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Abstract

We present an effective hybrid algorithm with neighborhood reduction for solving the
multiple traveling salesman problem (mTSP). This problem aims to optimize one of
the two objectives: to minimize the total traveling distance (the minsum mTSP) or to
minimize the longest tour (the minmax mTSP). The proposed algorithm hybridizes
inter-tour optimization with an efficient neighborhood search based on tabu search
and intra-tour optimization using the traveling salesman heuristic EAX. A dedicated
neighborhood reduction strategy is introduced to avoid the examination of non-
promising candidate solutions and thus speed up the neighborhood search. Results of
extensive computational experiments are shown on 41 popular instances from several
sources and 36 new large instances. Comparisons with five state-of-the-art methods
in the literature demonstrate a high competitiveness of the proposed algorithm.
Additional experiments on applying a classical TSP heuristic to the minsum mTSP
instances show excellent results.

Keywords: Traveling salesman; Multiple traveling salesman; Hybrid heuristic; Neigh-
borhood reduction.

1 Introduction

The multiple traveling salesman problem (mTSP) generalizes the popular NP-
hard traveling salesman problem (TSP) with multiple salespersons. Formally,
the mTSP is the following graph theoretic problem. Let G=(V, A) be a graph
with vertex set V = {0,1,...,n} and a set of arcs A, where 0 of V' is the depot
and the remaining vertices N = {1,...,n} represent n cities. Let C' = (¢;;) be
a non-negative cost (distance) matrix associated with A, which satisfies the
triangle inequality (c;; + cjx > ¢ for any 4,5,k € V and i # j # k). The
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matrix C' is said to be symmetric when ¢;; = ¢;;, (¢,j) € A and asymmetric
otherwise. A feasible solution is a partition of the set of cities N into m distinct
Hamiltonian tours {ry,rs,...,r,}, such that each tour r, (k € {1,---,m})
starts and ends at the depot, and includes at least one city. The minsum
mTSP, first proposed in [39], is to minimize the total traveling tour-length of
a given mTSP instance and can be described by the following mathematical
model [10].

(minsum mTSP) min F(p) =YL, TSP(r)
subject to Ui rg =V (1)
T N 7Ty = {0},]{?7é ]{3/,1 S k’,k/ S m

where ¢ = {ry,rs,...,r,} is a feasible solution with r, (k € {1,--- ,m})
representing the kth tour composed of the vertices visited by the kth salesman,
and T'SP(ry) is the length of the tour 7. It is easy to observe that the minsum
mTSP becomes the conventional TSP when m = 1 (only one salesman).

By minimizing the total tour-length of all the salesmen, the minsum mTSP
aims to optimize the total efficiency of a solution. In some contexts, it is useful
to consider the equity criterion by avoiding excessive tour-length differences
among the salesmen. To this end, the minmax mTSP was introduced in [13],
which minimizes the longest tour and can be formulated by the mathematical
model as follows [10].

(minmax mTSP) min F(¢) = maxreq,... my{TSP(ri)}
subject to Ukeft,omy Tk =V (2)
T N T = {0},]{77é ]{3/,1 S kJ{il S m

From an application perspective, these mTSP models are useful for a number
of real problems that cannot be formulated conveniently with the classical
TSP model [10]. Representative examples include news paper delivery [46],
hot rolling scheduling [41], 3D path planning [12], multi-unit service schedul-
ing [9], path planning for robot and UAV [48 23], container drayage services
[49,36], and harvesters scheduling [19,18]. Additional practical problems can
be formulated by extended mTSP variants |5,29,33].

On the other hand, as a generalization of the NP-hard TSP problem, the
m'TSP is computationally challenging from the perspective of optimization.

Due to its theoretical and practical interest, the mTSP has received much
attention from various fields including engineering, operations research and
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computer science. There are exact algorithms for the minsum m'T'SP, includ-
ing a branch-and-bound algorithm [16] and a cutting plane algorithm [24].
Optimal results were reported on instances with up to 500 vertices and 10
salesmen. There are also exact algorithms for variants of the minmax mTSP.
For example, a branch-and-cut algorithm [1] was presented to solve a minmax
vehicle routing problem on instances up to 120 cities and 4 vehicles. Benders
decomposition algorithms [5] were proposed to optimally solve the mTSP with
load balancing on instances with up to 171 cities and 10 salesmen. Given the
NP-hard nature of the problem, a number of heuristic and metaheuristic al-
gorithms have been developed to find suboptimal solutions for large instances
that cannot be optimally solved, as reviewed in Section 2.

We observe that computational results have been improved continually with
the introduction of new solution approaches and algorithms. Meanwhile, our
literature review (see Section 2) indicates that existing methods lack stability
and their performances typically degrade when large instances are solved (e.g.
n > 1000). Moreover, some algorithms were designed only for one mTSP
objective (minsum or minmax).

In this work, we aim to advance the state-of-the-art of solving large-scale
instances of the mTSP for both objectives. For this purpose, we introduce
an effective hybrid search algorithm that performs well especially on large
m'TSP instances. The proposed algorithm benefits from the symbiosis of inter-
tour optimization and intra-tour optimization. The inter-tour optimization
uses neighborhood search to improve the solution by exchanging information
between two tours (via the insert and cross-ezchange operators). The intra-
tour optimization applies a TSP method (the EAX heuristic [30]) to keep
each individual tour as short as possible. We carry out extensive experiments
to show the competitiveness of the proposed algorithm. We perform additional
experiments to assess the usefulness of its key ingredients. Finally, we present
for the first time computational experiments of applying the TSP heuristic
EAX to the minsum mTSP, and draw conclusions regarding the effectiveness
of this approach.

The remainder of this paper is organized as follows. Section 2 provides a
literature review on heuristic algorithms for the mTSP. Section 3 presents the
details of the proposed algorithm. Section 4 shows computational results and
comparisons. Section 5 investigates key ingredients of the proposed algorithm.
Section 6 draws conclusions with research perspectives.

2 Literature review

In this section, we provide a literature review of the most representative
heuristic algorithms for the mT'SP. These algorithms are divided into three
categories: population-based evolutionary algorithms, swarm intelligence algo-
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rithms and neighborhood-based local optimization. The reviewed algorithms
are summarized in Table 1, where “both" means the corresponding algorithm
solves both the minsum and minmax m'TSP. For a comprehensive survey of
exact and heuristic methods, the reader is referred to [4] and [10].

Table 1

Summary and taxonomy of representative heuristic algorithms for the mTSP
Algorithm Population-based evo- Swarm intelligence = Neighborhood- Problem solved

lutionary algorithms algorithms based local search

Carter and Ragsdale [8] v both
Brown et al. [7] v both
Singh and Baghel [37] v both
Yuan et al. [47] v both
Wang et al. [45] v minmax
Karabulut et al. [22] v both
Pan and Wang [31] v both
Liu et al. [26] v both
Pandiri and Singh [32] v both
Lu and Yue [28] v minmax
Soylu [38] v both
Penna et al. [34] v minsum
Uchoa et al. [43] v minsum
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Various population-based evolutionary algorithms have been proposed for
solving the mTSP. In 2006, Carter and Ragsdale [8] presented a grouping
genetic algorithm for the mTSP using a two-part chromosome to represent a
solution. Compared to two previous chromosome representations, the two-part
chromosome representation avoids redundant solutions and thus reduces the
solution space. This work also introduced a set of benchmark instances with
50-150 cities and 3-30 salesmen, and showed comparisons with genetic algo-
rithms using other representations. Similarly, in 2007, Brown et al. |7] showed
a follow-up study [8] of using another two-part chromosome representation
where both real-valued genes and integer-valued genes are used. Another group
of benchmark instances was proposed for their computational studies. Subse-
quently, in 2009, Singh and Baghel [37| presented another grouping genetic
algorithm with the so-called m-tour chromosome representation, where each
tour is represented by an array and no ordering is imposed among tours. This
algorithm employed a steady-state population replacement method, and out-
performed the genetic algorithms of [8,7] in terms of the minsum mTSP and
the minmax mTSP. In 2013, Yuan et al. [47] investigated a specific crossover
operator (called TCX) based on the two-part chromosome of [8]. The proposed
crossover aims to better preserve building block information during solution
recombination while ensuring a good diversity. They showed a superior per-
formance of their TCX-based genetic algorithm over genetic algorithms using
three other crossover operators including the algorithm of [8]. In 2017, Wang et
al. [45] designed a memetic algorithm (MASVND) for the minmax mTSP. The
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algorithm employs recombination and mutation operators based on spatial dis-
tribution [32] and incorporates four neighborhood search operators (one-point
move, Or-opty move, Or-opts move and Or-opt, move) for the variable neigh-
borhood descent. They introduced a new set of (large) benchmark instances
and assessed MASVND for the minmax mTSP compared to ABC [32], IWO
[32] and GVNS [38|. The results indicated that MASVND outperforms its
competitors on large instances (with 532-1173 cities), but performs worse
than IWO on small instances (with 51-318 cities). In 2021, Karabulut et al.
|22] proposed an evolution strategy (ES) approach for solving the mTSP and
multi-depots mTSP with non-predetermined depots. This approach adopts a
self-adaptive Ruin and Recreate heuristic to generate offspring solutions, and
a local search, including 3-opt, to further enhance the solution quality. The
computational experiments showed the competitiveness of this approach on
the minsum and minmax mTSP instances.

