.0 3.58 49.2 8182.52 49.2 15.87
24 (6,120,30) 42.0 5.93 49.2 9236.56 49.2 53.99

Average - 29.8 1.44 34.7 2454.44 34.7 7.83

Table E.3: The results of random instances with (bi = 0.3, E[Z2

i] = 0.10)

DM SAA P2

Instance (P, I, J) ObjDM TDM (s) ObjSAA TSAA(s) ObjP2 TP2(s)

25 (2,20,6) 17.8 0.08 20.8 0.18 20.8 0.11
26 (2,20,10) 17.8 0.10 21.4 0.24 20.8 0.15
27 (2,40,10) 14.8 0.13 17.8 0.34 19.0 0.16
28 (2,40,14) 14.8 0.10 19.0 0.34 19.0 0.14
29 (4,40,14) 29.6 0.41 38.6 99.29 38.6 1.52
30 (4,40,18) 29.6 0.50 37.4 59.58 38.6 1.23
31 (4,80,18) 29.0 0.92 35.6 409.25 36.8 4.56
32 (4,80,22) 29.0 0.92 36.8 863.36 36.8 9.12
33 (6,60,22) 45.6 2.02 55.2 4875.63 55.2 11.79
34 (6,60,26) 45.6 2.57 56.4 9333.72 56.4 18.40
35 (6,120,26) 42.0 3.58 52.2 12005.20 52.2 20.30
36 (6,120,30) 42.0 5.93 51.6 12984.24 52.2 90.04

Average - 29.8 1.44 36.9 3385.95 37.2 13.13

38

Table E.4: Computational results of valid inequalities on random instances

Instance (P, I, J) Obj TP2(s) TP2+V I1(s) TP2+V I2(s) TP2+V I1+V I2(s)

1 (2,20,6) 17.8 0.14 0.12 0.07 0.07
2 (2,20,10) 17.8 0.15 0.11 0.11 0.10
3 (2,40,10) 14.8 0.23 0.14 0.12 0.11
4 (2,40,14) 14.8 0.20 0.12 0.12 0.11
5 (4,40,14) 29.6 0.61 0.47 0.41 0.35
6 (4,40,18) 29.6 0.90 0.43 0.42 0.35
7 (4,80,18) 29.0 1.93 1.05 1.03 0.91
8 (4,80,22) 29.0 1.98 0.95 1.01 0.89
9 (6,60,22) 45.6 4.19 2.71 3.03 2.61
10 (6,60,26) 45.6 11.29 2.98 3.25 2.54
11 (6,120,26) 42.0 14.81 7.25 6.02 3.56
12 (6,120,30) 42.0 18.21 5.16 6.02 3.42
13 (8,80,30) 62.2 36.12 9.02 7.00 5.03
14 (8,80,34) 62.2 19.50 8.49 9.54 5.20
15 (8,160,34) 56.2 50.19 19.96 15.58 12.51
16 (8,160,38) 56.2 84.51 16.87 15.95 12.73
17 (10,100,38) 75.2 36.45 24.45 33.33 18.60
18 (10,100,42) 75.2 44.33 20.29 33.36 17.81
19 (10,200,42) 68.4 139.75 54.01 38.09 36.14
20 (10,200,46) 68.4 153.52 35.41 34.83 32.69

Average - 44.1 30.95 10.50 10.46 7.79

39

Table E.5: Computational results for random instances with |P | = 2− 10,
|I| = 20− 200 and |J | = 6− 46

Instance set (P, I, J) Obj TP3(s) TCS(s) TLCS(s)

1 (2, 20, 6) 17.8 0.07 0.15 0.21
2 (2, 20, 10) 17.8 0.10 0.16 0.17
3 (2, 40, 10) 14.8 0.11 0.15 0.11
4 (2, 40, 14) 14.8 0.11 0.13 0.11
5 (4, 40, 14) 29.6 0.35 0.26 0.31
6 (4, 40, 18) 29.6 0.35 0.26 0.15
7 (4, 80, 18) 30 0.91 0.37 0.35
8 (4, 80, 22) 30 0.89 0.37 0.44
9 (6, 60, 22) 45.6 2.61 0.66 0.62
10 (6, 60, 26) 45.6 2.54 0.72 0.89
11 (6, 120, 26) 42.0 3.56 1.13 1.96
12 (6, 120, 30) 42.0 3.42 1.09 1.03
13 (8, 80, 30) 62.2 5.03 3.29 1.54
14 (8, 80, 34) 62.2 5.20 3.32 4.62
15 (8, 160, 34) 56.2 12.51 4.16 2.45
16 (8, 160, 38) 56.2 12.73 3.42 2.42
17 (10, 100, 38) 75.2 18.60 5.09 4.90
18 (10, 100, 42) 75.2 17.81 5.11 3.24
19 (10, 200, 42) 68.4 36.14 21.44 5.78
20 (10, 200, 46) 68.4 32.69 21.49 5.56

Average - 44.18 7.79 3.64 1.84

40

Table E.6: Computational results for random instances with |P | = 12 − 20,
|I| = 120− 400 and |J | = 46− 86

Instance set (P, I, J) Obj TP3(s) TCS(s) TLCS(s)

21 (12, 120, 46) 88.2 171.59 18.67 18.64
22 (12, 120, 50) 88.2 139.83 21.05 18.73
23 (12, 240, 50) 82.0 93.57 40.08 7.38
24 (12, 240, 54) 82.0 113.40 38.71 6.22
25 (14, 140, 54) 104.2 92.32 52.35 16.88
26 (14, 140, 58) 104.2 71.42 45.21 13.40
27 (14, 280, 58) 95.0 653.86 165.50 13.64
28 (14, 280, 62) 95.0 823.88 357.88 13.98
29 (16, 160, 62) 114.2 563.37 460.63 278.67
30 (16, 160, 66) 114.2 1505.53 722.52 114.81
31 (16, 320, 66) 109.2 3617.95 1299.23 435.62
32 (16, 320, 70) 109.2 3564.20 1875.17 504.30
33 (18, 180, 70) 132.0 3966.16 2315.86 221.47
34 (18, 180, 74) 132.0 5081.14 3153.85 511.58
35 (18, 360, 74) 132.2 18852.11 8524.85 4841.85
36 (18, 360, 78) 132.2 22182.63 7421.85 3754.55
37 (20, 200, 78) 156.2 - 26523.11 5527.60
38 (20, 200, 82) 156.2 - 30087.80 9526.51
39 (20, 400, 82) 156.0 - - 10854.60
40 (20, 400, 86) 156.0 - - 21672.45

Average - 107.1 6356.84 1657.09 673.23

In the table, ′−′ means that the optimal solution has not been found within
50000 seconds. Hence, the average value is obtained from sets 21 to 36.

41

https://www.researchgate.net/publication/361724996

