
HAL Id: hal-03735784
https://hal.science/hal-03735784v1

Submitted on 22 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Hybrid search with neighborhood reduction for the
multiple traveling salesman problem

Pengfei He, Jin-Kao Hao

To cite this version:
Pengfei He, Jin-Kao Hao. Hybrid search with neighborhood reduction for the multiple
traveling salesman problem. Computers and Operations Research, 2022, 142, pp.105726.
�10.1016/j.cor.2022.105726�. �hal-03735784�

https://hal.science/hal-03735784v1
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


Hybrid search with neighborhood reduction for

the multiple traveling salesman problem

Pengfei He and Jin-Kao Hao ∗
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Abstract

We present an e�ective hybrid algorithm with neighborhood reduction for solving the
multiple traveling salesman problem (mTSP). This problem aims to optimize one of
the two objectives: to minimize the total traveling distance (the minsum mTSP) or to
minimize the longest tour (the minmax mTSP). The proposed algorithm hybridizes
inter-tour optimization with an e�cient neighborhood search based on tabu search
and intra-tour optimization using the traveling salesman heuristic EAX. A dedicated
neighborhood reduction strategy is introduced to avoid the examination of non-
promising candidate solutions and thus speed up the neighborhood search. Results of
extensive computational experiments are shown on 41 popular instances from several
sources and 36 new large instances. Comparisons with �ve state-of-the-art methods
in the literature demonstrate a high competitiveness of the proposed algorithm.
Additional experiments on applying a classical TSP heuristic to the minsum mTSP
instances show excellent results.

Keywords: Traveling salesman; Multiple traveling salesman; Hybrid heuristic; Neigh-
borhood reduction.

1 Introduction1

The multiple traveling salesman problem (mTSP) generalizes the popular NP-2

hard traveling salesman problem (TSP) with multiple salespersons. Formally,3

the mTSP is the following graph theoretic problem. Let G=(V, A) be a graph4

with vertex set V = {0, 1, . . . , n} and a set of arcs A, where 0 of V is the depot5

and the remaining vertices N = {1, . . . , n} represent n cities. Let C = (cij) be6

a non-negative cost (distance) matrix associated with A, which satis�es the7

triangle inequality (cij + cjk > cik for any i, j, k ∈ V and i 6= j 6= k). The8
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matrix C is said to be symmetric when cij = cji, (i, j) ∈ A and asymmetric9

otherwise. A feasible solution is a partition of the set of cities N intom distinct10

Hamiltonian tours {r1, r2, . . . , rm}, such that each tour rk (k ∈ {1, · · · ,m})11

starts and ends at the depot, and includes at least one city. The minsum12

mTSP, �rst proposed in [39], is to minimize the total traveling tour-length of13

a given mTSP instance and can be described by the following mathematical14

model [10].15

(minsum mTSP) min F (ϕ) =
∑m
k=1 TSP (rk)

subject to ∪mk=1 rk = V

rk ∩ rk′ = {0}, k 6= k′, 1 ≤ k, k′ ≤ m

(1)

where ϕ = {r1, r2, . . . , rm} is a feasible solution with rk (k ∈ {1, · · · ,m})16

representing the kth tour composed of the vertices visited by the kth salesman,17

and TSP (rk) is the length of the tour rk. It is easy to observe that the minsum18

mTSP becomes the conventional TSP when m = 1 (only one salesman).19

By minimizing the total tour-length of all the salesmen, the minsum mTSP20

aims to optimize the total e�ciency of a solution. In some contexts, it is useful21

to consider the equity criterion by avoiding excessive tour-length di�erences22

among the salesmen. To this end, the minmax mTSP was introduced in [13],23

which minimizes the longest tour and can be formulated by the mathematical24

model as follows [10].25

(minmax mTSP) min F (ϕ) = maxk∈{1,··· ,m}{TSP (rk)}

subject to ∪k∈{1,··· ,m} rk = V

rk ∩ rk′ = {0}, k 6= k′, 1 ≤ k, k′ ≤ m

(2)

From an application perspective, these mTSP models are useful for a number26

of real problems that cannot be formulated conveniently with the classical27

TSP model [10]. Representative examples include news paper delivery [46],28

hot rolling scheduling [41], 3D path planning [12], multi-unit service schedul-29

ing [9], path planning for robot and UAV [48,23], container drayage services30

[49,36], and harvesters scheduling [19,18]. Additional practical problems can31

be formulated by extended mTSP variants [5,29,33].32

On the other hand, as a generalization of the NP-hard TSP problem, the33

mTSP is computationally challenging from the perspective of optimization.34

Due to its theoretical and practical interest, the mTSP has received much35

attention from various �elds including engineering, operations research and36

2



computer science. There are exact algorithms for the minsum mTSP, includ-37

ing a branch-and-bound algorithm [16] and a cutting plane algorithm [24].38

Optimal results were reported on instances with up to 500 vertices and 1039

salesmen. There are also exact algorithms for variants of the minmax mTSP.40

For example, a branch-and-cut algorithm [1] was presented to solve a minmax41

vehicle routing problem on instances up to 120 cities and 4 vehicles. Benders42

decomposition algorithms [5] were proposed to optimally solve the mTSP with43

load balancing on instances with up to 171 cities and 10 salesmen. Given the44

NP-hard nature of the problem, a number of heuristic and metaheuristic al-45

gorithms have been developed to �nd suboptimal solutions for large instances46

that cannot be optimally solved, as reviewed in Section 2.47

We observe that computational results have been improved continually with48

the introduction of new solution approaches and algorithms. Meanwhile, our49

literature review (see Section 2) indicates that existing methods lack stability50

and their performances typically degrade when large instances are solved (e.g.51

n > 1000). Moreover, some algorithms were designed only for one mTSP52

objective (minsum or minmax).53

In this work, we aim to advance the state-of-the-art of solving large-scale54

instances of the mTSP for both objectives. For this purpose, we introduce55

an e�ective hybrid search algorithm that performs well especially on large56

mTSP instances. The proposed algorithm bene�ts from the symbiosis of inter-57

tour optimization and intra-tour optimization. The inter-tour optimization58

uses neighborhood search to improve the solution by exchanging information59

between two tours (via the insert and cross-exchange operators). The intra-60

tour optimization applies a TSP method (the EAX heuristic [30]) to keep61

each individual tour as short as possible. We carry out extensive experiments62

to show the competitiveness of the proposed algorithm. We perform additional63

experiments to assess the usefulness of its key ingredients. Finally, we present64

for the �rst time computational experiments of applying the TSP heuristic65

EAX to the minsum mTSP, and draw conclusions regarding the e�ectiveness66

of this approach.67

The remainder of this paper is organized as follows. Section 2 provides a68

literature review on heuristic algorithms for the mTSP. Section 3 presents the69

details of the proposed algorithm. Section 4 shows computational results and70

comparisons. Section 5 investigates key ingredients of the proposed algorithm.71

Section 6 draws conclusions with research perspectives.72

2 Literature review73

In this section, we provide a literature review of the most representative74

heuristic algorithms for the mTSP. These algorithms are divided into three75

categories: population-based evolutionary algorithms, swarm intelligence algo-76
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rithms and neighborhood-based local optimization. The reviewed algorithms77

are summarized in Table 1, where �both" means the corresponding algorithm78

solves both the minsum and minmax mTSP. For a comprehensive survey of79

exact and heuristic methods, the reader is referred to [4] and [10].80

Table 1
Summary and taxonomy of representative heuristic algorithms for the mTSP
Algorithm Population-based evo-

lutionary algorithms
Swarm intelligence
algorithms

Neighborhood-
based local search

Problem solved

Carter and Ragsdale [8] X both

Brown et al. [7] X both

Singh and Baghel [37] X both

Yuan et al. [47] X both

Wang et al. [45] X minmax

Karabulut et al. [22] X both

Pan and Wang [31] X both

Liu et al. [26] X both

Pandiri and Singh [32] X both

Lu and Yue [28] X minmax

Soylu [38] X both

Penna et al. [34] X minsum

Uchoa et al. [43] X minsum

Various population-based evolutionary algorithms have been proposed for81

solving the mTSP. In 2006, Carter and Ragsdale [8] presented a grouping82

genetic algorithm for the mTSP using a two-part chromosome to represent a83

solution. Compared to two previous chromosome representations, the two-part84

chromosome representation avoids redundant solutions and thus reduces the85

solution space. This work also introduced a set of benchmark instances with86

50-150 cities and 3-30 salesmen, and showed comparisons with genetic algo-87

rithms using other representations. Similarly, in 2007, Brown et al. [7] showed88

a follow-up study [8] of using another two-part chromosome representation89

where both real-valued genes and integer-valued genes are used. Another group90

of benchmark instances was proposed for their computational studies. Subse-91

quently, in 2009, Singh and Baghel [37] presented another grouping genetic92

algorithm with the so-called m-tour chromosome representation, where each93

tour is represented by an array and no ordering is imposed among tours. This94

algorithm employed a steady-state population replacement method, and out-95

performed the genetic algorithms of [8,7] in terms of the minsum mTSP and96

the minmax mTSP. In 2013, Yuan et al. [47] investigated a speci�c crossover97

operator (called TCX) based on the two-part chromosome of [8]. The proposed98

crossover aims to better preserve building block information during solution99

recombination while ensuring a good diversity. They showed a superior per-100

formance of their TCX-based genetic algorithm over genetic algorithms using101

three other crossover operators including the algorithm of [8]. In 2017, Wang et102

al. [45] designed a memetic algorithm (MASVND) for the minmax mTSP. The103
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algorithm employs recombination and mutation operators based on spatial dis-104

