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Abstract

This paper considers the multi-item inventory lot-sizing problem with supplier selection. The problem
consists of determining an optimal purchasing plan in order to satisfy dynamic deterministic demands
for multiple items over a finite planning horizon, taking into account the fact that multiple suppliers are
available to purchase from. As the complexity of the problem was an open question, we show that it
is NP-hard. We propose a facility location extended formulation for the problem which can be prepro-
cessed based on the cost structure and describe new valid inequalities in the original space of variables.
Furthermore, we study the projection of the extended formulation into the original space and show the
connection between the inequalities generated by this projection and the newly proposed inequalities.
Additionally, we present a simple and easy to implement yet very effective MIP (mixed integer pro-
gramming) heuristic using the extended formulation. Besides, we introduce two new benchmark sets of
instances to assess the performance of the approaches under different cost structures. Computational
results show that the preprocessing approach can significantly reduce the size of the formulation to be
solved, allowing both an increase in the number of instances solved to optimality within the time limit
and a reduction on the average time to solve them. Moreover, the described inequalities can improve the
performance of a standard formulation for nearly all instance groups. They can also be used to provide
strong lower bounds for certain large instances for which the preprocessed facility location formulation
fails even to provide a linear relaxation bound due to memory limitations. Furthermore, the proposed
MIP heuristic outperforms the heuristics available in the literature as it obtains solution values which
at least match those reported for all instance groups, strictly improving most of them. The results also
show that the performance of the approaches can vary considerably under different cost structures.

Keywords: inventory lot-sizing; supplier selection; mixed integer programming; MIP heuristics.

1 Introduction

In the nowadays competitive business environment, it has become more important to achieve excellence
in supplier selection and lot-sizing processes for purchasing the products required by the companies. As
suppliers may have varying availability for the needed products at different costs, the intention of these
processes is to choose the best suppliers from which to purchase the items, the amount of the lots, and the
time to set the orders in a finite planning horizon. A company may have the single objective of minimizing
the total procurement cost or, in certain situations, multiple objectives which may include costs, quality of
items, among other metrics. The multi-item inventory lot-sizing problem with supplier selection (MIILSPSS)
is a problem belonging to this context. In the MIILSPSS, there exists a known dynamic deterministic
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demand for multiple items in a finite planning horizon, which can be purchased from a set of suppliers
in each of the periods. There is a fixed supplier ordering cost that is charged for each period an order
is put to that supplier, as well as unitary purchasing and holding costs. There are no capacities on the
amounts of purchased items. The problem consists of determining a purchasing plan minimizing the total
cost. These sorts of problems regarding supplier selection and lot-sizing are faced by a variety of industries
since companies that manufacture or simply distribute products very often need to make these decisions
in an optimized fashion. Note that uncapacitated problems occur when items are acquired from very large
suppliers and, besides, can arise in solving approaches, such as column generation or Lagrangian relaxation,
for even more challenging capacitated problems.

Ustun and Demirtas (2008b) propose an integration of analytic network process (ANP) and achievement
scalarizing functions for a multi-objective problem of choosing suppliers and defining purchasing quantities
for a single item, taking into consideration tangible-intangible criteria. Ustun and Demirtas (2008a) integrate
ANP and multi-objective mixed integer linear programming (MOMILP) for single-item lot-sizing problems
with supplier selection. Zhao and Klabjan (2012) consider a single-item lot-sizing problem with simultaneous
supplier selection and provide a mixed integer programming (MIP) formulation for the problem together
with a study of its underlying polytope. They provide necessary and sufficient conditions to obtain facet
defining inequalities for the uncapacitated case and valid inequalities for the capacitated one. Choudhary
and Shankar (2013) propose a MIP formulation for a single-item lot-sizing and distribution problem with
supplier selection. Choudhary and Shankar (2014) extend the problem studied in Choudhary and Shankar
(2013) to a multi-objective setting and propose a goal programming approach. Arslan, Richard, and Guan
(2016) study the polyhedron associated with a formulation for a two-echelon single-item lot-sizing problem
with supplier selection which allows inventory at the suppliers. The authors show that the problem is NP-
hard, provide a class of facet defining inequalities, and give the convex hull of the proposed formulation
for certain special cases. Ghaniabadi and Mazinani (2017) consider a single-item lot-sizing problem with
supplier selection, backlogging, and quantity discounts. The authors present a MIP formulation together
with a recursive approach that can be used to solve the problem iteratively. Akbalik and Rapine (2018)
consider a single-item uncapacitated lot sizing problem with multi-mode replenishment and batch deliveries.
The authors present an NP-hardness proof and show that the problem remains NP-hard even for very simple
and strict cost structures. Additionally, they present a 2-approximation algorithm and show that the problem
admits a fully polynomial-time approximation scheme (FPTAS). We remark that lot-sizing problems with
subcontracting (Atamtürk & Hochbaum, 2001) are somehow related to lot-sizing problems with supplier
selection, although subcontracting is more commonly used for capacitated problems whenever there is a lack
of production capacity.