Another popular approach for solving the mTSP concerns swarm intelligence
methods. In 2006, Pan and Wang [31] presented a basic ant colony optimiza-
tion (ACO) algorithm and showed a limited comparison with a genetic algo-
rithm. In 2009, Liu et al. |26| exposed another ACO algorithm which inte-
grates local search for search intensification. They showed competitive results
for the minsum mTSP and the minmax mTSP compared to a genetic algo-
rithm on some benchmark instances. In 2019, Lu and Yue [28] introduced a
mission-oriented ant-team ACO algorithm and reported comparative studies
with previous algorithms on the instances of [8]. In 2015, Pandiri and Singh
[32] presented several algorithms based on artificial bee colony (ABC) and
invasive weed optimization (IWO) for the minsum mTSP and the minmax
mTSP, which use local search for the post-optimization. There are two ver-
sions of the ABC algorithm, where neighboring solutions are generated from
the original solution based on different distance strategies. IWO can be con-
sidered as a reinforced ABC algorithm because it generalizes ABC, by visiting
more neighboring solutions at each generation. These algorithms showed ex-
cellent performances and updated a majority of the best results of previous
algorithms for the benchmark instances of [8,7,37].

Compared to the aforementioned approaches, there are relatively few studies
using neighborhood-based local optimization to solve the mTSP, among which
the general variable neighborhood search heuristic (GVNS) presented by Soylu
[38] is a representative example. Based on the m-tour solution representation,
this algorithm applies six neighborhood search operators (one-point move,
two types of Or-opt move, two-point move and three-point move, as well as
2-opt) to find local optima and uses a random shaking method to escape local
optimum traps. Experimental results indicated that the algorithm globally
competes well with previous methods, except IWO [32| which showed superior
results on the instances of [8].
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One notices that iterated local search (ILS) algorithms were designed for the
related capacitated vehicle routing problem (CVRP), that becomes the min-
sum mTSP when the capacity is set to 1. In particular, Penna et al. [34]
proposed an ILS algorithm which uses a variable neighborhood descent proce-
dure, with a random neighborhood ordering, in the local search phase. Uchoa
et al. [43] tested an ILS-based matheuristic algorithm on a set of new CVRP
benchmark instances and reported several good results for the CVRP with ca-
pacity of 1, which is equivalent to the minsum mTSP. Local search algorithms
were also proposed for the balanced mTSP |14 and balanced dynamic mTSP
[15].

Among the reviewed studies, the following algorithms hold the best-known re-
sults on the commonly used mTSP benchmark instances introduced in [8,7,45]:
ABC(VC), IWO [32], GVNS [38], MASVND |[45] (for the minmax mTSP only)
and ES [22]. Thus they can be considered to be the state-of-the-art methods
for solving the mTSP, and are used as the main reference algorithms for the
computational studies in this work. Nevertheless, none of the existing mTSP
algorithms can be considered as the most effective for all benchmark instances
for both the minsum and minmax objectives of the mTSP.

According to the reviewed studies, we observe that most existing mTSP al-
gorithms are based on population-based and swarm intelligence approaches.
These algorithms have fast convergences, and typically performed well on
small instances. However, they showed inferior performances on large instances
[45,22]. To advance the state-of-the-art of solving the mTSP, especially on large
instances, this work introduces a hybrid algorithm that combines an efficient
neighborhood search (for inter-tour optimization) and a traveling salesman
heuristic (for intra-tour optimization).

Finally, it is known that the minsum mTSP can be conveniently transformed
to the conventional TSP [21,35]. For a minsum mTSP instance G with n
vertices and m tours, this transformation leads to an equivalent TSP instance
GT with n +m — 1 vertices. G is an extension of G with m — 1 additional
vertices such that each new vertex is a duplicate of the depot in G and each
pair of depots have a large enough (e.g., infinite) distance between them. Then
a mTSP solution of G with m tours (m > 1) can be obtained from a TSP
solution of GT (one single tour) by splitting the TSP solution of G* with each
depot as the delimiter. As the result, the minsum mTSP can be solved by any
TSP algorithm in principle. However, this approach has not been investigated
experimentally in the literature. We fill the gap in this study by reporting the
first computational results obtained by a TSP heuristic algorithm. We also use
these results as additional references to assess our algorithm on the minsum
m'TSP instances.



186

191

196

197

198

199

200

201

202

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

3 Hybrid Search with Neighborhood Reduction

This section introduces the hybrid search algorithm with neighborhood reduc-
tion (HSNR) designed to solve the minsum mTSP and the minmax mTSP.
The general procedure is first exposed, followed by the detailed presentation
of the search components.

3.1 General procedure

HSNR is a hybrid algorithm combining inter-tour optimization by exchanging
information between tours and intra-tour optimization by optimizing individ-
ual tours. The inter-tour optimization component aims to improve the solution
by relocating cities among different tours, while the intra-tour optimization
component tries to improve an individual tour by considering it as a TSP
tour. By alternating these two complementary optimization components, the
algorithm is offered the promise of exploring the search space effectively. To
ensure a high computational efficiency, HSNR additionally adopts a specific
neighborhood reduction technique to accelerate the examination of candidate
solutions.

As shown in Algorithm 1, starting from a feasible solution given by the initial-
ization procedure (Section 3.2) (line 2), the algorithm performs a number of
iterations to improve the current solution () (lines 4-8). At each iteration, the
solution ¢ is first improved by tabu search (Section 3.3.4) with the insert op-
erator (Section 3.3.1) and the cross-ezchange operator (Section 3.3.2), where
cities are displaced among different tours. Once this insert and cross-exchange
based inter-tour optimization is exhausted, the intra-tour optimization using
the TSP heuristic EAX (Section 3.4) is triggered to improve each individ-
ual tour that was previously modified by insert and cross-exchange during
inter-tour optimization. The above steps are then iterated until the stopping
condition (typically a cutoff time limit) is met. During the search process, the
best solution found (¢*) is updated whenever it is needed and finally returned
at the end of the algorithm.

3.2  Initial solution

The initialization procedure of HSNR first constructs g good candidate so-
lutions and then selects the best one as the starting solution of the HSNR
algorithm. To generate each of these u solutions, the depot 0 and a random
unassigned city in N are used to initiate each of the m tours of the solu-
tion. Then the remaining cities (denoted by N~) are added one by one and
in a random order into the solution according to a greedy heuristic such that
each city is inserted at the best position that increases the least either the
total tour-length (for the minsum mTSP) or the current shortest tour (for the
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Algorithm 1: Main framework of HSNR for the mTSP

Input: Instance I, number of initial solutions u, parameter 7, depth of
tabu search ~, tabu tenure parameter [3;

Output: The best solution ¢* found so far;

begin
¢ < Initialization(I, u); /* Generate an initial solution,
Section 3.2 */
@* < p; /* ¢* records the best solution found so far */
while Stopping condition is not met do
<, 9%, R >« Insert_based_TS(p,¢*,v,5); /* Inter-tour

optimization by tabu search with the insert operator,
Sections 3.3.1 & 3.3.4 */

< p, 0" R >« CrossExchange _based_TS(p,¢*,v,B,T);
/* Inter-tour optimization by tabu search with the
cross-exchange operator, Sections 3.3.2 & 3.3.4 */
p < EAX(p,R); /* Intra-tour optimization with the TSP
heuristic EAX, Section 3.4 */

end

return ¢*;

end

minmax mTSP).

Specifically, in the case of the minsum mTSP, a random tour r; is picked first
among the m initial tours including only the depot and another city. Then the
unassigned cities in N~ are randomly considered one after the other and each
selected city is greedily inserted into the tour 7, at the position that leads
to the smallest increase of the minsum objective. For the minmax mTSP, the
unassigned cities are also randomly considered one by one. However, given
that its objective is to minimize the longest tour, each selected city is inserted
into the current shortest tour r.; at the position with the least increase of
this shortest tour r.,. It is worth noting that for the minsum mTSP, the same
tour 7 is used to host all the unassigned cities in N~, while for the minmax
m'TSP, the shortest tour r.s used for each city insertion could change between
two successive iterations.