tribution [32] and incorporates four neighborhood search operators (one-point105

move, Or-opt2 move, Or-opt3 move and Or-opt4 move) for the variable neigh-106

borhood descent. They introduced a new set of (large) benchmark instances107

and assessed MASVND for the minmax mTSP compared to ABC [32], IWO108

[32] and GVNS [38]. The results indicated that MASVND outperforms its109

competitors on large instances (with 532�1173 cities), but performs worse110

than IWO on small instances (with 51�318 cities). In 2021, Karabulut et al.111

[22] proposed an evolution strategy (ES) approach for solving the mTSP and112

multi-depots mTSP with non-predetermined depots. This approach adopts a113

self-adaptive Ruin and Recreate heuristic to generate o�spring solutions, and114

a local search, including 3-opt, to further enhance the solution quality. The115

computational experiments showed the competitiveness of this approach on116

the minsum and minmax mTSP instances.117

Another popular approach for solving the mTSP concerns swarm intelligence118

methods. In 2006, Pan and Wang [31] presented a basic ant colony optimiza-119

tion (ACO) algorithm and showed a limited comparison with a genetic algo-120

rithm. In 2009, Liu et al. [26] exposed another ACO algorithm which inte-121

grates local search for search intensi�cation. They showed competitive results122

for the minsum mTSP and the minmax mTSP compared to a genetic algo-123

rithm on some benchmark instances. In 2019, Lu and Yue [28] introduced a124

mission-oriented ant-team ACO algorithm and reported comparative studies125

with previous algorithms on the instances of [8]. In 2015, Pandiri and Singh126

[32] presented several algorithms based on arti�cial bee colony (ABC) and127

invasive weed optimization (IWO) for the minsum mTSP and the minmax128

mTSP, which use local search for the post-optimization. There are two ver-129

sions of the ABC algorithm, where neighboring solutions are generated from130

the original solution based on di�erent distance strategies. IWO can be con-131

sidered as a reinforced ABC algorithm because it generalizes ABC, by visiting132

more neighboring solutions at each generation. These algorithms showed ex-133

cellent performances and updated a majority of the best results of previous134

algorithms for the benchmark instances of [8,7,37].135

Compared to the aforementioned approaches, there are relatively few studies136

using neighborhood-based local optimization to solve the mTSP, among which137

the general variable neighborhood search heuristic (GVNS) presented by Soylu138

[38] is a representative example. Based on the m-tour solution representation,139

this algorithm applies six neighborhood search operators (one-point move,140

two types of Or-opt move, two-point move and three-point move, as well as141

2-opt) to �nd local optima and uses a random shaking method to escape local142

optimum traps. Experimental results indicated that the algorithm globally143

competes well with previous methods, except IWO [32] which showed superior144

results on the instances of [8].145
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One notices that iterated local search (ILS) algorithms were designed for the146

related capacitated vehicle routing problem (CVRP), that becomes the min-147

sum mTSP when the capacity is set to 1. In particular, Penna et al. [34]148

proposed an ILS algorithm which uses a variable neighborhood descent proce-149

dure, with a random neighborhood ordering, in the local search phase. Uchoa150

et al. [43] tested an ILS-based matheuristic algorithm on a set of new CVRP151

benchmark instances and reported several good results for the CVRP with ca-152

pacity of 1, which is equivalent to the minsum mTSP. Local search algorithms153

were also proposed for the balanced mTSP [14] and balanced dynamic mTSP154

[15].155

Among the reviewed studies, the following algorithms hold the best-known re-156

sults on the commonly used mTSP benchmark instances introduced in [8,7,45]:157

ABC(VC), IWO [32], GVNS [38], MASVND [45] (for the minmax mTSP only)158

and ES [22]. Thus they can be considered to be the state-of-the-art methods159

for solving the mTSP, and are used as the main reference algorithms for the160

computational studies in this work. Nevertheless, none of the existing mTSP161

algorithms can be considered as the most e�ective for all benchmark instances162

for both the minsum and minmax objectives of the mTSP.163

According to the reviewed studies, we observe that most existing mTSP al-164

gorithms are based on population-based and swarm intelligence approaches.165

These algorithms have fast convergences, and typically performed well on166

small instances. However, they showed inferior performances on large instances167

[45,22]. To advance the state-of-the-art of solving the mTSP, especially on large168

instances, this work introduces a hybrid algorithm that combines an e�cient169

neighborhood search (for inter-tour optimization) and a traveling salesman170

heuristic (for intra-tour optimization).171

Finally, it is known that the minsum mTSP can be conveniently transformed172

to the conventional TSP [21,35]. For a minsum mTSP instance G with n173

vertices and m tours, this transformation leads to an equivalent TSP instance174

GT with n + m − 1 vertices. GT is an extension of G with m − 1 additional175

vertices such that each new vertex is a duplicate of the depot in G and each176

pair of depots have a large enough (e.g., in�nite) distance between them. Then177

a mTSP solution of G with m tours (m > 1) can be obtained from a TSP178

solution of GT (one single tour) by splitting the TSP solution of GT with each179

depot as the delimiter. As the result, the minsum mTSP can be solved by any180

TSP algorithm in principle. However, this approach has not been investigated181

experimentally in the literature. We �ll the gap in this study by reporting the182

�rst computational results obtained by a TSP heuristic algorithm. We also use183

these results as additional references to assess our algorithm on the minsum184

mTSP instances.185
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3 Hybrid Search with Neighborhood Reduction186

This section introduces the hybrid search algorithm with neighborhood reduc-187

tion (HSNR) designed to solve the minsum mTSP and the minmax mTSP.188

The general procedure is �rst exposed, followed by the detailed presentation189

of the search components.190

3.1 General procedure191

HSNR is a hybrid algorithm combining inter-tour optimization by exchanging192

information between tours and intra-tour optimization by optimizing individ-193

ual tours. The inter-tour optimization component aims to improve the solution194

by relocating cities among di�erent tours, while the intra-tour optimization195

component tries to improve an individual tour by considering it as a TSP196

tour. By alternating these two complementary optimization components, the197

algorithm is o�ered the promise of exploring the search space e�ectively. To198

ensure a high computational e�ciency, HSNR additionally adopts a speci�c199

neighborhood reduction technique to accelerate the examination of candidate200

solutions.201

As shown in Algorithm 1, starting from a feasible solution given by the initial-202

ization procedure (Section 3.2) (line 2), the algorithm performs a number of203

iterations to improve the current solution (ϕ) (lines 4-8). At each iteration, the204

solution ϕ is �rst improved by tabu search (Section 3.3.4) with the insert op-205

erator (Section 3.3.1) and the cross-exchange operator (Section 3.3.2), where206

cities are displaced among di�erent tours. Once this insert and cross-exchange207

based inter-tour optimization is exhausted, the intra-tour optimization using208

the TSP heuristic EAX (Section 3.4) is triggered to improve each individ-209

ual tour that was previously modi�ed by insert and cross-exchange during210

inter-tour optimization. The above steps are then iterated until the stopping211

condition (typically a cuto� time limit) is met. During the search process, the212

best solution found (ϕ∗) is updated whenever it is needed and �nally returned213

at the end of the algorithm.214

3.2 Initial solution215

The initialization procedure of HSNR �rst constructs µ good candidate so-216

lutions and then selects the best one as the starting solution of the HSNR217

algorithm. To generate each of these µ solutions, the depot 0 and a random218

unassigned city in N are used to initiate each of the m tours of the solu-219

tion. Then the remaining cities (denoted by N−) are added one by one and220

in a random order into the solution according to a greedy heuristic such that221

each city is inserted at the best position that increases the least either the222

total tour-length (for the minsum mTSP) or the current shortest tour (for the223
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Algorithm 1: Main framework of HSNR for the mTSP

Input: Instance I, number of initial solutions µ, parameter τ , depth of
tabu search γ, tabu tenure parameter β;

Output: The best solution ϕ∗ found so far;
1 begin
2 ϕ← Initialization(I, µ); /* Generate an initial solution,

Section 3.2 */

3 ϕ∗ ← ϕ; /* ϕ∗ records the best solution found so far */

4 while Stopping condition is not met do
5 < ϕ,ϕ∗, R >← Insert_based_TS(ϕ, ϕ∗, γ, β); /* Inter-tour

optimization by tabu search with the insert operator,

Sections 3.3.1 & 3.3.4 */

6 < ϕ,ϕ∗, R >← CrossExchange_based_TS(ϕ, ϕ∗, γ, β, τ);
/* Inter-tour optimization by tabu search with the

cross-exchange operator, Sections 3.3.2 & 3.3.4 */

7 ϕ← EAX(ϕ,R); /* Intra-tour optimization with the TSP

heuristic EAX, Section 3.4 */

8 end
9 return ϕ∗;

10 end

minmax mTSP).224

Speci�cally, in the case of the minsum mTSP, a random tour rk is picked �rst225

among the m initial tours including only the depot and another city. Then the226

unassigned cities in N− are randomly considered one after the other and each227

selected city is greedily inserted into the tour rk at the position that leads228

to the smallest increase of the minsum objective. For the minmax mTSP, the229

unassigned cities are also randomly considered one by one. However, given230

that its objective is to minimize the longest tour, each selected city is inserted231

into the current shortest tour rcs at the position with the least increase of232

this shortest tour rcs. It is worth noting that for the minsum mTSP, the same233

tour rk is used to host all the unassigned cities in N−, while for the minmax234

mTSP, the shortest tour rcs used for each city insertion could change between235

two successive iterations.236

Finally, when all cities are assigned, a feasible solution is obtained. To raise237

its quality, the solution is improved by the best improvement descent based238

on the insert and cross-exchange operators (Sections 3.3.1 and 3.3.2), followed239

by the optimization with the TSP heuristic EAX (Section 3.4).240
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3.3 Inter-tour optimization with insert and cross-exchange241