Kasilingam and Lee (1996) propose a MIP formulation for a multi-item supplier selection problem with
lead times. Dahel (2003) considers a multi-objective supplier selection and order quantities for a multi-
item problem with quantity discounts and propose a preference-based approach. Basnet and Leung (2005)
studied the multi-item inventory lot-sizing problem with supplier selection (MIILSPSS), which is the problem
considered in our work. The authors proposed an exhaustive enumerative search and a heuristic based on the
Wagner-Whitin algorithm which consists of construction and improvement phases. Wadhwa and Ravindran
(2007) compare the use of three multi-objective approaches for a multi-objective supplier selection problem
for multiple items considering objectives as price, lead-time, and quality. Rezaei and Davoodi (2008) propose
a genetic algorithm for a multi-item inventory lot-sizing problem with supplier selection in which the items
provided by the supplier may have imperfections. Sadeghi Moghadam, Afsar, and Sohrabi (2008) propose
a hybrid intelligent algorithm which combines a fuzzy neural network with a genetic algorithm to plan and
control the inventory at different levels depending on demand rates for a multi-item inventory lot-sizing
problem with supplier selection. Woarawichai, Kullpattaranirun, and Rungreunganun (2011) propose a MIP
formulation for a multi-item inventory lot-sizing problem with supplier selection under storage and budget
constraints. Rezaei and Davoodi (2011) consider capacitated multi-objective multi-item lot-sizing problems
with multiple suppliers. The problems are modeled as multi-objective mixed integer nonlinear programs
(MOMINLP) and tackled with multi-objective genetic algorithms to attempt encountering Pareto-optimal
solutions. The authors observed that the problems are NP-hard as they extend the capacitated lot-sizing
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problem (Bitran & Yanasse, 1982). Ware, Singh, and Banwet (2014) formulate and solve a mixed integer
nonlinear programming model to manage a dynamic supplier selection problem which takes into consideration
supplier capacity, product quality, and lead times. Cárdenas-Barrón, González-Velarde, and Treviño-Garza
(2015) have revisited and tackled the MIILSPSS (Basnet & Leung, 2005) with a heuristic based on the
reduce and optimize approach (ROA). The authors have demonstrated through computational experiments
that their heuristic obtains better solutions when compared with the methods of Basnet and Leung (2005).
Alfares and Turnadi (2018) propose a MIP formulation and heuristic algorithms for the multi-item inventory
lot-sizing problem with supplier selection with the possibility of shortages. A. L. Cunha, Santos, Morabito,
and Barbosa-Póvoa (2018) consider the integration of a multi-item lot-sizing problem with supplier selection
for raw material purchasing in the chemical industry. The authors propose a MIP formulation that is solved
using a commercial solver and compare the advantages of such an integrated approach over a non-integrated
one in which the two problems are solved sequentially. Kirschstein and Meisel (2019) consider the application
of a lot-sizing problem with supplier selection in the process industry and propose a kernel search heuristic
to tackle the real instances of their case study.

A summary of the main characteristics and solution approaches for related problems is provided in
Table 1. The interested reader is referred to Aissaoui, Haouari, and Hassini (2007), Ho, Xu, and Dey (2010)
and Ware, Singh, and Banwet (2012) for surveys regarding different aspects of supplier selection and order
lot-sizing.