Finally, when all cities are assigned, a feasible solution is obtained. To raise
its quality, the solution is improved by the best improvement descent based
on the insert and cross-exchange operators (Sections 3.3.1 and 3.3.2), followed
by the optimization with the TSP heuristic EAX (Section 3.4).
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3.8 Inter-tour optimization with insert and cross-exchange

The inter-tour optimization component of HSNR relies on the insert and cross-
exchange operators, which are popular for solving a variety of vehicle routing
problems (e.g., [2,40,44|). For the mTSP, the insert operator was previously
used in the GVNS algorithm [38| as one of its six move operators and the
MASVND algorithm [45] one of the four move operators. In this work, in
addition to the basic insert operator, we adopt for the first time the cross-
exchange operator for solving the mTSP. Compared to insert, cross-exchange
is a large neighborhood operator, which may help the algorithm to attain
solutions that cannot be accessed with the insert operator.

3.8.1 Insert

Let ¢ = {ry,79,...,7m} be a candidate solution composed of m tours where
ri (k€ {1,--+ ,m}) represents the kth tour including the cities visited by the
kth salesman. For each city, the insert operator looks for the best alternative
position for the city with the minimal move gain (i.e., objective variation).
When all cities are examined, the best move involving a pair of cities a and
is identified. Then the insert operator removes city a from tour r, and reinserts
a after city m, in r, (r, # rp). After that, tour r, is reconnected by linking
the city preceding a and the city succeeding a, while tour r, is updated by
removing the link between the city preceding b and b. Fig. 1 illustrates one
insert operation with the reconnection of the two impacted tours r, and ry.

T, s,
o P
r,

S b 5,

Fig. 1. lllustrative example of the insert operator. Removed links are marked with
a cross and new links are marked in red.

Let ¢’ be the neighboring solution that is obtained by applying the insert
operator to ¢ and Nj(p) be the induced neighborhood that comprises all the
neighboring solutions of ¢. N;(¢) is bounded by O(n?) in size in the general
case because there are n? pairs of cities.

For the minsum mTSP, this neighborhood is directly exploited by our algo-
rithm. However, for the minmax mTSP, given that the goal is to minimize the
longest tour, we limit the candidate cities to be moved by the insert operator
to those of the longest tour in . This naturally reduces the general neighbor-
hood Nj(¢) to a much smaller neighborhood. In the HSNR algorithm, this
reduced N;(¢) neighborhood is used in the case of the minmax mTSP.
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Given the solution ¢ and a neighboring solution ¢’ generated by displacing
city a from tour r, to tour r,, and the move gain A = F(p) — F(¢') (F is
the minsum or minmax objective function) is calculated as follows. For the
minsum mTSP, the move gain A is computed by Eq. (3) in O(1) time.

A= Crrobq + Crpa + Cap — Craa — Cadqy — Crpb (3)

where 7, and J, are the city preceding and succeeding a in tour r,, respectively,
while 7, and ¢, are the city preceding and succeeding b in tour ry, respectively.

For the minmax mTSP, A is also obtained in constant time by Eq. (4).

(ro)} = F(ra), if ro =74
(ro), F(rs)} = F(ra), if o # 74
F'(ra) = F(ra) + Cry8, = Croa = Cas,

+

F'(ry) = F(ry)

A = mazx{F'(r,), F
A = mazx{F'(r,), F

/
/
a
Crpa + Cap — Crpb

where 7, and r, are the longest tour and the second longest tour, respectively

3.3.2  Cross-exchange

Given a solution ¢ = {ry,--- ,r,}, the cross-exchange operator modifies two
tours (say r, and 73) to generate a neighboring solution by removing four arcs
in r, and r,, and then adding four other arcs (see Fig. 2). Equivalently, a cross-
exchange operation can be viewed as exchanging a substring 7, = (a,...,0,)
from r, and a substring 7, = (b,...,0,) from another tour r;,. Besides, one
of the two substrings is reversible when they are exchanged, as shown in Fig.
2 (right) where the substring 7, = (a,...,0,) is reversed. Clearly, without
any additional condition, this operator can lead to an extremely large neigh-
borhood (denoted by N¢g) due to the size of the two exchanged substrings,
making its exploration highly time-consuming.

To reduce the cross-exchange neighborhood to a reasonable size, we follow the
idea of [40] developed for the vehicle routing problem (VRP) and limit the
number of cities (the substring size) of the two candidate substrings 7, and 7
to 7 cities at most (i.e., |7,| < 7 and || < 7) where 7 is a parameter. With
this constraint, the cardinality of Ncg(p) is bounded by O(n? x 72) in the
general case.

Specifically, as shown in Fig. 2 (left), given a city a, a new neighbor in another
tour needs to be found. Let m, be such a neighbor. Suppose that (7, a) is

10
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Fig. 2. Nustrative example of the cross-exchange operator. The removed arcs are
marked with a cross and the added arcs are marked in red.

added as a new edge and the edge (m,,a) needs to be removed, since vertex
a can only have two adjacent vertices. For each determined pair of vertices
a and m,, the corresponding substrings 7, and 7, can consist of at most 7
consecutive cities (i.e., 1 < |7, < 7 and 1 < || < 7). For a given pair
of vertices, there are 72 neighborhood solutions which need to be evaluated.
For the specific case where the substring 7, only consists of a city (|7,|=1),
the size of 7, can vary from 1 to 7 (1 < || < 7), and thus 7 neighborhood
solutions need to be evaluated. Similarly, the size of substring 7, can also vary
from 1 to 7. Therefore, once a pair of vertices is given, the two corresponding
substrings have 72 combinations, leading to 72 neighborhood solutions needed
to be evaluated. Furthermore, given that there are n? pairs of vertices, Nog(p)
is thus bounded by O(n? x 72) in size. To explore the neighborhood N¢g(yp),
the cross-exchange operator needs to identify, among all pairs of cities, the
best pair of cities, and then exchanges their corresponding substrings.

For the minsum mTSP, the move gain A is computed by Eq. (5).

A= Crob + Crpa + Couéy + Copda — Crga — Cmpb — Coo6, — Copéy (5)

For the minmax mTSP whose objective is to minimize the longest tour, one
of the two substrings is always selected from the longest tour. Let r, be the
longest tour. We first determine the start of substring 7, as city a. Then, we
determine the start of the substring 7, in another tour r,. Finally, the length
of each substring based on the minimal move gain A is determined by Eq. (6),
where r, and r; are the second and third longest tours, respectively.

A =maz{F'(ry), F (ry), F(rs)} — F(ra), if 5 # 1
A =max{F (ro), F (ry), F(r))} — F(ra), if m = rs
F'(ra) = F(ra) + crp + F(13) + Coyp = Croa = F(1) = Cos,
F'(ry) = F(ry) 4 Crpa + F(7%)

(6)
+ CUaéb - Cﬂ'bb - F(/’:b) - Co'bfsb

It is obvious that the move gain A can be calculated in O(1) time for both
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the minsum and minmax objectives.

By limiting the number of cities in the two candidate substrings using the 7 pa-
rameter, the cross-exchange neighborhood is reduced to the size of O(n? x 72).
However, such a neighborhood is still too large to be efficiently explored for
high n values. To an ensure high computational efficiency of the proposed al-
gorithm, we introduce in Section 3.3.3 an additional neighborhood reduction
technique that allows to reduce drastically the neighborhood without scarify-
ing the search capacity of the algorithm. This technique is also applicable to
the insert neighborhood.

3.3.8  Newghborhood reduction

The difficulty of exploring the large cross-exchange neighborhood has been
recognized in the VRP communities for a long time. To cope with the diffi-
culty related to large neighborhoods, neighborhood pruning techniques have
been introduced for the VRP, such as J-nearest neighbors [3] and granular
neighborhoods [42]. Rather than examining the entire neighborhood, pruning
techniques limit the considered neighboring solutions to specifically identified
(promising) solutions. Similar neighborhood reduction techniques have been
proposed to accelerate TSP algorithms for solving large instances. One popu-
lar technique is the a-nearness strategy [20] that was designed to improve the
computational efficiency of the well known Lin-Kernighan (LK) heuristic for
the TSP [25] and was also applied to the VRP [2].

The a-nearness strategy is developed by Helsgaun [20] based on sensitivity
analysis using minimum spanning 1-trees and showing a high similarity be-
tween a minimum 1-tree and an optimal TSP solution (they typically have
70% to 80% of edges in common). In other words, edges that belong to a min-
imum 1-tree stand a good chance of also belonging to an optimal tour and vice
versa. Based on this, the a-nearness strategy uses minimum 1-trees to identify
a set of promising edges S that are more likely involved in the optimal TSP
solution. Given that the mTSP is an extension of the TSP, it is reasonable to
use minimum 1-trees as a nearness measure for the mTSP as well. As such,
the edges belonging to minimum 1-trees will be considered as promising in the
sense that they are highly probably part of the optimal solution of the mTSP.
Therefore, the set of promising edges S identified by the a-nearness strategy
[20] can be beneficially adopted for solving the mTSP.