The inter-tour optimization component of HSNR relies on the insert and cross-242

exchange operators, which are popular for solving a variety of vehicle routing243

problems (e.g., [2,40,44]). For the mTSP, the insert operator was previously244

used in the GVNS algorithm [38] as one of its six move operators and the245

MASVND algorithm [45] one of the four move operators. In this work, in246

addition to the basic insert operator, we adopt for the �rst time the cross-247

exchange operator for solving the mTSP. Compared to insert, cross-exchange248

is a large neighborhood operator, which may help the algorithm to attain249

solutions that cannot be accessed with the insert operator.250

3.3.1 Insert251

Let ϕ = {r1, r2, . . . , rm} be a candidate solution composed of m tours where252

rk (k ∈ {1, · · · ,m}) represents the kth tour including the cities visited by the253

kth salesman. For each city, the insert operator looks for the best alternative254

position for the city with the minimal move gain (i.e., objective variation).255

When all cities are examined, the best move involving a pair of cities a and πb256

is identi�ed. Then the insert operator removes city a from tour ra and reinserts257

a after city πb in rb (ra 6= rb). After that, tour ra is reconnected by linking258

the city preceding a and the city succeeding a, while tour rb is updated by259

removing the link between the city preceding b and b. Fig. 1 illustrates one260

insert operation with the reconnection of the two impacted tours ra and rb.261

a


b


a


b


a

b

a
r

b
r

Fig. 1. Illustrative example of the insert operator. Removed links are marked with
a cross and new links are marked in red.

Let ϕ′ be the neighboring solution that is obtained by applying the insert262

operator to ϕ and NI(ϕ) be the induced neighborhood that comprises all the263

neighboring solutions of ϕ. NI(ϕ) is bounded by O(n2) in size in the general264

case because there are n2 pairs of cities.265

For the minsum mTSP, this neighborhood is directly exploited by our algo-266

rithm. However, for the minmax mTSP, given that the goal is to minimize the267

longest tour, we limit the candidate cities to be moved by the insert operator268

to those of the longest tour in ϕ. This naturally reduces the general neighbor-269

hood NI(ϕ) to a much smaller neighborhood. In the HSNR algorithm, this270

reduced NI(ϕ) neighborhood is used in the case of the minmax mTSP.271
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Given the solution ϕ and a neighboring solution ϕ′ generated by displacing272

city a from tour ra to tour rb, and the move gain ∆ = F (ϕ) − F (ϕ′) (F is273

the minsum or minmax objective function) is calculated as follows. For the274

minsum mTSP, the move gain ∆ is computed by Eq. (3) in O(1) time.275

∆ = cπaδa + cπba + cab − cπaa − caδa − cπbb (3)

where πa and δa are the city preceding and succeeding a in tour ra, respectively,276

while πb and δb are the city preceding and succeeding b in tour rb, respectively.277

For the minmax mTSP, ∆ is also obtained in constant time by Eq. (4).278

∆ = max{F ′(ra), F ′(rb)} − F (ra), if rb = rs

∆ = max{F ′(ra), F ′(rb), F (rs)} − F (ra), if rb 6= rs

F ′(ra) = F (ra) + cπaδa − cπaa − caδa
F ′(rb) = F (rb) + cπba + cab − cπbb

(4)

where ra and rs are the longest tour and the second longest tour, respectively279

3.3.2 Cross-exchange280

Given a solution ϕ = {r1, · · · , rm}, the cross-exchange operator modi�es two281

tours (say ra and rb) to generate a neighboring solution by removing four arcs282

in ra and rb, and then adding four other arcs (see Fig. 2). Equivalently, a cross-283

exchange operation can be viewed as exchanging a substring r̂a = (a, . . . , σa)284

from ra and a substring r̂b = (b, . . . , σb) from another tour rb. Besides, one285

of the two substrings is reversible when they are exchanged, as shown in Fig.286

2 (right) where the substring r̂a = (a, . . . , σa) is reversed. Clearly, without287

any additional condition, this operator can lead to an extremely large neigh-288

borhood (denoted by NCE) due to the size of the two exchanged substrings,289

making its exploration highly time-consuming.290

To reduce the cross-exchange neighborhood to a reasonable size, we follow the291

idea of [40] developed for the vehicle routing problem (VRP) and limit the292

number of cities (the substring size) of the two candidate substrings r̂a and r̂b293

to τ cities at most (i.e., |r̂a| ≤ τ and |r̂b| ≤ τ) where τ is a parameter. With294

this constraint, the cardinality of NCE(ϕ) is bounded by O(n2 × τ 2) in the295

general case.296

Speci�cally, as shown in Fig. 2 (left), given a city a, a new neighbor in another297

tour needs to be found. Let πb be such a neighbor. Suppose that (πb, a) is298
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a


b


a


b


a

b

a
r

b
r

a


b


a


b


a


b


a

b

a
r

b
r

a


b


Fig. 2. Illustrative example of the cross-exchange operator. The removed arcs are
marked with a cross and the added arcs are marked in red.

added as a new edge and the edge (πa, a) needs to be removed, since vertex299

a can only have two adjacent vertices. For each determined pair of vertices300

a and πb, the corresponding substrings r̂a and r̂b can consist of at most τ301

consecutive cities (i.e., 1 ≤ |r̂a| ≤ τ and 1 ≤ |r̂b| ≤ τ). For a given pair302

of vertices, there are τ 2 neighborhood solutions which need to be evaluated.303

For the speci�c case where the substring r̂a only consists of a city (|r̂a|=1),304

the size of r̂b can vary from 1 to τ (1 ≤ |r̂b| ≤ τ), and thus τ neighborhood305

solutions need to be evaluated. Similarly, the size of substring r̂a can also vary306

from 1 to τ . Therefore, once a pair of vertices is given, the two corresponding307

substrings have τ 2 combinations, leading to τ 2 neighborhood solutions needed308

to be evaluated. Furthermore, given that there are n2 pairs of vertices, NCE(ϕ)309

is thus bounded by O(n2 × τ 2) in size. To explore the neighborhood NCE(ϕ),310

the cross-exchange operator needs to identify, among all pairs of cities, the311

best pair of cities, and then exchanges their corresponding substrings.312

For the minsum mTSP, the move gain ∆ is computed by Eq. (5).313

∆ = cπab + cπba + cσaδb + cσbδa − cπaa − cπbb − cσaδa − cσbδb (5)

For the minmax mTSP whose objective is to minimize the longest tour, one314

of the two substrings is always selected from the longest tour. Let ra be the315

longest tour. We �rst determine the start of substring r̂a as city a. Then, we316

determine the start of the substring r̂b in another tour rb. Finally, the length317

of each substring based on the minimal move gain ∆ is determined by Eq. (6),318

where rs and rt are the second and third longest tours, respectively.319

∆ = max{F ′
(ra), F

′
(rb), F (rs)} − F (ra), if rb 6= rs

∆ = max{F ′
(ra), F

′
(rb), F (rt)} − F (ra), if rb = rs

F
′
(ra) = F (ra) + cπab + F (r̂b) + cσbδa − cπaa − F (r̂a)− cσaδa

F
′
(rb) = F (rb) + cπba + F (r̂a) + cσaδb − cπbb − F (r̂b)− cσbδb

(6)

It is obvious that the move gain ∆ can be calculated in O(1) time for both320
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the minsum and minmax objectives.321

By limiting the number of cities in the two candidate substrings using the τ pa-322

rameter, the cross-exchange neighborhood is reduced to the size of O(n2×τ 2).323

However, such a neighborhood is still too large to be e�ciently explored for324

high n values. To an ensure high computational e�ciency of the proposed al-325

gorithm, we introduce in Section 3.3.3 an additional neighborhood reduction326

technique that allows to reduce drastically the neighborhood without scarify-327

ing the search capacity of the algorithm. This technique is also applicable to328

the insert neighborhood.329

3.3.3 Neighborhood reduction330

The di�culty of exploring the large cross-exchange neighborhood has been331

recognized in the VRP communities for a long time. To cope with the di�-332

culty related to large neighborhoods, neighborhood pruning techniques have333

been introduced for the VRP, such as δ-nearest neighbors [3] and granular334

neighborhoods [42]. Rather than examining the entire neighborhood, pruning335

techniques limit the considered neighboring solutions to speci�cally identi�ed336

(promising) solutions. Similar neighborhood reduction techniques have been337

proposed to accelerate TSP algorithms for solving large instances. One popu-338

lar technique is the α-nearness strategy [20] that was designed to improve the339

computational e�ciency of the well known Lin-Kernighan (LK) heuristic for340

the TSP [25] and was also applied to the VRP [2].341

The α-nearness strategy is developed by Helsgaun [20] based on sensitivity342

analysis using minimum spanning 1-trees and showing a high similarity be-343

tween a minimum 1-tree and an optimal TSP solution (they typically have344

70% to 80% of edges in common). In other words, edges that belong to a min-345

imum 1-tree stand a good chance of also belonging to an optimal tour and vice346

versa. Based on this, the α-nearness strategy uses minimum 1-trees to identify347

a set of promising edges S that are more likely involved in the optimal TSP348

solution. Given that the mTSP is an extension of the TSP, it is reasonable to349

use minimum 1-trees as a nearness measure for the mTSP as well. As such,350

the edges belonging to minimum 1-trees will be considered as promising in the351

sense that they are highly probably part of the optimal solution of the mTSP.352

Therefore, the set of promising edges S identi�ed by the α-nearness strategy353

[20] can be bene�cially adopted for solving the mTSP.354

In this work, we explore for the �rst time the idea of using the α-nearness to355

accelerate the insert and cross-exchange operations for the mTSP and show356

its practical e�ectiveness especially for handling large instances. The basic357

rationale is that one can ignore many neighboring solutions of low quality in-358

duced by the insert and cross-exchange operators and focus only on promising359

neighboring solutions. Consider the insert operator shown in Fig. 1 and let S360
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be the set of promising edges identi�ed by the α-nearness as explained next.361