Extended formulations such as facility location (Krarup & Bilde, 1977), multi-commodity (R. Rardin
& Choe, 1979) and shortest path (Eppen & Martin, 1987) have been extensively used to tackle lot-sizing
problems (Solyalı & Süral, 2011; Akartunalı & Miller, 2012; Carvalho & Nascimento, 2016; J. O. Cunha &
Melo, 2016a; Melo & Ribeiro, 2017). Such formulations, however, can become computationally intractable
as the problem size increases. Several authors have analyzed the projections of these extended formulations
for lot-sizing problems. R. L. Rardin and Wolsey (1993) analyzed the projection of the multicommodity
formulation for uncapacitated fixed charge network problems into the original space of variables and showed
that such projection is given by the so-called dicut inequalities. Akartunalı and Miller (2009) and Akartunalı
and Miller (2012) discuss the relationship between valid inequalities and extended formulations for multi-level
lot-sizing problems. Zhang, Küçükyavuz, and Yaman (2012) performed a polyhedral study for a multi-level
lot-sizing with intermediate demands and showed that their described inequalities give the nondominated
inequalities implied by the projection of the multicommodity formulation for the two-level problem. Melo and
Ribeiro (2017) performed theoretical and computational comparisons of reformulations and valid inequalities
for a multi-item uncapacitated lot-sizing with inventory bounds. In an attempt to overcome the issue
regarding the prohibitive size of extended formulations for large problems, Van Vyve and Wolsey (2006)
introduced the concept of approximate extended formulations, in which a parameter is used to control their
sizes.

1.1 Main contributions and organization

The main contributions of our work can be summarized as follows. We firstly show that the multi-item
inventory lot-sizing problem with supplier selection is NP-hard. Secondly, we propose a facility location
extended formulation together with an effective preprocessing scheme (Eén & Biere, 2005; Savelsbergh,
1994) and new valid inequalities in the original space of variables. Differently from approximate extended
formulations (Van Vyve & Wolsey, 2006), our preprocessing approach attempts to reduce the size of the
formulation while guaranteeing the same quality in the provided lower bounds. Thirdly, we consider the
projection of the facility location extended formulation into the original space. Fourthly, given that MIP
heuristics have been successfully applied for several production planning and lot-sizing problems (Akartunalı
& Miller, 2009; Helber & Sahling, 2010; Melo & Wolsey, 2012; Melo & Ribeiro, 2017; J. O. Cunha, Kramer, &
Melo, 2019), we propose a simple and easy to implement yet very effective MIP heuristic. Last but not least,
we introduce two new sets of benchmark instances to analyze the performance of the proposed approaches
under alternative cost structures.
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Multi-
item

Mono or multi-
objective

Other characteristics Solution approach

Kasilingam and Lee (1996) Yes Mono-objective Stochastic demands and items lost Chance-constrained integer programming

Dahel (2003) Yes Multi-objective Items can be rejected, missing items and
price discounts

MIP formulation with preference oriented
approach

Basnet and Leung (2005) Yes Mono-objective - Enumerative algorithm and heuristics

Wadhwa and Ravindran (2007) Yes Multi-objective Capacity constraints Goal programming

Rezaei and Davoodi (2008) Yes Multi-objective Transportation costs and product quality
levels

Genetic algorithms

Sadeghi Moghadam et al. (2008) No Mono-objective Real case study with uncertain demands Data analysis using neural networks for pre-
diction and genetic algorithms

Ustun and Demirtas (2008a) No Multi-objective Defect rate analysis and defective products Analytic network process integrated with
MIP formulation

Ustun and Demirtas (2008b) No Multi-objective Defective products Goal programming

Rezaei and Davoodi (2011) Yes Multi-objective Back-order and supplier quality level Nonlinear MIP formulation

Woarawichai et al. (2011) Yes Mono-objective Storage capacity and purchase budget MIP formulation

Zhao and Klabjan (2012) No Mono-objective Uncapacitated and capacitated cases Theoretical polyhedral study

Choudhary and Shankar (2013) No Mono-objective Service levels requirements and cost of re-
jected items