In this work, we explore for the first time the idea of using the a-nearness to
accelerate the insert and cross-exchange operations for the mTSP and show
its practical effectiveness especially for handling large instances. The basic
rationale is that one can ignore many neighboring solutions of low quality in-
duced by the insert and cross-exchange operators and focus only on promising
neighboring solutions. Consider the insert operator shown in Fig. 1 and let .S
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be the set of promising edges identified by the a-nearness as explained next.
If an edge (say (7, a)) belongs to S, then the corresponding move gain A is
evaluated; otherwise, the corresponding neighboring solution is ignored. When
all the edges of S are considered and the corresponding move gains are eval-
uated, the best neighboring solution is selected. Because the time complexity
of evaluating a move gain is O(1) and |S| neighboring solutions are evalu-
ated, the time complexity of evaluating the insert neighborhood is reduced to
O(]S]). Similarly, for the cross-exchange operator shown in Fig. 2, if an arc
(say (m,a)) belongs to S, then the corresponding 72 move gains need to be
evaluated. When all the edges of the set S are considered, the best neighbor-
ing solution is acquired. Therefore, the time complexity of exploring the Nog
neighborhood is reduced to O(|S| x 72).

Algorithm 2: Generation of the set of promising edges S by the a-
nearness technique

Input: Input graph G = (V, A), parameter «;
Output: The set of promising edges S

begin
S <« 0;
Generate a minimum spanning tree (7~) for the cities of N;
/* Prim’s algorithm */
Generate a minimum 1-tree (T'); /* By adding to 7~ two
shortest edges of A incident to the depot O */
for i =0 ton do
for j =0tondo

Add edge (i, j) to T}

Generate a new 1-tree (T") /* By deleting the longest
edge from the new cycle containing edge (¢,j) in the
tree (1) */

Calculate the length of T;

end
Get the « shortest 1-trees from n 1-trees;
Get the « edges (F) corresponding to the « shortest 1-trees;
S+ SUE;
end
return S;
end

We now explain how the set of promising edges S is identified with the a-
nearness technique based on the notion of 1-tree. As shown in Algorithm
2, the minimum 1-tree (T') for a graph G = (V, A) is a minimum spanning
tree covering the cities of N together with two edges of A incident to the
depot 0 (lines 3-4). By inserting a new edge (i,7) to T, a cycle containing
edge (i,7) in the spanning tree is generated (line 7). Then, a new I-tree is
obtained by removing the longest edge on the cycle (line 8). When all edges
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from V incident to vertex i are considered, the o edges (« is a parameter)
corresponding to the « shortest 1-trees (7F) are saved in the set S (lines
11-12). This process continues until all the vertices in V are considered, and
then the set of promising edges S is obtained. Based on the implementation
techniques in [20], building the set S with the a-nearness technique requires
O(n?) time.

It is worth mentioning that no neighborhood reduction technique was em-
ployed in the existing mT'SP algorithms including the neighborhood search
algorithm GVNS [38]. As we show in Section 5.1, the a-nearness technique
contributes positively to the performance of the HSNR algorithm.

3.3.4  Neighborhood exploration with tabu search

To examine candidate solutions of a mTSP instance, HSNR employs the well-
known tabu search (T'S) metaheuristic [17]. One notices that TS is a popular
method for solving routing problems (e.g., [40,42]), that are more general
models than the mTSP. In our case, we design the first tabu search procedure
to explore the insert neighborhood N; and the cross-exchange neighborhood
Ncg that are reduced by the a-nearness technique of Section 3.3.3.

As described in Algorithm 3, the TS procedure starts by the initialization of
the tabu list L and the set R containing the tours that are modified by the
insert and cross-exchange operations. Then it performs a number of iterations
until the best solution ¢* cannot be improved during v consecutive iterations.
At each iteration, tabu search identifies within the given neighborhood, the
best eligible neighboring solution ¢’ according to the mTSP objectives and
uses ¢’ to replace the current solution . A neighboring solution is qualified
eligible if it is not forbidden by the tabu list or its quality is better than the
best solution found so far ¢*. After each solution transition, the two modified
tours are recorded in R and the underlying insert or cross-exchange move
leading to the new solution ¢’ is added in the tabu list L to avoid re-visiting
the replaced solution. For the tabu list, we use the following mechanism. For
a neighboring solution ¢’ where the city a is displaced from the tour r, to
another tour, a is recorded in L and not allowed to join the tour r, again for
the next t iterations, where ¢ (called tabu tenure) is set to 5 + rand(f) with
rand(() being a random integer number in {0, ..., G}.

During the tabu search, if its best solution found (¢*) is not updated during
~ consecutive iterations, the search is judged to be exhausted and terminates
while returning the best solution found, the current solution (¢) and the set
of modified tours (R).
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Algorithm 3: General tabu search

Input: Input solution ¢, best solution ¢*, neighborhood N, depth of
tabu search ~, tabu tenure parameter [3;
Output: Updated best solution ¢*, ending solution ¢, set of modified
tours R;
begin
14 0;
R «+ 0;
Initialize tabu list L;
while + < v do
Choose the best eligible neighboring solution ¢’ € N(p);
p < ¢;
Update L and R; /* Udpdate the tabu list and set of
modified tours */
if F(p) < F(¢*) then
©* < ¢; /* Update the best solution ¢~ */
14 0;
else
| it 1
end

end
return <p,p* R >;
end

3.4 Intra-tour optimization with the TSP heuristic EAX

Given a candidate solution ¢ = {ry,--- ,r,}, it is easy to observe that each
individual tour r; can be considered as a TSP tour. As the result, existing TSP
algorithms (e.g., 2-opt and LK) can directly be used to optimize the mTSP
objectives by minimizing an individual tour without the need for designing
new optimization methods. Indeed, this idea proved to be quite effective for
several VRPs [2,3] and has been used in the GVNS algorithm for the mTSP
(with the 2-opt heuristic) [38] as well. In this work, the EAX heuristic [30] !,
which is among the best TSP heuristics, is adopted for intra-tour optimization.

Specifically, for each tour 74 in the set R (It records the tours modified by the
insert and cross-exchange operators during tabu search), EAX is applied to
minimize the tour as follows. First, the tour r; is mapped to a standard TSP
tour, by renaming the cities of the tour with consecutive numbers. Second,
EAX is run to optimize the TSP tour. Given that the number of cities in
a tour is relatively small (typically from several tens to several hundreds of
cities for the mTSP benchmark instances), EAX needs a short time to make

L https://github.com /sugia/GA-for-TSP
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the TSP tour optimal or close-to-optimal. Third, we map the optimized TSP
tour back to the corresponding mTSP tour. Experiments showed that the
intra-tour optimization using EAX contributes favorably to the performance
of the HSNR algorithm.

The EAX heuristic firstly constructs randomly a population of solutions by
using the coordinates of the cities and then performs a number of generations
to improve the tour length. At each generation, two parents solutions are
selected randomly and recombined to generate offspring solutions. Let p4 and
pp be the parent solutions, and let £'4 and Ep be the sets of edges in p4 and
pi- An offspring solution is created according to the following steps.

(1) Define the undirected multigraph Gap = (V, E4U Ep) from edge sets F4
and Ep;

(2) Partition the edges of E4 U Ep into AB-cycles, where an AB-cycle is a
cycle in G 4p, such that edges of E4 and edges of Ep are alternatively
linked;

(3) Build an Ej; by selecting some A B-cycles according to a selection crite-
rion;

(4) Build an intermediate solution E¢ from ps by removing the edges of F4
that appear in Fy. and adding the edges of Eg that appear in F,, i.e.,
Ec = (Ea\(Eset N Ea)) U (Eset N ER);

(5) Generate an offspring solution by connecting all subtours of E¢ to obtain
a single tour.

As we show in Section 5.1, the EAX heuristic is quite beneficial for the pro-
posed algorithm. This is the first application of this TSP heuristic within a
m'TSP algorithm.

4 Computational Results and Comparisons

This section assesses the proposed algorithm for solving both the minsum
mTSP and the minmax mTSP. We show computational results on benchmark
instances and comparisons with the state-of-the-art algorithms.

4.1 Benchmark instances

Our experiments are based on two sets of 77 instances covering small, medium
and large instances (available from the link of footnote 3).