If an edge (say (πb, a)) belongs to S, then the corresponding move gain ∆ is362

evaluated; otherwise, the corresponding neighboring solution is ignored. When363

all the edges of S are considered and the corresponding move gains are eval-364

uated, the best neighboring solution is selected. Because the time complexity365

of evaluating a move gain is O(1) and |S| neighboring solutions are evalu-366

ated, the time complexity of evaluating the insert neighborhood is reduced to367

O(|S|). Similarly, for the cross-exchange operator shown in Fig. 2, if an arc368

(say (πb, a)) belongs to S, then the corresponding τ 2 move gains need to be369

evaluated. When all the edges of the set S are considered, the best neighbor-370

ing solution is acquired. Therefore, the time complexity of exploring the NCE371

neighborhood is reduced to O(|S| × τ 2).372

Algorithm 2: Generation of the set of promising edges S by the α-
nearness technique

Input: Input graph G = (V,A), parameter α;
Output: The set of promising edges S;

1 begin
2 S ← ∅;
3 Generate a minimum spanning tree (T−) for the cities of N ;

/* Prim's algorithm */

4 Generate a minimum 1-tree (T ); /* By adding to T− two

shortest edges of A incident to the depot 0 */

5 for i = 0 to n do
6 for j = 0 to n do
7 Add edge (i, j) to T ;
8 Generate a new 1-tree (T+) /* By deleting the longest

edge from the new cycle containing edge (i,j) in the

tree (T) */

9 Calculate the length of T+;

10 end
11 Get the α shortest 1-trees from n 1-trees;
12 Get the α edges (E) corresponding to the α shortest 1-trees;
13 S ← S ∪ E;
14 end
15 return S;

16 end

We now explain how the set of promising edges S is identi�ed with the α-373

nearness technique based on the notion of 1-tree. As shown in Algorithm374

2, the minimum 1-tree (T ) for a graph G = (V,A) is a minimum spanning375

tree covering the cities of N together with two edges of A incident to the376

depot 0 (lines 3-4). By inserting a new edge (i, j) to T , a cycle containing377

edge (i, j) in the spanning tree is generated (line 7). Then, a new 1-tree is378

obtained by removing the longest edge on the cycle (line 8). When all edges379
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from V incident to vertex i are considered, the α edges (α is a parameter)380

corresponding to the α shortest 1-trees (T+) are saved in the set S (lines381

11-12). This process continues until all the vertices in V are considered, and382

then the set of promising edges S is obtained. Based on the implementation383

techniques in [20], building the set S with the α-nearness technique requires384

O(n2) time.385

It is worth mentioning that no neighborhood reduction technique was em-386

ployed in the existing mTSP algorithms including the neighborhood search387

algorithm GVNS [38]. As we show in Section 5.1, the α-nearness technique388

contributes positively to the performance of the HSNR algorithm.389

3.3.4 Neighborhood exploration with tabu search390

To examine candidate solutions of a mTSP instance, HSNR employs the well-391

known tabu search (TS) metaheuristic [17]. One notices that TS is a popular392

method for solving routing problems (e.g., [40,42]), that are more general393

models than the mTSP. In our case, we design the �rst tabu search procedure394

to explore the insert neighborhood NI and the cross-exchange neighborhood395

NCE that are reduced by the α-nearness technique of Section 3.3.3.396

As described in Algorithm 3, the TS procedure starts by the initialization of397

the tabu list L and the set R containing the tours that are modi�ed by the398

insert and cross-exchange operations. Then it performs a number of iterations399

until the best solution ϕ∗ cannot be improved during γ consecutive iterations.400

At each iteration, tabu search identi�es within the given neighborhood, the401

best eligible neighboring solution ϕ′ according to the mTSP objectives and402

uses ϕ′ to replace the current solution ϕ. A neighboring solution is quali�ed403

eligible if it is not forbidden by the tabu list or its quality is better than the404

best solution found so far ϕ∗. After each solution transition, the two modi�ed405

tours are recorded in R and the underlying insert or cross-exchange move406

leading to the new solution ϕ′ is added in the tabu list L to avoid re-visiting407

the replaced solution. For the tabu list, we use the following mechanism. For408

a neighboring solution ϕ′ where the city a is displaced from the tour ra to409

another tour, a is recorded in L and not allowed to join the tour ra again for410

the next t iterations, where t (called tabu tenure) is set to β + rand(β) with411

rand(β) being a random integer number in {0, . . . , β}.412

During the tabu search, if its best solution found (ϕ∗) is not updated during413

γ consecutive iterations, the search is judged to be exhausted and terminates414

while returning the best solution found, the current solution (ϕ) and the set415

of modi�ed tours (R).416
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Algorithm 3: General tabu search

Input: Input solution ϕ, best solution ϕ∗, neighborhood N , depth of
tabu search γ, tabu tenure parameter β;

Output: Updated best solution ϕ∗, ending solution ϕ, set of modi�ed
tours R;

1 begin
2 i← 0;
3 R ← ∅;
4 Initialize tabu list L;
5 while i ≤ γ do
6 Choose the best eligible neighboring solution ϕ′ ∈ N(ϕ);
7 ϕ← ϕ′;
8 Update L and R; /* Udpdate the tabu list and set of

modified tours */

9 if F (ϕ) < F (ϕ∗) then
10 ϕ∗ ← ϕ; /* Update the best solution ϕ∗ */

11 i← 0;

12 else
13 i← c+ 1;
14 end

15 end
16 return <ϕ,ϕ∗,R>;

17 end

3.4 Intra-tour optimization with the TSP heuristic EAX417

Given a candidate solution ϕ = {r1, · · · , rm}, it is easy to observe that each418

individual tour rk can be considered as a TSP tour. As the result, existing TSP419

algorithms (e.g., 2-opt and LK) can directly be used to optimize the mTSP420

objectives by minimizing an individual tour without the need for designing421

new optimization methods. Indeed, this idea proved to be quite e�ective for422

several VRPs [2,3] and has been used in the GVNS algorithm for the mTSP423

(with the 2-opt heuristic) [38] as well. In this work, the EAX heuristic [30] 1 ,424

which is among the best TSP heuristics, is adopted for intra-tour optimization.425

Speci�cally, for each tour rk in the set R (It records the tours modi�ed by the426

insert and cross-exchange operators during tabu search), EAX is applied to427

minimize the tour as follows. First, the tour rk is mapped to a standard TSP428

tour, by renaming the cities of the tour with consecutive numbers. Second,429

EAX is run to optimize the TSP tour. Given that the number of cities in430

a tour is relatively small (typically from several tens to several hundreds of431

cities for the mTSP benchmark instances), EAX needs a short time to make432

1 https://github.com/sugia/GA-for-TSP
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the TSP tour optimal or close-to-optimal. Third, we map the optimized TSP433

tour back to the corresponding mTSP tour. Experiments showed that the434

intra-tour optimization using EAX contributes favorably to the performance435

of the HSNR algorithm.436

The EAX heuristic �rstly constructs randomly a population of solutions by437

using the coordinates of the cities and then performs a number of generations438

to improve the tour length. At each generation, two parents solutions are439

selected randomly and recombined to generate o�spring solutions. Let pA and440

pB be the parent solutions, and let EA and EB be the sets of edges in pA and441

pB. An o�spring solution is created according to the following steps.442

(1) De�ne the undirected multigraph GAB = (V,EA∪EB) from edge sets EA443

and EB;444

(2) Partition the edges of EA ∪ EB into AB-cycles, where an AB-cycle is a445

cycle in GAB, such that edges of EA and edges of EB are alternatively446

linked;447

(3) Build an Eset by selecting some AB-cycles according to a selection crite-448

rion;449

(4) Build an intermediate solution EC from pA by removing the edges of EA450

that appear in Eset and adding the edges of EB that appear in Eset, i.e.,451

EC := (EA\(Eset ∩ EA)) ∪ (Eset ∩ EB);452

(5) Generate an o�spring solution by connecting all subtours of EC to obtain453

a single tour.454

As we show in Section 5.1, the EAX heuristic is quite bene�cial for the pro-455

posed algorithm. This is the �rst application of this TSP heuristic within a456

mTSP algorithm.457

4 Computational Results and Comparisons458

This section assesses the proposed algorithm for solving both the minsum459

mTSP and the minmax mTSP. We show computational results on benchmark460

instances and comparisons with the state-of-the-art algorithms.461

4.1 Benchmark instances462

Our experiments are based on two sets of 77 instances covering small, medium463

and large instances (available from the link of footnote 3).464

Set I (41 instances): These instances were introduced in [8,7,45]. Carter465

and Ragsdale [8] presented 12 instances using 3 TSP graphs (with 51, 100,466

150 cities and 3, 5, 10, 20 and 30 tours), while Brown et al. [7] also de�ned467

12 instances using 3 TSP graphs (from 51 cities and 3 tours up to 150 cities468

and 30 tours). Note that among these 3 graphs adopted in [7], only one graph469
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(gtsp150 ) is not used in [8]. Therefore, most of the instances in [8] and [7]470