MIP formulation

Choudhary and Shankar (2014) No Multi-objective Storage space constrains and carrier selection Preemptive goal programming

Ware et al. (2014) Yes Mono-objective Supplier capacity, product quality, and lead
times

Nonlinear MIP formulation

Cárdenas-Barrón et al. (2015) Yes Mono-objective - Reduce and optimize approach (ROA)

Arslan et al. (2016) No Mono-objective Two-echelon, suppliers can hold inventory,
supplier controls shipments

Dynamic programming, branch and cut al-
gorithm, and polyhedral study

Ghaniabadi and Mazinani (2017) No Mono-objective Backlogging, quantity discounts MIP formulation and forward dynamic pro-
gramming models

Alfares and Turnadi (2018) Yes Mono-objective Backlogging, quantity discounts, lead times MIP formulation, modified Silver-Meal
heuristic and genetic algorithm

Akbalik and Rapine (2018) No Mono-objective Batch deliveries and stepwise replenishment
costs

Constructive 2-approximation polynomial al-
gorithm and fully polynomial-time approxi-
mation scheme (FPTAS)

A. L. Cunha et al. (2018) No Mono-objective Integrated raw material purchasing and pro-
duction planning, production and inventory
capacities, lead times, discount levels

MIP formulation

Kirschstein and Meisel (2019) No Mono-objective Storage selection and discounts MIP formulation and adapted kernel heuris-
tic

Table 1: Summary of the literature on lot-sizing with supplier selection.
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The remainder of this paper is organized as follows. Section 2 formally defines the multi-item inventory
lot-sizing problem with supplier selection and shows that the problem is NP-hard. Section 3 presents the
facility location extended formulation together with the preprocessing scheme and describes the proposed
(l, Sj)-inequalities. Section 4 analyzes the projection of the extended formulation into the original space
and shows how it relates to the (l, Sj)-inequalities. Section 5 details the proposed MIP heuristic. Section 6
summarizes the performed computational experiments. Section 7 discusses final comments.

2 Problem definition and standard mixed integer programming

formulation

In this section, we formally introduce the multi-item inventory lot-sizing problem with supplier selection
(MIILSPSS) and describe a standard mixed integer programming formulation for the problem. After that,
in Subsection 2.1, we show that the problem is NP-hard.

The MIILSPSS can be formally defined as follows. Consider I = {1, . . . , NI} to be the set of items,
J = {1, . . . , NJ} to be the set of suppliers and T = {1, . . . , NT } to be the set of periods composing the
planning horizon. A deterministic time-varying demand dit ≥ 0 must be met without backlogging for each
item i ∈ I in each period t ∈ T . There is a unitary purchasing price Pij of item i ∈ I from supplier j ∈ J .
A transaction cost Oj for supplier j ∈ J is incurred whenever an item is purchased from j in a given period.
Furthermore, a per-unit holding cost Hi is incurred for item i ∈ I in every period the item is held in stock.
The problem consists of determining a purchasing plan which minimizes the total cost. Let dikt =

∑t

l=k d
i
l

be the cumulative demand for item i ∈ I in periods from k ∈ T up to t ∈ T , with k ≤ t. It is assumed
that all the costs are nonnegative and that there are no initial or final stocks. Table 2 summarizes the main
notation used throughout the paper.

Consider variable x
ij
t to be the amount of item i ∈ I purchased from supplier j ∈ J in period t ∈ T , and

variable y
j
t to be equal to one if items are purchased from supplier j ∈ J in period t ∈ T and to be equal to

zero otherwise. The problem can thus be formulated as (Basnet & Leung, 2005):

zSTD =min

NI
∑

i=1

NJ
∑

j=1

NT
∑

t=1

Pijx
ij
t +

NJ
∑

j=1

NT
∑

t=1

Ojy
j
t +

NI
∑

i=1

NT
∑

t=1

Hi





NJ
∑

j=1

t
∑

k=1

x
ij
k − di1t



 (1)

NJ
∑

j=1

t
∑

k=1

x
ij
k ≥ di1t, for i ∈ I, t ∈ T, (2)

x
ij
t ≤ My

j
t , for i ∈ I, j ∈ J, t ∈ T, (3)

y
j
t ∈ {0, 1}, for j ∈ J, t ∈ T, (4)

x
ij
t ≥ 0, for i ∈ I, j ∈ J, t ∈ T. (5)