Set I (41 instances): These instances were introduced in [8,7,45]. Carter
and Ragsdale [8] presented 12 instances using 3 TSP graphs (with 51, 100,
150 cities and 3, 5, 10, 20 and 30 tours), while Brown et al. [7] also defined
12 instances using 3 TSP graphs (from 51 cities and 3 tours up to 150 cities
and 30 tours). Note that among these 3 graphs adopted in [7], only one graph
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(gtsp150) is not used in [8]. Therefore, most of the instances in [8] and [7]
share the same features. We thus exclude the redundant instances and keep
17 distinct instances out of these 24 instances. For these 17 instances, the
best-known objective values are available in the literature for both mTSP
objectives. Wang et al. [45] defined 31 instances using 8 graphs (with 51-1173
cities and 3-20 tours) and tested them only for the minmax mTSP. Among
the 8 used graphs, one is a graph used in [8] and one is a graph used in [7].
By eliminating these redundant instances, we retain 24 instances out of the 31
instances. For these instances, the best-known objective values are available
only for the minmax mTSP. The instances of Set I are limited to 1173 cities
and 30 tours and their optimal values are still unknown in the literature.

Set IT (36 instances): This is a new set of large instances with 1379-
5915 cities and 3-20 tours introduced in this study. Like previous benchmark
instances, these instances were generated from 9 TSP graphs in TSPlib?
(nrw1379, fl1400, d1655, u2152, pr2392, pcb3038, fl3795, fnlj461, rl5915),
which come from different practical problems. The optimal values for these
instances are unknown.

Note that most of these instances involve distance matrices whose values are
real numbers. Our HSNR algorithm operates directly with these real number
distances and reports its results in real numbers.

4.2 Ezxperimental protocol and reference algorithms

Parameter setting. HSNR has 5 parameters: number of candidate solutions
for initialization u, neighborhood reduction parameter «, substring size 7,
depth of tabu search + and tabu tenure parameter 5. In order to calibrate these
parameters, the "IRACE" package [27] was used to automatically identify a
set of suitable values. The tuning was performed on 8 representative instances
(with 150-1173 cities). For the experiment, the tuning budget was set to 1080
runs, with a cutoff time of n/100 minutes. The candidate values of these
parameters and their final values given by TRACE are shown in Table 2.

Reference algorithms. According to the literature, five algorithms (IWO &
ABC(VC) [32], GVNS [38], MASVND [45] and ES [22]) represent the state-
of-the-art for solving the mTSP (MASVND for the minmax mTSP only).
Thus these algorithms are adopted as the main references for our compar-
ative studies. Given that only one code is available (an executable code of
ES kindly provided by its authors), we faithfully re-implemented ABC(VC),
IWO, GVNS and MASVND (denoted by re-ABC(VC), re-IWO, re-GVNS and
re-MASVND) and verified that our implementations were able to match the
results reported in [32,38,45].

2 http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsp/index.html
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Finally, as indicated in Section 2, the minsum mTSP can be transformed to
the standard TSP. We provide the results obtained by the TSP heuristic EAX
[30] in Appendix A.2.

Experimental setting. HSNR and the re-implemented reference algorithms
were programmed in C++ 2 and complied with the g++ compiler with the
-O3 option. All the experiments were conducted on a computer with an Intel
Xeon E5-2670 processor of 2.5 GHz CPU and 6 GB RAM running Linux.
Given the stochastic nature of the compared algorithms, each algorithm was
run 20 times on each instance with different random seeds. We used the default
parameter setting of Table 2 to run HSNR, while for the reference algorithms,
we adopted their default parameter settings given in [32,38,45].

Stopping condition. Each run of the compared algorithm was given the same
cutoff time of (n/100) x 4 minutes. This cutoff time allows all the compared al-
gorithms to converge to their best possible solutions. Additional results under
shorter cutoff conditions are reported in Appendix A.1.

Table 2
Parameters tuning results

Parameters Section Description Considered values Final value
Minsum Minmax
I 3.2 candidate initial solutions {1,5,10,15,20} 15 20
3.3.3 a-nearness in 1-tree {5,10,15,20,25,30} 20 10
T 3.3.2 substring size {2,3,4,5,6,7} 4 7
~y 3.3.4 depth of tabu search {10,30,50,70,90,100} 10 50
B 3.3.4 tabu tenure parameter {20,40,60,80,100} 60 20

4.8  Computational results and comparison

This section reports the comparative results between the proposed HSNR
algorithm and the reference algorithms for the minsum mTSP and the minmax
mTSP. The results are obtained according to the experimental protocol above
and reported for the two sets of 77 benchmark instances (listed in increasing
order of numbers of cities). Note that the executable code of ES failed to run
on the instances of Set Il due to unknown reasons. So its results are ignored
as far as Set II is concerned.

For each instance, we show the best-known objective value BKS ever reported
in the literature (when it is available), the best objective value obtained by an
algorithm Best and the average objective value Avg.. For our HSNR algorithm,
we additionally report the gap of its best objective value to the previous best
objective value calculated as Gap(%) = 100(Best — AllBest)/AllBest with

3 The source codes of these algorithms and the instances will be available at https:
//github.com/pengfeihe-angers/mTSP
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Best and All Best being respectively the best objective value of HSNR and the
best objective value from all reference algorithms (including those published
in the literature). Given that the mTSP is a minimization problem, a negative
gap indicates an improved best result. The background of the top results for
each instance is highlighted in dark gray; the second best results in medium
gray; and the worst results in the lightest gray. Note that in the literature, the
results are rounded to the nearest integers, and we report our results in more
precise real values.

For each set of instances, we additionally report the following information. For
the best and average objective values of each algorithm, AVG is the average
value over the instances of one benchmark set. For each algorithm, BKS#
indicates the number of instances out of all the instances of the set for which
the algorithm reports the best objective value.

Finally, to assess the statistically significant difference between the results of
the HSNR algorithm and the results of each reference algorithm, we show the
p-values from the Wilcoxon signed-rank test applied to the best and average
objective values with a confidence level of 0.05. A p-value smaller than 0.05
rejects the null hypothesis.

4.3.1 Results for the minsum mTSP

Tables 3 and 4 show the comparative results of the compared algorithms for
the 77 instances of Set I and Set II, respectively.

From Table 3, we can make the following comments about the instances of
Set L. First, for the 17 instances for which the best-known results (BKS) are
available, HSNR finds 6 improved results (with an improvement gap up to
-0.24%), 7 equal results and 4 worse results. Second, for the remaining 24
instances of Set I, HSNR clearly outperforms the reference algorithms both in
terms of the best and average results, with more important improvements for
the largest instances with at least 200 cities (improvement gap up to 10.39%
for the largest instance). Also, even the average results of HSNR are better
than the best results of the reference algorithms. Third, the small p-values
from the Wilcoxon signed-rank tests confirm the statistical difference between
the HSNR algorithm and the reference algorithms in terms of the best and
average results.

From Table 4 on the large instances of Set II, we observe that the dominance
of the HSNR algorithm over the reference algorithms is even more significant.
Indeed, HSNR systematically reports better results in terms of the best and
average values, with improvement gaps from 2.37% to 19.45% compared to the
best results of the reference algorithms. Once again, even the average results
of HSNR are far better than the best results of the compared algorithms.
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Table 4
The minsum mTSP: comparative results between HSNR and three reference algo-
rithms on the 36 instances of Set IT with a cutoff time of (n/100) x 4 minutes.

re-ABC(VC) (2015)

re-IWO (2015)

re-GVNS (2015)

HSNR (this work)