share the same features. We thus exclude the redundant instances and keep471

17 distinct instances out of these 24 instances. For these 17 instances, the472

best-known objective values are available in the literature for both mTSP473

objectives. Wang et al. [45] de�ned 31 instances using 8 graphs (with 51-1173474

cities and 3-20 tours) and tested them only for the minmax mTSP. Among475

the 8 used graphs, one is a graph used in [8] and one is a graph used in [7].476

By eliminating these redundant instances, we retain 24 instances out of the 31477

instances. For these instances, the best-known objective values are available478

only for the minmax mTSP. The instances of Set I are limited to 1173 cities479

and 30 tours and their optimal values are still unknown in the literature.480

Set II (36 instances): This is a new set of large instances with 1379-481

5915 cities and 3-20 tours introduced in this study. Like previous benchmark482

instances, these instances were generated from 9 TSP graphs in TSPlib 2
483

(nrw1379, �1400, d1655, u2152, pr2392, pcb3038, �3795, fnl4461, rl5915 ),484

which come from di�erent practical problems. The optimal values for these485

instances are unknown.486

Note that most of these instances involve distance matrices whose values are487

real numbers. Our HSNR algorithm operates directly with these real number488

distances and reports its results in real numbers.489

4.2 Experimental protocol and reference algorithms490

Parameter setting. HSNR has 5 parameters: number of candidate solutions491

for initialization µ, neighborhood reduction parameter α, substring size τ ,492

depth of tabu search γ and tabu tenure parameter β. In order to calibrate these493

parameters, the "IRACE" package [27] was used to automatically identify a494

set of suitable values. The tuning was performed on 8 representative instances495

(with 150-1173 cities). For the experiment, the tuning budget was set to 1080496

runs, with a cuto� time of n/100 minutes. The candidate values of these497

parameters and their �nal values given by IRACE are shown in Table 2.498

Reference algorithms. According to the literature, �ve algorithms (IWO &499

ABC(VC) [32], GVNS [38], MASVND [45] and ES [22]) represent the state-500

of-the-art for solving the mTSP (MASVND for the minmax mTSP only).501

Thus these algorithms are adopted as the main references for our compar-502

ative studies. Given that only one code is available (an executable code of503

ES kindly provided by its authors), we faithfully re-implemented ABC(VC),504

IWO, GVNS and MASVND (denoted by re-ABC(VC), re-IWO, re-GVNS and505

re-MASVND) and veri�ed that our implementations were able to match the506

results reported in [32,38,45].507

2 http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsp/index.html
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Finally, as indicated in Section 2, the minsum mTSP can be transformed to508

the standard TSP. We provide the results obtained by the TSP heuristic EAX509

[30] in Appendix A.2.510

Experimental setting. HSNR and the re-implemented reference algorithms511

were programmed in C++ 3 and complied with the g++ compiler with the512

-O3 option. All the experiments were conducted on a computer with an Intel513

Xeon E5-2670 processor of 2.5 GHz CPU and 6 GB RAM running Linux.514

Given the stochastic nature of the compared algorithms, each algorithm was515

run 20 times on each instance with di�erent random seeds. We used the default516

parameter setting of Table 2 to run HSNR, while for the reference algorithms,517

we adopted their default parameter settings given in [32,38,45].518

Stopping condition. Each run of the compared algorithm was given the same519

cuto� time of (n/100)×4 minutes. This cuto� time allows all the compared al-520

gorithms to converge to their best possible solutions. Additional results under521

shorter cuto� conditions are reported in Appendix A.1.522

Table 2
Parameters tuning results
Parameters Section Description Considered values Final value

Minsum Minmax

µ 3.2 candidate initial solutions {1,5,10,15,20} 15 20

α 3.3.3 α-nearness in 1-tree {5,10,15,20,25,30} 20 10

τ 3.3.2 substring size {2,3,4,5,6,7} 4 7

γ 3.3.4 depth of tabu search {10,30,50,70,90,100} 10 50

β 3.3.4 tabu tenure parameter {20,40,60,80,100} 60 20

4.3 Computational results and comparison523

This section reports the comparative results between the proposed HSNR524

algorithm and the reference algorithms for the minsum mTSP and the minmax525

mTSP. The results are obtained according to the experimental protocol above526

and reported for the two sets of 77 benchmark instances (listed in increasing527

order of numbers of cities). Note that the executable code of ES failed to run528

on the instances of Set II due to unknown reasons. So its results are ignored529

as far as Set II is concerned.530

For each instance, we show the best-known objective value BKS ever reported531

in the literature (when it is available), the best objective value obtained by an532

algorithm Best and the average objective value Avg.. For our HSNR algorithm,533

we additionally report the gap of its best objective value to the previous best534

objective value calculated as Gap(%) = 100(Best − AllBest)/AllBest with535

3 The source codes of these algorithms and the instances will be available at https:
//github.com/pengfeihe-angers/mTSP
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Best and AllBest being respectively the best objective value of HSNR and the536

best objective value from all reference algorithms (including those published537

in the literature). Given that the mTSP is a minimization problem, a negative538

gap indicates an improved best result. The background of the top results for539

each instance is highlighted in dark gray; the second best results in medium540

gray; and the worst results in the lightest gray. Note that in the literature, the541

results are rounded to the nearest integers, and we report our results in more542

precise real values.543

For each set of instances, we additionally report the following information. For544

the best and average objective values of each algorithm, AVG is the average545

value over the instances of one benchmark set. For each algorithm, BKS#546

indicates the number of instances out of all the instances of the set for which547

the algorithm reports the best objective value.548

Finally, to assess the statistically signi�cant di�erence between the results of549

the HSNR algorithm and the results of each reference algorithm, we show the550

p-values from the Wilcoxon signed-rank test applied to the best and average551

objective values with a con�dence level of 0.05. A p-value smaller than 0.05552

rejects the null hypothesis.553

4.3.1 Results for the minsum mTSP554

Tables 3 and 4 show the comparative results of the compared algorithms for555

the 77 instances of Set I and Set II, respectively.556

From Table 3, we can make the following comments about the instances of557

Set I. First, for the 17 instances for which the best-known results (BKS) are558

available, HSNR �nds 6 improved results (with an improvement gap up to559

-0.24%), 7 equal results and 4 worse results. Second, for the remaining 24560

instances of Set I, HSNR clearly outperforms the reference algorithms both in561

terms of the best and average results, with more important improvements for562

the largest instances with at least 200 cities (improvement gap up to 10.39%563

for the largest instance). Also, even the average results of HSNR are better564

than the best results of the reference algorithms. Third, the small p-values565

from the Wilcoxon signed-rank tests con�rm the statistical di�erence between566

the HSNR algorithm and the reference algorithms in terms of the best and567

average results.568

From Table 4 on the large instances of Set II, we observe that the dominance569

of the HSNR algorithm over the reference algorithms is even more signi�cant.570

Indeed, HSNR systematically reports better results in terms of the best and571

average values, with improvement gaps from 2.37% to 19.45% compared to the572

best results of the reference algorithms. Once again, even the average results573

of HSNR are far better than the best results of the compared algorithms.574
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Table 4
The minsum mTSP: comparative results between HSNR and three reference algo-
rithms on the 36 instances of Set II with a cuto� time of (n/100)× 4 minutes.

re-ABC(VC) (2015) re-IWO (2015) re-GVNS (2015) HSNR (this work)

Instance Best Avg. Best Avg. Best Avg. Best Avg. Gap(%)

nrw1379-3 62099.80 62413.66 62211.90 62384.95 62449.60 63614.69 56775.70 56775.70 -8.57

nrw1379-5 62853.40 63036.26 62788.40 63011.51 63593.80 65998.39 56992.60 56999.16 -9.23

nrw1379-10 64985.10 65396.08 65147.40 65392.47 65011.90 69268.91 57636.20 57795.15 -11.31

nrw1379-20 72415.90 73267.10 71915.30 73075.37 69900.30 74382.44 59618.40 60278.03 -14.71

�1400-3 21733.90 21819.77 21682.60 21771.70 24456.90 25566.53 21169.40 21169.47 -2.37

�1400-5 23051.40 23179.70 22841.20 23068.25 24030.00 26993.65 22066.20 22238.10 -3.39

�1400-10 27960.10 28563.58 27556.10 27933.99 28276.70 30150.92 24373.90 25069.65 -11.55

�1400-20 44588.20 47458.31 44715.00 45981.11 32713.30 34886.35 29579.20 31966.86 -9.58

d1655-3 76672.20 77095.10 76471.40 76887.31 78155.30 79462.89 68364.40 68370.50 -10.60

d1655-5 83908.00 84208.31 83221.80 83962.59 86806.30 89456.39 74273.50 74292.65 -10.75

d1655-10 102457.00 103865.80 102268.00 103386.30 100732.00 105478.45 89262.50 89856.83 -11.39

d1655-20 146870.00 149739.75 147454.00 149130.20 134860.00 143426.30 121373.00 124263.45 -10.00

u2152-3 75107.40 75322.56 74957.90 75399.52 73757.10 75777.34 65064.90 65072.31 -11.78

u2152-5 75533.50 76109.51 75686.10 76083.68 74271.40 78510.40 65201.70 65219.93 -12.21

u2152-10 78836.20 79676.56 78726.40 79471.17 75482.90 83485.66 65762.50 66291.71 -12.88

u2152-20 89564.50 91776.90 89331.80 91322.73 80486.60 85760.90 67993.10 71115.74 -15.52

pr2392-3 428886.00 430482.05 428802.00 429994.15 423607.00 433789.50 378661.00 378661.00 -10.61

pr2392-5 433633.00 437696.40 435449.00 438130.75 426073.00 444213.90 380061.00 380069.40 -10.80

pr2392-10 462078.00 465864.35 458177.00 465361.70 441436.00 476382.30 387498.00 389012.85 -12.22

pr2392-20 539219.00 549174.10 542251.00 549066.05 459442.00 502937.95 417424.00 421532.30 -9.15

pcb3038-3 156742.00 157141.25 156844.00 157227.80 153338.00 155312.45 137916.00 137925.00 -10.06

pcb3038-5 158160.00 158614.05 157607.00 158559.90 156678.00 159923.10 138121.00 138123.20 -11.84

pcb3038-10 162709.00 164019.75 163743.00 164470.35 156525.00 162016.80 139142.00 139379.85 -11.11

pcb3038-20 181677.00 183532.75 181894.00 183531.15 153084.00 170283.40 144295.00 146491.65 -5.74