The objective function (1) minimizes the total sum of purchasing, transaction, and storage costs. Constraints
(2) guarantee that all the demands are satisfied. Constraints (3) ensure the setup variables are set to one
whenever items are purchased from a supplier in a given period. Constraints (4) and (5) impose, respectively,
the integrality and nonnegativity requirements on the variables. This formulation has O(NI × NJ × NT )
variables and constraints. Note that even though the studied problem considers time-independent costs, this
standard formulation as well as the results proposed in the remainder of the paper can be easily extended
for the variant of the problem with time-dependent costs.
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Notation Description

I Set of items
NI Number of items, i.e., |I |
J Set of suppliers
NJ Number of suppliers, i.e., |J |
T Planning horizon, given by a set of periods
NT Size of the planning horizon, i.e., |T |
dit Demand for item i in time t

Pij Per unit price of purchasing item i from supplier j
Oj Transaction cost for supplier j
Hi Per unit holding cost of item i

dikt Cumulative demand for item i in the interval of periods [k, t], i.e.,
∑t

k′
=k

dik′

F Potential facility locations
NF Number of potential facility locations, i.e., |F |
C Set of clients
NC Number of clients, i.e., |C|
qf Fixed cost to open facility f

vcf Cost of serving client c from facility f

x
ij
t Continuous variable representing the amount of item i purchased from supplier

j in period t

y
j
t Binary variable representing whether or not items are purchased from supplier

j in period t

X
ij

tk Facility location variable representing the amount of item i purchased from
supplier j in period t to satisfy demand of period k

θ
ij
t Dual variable associated with constraints (14)

γ
ij

tk Dual variable associated with constraints (15)
φi
t Dual variable associated with constraints (16)

Table 2: Summary of the used notation.

2.1 NP-hardness

Certain uncapacitated production planning problems are known to be solved in polynomial time (Wagner
& Whitin, 1958; Zangwill, 1969; Melo & Wolsey, 2010; Zhao & Klabjan, 2012), while others were shown to
be NP-hard. Examples of NP-hard problems include the joint-replenishment problem, the one-warehouse
multi-retailer problem (Arkin, Joneja, & Roundy, 1989; J. O. Cunha & Melo, 2016b), and variants of the
uncapacitated multi-plant lot-sizing with inter-plant transfers (J. O. Cunha, Kramer, & Melo, 2020). In this
regard, to the best of our knowledge, there is no available NP-hardness proof for the multi-item inventory lot-
sizing problem with supplier selection. In this section, we show that the problem is NP-hard via a reduction
from the NP-hard uncapacitated facility location problem (Cornuéjols, Nemhauser, & Wolsey, 1990).

The uncapacitated facility location problem (UFL) can be formally defined as follows. Consider a set
F = {1, . . . , NF} of potential facility locations, a set C = {1, . . . , NC} of clients, a fixed cost qf to open
facility f ∈ F , and a cost vcf of serving client c ∈ C from facility f ∈ F . The problem consists of obtaining
a subset F ′ ⊆ F of the facilities to be opened and then to assign clients to these facilities while minimizing
the total cost. The decision version of the problem asks whether there is a solution with a cost less than or
equal to a value K which is given as input.

Theorem 1. The multi-item inventory lot-sizing problem with supplier selection is NP-hard.

Proof. In what follows, we present a polynomial transformation UFL∝MIILSPSS. Namely, we show how an
instance for the decision version of the MIILSPSS is obtained from an instance of the decision version of the
UFL. As the decision version of UFL is NP-complete, this implies that the decision version of MIILSPSS is
also NP-complete and, thus, its optimization version is NP-hard. Given an instance for UFL, a corresponding
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instance for MIILSPSS can be obtained as follows. Create a supplier for each potential facility f ∈ F , an
item for each client c ∈ C, and set the number of periods as NT = 1. For each supplier f ∈ J , set its
transaction cost as the cost of opening the corresponding facility, i.e., Of = qf . The cost of acquiring item
c ∈ I from supplier f ∈ J is set as the cost of serving client c ∈ C from facility f ∈ F , i.e., Pcf = vcf . We
now show that the instance for UFL has a solution with value less than or equal to K if and only if the
corresponding instance for MIILSPSS has a solution with value less than or equal to K. Consider a solution
F ′ ⊆ F for the uncapacitated facility location in which each facility f ∈ F ′ serves a set Cf of clients, with cost
K =