Instance Best Avg. Best Avg. Best Avg. Best Avg. Gap(%)
nrwl379-3 62099.80 62413.66 62211.90 62384.95 62449.60 63614.69 56775.70 56775.70 -8.57
nrwl379-5 62853.40 63036.26 62788.40 63011.51 63593.80 65998.39 56992.60 56999.16 -9.23
nrwl379-10 64985.10 65396.08 65147.40 65392.47 65011.90 69268.91 57636.20 57795.15 -11.31
nrwl379-20 72415.90 73267.10 71915.30 73075.37 69900.30 74382.44 59618.40 60278.03 -14.71
11400-3 21733.90 21819.77 21682.60 21771.70 24456.90 25566.53 21169.40 21169.47 -2.37
f11400-5 23051.40 23179.70 22841.20 23068.25 24030.00 26993.65 22066.20 22238.10 -3.39
f11400-10 27960.10 28563.58 27556.10 27933.99 28276.70 30150.92 24373.90 25069.65 -11.55
f11400-20 44588.20 47458.31 44715.00 45981.11 32713.30 34886.35 29579.20 31966.86 -9.58
d1655-3 76672.20 77095.10 76471.40 76887.31 78155.30 79462.89 68364.40 68370.50 -10.60
d1655-5 83908.00 84208.31 83221.80 83962.59 86806.30 89456.39 74273.50 74292.65 -10.75
d1655-10 102457.00 103865.80 102268.00 103386.30 100732.00 105478.45 89262.50 89856.83 -11.39
d1655-20 146870.00 149739.75 147454.00 149130.20 134860.00 143426.30 121373.00 124263.45 -10.00
u2152-3 75107.40 75322.56 74957.90 75399.52 73757.10 75777.34 65064.90 65072.31 -11.78
u2l152-5 75533.50 76109.51 75686.10 76083.68 74271.40 78510.40 65201.70 65219.93 -12.21
u2152-10 78836.20 79676.56 78726.40 79471.17 75482.90 83485.66 65762.50 66291.71 -12.88
u2152-20 89564.50 91776.90 89331.80 91322.73 80486.60 85760.90 67993.10 71115.74 -15.52
pr2392-3 428886.00 430482.05 428802.00 429994.15 423607.00 433789.50 378661.00 378661.00 -10.61
pr2392-5 433633.00 437696.40 435449.00 438130.75 426073.00 444213.90 380061.00 380069.40 -10.80
pr2392-10 462078.00 465864.35 458177.00 465361.70 441436.00 476382.30 387498.00 389012.85 -12.22
pr2392-20 539219.00 549174.10 542251.00 549066.05 459442.00 502937.95 417424.00 421532.30 -9.15
pcb3038-3 156742.00 157141.25 156844.00 157227.80 153338.00 155312.45 137916.00 137925.00 -10.06
pcb3038-5 158160.00 158614.05 157607.00 158559.90 156678.00 159923.10 138121.00 138123.20 -11.84
pcb3038-10 162709.00 164019.75 163743.00 164470.35 156525.00 162016.80 139142.00 139379.85 -11.11
pchb3038-20 181677.00 183532.75 181894.00 183531.15 153084.00 170283.40 144295.00 146491.65 -5.74
f13795-3 32749.00 32983.87 32678.10 32817.07 34634.30 37772.26 29589.90 29823.75 -9.45
13795-5 33924.60 34497.01 33833.20 34198.05 37162.40 40342.25 30480.80 31048.26 -9.91
13795-10 39470.20 40288.27 38864.50 39779.70 36823.70 41088.57 32729.60 35467.72 -11.12
f13795-20 53852.70 55606.56 53723.40 55121.13 41337.00 45838.94 39083.80 45437.27 -5.45
fnl4461-3 204334.00 204844.15 204490.00 204833.45 203756.00 206706.75 182888.00 182890.85 -10.24
fnl4461-5 205639.00 206196.00 205745.00 206132.15 207600.00 212214.50 183074.00 183076.50 -10.97
fnl4461-10 210341.00 211064.95 210158.00 210906.80 215447.00 224158.65 183808.00 184811.75 -12.54
fnl4461-20 224749.00 225855.50 223448.00 225219.15 221402.00 236283.55 191025.00 193356.10 -13.72
rl5915-3 676316.00 678576.60 676268.00 679179.35 666852.00 T707708.75 565949.00 566066.70 -15.13
rl5915-5 678177.00 680809.90 673768.00 680248.85 703003.00 746016.20 566626.00 566780.55 -15.90
rl5915-10 692109.00 694947.55 689402.00 694087.15 783210.00 811408.35 569619.00 573689.20 -17.37
rl5915-20 744400.00 752084.65 742284.00 750748.75 777638.00 861515.54 597878.00 609385.79 -19.45
AVG 206327.84 207978.02 206011.24 207718.79 204834.24 216892.61 173371.56 174716.80 -
BKS+# 0 0 0 0 0 0 36 36 -
p-value 1.68E-07 1.68E-07 1.68E-07 1.68E-07 1.68E-07 1.68E-07 - - -

Finally, the Wilcoxon signed-rank tests confirm the statistical difference of
these comparisons.

To further assess the compared algorithms, we also present the performance
profiles [11] to visually illustrate the performance of each algorithm. Perfor-
mance profiles rely on a specific performance metric (in our case, we use fpes
and f,,y). To compare a set of algorithms S over a set of problems @), the
W If an algorithm does not
$,q:s€S,q€Q
report result for a problem ¢, ry, = +00. The performance function of an
algorithm s is computed by Q(7) = % The value Q4(7) computes
the fraction of problems that algorithm s can solve with at most 7 many times
the cost of the best algorithm. For example, Q4(1) equals the number of prob-
lems that algorithm s solved better than, or as good as the other algorithms
in (). Similarly, the value Q4(rs) is the maximum number of problems that
algorithm s solved. Therefore, Q5(1) and Q(rf) represent the efficiency and
robustness of algorithm s. Fig. 3 visually illustrates the competitiveness of

HSNR in terms of the best and average values on the benchmark 77 instances.

performance ratio is defined by r, , =
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Indeed, HSNR has a much higher Q(1) value compared to the reference algo-
rithms, by finding better or equal results for nearly all instances. Furthermore,
HSNR also reaches Q),(ry) first, indicating a high robustness of our approach.
In brief, compared with the reference algorithms, HSNR is the best solution
approach for the minsum mTSP on both small and large scale instances.

Finally, since the minsum mTSP can be transformed to the TSP, we show in
Appendix A.2 the results obtained by the effective TSP heuristic EAX [30].

08

0.6 |

—=—re-ABC(VC)

——re-ABC(VC) 04 I

re-IWO
+—re-GVNS
~—ES

—=—HSNR {

re-IWO

——re-GVNS
02 -

Percentage of problems solved (f,.q)
Percentage of problems solved (f,,q)

—=—ES

—=—HSNR

1 11 12 13 14
Performance ratio

1 11 12 13 14 15
Performances ratio

(a) (b)

Fig. 3. The minsum mTSP: performance profiles of HSNR and four reference algo-
rithms on all the 77 benchmark instances. The left figure corresponds to the best
results while the right figure is for the average results.

4.3.2  Results for the minmaz mTSP

We now assess the performance of the HSNR algorithm for the minmax mTSP.
For this problem, ABC(VC) [32], IWO [32], GVNS [38], MASVND [45] and
ES [22] are the state-of-the-art algorithms, which are used for our comparative
study. Note that for three graphs kroA200, lin318, att532, the initial solutions
of HSNR are generated in such a way that each city is greedily inserted in an
arbitrary random tour, not limited to the shortest tour.

Tables 5 and 6 report the computational results of the compared algorithms
on Set I and Set II. From the tables, we observe that in terms of the best
objective values, HSNR reaches the best results on 48 out of the 77 instances
and matches the best results of the compared algorithms on 25 instances. Only
for four instances, HSNR reports a slightly worse result with a gap to the best
objective value no larger than 0.61%. In terms of the average objective value,
HSNR reports 54 dominating values. It is worth noting that the average results
of HSNR are better than the best results of the reference algorithms. Third,
the dominance of HSNR over the reference algorithms is better demonstrated
on the large instances of Set II with up to 32.81% improvements of their
best results. Finally, the small p-values (< 0.05) confirm the statistically
significant differences between HSNR and the reference algorithms for the
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best and average results.

Once again, the performance profiles of Fig. 4 clearly show the competitiveness
of HSNR over the compared algorithms. Indeed, HSNR has a much higher
Qs(1) value compared to the reference algorithms, indicating that HSNR finds
better or equal results for nearly all instances. Furthermore, HSNR reaches
Qs(ry) first, implying a high robustness of our approach. Therefore, HSNR
competes favorably with the state-of-the-art algorithms for the minmax mTSP.
Its competitiveness is particularly demonstrated on large instances in terms
of the best and average results.

——re-ABC(VC)
—=—re-IWO
re-GVNS
ES
re-MASVND
—In— HSNR

—=—re-ABC(VC)

/(/ -
/ ——re-IWO
0.4 |7, ——re-GVNS
4 —ES
0.2 re-MASVND

—»—HSNR

Percentage of problems solved (fy.q)
Percentage of problems solved (f,;)

1 12 14 16 18 1 12 14 16 18
Performance ratio Performance ratio

(a) (b)

Fig. 4. The minmax mTSP: performance profiles of HSNR and five reference algo-
rithms on all the 77 benchmark instances. The left figure corresponds to the best
results while the right figure is for the average results.

Finally, Table 7 summaries the comparative results of each pair of compared
algorithms on the 77 benchmark instances, by providing the number of in-
stances for which HSNR obtained a better (#Wins), equal (#Ties) or worse
(#Losses) result compared to each reference algorithm and the BKS value.

We conclude that HSNR significantly dominates the reference algorithms for
both the minsum mTSP and the minmax mTSP. Its competitiveness is even
more evident on large-scale instances.

5 Analysis

The computational results and comparisons with the state-of-the-art algo-
rithms presented in Section 4 showed high effectiveness of the HSNR algo-
rithm. This section aims to investigate the contributions of two important
ingredients of HSNR: the neighborhood reduction strategy (Section 3.3.3) for
efficient neighborhood examination and the EAX heuristic (Section 3.4) for
effective intra-tour optimization. For this purpose, we performed additional
experiments to compare HSNR with several HSNR variants where the studied
component (i.e., neighborhood reduction and EAX) was disabled and replaced
by another alternative method. These experiments were based on 20 represen-
tative instances with different sizes (n from 150 to 2392, m from 3 to 20) and
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Table 7
Summary of comparative results between HSNR and the reference algorithms.