�3795-3 32749.00 32983.87 32678.10 32817.07 34634.30 37772.26 29589.90 29823.75 -9.45

�3795-5 33924.60 34497.01 33833.20 34198.05 37162.40 40342.25 30480.80 31048.26 -9.91

�3795-10 39470.20 40288.27 38864.50 39779.70 36823.70 41088.57 32729.60 35467.72 -11.12

�3795-20 53852.70 55606.56 53723.40 55121.13 41337.00 45838.94 39083.80 45437.27 -5.45

fnl4461-3 204334.00 204844.15 204490.00 204833.45 203756.00 206706.75 182888.00 182890.85 -10.24

fnl4461-5 205639.00 206196.00 205745.00 206132.15 207600.00 212214.50 183074.00 183076.50 -10.97

fnl4461-10 210341.00 211064.95 210158.00 210906.80 215447.00 224158.65 183808.00 184811.75 -12.54

fnl4461-20 224749.00 225855.50 223448.00 225219.15 221402.00 236283.55 191025.00 193356.10 -13.72

rl5915-3 676316.00 678576.60 676268.00 679179.35 666852.00 707708.75 565949.00 566066.70 -15.13

rl5915-5 678177.00 680809.90 673768.00 680248.85 703003.00 746016.20 566626.00 566780.55 -15.90

rl5915-10 692109.00 694947.55 689402.00 694087.15 783210.00 811408.35 569619.00 573689.20 -17.37

rl5915-20 744400.00 752084.65 742284.00 750748.75 777638.00 861515.54 597878.00 609385.79 -19.45

AVG 206327.84 207978.02 206011.24 207718.79 204834.24 216892.61 173371.56 174716.80 -

BKS# 0 0 0 0 0 0 36 36 -

p-value 1.68E-07 1.68E-07 1.68E-07 1.68E-07 1.68E-07 1.68E-07 - - -

Finally, the Wilcoxon signed-rank tests con�rm the statistical di�erence of575

these comparisons.576

To further assess the compared algorithms, we also present the performance577

pro�les [11] to visually illustrate the performance of each algorithm. Perfor-578

mance pro�les rely on a speci�c performance metric (in our case, we use fbest579

and favg). To compare a set of algorithms S over a set of problems Q, the580

performance ratio is de�ned by rs,q = fs,q
min{fs,q:s∈S,q∈Q}

. If an algorithm does not581

report result for a problem q, rs,q = +∞. The performance function of an582

algorithm s is computed by Qs(τ) = |q∈Q|rs,q≤τ |
|Q| . The value Qs(τ) computes583

the fraction of problems that algorithm s can solve with at most τ many times584

the cost of the best algorithm. For example, Qs(1) equals the number of prob-585

lems that algorithm s solved better than, or as good as the other algorithms586

in Q. Similarly, the value Qs(rf ) is the maximum number of problems that587

algorithm s solved. Therefore, Qs(1) and Qs(rf ) represent the e�ciency and588

robustness of algorithm s. Fig. 3 visually illustrates the competitiveness of589

HSNR in terms of the best and average values on the benchmark 77 instances.590
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Indeed, HSNR has a much higher Qs(1) value compared to the reference algo-591

rithms, by �nding better or equal results for nearly all instances. Furthermore,592

HSNR also reaches Qs(rf ) �rst, indicating a high robustness of our approach.593

In brief, compared with the reference algorithms, HSNR is the best solution594

approach for the minsum mTSP on both small and large scale instances.595

Finally, since the minsum mTSP can be transformed to the TSP, we show in596

Appendix A.2 the results obtained by the e�ective TSP heuristic EAX [30].597
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Fig. 3. The minsum mTSP: performance pro�les of HSNR and four reference algo-
rithms on all the 77 benchmark instances. The left �gure corresponds to the best
results while the right �gure is for the average results.

4.3.2 Results for the minmax mTSP598

We now assess the performance of the HSNR algorithm for the minmax mTSP.599

For this problem, ABC(VC) [32], IWO [32], GVNS [38], MASVND [45] and600

ES [22] are the state-of-the-art algorithms, which are used for our comparative601

study. Note that for three graphs kroA200, lin318, att532, the initial solutions602

of HSNR are generated in such a way that each city is greedily inserted in an603

arbitrary random tour, not limited to the shortest tour.604

Tables 5 and 6 report the computational results of the compared algorithms605

on Set I and Set II. From the tables, we observe that in terms of the best606

objective values, HSNR reaches the best results on 48 out of the 77 instances607

and matches the best results of the compared algorithms on 25 instances. Only608

for four instances, HSNR reports a slightly worse result with a gap to the best609

objective value no larger than 0.61%. In terms of the average objective value,610

HSNR reports 54 dominating values. It is worth noting that the average results611

of HSNR are better than the best results of the reference algorithms. Third,612

the dominance of HSNR over the reference algorithms is better demonstrated613

on the large instances of Set II with up to 32.81% improvements of their614

best results. Finally, the small p-values (� 0.05) con�rm the statistically615

signi�cant di�erences between HSNR and the reference algorithms for the616
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best and average results.617

Once again, the performance pro�les of Fig. 4 clearly show the competitiveness618

of HSNR over the compared algorithms. Indeed, HSNR has a much higher619

Qs(1) value compared to the reference algorithms, indicating that HSNR �nds620

better or equal results for nearly all instances. Furthermore, HSNR reaches621

Qs(rf ) �rst, implying a high robustness of our approach. Therefore, HSNR622

competes favorably with the state-of-the-art algorithms for the minmax mTSP.623

Its competitiveness is particularly demonstrated on large instances in terms624

of the best and average results.625
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Fig. 4. The minmax mTSP: performance pro�les of HSNR and �ve reference algo-
rithms on all the 77 benchmark instances. The left �gure corresponds to the best
results while the right �gure is for the average results.

Finally, Table 7 summaries the comparative results of each pair of compared626

algorithms on the 77 benchmark instances, by providing the number of in-627

stances for which HSNR obtained a better (#Wins), equal (#Ties) or worse628

(#Losses) result compared to each reference algorithm and the BKS value.629

We conclude that HSNR signi�cantly dominates the reference algorithms for630

both the minsum mTSP and the minmax mTSP. Its competitiveness is even631

more evident on large-scale instances.632

5 Analysis633

The computational results and comparisons with the state-of-the-art algo-634

rithms presented in Section 4 showed high e�ectiveness of the HSNR algo-635

rithm. This section aims to investigate the contributions of two important636

ingredients of HSNR: the neighborhood reduction strategy (Section 3.3.3) for637

e�cient neighborhood examination and the EAX heuristic (Section 3.4) for638

e�ective intra-tour optimization. For this purpose, we performed additional639

experiments to compare HSNR with several HSNR variants where the studied640

component (i.e., neighborhood reduction and EAX) was disabled and replaced641

by another alternative method. These experiments were based on 20 represen-642

tative instances with di�erent sizes (n from 150 to 2392, m from 3 to 20) and643
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Table 7
Summary of comparative results between HSNR and the reference algorithms.

Pair #Instances
Best Avg.

#Wins #Tiers #Losses p-value #Wins #Tiers #Losses p-value

Minsum

HSNR vs. BKS 17 7 6 4 - - - - -

HSNR vs. re-ABC(VC) 77 72 5 0 1.66E-13 74 3 0 7.73E-14

HSNR vs. re-IWO 77 69 8 0 5.21E-13 74 3 0 7.73E-14

HSNR vs. re-GVNS 77 71 6 0 2.43E-13 74 3 0 7.73E-14

HSNR vs. ES 41 38 3 0 7.74E-08 41 0 0 2.42E-08

Minmax

HSNR vs. BKS 33 12 18 3 - - - - -

HSNR vs. re-ABC(VC) 77 66 11 0 1.64E-12 67 9 1 5.69E-13

HSNR vs. re-IWO 77 57 19 1 3.69E-11 62 10 5 3.75E-12

HSNR vs. re-GVNS 77 60 17 0 1.63E-11 59 16 2 4.84E-11

HSNR vs. ES 41 21 19 1 6.08E-05 28 12 1 1.02E-06

HSNR vs. re-MASVDN 77 54 22 1 1.27E-10 63 13 2 3.74E-11

followed the experimental protocol of Section 4.2.644

5.1 Importance of the the α-nearness technique for neighborhood reduction645
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Fig. 5. Minsum mTSP: comparative results of HSNR with HSNR1 (using δ-nearest
neighbors) and HSNR2 (without pruning).
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Fig. 6. Minmax mTSP: comparative results of HSNR with HSNR1 (using δ-nearest
neighbors) and HSNR2 (without pruning).