∑

f∈F ′ qf +
∑

f∈F ′

∑

c∈Cf
vcf . Thus, there is a solution for the multi-item inventory lot-sizing problem

with supplier selection with only nonzero values yf1 = 1 for f ∈ F ′ and x
cj
1 = 1 for j ∈ F ′ and c ∈ Cj , whose

objective is
∑

f∈F ′

∑

c∈Cf
vcfx

cf
1 +

∑

f∈F ′ qfy
f
1 = K . Now consider a solution (x̂, ŷ) for the multi-item lot-

sizing problem with supplier selection with cost K =
∑

i∈NI

∑

j∈NJ Pijx
ij
1 +

∑

j∈NJ Ojy
j
1, and assume that

x̂ is integral (note that such integral solution always exist when we consider solutions with the lowest possible

cost). Observe that there is a corresponding solution F ′ = {f ∈ J | yf1 = 1} and Cf = {c ∈ C | xcf
1 = 1} for

the uncapacitated facility location with cost
∑

j∈F ′ Oj +
∑

j∈F ′

∑

i∈Cj
Pij = K.

3 Extended formulation and valid inequalities

In this section we present the extended formulation and valid inequalities proposed in this paper. Subsec-
tion 3.1 describes the facility location extended formulation and the preprocessing approach. Subsection 3.2
introduces the new (l, Sj)-inequalities.

3.1 Facility location extended formulation

Define variable X
ij
tk to be the amount of item i ∈ I purchased from supplier j ∈ J in period t ∈ T to satisfy

demand of period k ∈ T , with t ≤ k. A facility location formulation (Krarup & Bilde, 1977) can be cast as

zFL =min

NI
∑

i=1

NJ
∑

j=1

NT
∑

t=1

NT
∑

k=t

PijX
ij
tk +

NJ
∑

j=1

NT
∑

t=1

Ojy
j
t +

NI
∑

i=1

NT
∑

t=1

Hi(

t
∑

u=1

NT
∑

k=t+1

X
ij
uk) (6)

NJ
∑

j=1

k
∑

t=1

X
ij
tk = dik, for i ∈ I, k ∈ T, (7)

X
ij
tk ≤ diky

j
t , for i ∈ I, j ∈ J, t ∈ T, k ∈ {t, . . . , NT }, (8)

y
j
t ∈ {0, 1}, for j ∈ J, t ∈ T, (9)

X
ij
tk ≥ 0, for i ∈ I, j ∈ J, t ∈ T, k ∈ {t, . . . , NT }. (10)

The objective function (6) minimizes the total sum of purchase, transaction, and storage costs. Constraints
(7) guarantee that all the demands are satisfied. Constraints (8) enforce the setup variables to one when-
ever items are purchased from a supplier in a given period. Constraints (9) and (10) are integrality and
nonnegativity restrictions on the variables.

3.1.1 Preprocessing the facility location extended formulation

The facility location extended formulation has a large number of variables since, in order to properly model
the problem, it considers the possibility that the demand of a period is satisfied by the production in any
other period sooner in the planning horizon. Although it might be the case for certain instances that the
productions of the first periods are used to meet the demands of the later periods, it does not seem to be
the case for real instances. In this context, we show that variables can be eliminated from the formulation
based on the cost structure without losing optimality.
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Proposition 2. Let X ij
tk be a variable for which Oj ≤ (k − t) × Hi × dik. Thus, we can set X ij

tk′ = 0 for
every k′ such that k ≤ k′ ≤ NT without losing optimality.