. Best Avg.
Pair #Instances
#Wins  #Tiers #Losses p-value #Wins  #Tiers #Losses p-value
Minsum
HSNR vs. BKS 17 7 6 4 - - - - -
HSNR vs. re-ABC(VC) s 72 5 0 1.66E-13 74 3 0 7.73E-14
HSNR vs. re-IWO 7 69 8 0 5.21E-13 74 3 0 7.73E-14
HSNR vs. re-GVNS 7 71 6 0 2.43E-13 74 3 0 7.73E-14
HSNR vs. ES 41 38 3 0 7.74E-08 41 0 0 2.42E-08
Minmax
HSNR vs. BKS 33 12 18 3 - - - - -
HSNR vs. re-ABC(VCQ) T 66 11 0 1.64E-12 67 9 1 5.69E-13
HSNR vs. re-IWO s 57 19 1 3.69E-11 62 10 5 3.75E-12
HSNR vs. re-GVNS s 60 17 0 1.63E-11 59 16 2 4.84E-11
HSNR vs. ES 41 21 19 1 6.08E-05 28 12 1 1.02E-06
HSNR vs. re-MASVDN s 54 22 1 1.27E-10 63 13 2 3.74E-11
esas followed the experimental protocol of Section 4.2.
5.1 Importance of the the a-nearness technique for neighborhood reduction
1
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To study the benefit of the a-nearness pruning technique (Section 3.3.3), we
compared HSNR with two alternative versions: HSNR1 where the a-nearness

26

(b)

35 —
| = Bestvalue of HSNR1 . 20 = Average value of HSNR1
+ Best value of HSNR2 + Average value of HSNR2 .
Best value of HSNR 25 Average value of HSNR ¢
. ~
L * * 2\01 20
g o
L 15 .
2 .
*
r . g0
. . R o .
r 5 . .
N . .
P ) PA— n T ", AT 8. TN Olm o 8 » % ® , o % 8 8 o 0 . w n o 88 "
1 3 5 7 9 11 13 15 17 19 1 3 5 7 9 11 13 15 17 19
-5
Instances Instances



648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

pruning technique was replaced by the method of §-nearest neighbors [2,6], and
HSNR2 where no pruning technique was used. As such, at each neighborhood
search iteration of HSNRI1, city a must be one of the d-nearest cities of city m,
(0 was set to 40), as shown in the illustrative example of Fig. 1. For HSNR2,
there is no any restriction between city a and .

The experimental results of HSNR, HSNR1 and HSNR2 are summarized in
Figs. 5 and 6 as well as Table 8. In the figures, the results of HSNR are used
as the baseline and the results of HSNR1 and HSNR2 are showed relative to
this baseline. From these results, the following observations can be made.

For the minsum mTSP, compared to HSNR2 which doesn’t use any neigh-
borhood pruning technique, both reductions (a-nearness pruning for HSNR
and d-nearest pruning for HSNR1) led to slightly better results in terms of
the best objectives values, while the average quality was slightly scarified in
several cases. The Wilcoxon signed-rank tests in Table 8, however, don’t con-
firm statistically significant differences between the compared algorithms. For
the minmax mTSP, both HSNR and HSNR1 significantly outperformed the
HSNR2 variant in terms of the best and average values (confirmed by the
Wilcoxon signed-rank tests). The importance of the pruning techniques is
even more amplified on large instances. One also observes that HSNR using
the a-nearness pruning technique systematically showed better performances
than HSNR1 using the d-nearest neighbors technique. As an example, the con-
vergence charts shown in Fig. 7 also illustrate the usefulness of the a-nearness
pruning technique on a representative instance.

This experiment confirms the interest of heuristic pruning techniques, espe-
cially the a-nearness technique adopted in the HSNR algorithm. By avoiding
useless examinations of non-promising neighboring solutions, the neighbor-
hood reduction strategy is particularly useful for solving large instances of the
minmax mTSP, even if its contribution to the minsum mTSP is less significant.

5.2 Importance of the EAX heuristic for intra-optimization

To evaluate the benefits of the EAX heuristic for intra-tour optimization (Sec-
tion 3.4), we compare HSNR with two alternative algorithms: HSNR3 where
EAX is replaced by the popular 2-opt heuristic, and HSNR4 where EAX is
replaced by the LK algorithm [25]. The comparative results are shown in Figs.
8 and 9 as well as Table 8.

For the minsum mTSP, HSNR with EAX significantly dominates its variants
with the 2-opt and LK heuristics in terms of the best and average results (con-
firmed by the Wilcoxon signed-rank tests). For the minmax mTSP, HSNR also
performs better than its competitors except for a small number of instances.
This experiment demonstrates clearly the usefulness of the TSP heuristic EAX
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as a critical intra-tour optimization tool for the mTSP.

Table 8
Summary of comparative results between HSNR, and the four compared algorithms.
Best Avg.

Pair #Instances #Wins  #Ties #Losses p-value #Wins  #Ties #Losses p-value
Minsum
HSNR vs. HSNR1 20 2 18 0 5.00E-01 3 5 12 3.00E-03
HSNR vs. HSNR2 20 3 17 0 2.50E-01 5 5 10 7.90E-02
HSNR vs. HSNR3 20 20 0 0 8.85E-05 20 0 0 8.85E-05
HSNR vs. HSNR4 20 20 0 0 8.85E-05 19 0 1 1.20E-04
Minmax
HSNR vs. HSNR1 20 12 6 2 5.00E-02 12 6 2 2.00E-02
HSNR vs. HSNR2 20 15 5 0 6.10E-05 15 5 0 6.10E-05
HSNR vs. HSNR3 20 12 6 2 1.00E-02 10 6 4 4.90E-01
HSNR vs. HSNR4 20 10 7 3 9.00E-02 7 6 7 6.30E-01

6 Conclusions

This work studied the multiple traveling salesman problem, which is a rele-
vant model to formulate a number of practical applications. The presented
hybrid search with neighborhood reduction algorithm combines tabu search
based inter-tour optimization (with 2 complementary neighborhoods) and a
TSP heuristic based intra-tour optimization. A dedicated neighborhood reduc-
tion technique was introduced, which avoids the evaluations of non-promising
candidate solutions and thus speeds up the neighborhood search.

Extensive computational results on the set of 41 benchmark instances com-
monly tested in the literature indicate that the algorithm is highly competitive
compared with the existing leading algorithms. In particular, for the minsum
m'TSP, the proposed algorithm reports 27 best results while matching 10 best-
known results. For the minmax mTSP, the algorithm performs also well by
reporting 15 best bounds. To assess the presented algorithm on still larger
instances, we introduced a new set of 36 large instances and reported the
first computational results, which further demonstrated the superiority of the
algorithm over the reference algorithms. These new large instances and the
presented results can be used to assess other mTSP algorithms.

The TSP heuristic EAX was also used for the first time to solve the minsum
m'TSP, based on the fact that the minsum mTSP can be conveniently trans-
formed to the TSP. The results showed that this transformation approach
performs remarkably well on most minsum mTSP instances and significantly
dominates all algorithms dedicated to the minsum mTSP.

For future work, there are several perspectives. First, it would be interesting
to adopt the main idea of this study (i.e., neighborhood reduction, TSP tool)
to design effective heuristics for other TSP variants and routing problems,
including practical problems faced in real-life applications. Second, even if
the minsum mTSP can be effectively solved by popular TSP algorithms, this
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is not the case for the minmax mTSP. As such, more efforts are needed to
design effective algorithms for the minmax mTSP. In this regard, it is worth
investigating other search framework such as memetic algorithms integrating
dedicated crossover operators. Also, few exact algorithms exist for the minmax
m'TSP, there is much room for making progressive in this area.
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A Appendix

This appendix includes computational results of two additional experiments.
The first experiment concerns a comparison between the proposed HSNR al-
gorithm and the reference algorithms under a short cutoff time for the minsum
m'TSP and the minmax mTSP. The second experiment is about solving the
minsum mTSP by running a TSP solver, given that the minsum m'TSP can
be transformed to the TSP [21,35]. Even if this transformation is known for
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a long time, to our knowledge, this is the first study reporting extensive com-
putational results using this approach.

A.1 Additional computational results and comparisons

We compare the results of the HSNR algorithm with the best results of the
reference algorithms directly extracted from the literature. Given that the
reference algorithms were coded by different persons and run on different
computers under various stopping conditions, this comparison is presented
for indicative purposes only. For this study, we used the following reference
algorithms.

- IWO [32], which reports results on 17 instances of Set I for the minsum
mTSP and the minmax mT'SP. The algorithm was written in C and run on
a computer with a 2.83 GHz CPU and the stopping condition is a maximum
of 1000 iteration steps.