To study the bene�t of the α-nearness pruning technique (Section 3.3.3), we646

compared HSNR with two alternative versions: HSNR1 where the α-nearness647

26



pruning technique was replaced by the method of δ-nearest neighbors [2,6], and648

HSNR2 where no pruning technique was used. As such, at each neighborhood649

search iteration of HSNR1, city a must be one of the δ-nearest cities of city πb650

(δ was set to 40), as shown in the illustrative example of Fig. 1. For HSNR2,651

there is no any restriction between city a and πb.652

The experimental results of HSNR, HSNR1 and HSNR2 are summarized in653

Figs. 5 and 6 as well as Table 8. In the �gures, the results of HSNR are used654

as the baseline and the results of HSNR1 and HSNR2 are showed relative to655

this baseline. From these results, the following observations can be made.656

For the minsum mTSP, compared to HSNR2 which doesn't use any neigh-657

borhood pruning technique, both reductions (α-nearness pruning for HSNR658

and δ-nearest pruning for HSNR1) led to slightly better results in terms of659

the best objectives values, while the average quality was slightly scari�ed in660

several cases. The Wilcoxon signed-rank tests in Table 8, however, don't con-661

�rm statistically signi�cant di�erences between the compared algorithms. For662

the minmax mTSP, both HSNR and HSNR1 signi�cantly outperformed the663

HSNR2 variant in terms of the best and average values (con�rmed by the664

Wilcoxon signed-rank tests). The importance of the pruning techniques is665

even more ampli�ed on large instances. One also observes that HSNR using666

the α-nearness pruning technique systematically showed better performances667

than HSNR1 using the δ-nearest neighbors technique. As an example, the con-668

vergence charts shown in Fig. 7 also illustrate the usefulness of the α-nearness669

pruning technique on a representative instance.670

This experiment con�rms the interest of heuristic pruning techniques, espe-671

cially the α-nearness technique adopted in the HSNR algorithm. By avoiding672

useless examinations of non-promising neighboring solutions, the neighbor-673

hood reduction strategy is particularly useful for solving large instances of the674

minmax mTSP, even if its contribution to the minsum mTSP is less signi�cant.675

5.2 Importance of the EAX heuristic for intra-optimization676

To evaluate the bene�ts of the EAX heuristic for intra-tour optimization (Sec-677

tion 3.4), we compare HSNR with two alternative algorithms: HSNR3 where678

EAX is replaced by the popular 2-opt heuristic, and HSNR4 where EAX is679

replaced by the LK algorithm [25]. The comparative results are shown in Figs.680

8 and 9 as well as Table 8.681

For the minsum mTSP, HSNR with EAX signi�cantly dominates its variants682

with the 2-opt and LK heuristics in terms of the best and average results (con-683

�rmed by the Wilcoxon signed-rank tests). For the minmax mTSP, HSNR also684

performs better than its competitors except for a small number of instances.685

This experiment demonstrates clearly the usefulness of the TSP heuristic EAX686
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Fig. 8. Minsum mTSP: comparative results of HSNR (using EAX) with HSNR3
(using the 2-opt heuristic) and HSNR4 (using the LK algorithm).
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Fig. 9. Minmax mTSP: comparative results of HSNR (using EAX) with HSNR3
(using the 2-opt heuristic) and HSNR4 (using the LK algorithm).
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as a critical intra-tour optimization tool for the mTSP.687

Table 8
Summary of comparative results between HSNR and the four compared algorithms.

Best Avg.

Pair #Instances #Wins #Ties #Losses p-value #Wins #Ties #Losses p-value

Minsum

HSNR vs. HSNR1 20 2 18 0 5.00E-01 3 5 12 3.00E-03

HSNR vs. HSNR2 20 3 17 0 2.50E-01 5 5 10 7.90E-02

HSNR vs. HSNR3 20 20 0 0 8.85E-05 20 0 0 8.85E-05

HSNR vs. HSNR4 20 20 0 0 8.85E-05 19 0 1 1.20E-04

Minmax

HSNR vs. HSNR1 20 12 6 2 5.00E-02 12 6 2 2.00E-02

HSNR vs. HSNR2 20 15 5 0 6.10E-05 15 5 0 6.10E-05

HSNR vs. HSNR3 20 12 6 2 1.00E-02 10 6 4 4.90E-01

HSNR vs. HSNR4 20 10 7 3 9.00E-02 7 6 7 6.30E-01

6 Conclusions688

This work studied the multiple traveling salesman problem, which is a rele-689

vant model to formulate a number of practical applications. The presented690

hybrid search with neighborhood reduction algorithm combines tabu search691

based inter-tour optimization (with 2 complementary neighborhoods) and a692

TSP heuristic based intra-tour optimization. A dedicated neighborhood reduc-693

tion technique was introduced, which avoids the evaluations of non-promising694

candidate solutions and thus speeds up the neighborhood search.695

Extensive computational results on the set of 41 benchmark instances com-696

monly tested in the literature indicate that the algorithm is highly competitive697

compared with the existing leading algorithms. In particular, for the minsum698

mTSP, the proposed algorithm reports 27 best results while matching 10 best-699

known results. For the minmax mTSP, the algorithm performs also well by700

reporting 15 best bounds. To assess the presented algorithm on still larger701

instances, we introduced a new set of 36 large instances and reported the702

�rst computational results, which further demonstrated the superiority of the703

algorithm over the reference algorithms. These new large instances and the704

presented results can be used to assess other mTSP algorithms.705

The TSP heuristic EAX was also used for the �rst time to solve the minsum706

mTSP, based on the fact that the minsum mTSP can be conveniently trans-707

formed to the TSP. The results showed that this transformation approach708

performs remarkably well on most minsum mTSP instances and signi�cantly709

dominates all algorithms dedicated to the minsum mTSP.710

For future work, there are several perspectives. First, it would be interesting711

to adopt the main idea of this study (i.e., neighborhood reduction, TSP tool)712

to design e�ective heuristics for other TSP variants and routing problems,713

including practical problems faced in real-life applications. Second, even if714

the minsum mTSP can be e�ectively solved by popular TSP algorithms, this715
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is not the case for the minmax mTSP. As such, more e�orts are needed to716

design e�ective algorithms for the minmax mTSP. In this regard, it is worth717

investigating other search framework such as memetic algorithms integrating718

dedicated crossover operators. Also, few exact algorithms exist for the minmax719

mTSP, there is much room for making progressive in this area.720
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A Appendix856

This appendix includes computational results of two additional experiments.857

The �rst experiment concerns a comparison between the proposed HSNR al-858

gorithm and the reference algorithms under a short cuto� time for the minsum859

mTSP and the minmax mTSP. The second experiment is about solving the860

minsum mTSP by running a TSP solver, given that the minsum mTSP can861

be transformed to the TSP [21,35]. Even if this transformation is known for862
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a long time, to our knowledge, this is the �rst study reporting extensive com-863

putational results using this approach.864

A.1 Additional computational results and comparisons865

We compare the results of the HSNR algorithm with the best results of the866

reference algorithms directly extracted from the literature. Given that the867

reference algorithms were coded by di�erent persons and run on di�erent868

computers under various stopping conditions, this comparison is presented869

for indicative purposes only. For this study, we used the following reference870

algorithms.871

- IWO [32], which reports results on 17 instances of Set I for the minsum872

mTSP and the minmax mTSP. The algorithm was written in C and run on873

a computer with a 2.83 GHz CPU and the stopping condition is a maximum874

of 1000 iteration steps.875

- ABC(VC) [32], which reports results on 17 instances of Set I for the minsum876

mTSP and the minmax mTSP. The algorithm was written in C and run on877

the same computer under the same stopping condition as IWO.878

- GVNS [38], which reports results on 12 instances of Set I for the minsum879

mTSP and the minmax mTSP. The algorithm was written in C++ and880

run on a computer with a 2.4 GHz CPU, and the stopping condition is a881

maximum running time of n seconds.882

- MASVND [45], which is designed for the minmax mTSP only and reports883

results on 31 out of the 41 instances of Set I. The algorithm was written884

in Java and run on a computer with a 3.4 GHz CPU, and the stopping885

condition is a maximum running time of n/5 seconds.886

- ES [22], which reports results on 12 instances of Set I for the minsum mTSP887

and 31 out of the 41 instances of Set I for the minmax mTSP. The algorithm888

was written in C++ and run on a computer with a 2.66 GHz CPU, and the889

stopping condition is a maximum time of n and n/5 seconds for the minsum890

mTSP and the minmax mTSP, respectively.891

To make the comparison as meaningful as possible, we adopted as our stop-892

ping condition the shortest cuto� time among those used by the reference893

algorithms, i.e., n/5 seconds used in [45]. We used the CPU frequency to con-894

vert this cuto� time to our computer, leading to a cuto� time of (1.36× n)/5895

seconds for our HSNR algorithm on our computer. Note that MASVND re-896

ports results for the minmax mTSP only, while the other reference algorithms897

report results for both the minsum mTSP and the minmax mTSP.898
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A.1.1 Comparative results for the minsum mTSP899