Proof. Firstly, let k be the earliest period after t for which Oj ≤ (k − t) ×Hi × dik and assume there is an

optimal solution in which X
ij
tk = w > 0. Note that the right-hand side of the condition corresponds to the

total storage cost for the demand of period k which was purchased in period t. Thus, as the purchasing costs
are time-independent, we can set X

ij
tk = 0, yjk = 1 and X

ij
kk = w in order to obtain a solution which is at

least as good as the previous one. Secondly, due to the property of extreme feasible solutions in fixed-charge
networks, which was also observed in Basnet and Leung (2005), there exists an optimal solution in which
purchasing in a given period satisfies the demands of consecutive periods. Therefore, if there is an optimal
solution in which X

ij
tk = 0, there exists an optimal solution in which X

ij
tk′ = 0 for every k < k′ ≤ NT .

Observe that the potential elimination of variables can strongly vary with input data and its strength
relies on the relationship between transaction costs, holding costs, demands, and the length of the planning
horizon. Besides, note that Proposition 2 can be easily adapted for the case in which costs are time-dependent.

3.2 The (l, Sj)-inequalities

We describe the (l, Sj)-inequalities, which are exponential in number, and generalize the (l, S)-inequalities
for the uncapacitated lot-sizing (Barany, Van Roy, & Wolsey, 1984) by considering the different suppliers.
Besides, the inequalities we describe in the following are strongly related to those presented in Zhao and
Klabjan (2012), but we remark that the uncapacitated single-item problem in their work is different from
our problem with a unique item and the inequalities described therein are thus different from ours. Define
L = {1, . . . , l} with 1 ≤ l ≤ NT , and Sj ⊆ L for each j ∈ J .

Theorem 3. The (l, Sj) inequalities

NJ
∑

j=1





∑

u∈L\Sj

xij
u +

∑

u∈Sj

yjud
i
ul



 ≥ di1l, for i ∈ I, (11)

are valid for the multi-item inventory lot-sizing with supplier selection.

Proof. Let (x̂, ŷ) be a feasible solution for (2)-(5). Firstly, consider the case in which ŷ
j
k = 0 for every j ∈ J

and k ∈ Sj . This implies that x̂
ij
k = 0 for every j ∈ J and k ∈ Sj , and thus constraints (2) ensure that

∑NJ

j=1

∑

u∈L\Sj
x̂ij
u ≥ di1l. Now, assume that ŷ

j
k = 1 for at least one j ∈ J and k ∈ Sj , and let k′ be the

earliest period in which this happens and j′ be the corresponding supplier. As constraints (2) ensure that
∑NJ

j=1

∑

u∈{1,...,k′−1} x̂
ij
u ≥ di1,k′−1, the fact that ŷ

j′

k′ = 1 implies that
∑NJ

j=1

∑

u∈{1,...,k′−1} x̂
ij
u + ŷ

j′

k′d
i
k′,l ≥ di1l.

Therefore, the inequality is valid.

3.2.1 Separation of the (l, Sj)-inequalities

As there is an exponential number of (l, Sj)-inequalities, we consider the separation problem for such inequal-
ities. Given a fractional solution (x̄, ȳ) for the linear relaxation of (2)-(5) we want to find a most violated
(l, Sj)-inequality (11).

These inequalities can be separated similarly to the (l, S)-inequalities for the uncapacitated lot-sizing.
For every possible item i ∈ I and time period l ∈ T we can find a most violated (l, Sj)-inequality (11) using

inspection by simply computing
∑NJ

j=1

∑l

k=1 min{x̄ij
k , d

i
klȳ

j
k} and building Sj appropriately according to the

choices on the inner minimum in O(NJ × NT ). This gives an O(NJ × NT 2) algorithm to separate the
inequalities for each i ∈ I. In what follows, we present an O(NJ × NT × logNT ) dynamic programming
separation algorithm to encounter a most violated (l, Sj)-inequality for each i ∈ I.