- ABC(VC) [32], which reports results on 17 instances of Set I for the minsum
mTSP and the minmax mT'SP. The algorithm was written in C and run on
the same computer under the same stopping condition as IWO.

- GVNS [38], which reports results on 12 instances of Set I for the minsum
mTSP and the minmax mTSP. The algorithm was written in C++ and
run on a computer with a 2.4 GHz CPU, and the stopping condition is a
maximum running time of n seconds.

- MASVND [45], which is designed for the minmax mTSP only and reports
results on 31 out of the 41 instances of Set I. The algorithm was written
in Java and run on a computer with a 3.4 GHz CPU, and the stopping
condition is a maximum running time of n/5 seconds.

- ES [22], which reports results on 12 instances of Set I for the minsum mTSP
and 31 out of the 41 instances of Set I for the minmax mT'SP. The algorithm
was written in C-++ and run on a computer with a 2.66 GHz CPU, and the
stopping condition is a maximum time of n and n/5 seconds for the minsum
mTSP and the minmax mTSP, respectively.

To make the comparison as meaningful as possible, we adopted as our stop-
ping condition the shortest cutoff time among those used by the reference
algorithms, i.e., n/5 seconds used in [45]. We used the CPU frequency to con-
vert this cutoff time to our computer, leading to a cutoff time of (1.36 x n)/5
seconds for our HSNR algorithm on our computer. Note that MASVND re-
ports results for the minmax mT'SP only, while the other reference algorithms
report results for both the minsum mTSP and the minmax mTSP.
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A.1.1 Comparative results for the minsum mTSP

Table A.1 shows the computational results of the compared algorithms for the
minsum mTSP with the same information as in Section 4.

From Table A.1, one observes that the proposed HSNR algorithm performs
better than ABC(VC), GVNS, by matching more BKS values, while its per-
formance is slightly worse than the fast IWO algorithm and ES. Interestingly,
HSNR reports three new best-known results. This experiment indicates that
under short stopping conditions, the fast IWO and ES algorithms perform the
best for the minsum mTSP, while HSNR remains competitive by reporting
three new upper bounds.

A.1.2 Comparative results for the minmax mTSP

We show in Table A.2 the computational results of the compared algorithms
for the the minmax mTSP with the same information as in Section 4. In this
table, we included the results of IWO-Wang [45], which is a re-implementation
of the IWO algorithm of [32].

Table A.2 indicates that HSNR performs competitively compared to the main
reference algorithms, that is MASVND [45] and ES [22]. In terms of the best
objective value, HSNR updates the best upper bounds (BKS) for 9 out of 33
instances and reaches the BKS values for 17 instances. Given that the BKS
values are compiled from the best results ever reported by all existing algo-
rithms in the literature, the performance of HSNR for the minmax m'T'SP can
be considered as remarkable. In summary, these results confirm the competi-
tiveness of HSNR over the state-of-the-art algorithms for the minmax mTSP
also under this short cutoff limit.

A.2  Computational results for the minsum mTSP with a TSP heuristic

We report computational results of running the EAX heuristic [30] on the TSP
instances transformed from the minsum mTSP instances. Given that most of
the 77 instances involve distance matrices of real numbers, we updated the
data type of EAX from integer numbers to real numbers. For this experi-
ment, we ran the EAX code with its default parameter setting under the same
stopping condition as HSNR (i.e., (n/100) x 4 minutes, see Section 4). Each
instance was solved 20 times by EAX with difference random seeds. Note that
EAX may also terminate if the gap between the average tour length and the
shortest tour length in the population becomes less than 0.0001.

Tables A.3 and A.4 show the comparative results of EAX and HSNR with the
same information as in Section 4.3.1. The background of the top results for
each instance is highlighted in dark gray; the second best results in medium
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gray. The results of Tables A.3 and A.4 clearly indicate that EAX signifi-
cantly dominates HSNR in terms of the best and average results for both sets
of instances. Only on three large instances of Set II, HSNR reported better
results. Given that HSNR perfoms better than the existing minsum mTSP al-
gorithms in the literature, we can safely say that EAX dominates all existing
minsum mTSP algorithms. Finally, even if we did not show detailed run-time
information, we mention that EAX converges much faster than the existing
algorithms (by at least one order of magnitude). EAX requires no more than
30 seconds for Set I and no more than 400 seconds for Set II.

We conclude that the transformation approach of the minsum mTSP to the
TSP is particularly effective and can be considered as the current best solu-
tion method for the minsum mTSP. It is worth mentioning that this is the
first study that demonstrates the high interest of solving the minsum mTSP
via TSP algorithms. This finding will benefit future research on the minsum
mTSP.
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Table A.3
Minsum mTSP: comparative results of HSNR and EAX on Set I with a cutoff time
of (n/100) x 4 minutes.

EAX [30] HSNR (this work)
Best Avg. Avg.

Instance

mtsp51-3

mtsp51-5 0.00
mtsp51-10 0.00
mtspl100-3 0.00 0.00
mtspl00-5 0.00 0.00
mtspl100-10 0.00 26983.51 50.63
mtspl00-20 0.00 38259.98 51.79
rand100-3 0.00 0.00
rand100-5 0.00 0.00
rand100-10 0.00 0.00
rand100-20 0.00 0.00
mtspl50-3 0.00 0.00
mtspl50-5 0.00 38722.24 11.83
mtspl50-10 0.00 42234.30 42310.82 36.72
mtspl50-20 0.00 53351.30 53483.13 95.76
mtspl150-30 68455.90 68539.07 123.03
gtspl150-3 6574.52 1.45
gtspl50-5 0.00
gtspl50-10 0.00
gtsp150-20 9513.38 4.17
gtsp150-30 12969.05 9.86
kroA200-3 0.00
kroA200-5 0.00
kroA200-10 0.00
kroA200-20 41522.45 207.47
1in318-3 0.00
1in318-5 0.00
1lin318-10 47333.21 9.50
1in318-20 60416.35 742.66
att532-3 0.00
att532-5 0.00
att532-10 31038.80 88.22
att532-20 36305.00 482.00
rat783-3 2.72
rat783-5 0.45
rat783-10 17.08
rat783-20 10172.60 106.03
pcb1173-3 19.79
pcb1173-5 57654.20 17.40
pcb1173-10 59299.07 187.13
pcb1173-20 65102.08 646.01
Avg. 28309.28 28374.09 -
Best# 7 23 - 0 0 -
p-value 1.95E-02 3.25E-05 - - - _
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Table A.4

Minsum mTSP: comparative results of HSNR and EAX on Set I with a cutoff time

of (n/100) x 4 minutes.

EAX [30] HSNR (this work)
Instance Best Avg. o Best Avg. o
nrwl379-3 0.00 0.00
nrwl379-5 1.81 56999.16 5.27
nrwl379-10 1.10 57636.20 57795.15 168.81
nrwl379-20 4.14 59618.40 60278.03 426.66
f11400-3 21176.40 14.74 0.31
f11400-5 11.06 22238.10 239.95
f11400-10 14.75 25069.65 531.24
f11400-20 16.14 29579.20 31966.86 1516.54
d1655-3 3.61 _ 68370.50 8.69
d1655-5 1.78 74273.50 74292.65 43.66
d1655-10 2.03 89262.50 89856.83 717.31
d1655-20 5.21 121373.00 124263.45 1190.66
u2152-3 2.70 _ 65072.31 10.68
u2l152-5 11.15 65201.70 65219.93 8.60
u2152-10 3.85 65762.50 66291.71 526.37
u2152-20 1.76 67993.10 71115.74 1344.28
pr2392-3 0.00 0.00
pr2392-5 0.00 380069.40 28.64
pr2392-10 0.00 389012.85 1621.15
pr2392-20 9.39 417424.00 421532.30 2665.82
pcb3038-3 2.69 137925.00 3.08
pcb3038-5 2.69 138123.20 4.51
pcb3038-10 0.00 139379.85 369.30
pcb3038-20 3.67 144295.00 146491.65 1068.88
f13795-3 29601.20 72.21 29823.75 394.67
f13795-5 30508.20 50.68 31048.26 634.63
f13795-10 32779.80 75.61 35467.72 1551.01
13795-20 70.10 39083.80 45437.27 3166.39
fnl4461-3 2.43 182890.85 7.74
fnl4461-5 1.79 183076.50 4.70
fnl4461-10 3.49 183808.00 184811.75 874.86
fnl4461-20 3.58 191025.00 193356.10 1527.51
rl5915-3 70.32 566066.70 58.80
rl5915-5 69.02 566780.55 100.60
rl5915-10 75.52 573689.20 3457.21
rl5915-20 7.7 597878.00 609385.79 7492.50
Avg. - 173371.56 174716.80 -
Best# 15 33 - 3 1 -
p-value 6.50E-03 5.39E-07 - - - -
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