Table A.1 shows the computational results of the compared algorithms for the900

minsum mTSP with the same information as in Section 4.901

From Table A.1, one observes that the proposed HSNR algorithm performs902

better than ABC(VC), GVNS, by matching more BKS values, while its per-903

formance is slightly worse than the fast IWO algorithm and ES. Interestingly,904

HSNR reports three new best-known results. This experiment indicates that905

under short stopping conditions, the fast IWO and ES algorithms perform the906

best for the minsum mTSP, while HSNR remains competitive by reporting907

three new upper bounds.908

A.1.2 Comparative results for the minmax mTSP909

We show in Table A.2 the computational results of the compared algorithms910

for the the minmax mTSP with the same information as in Section 4. In this911

table, we included the results of IWO-Wang [45], which is a re-implementation912

of the IWO algorithm of [32].913

Table A.2 indicates that HSNR performs competitively compared to the main914

reference algorithms, that is MASVND [45] and ES [22]. In terms of the best915

objective value, HSNR updates the best upper bounds (BKS) for 9 out of 33916

instances and reaches the BKS values for 17 instances. Given that the BKS917

values are compiled from the best results ever reported by all existing algo-918

rithms in the literature, the performance of HSNR for the minmax mTSP can919

be considered as remarkable. In summary, these results con�rm the competi-920

tiveness of HSNR over the state-of-the-art algorithms for the minmax mTSP921

also under this short cuto� limit.922

A.2 Computational results for the minsum mTSP with a TSP heuristic923

We report computational results of running the EAX heuristic [30] on the TSP924

instances transformed from the minsum mTSP instances. Given that most of925

the 77 instances involve distance matrices of real numbers, we updated the926

data type of EAX from integer numbers to real numbers. For this experi-927

ment, we ran the EAX code with its default parameter setting under the same928

stopping condition as HSNR (i.e., (n/100) × 4 minutes, see Section 4). Each929

instance was solved 20 times by EAX with di�erence random seeds. Note that930

EAX may also terminate if the gap between the average tour length and the931

shortest tour length in the population becomes less than 0.0001.932

Tables A.3 and A.4 show the comparative results of EAX and HSNR with the933

same information as in Section 4.3.1. The background of the top results for934

each instance is highlighted in dark gray; the second best results in medium935
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gray. The results of Tables A.3 and A.4 clearly indicate that EAX signi�-936

cantly dominates HSNR in terms of the best and average results for both sets937

of instances. Only on three large instances of Set II, HSNR reported better938

results. Given that HSNR perfoms better than the existing minsum mTSP al-939

gorithms in the literature, we can safely say that EAX dominates all existing940

minsum mTSP algorithms. Finally, even if we did not show detailed run-time941

information, we mention that EAX converges much faster than the existing942

algorithms (by at least one order of magnitude). EAX requires no more than943

30 seconds for Set I and no more than 400 seconds for Set II.944

We conclude that the transformation approach of the minsum mTSP to the945

TSP is particularly e�ective and can be considered as the current best solu-946

tion method for the minsum mTSP. It is worth mentioning that this is the947

�rst study that demonstrates the high interest of solving the minsum mTSP948

via TSP algorithms. This �nding will bene�t future research on the minsum949

mTSP.950
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Table A.3
Minsum mTSP: comparative results of HSNR and EAX on Set I with a cuto� time
of (n/100)× 4 minutes.

EAX [30] HSNR (this work)

Instance Best Avg. σ Best Avg. σ

mtsp51-3 445.99 445.99 0.00 445.99 445.99 0.00

mtsp51-5 471.69 471.69 0.00 471.69 471.69 0.00

mtsp51-10 579.70 579.70 0.00 580.72 580.72 0.00

mtsp100-3 21797.60 21797.60 0.00 21797.60 21797.60 0.00

mtsp100-5 23174.90 23174.90 0.00 23174.90 23174.90 0.00

mtsp100-10 26926.60 26926.60 0.00 26926.60 26983.51 50.63

mtsp100-20 38245.10 38245.10 0.00 38245.10 38259.98 51.79

rand100-3 8012.13 8012.13 0.00 8012.13 8012.13 0.00

rand100-5 8223.91 8223.91 0.00 8223.91 8223.91 0.00

rand100-10 9366.80 9366.80 0.00 9366.80 9366.80 0.00

rand100-20 13404.10 13404.10 0.00 13404.10 13404.10 0.00

mtsp150-3 37910.70 37910.70 0.00 37910.70 37910.70 0.00

mtsp150-5 38714.40 38714.40 0.00 38714.40 38722.24 11.83

mtsp150-10 42202.80 42202.80 0.00 42234.30 42310.82 36.72

mtsp150-20 53305.90 53305.90 0.00 53351.30 53483.13 95.76

mtsp150-30 68442.90 68442.90 0.00 68455.90 68539.07 123.03

gtsp150-3 6574.20 6574.20 0.00 6574.20 6574.52 1.45

gtsp150-5 6655.11 6655.11 0.00 6655.11 6655.11 0.00

gtsp150-10 7332.11 7332.11 0.00 7332.11 7332.11 0.00

gtsp150-20 9512.23 9512.23 0.00 9512.23 9513.38 4.17

gtsp150-30 12966.50 12966.50 0.00 12966.50 12969.05 9.86

kroA200-3 29539.50 29539.50 0.00 29539.50 29539.50 0.00

kroA200-5 29916.20 29916.20 0.00 29916.20 29916.20 0.00

kroA200-10 32613.40 32613.40 0.00 32613.40 32613.40 0.00

kroA200-20 41439.20 41439.20 0.00 41439.20 41522.45 207.47

lin318-3 42404.60 42404.60 0.00 42404.60 42404.60 0.00

lin318-5 43315.00 43315.00 0.00 43315.00 43315.00 0.00

lin318-10 47325.50 47325.50 0.00 47325.50 47333.21 9.50

lin318-20 59893.20 59893.20 0.00 59893.20 60416.35 742.66

att532-3 28242.00 28242.00 0.00 28242.00 28242.00 0.00

att532-5 28945.00 28945.00 0.00 28945.00 28945.00 0.00

att532-10 31001.00 31001.00 0.00 31001.00 31038.80 88.22

att532-20 36303.00 36303.00 0.00 36305.00 36696.65 482.00

rat783-3 8880.03 8880.03 0.00 8880.03 8880.64 2.72

rat783-5 8964.80 8964.80 0.00 8964.80 8964.90 0.45

rat783-10 9265.64 9265.64 0.00 9265.64 9275.16 17.08

rat783-20 10172.10 10172.10 0.00 10172.60 10272.95 106.03

pcb1173-3 57167.20 57169.20 4.40 57167.20 57174.12 19.79

pcb1173-5 57628.80 57628.80 0.00 57628.80 57654.20 17.40

pcb1173-10 59241.90 59242.10 3.30 59241.90 59299.07 187.13

pcb1173-20 64052.00 64052.00 0.00 64063.60 65102.08 646.01

Avg. 28306.72 28306.77 - 28309.28 28374.09 -

Best# 7 23 - 0 0 -

p-value 1.95E-02 3.25E-05 - - - -
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Table A.4
Minsum mTSP: comparative results of HSNR and EAX on Set II with a cuto� time
of (n/100)× 4 minutes.

EAX [30] HSNR (this work)

Instance Best Avg. σ Best Avg. σ

nrw1379-3 56775.70 56775.70 0.00 56775.70 56775.70 0.00

nrw1379-5 56992.60 56994.40 1.81 56992.60 56999.16 5.27

nrw1379-10 57636.10 57637.00 1.10 57636.20 57795.15 168.81

nrw1379-20 59539.80 59542.70 4.14 59618.40 60278.03 426.66

�1400-3 21169.40 21176.40 14.74 21169.40 21169.47 0.31

�1400-5 22066.20 22069.70 11.06 22066.20 22238.10 239.95

�1400-10 24373.90 24380.40 14.75 24373.90 25069.65 531.24

�1400-20 29480.40 29492.70 16.14 29579.20 31966.86 1516.54

d1655-3 68364.40 68367.70 3.61 68364.40 68370.50 8.69

d1655-5 74272.70 74273.10 1.78 74273.50 74292.65 43.66

d1655-10 89261.10 89262.40 2.03 89262.50 89856.83 717.31

d1655-20 120016.00 120019.00 5.21 121373.00 124263.45 1190.66

u2152-3 65064.90 65066.10 2.70 65064.90 65072.31 10.68

u2152-5 65197.20 65200.70 11.15 65201.70 65219.93 8.60

u2152-10 65748.30 65750.50 3.85 65762.50 66291.71 526.37

u2152-20 67493.40 67494.20 1.76 67993.10 71115.74 1344.28

pr2392-3 378661.00 378661.00 0.00 378661.00 378661.00 0.00

pr2392-5 380061.00 380061.00 0.00 380061.00 380069.40 28.64

pr2392-10 387498.00 387498.00 0.00 387498.00 389012.85 1621.15

pr2392-20 407678.00 407680.00 9.39 417424.00 421532.30 2665.82

pcb3038-3 137916.00 137917.00 2.69 137916.00 137925.00 3.08

pcb3038-5 138121.00 138122.00 2.69 138121.00 138123.20 4.51

pcb3038-10 139142.00 139142.00 0.00 139142.00 139379.85 369.30

pcb3038-20 142401.00 142402.00 3.67 144295.00 146491.65 1068.88

�3795-3 29601.20 29661.50 72.21 29589.90 29823.75 394.67

�3795-5 30508.20 30560.50 50.68 30480.80 31048.26 634.63

�3795-10 32779.80 32866.60 75.61 32729.60 35467.72 1551.01

�3795-20 37333.30 37419.10 70.10 39083.80 45437.27 3166.39

fnl4461-3 182888.00 182890.00 2.43 182888.00 182890.85 7.74

fnl4461-5 183074.00 183076.00 1.79 183074.00 183076.50 4.70

fnl4461-10 183803.00 183806.00 3.49 183808.00 184811.75 874.86

fnl4461-20 186618.00 186619.00 3.58 191025.00 193356.10 1527.51

rl5915-3 565949.00 566001.00 70.32 565949.00 566066.70 58.80

rl5915-5 566626.00 566684.00 69.02 566626.00 566780.55 100.60

rl5915-10 569619.00 569653.00 75.52 569619.00 573689.20 3457.21

rl5915-20 578212.00 578278.00 77.77 597878.00 609385.79 7492.50

Avg. 172276.16 172291.68 - 173371.56 174716.80 -

Best# 15 33 - 3 1 -

p-value 6.50E-03 5.39E-07 - - - -
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