Given an item i ∈ I, define αi
l =

∑NJ

j=1

∑l

k=1 min{x̄ij
k , d

i
klȳ

j
k}. Inequality (11) is violated for L = {1, . . . , l}

whenever αi
l < di1l. Note that the nonnegativity of the demands implies diklȳ

j
k ≤ dikuȳ

j
k for k ≤ l < u. For
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j ∈ J and k ∈ T , define ljk as the first period in which di
k,l

j

k
−1

ȳ
j
k < x̄

ij
k ≤ di

kl
j

k

ȳ
j
k and let Y j

l = {k ∈ L | ljk > l}

and Z
j
l = {j ∈ L | ljk = l}. Therefore, the value αl can be determined using the recursion

αi
l = αi

l−1 + dil(
∑

j∈J

∑

k∈Y
j

l

ȳ
j
k) +

∑

j∈J

∑

k∈Z
j

l

(x̄ij − dik,l−1ȳ
j
k), (12)

with αi
0 = 0 as base case.

Considering the fact that Y j
l = Y

j
l−1 ∪ {l} \ Zj

l , each period k enters at most once in Y j , leaves Y j and

enters Zj at most once. Thus, all the αl values can be determined in O(NJ ×NT ). Observe also that we
can determine l

j
k for each j ∈ J and k ∈ T in O(logNT ) using binary search, implying a running time of

O(NJ ×NT × logNT ) for all the calculations.

4 On the projection of the facility location formulation

In this section, we study the projection of the facility location extended formulation (7)-(10) into the space
of the original (x, y) variables. We consider the extended formulation as a separation problem in order to
describe the inequalities generated by its projection. After that, we show how they relate with the (l, Sj)-
inequalities, showing that the linear relaxation of the facility location extended formulation provides the
same bound as that of the linear relaxation of the standard formulation together with the (l, Sj)-inequalities.

Given a fractional solution (x̂, ŷ) feasible for the linear relaxation of (2)-(5), we wish to find an inequality
implied by the facility location extended formulation in the original space cutting off this solution. Consider
the formulation

zFLS =max 0 (13)

NJ
∑

j=1

k
∑

t=1

X
ij
tk = dik, for i ∈ I, k ∈ T, (14)

X
ij
tk ≤ dikŷ

j
t , for i ∈ I, j ∈ J, t ∈ T, k ∈ {t, . . . , NT }, (15)

NT
∑

k=t

X
ij
tk ≤ x̂

ij
t , for i ∈ I, j ∈ J, t ∈ T, (16)

X
ij
tk ≥ 0, for i ∈ I, j ∈ J, t ∈ T, k ∈ {t, . . . , NT }. (17)

The objective function simply maximizes an arbitrary constant. Constraints (14) ensure all the demands
are satisfied. Constraints (15) limit the multicommodity purchasing variables considering the values in ŷ.
Constraints (16) link the original facility location variables with the values assumed by the original x̂. Note
that due to the nonnegativity of all the coefficients in the objective function (1),

∑

j∈J

∑

t∈T x̂
ij
t = di1,NT

and thus (16) will hold at equality. Constraints (17) are nonnegativity requirements on the variables.
Define φ , γ and θ to be the dual variables associated to constraints (14), (15) and (16), respectively.

The dual of (13)-(17) can thus be written as

zDFLS =min

NI
∑

i=1

NJ
∑

j=1

NT
∑

t=1

θ
ij
t x̂

ij
t +

NI
∑

i=1

NJ
∑

j=1

NT
∑

t=1

NT
∑

k=t

γ
ij
tkd

i
kŷ

j
t +

NI
∑

i=1

NT
∑

t=1

φi
td

i
t (18)

θ
ij
t + γ

ij
tk + φi

k ≥ 0, for i ∈ I, j ∈ J, t ∈ T, k ∈ {t, . . . , NT }, (19)

θ
ij
t ≥ 0, for i ∈ I, j ∈ J, t ∈ T, (20)

γ
ij
tk ≥ 0, for i ∈ I, j ∈ J, t ∈ T, k ∈ {t, . . . , NT }. (21)

Note that variables φ are the only negative ones in an extreme ray (18) with a negative cost. Thus, we
normalize the extreme rays by assuming without loss of generality that φi

t ≥ −1 for i ∈ I and t ∈ T . We

9



formalize the inequalities obtained via (18)-(21) as

NI
∑

i=1

NJ
∑

j=1

NT
∑

t=1

θ
ij
t x

ij
t +

NI
∑

i=1

NJ
∑

j=1

NT
∑

t=1

NT
∑

k=t

γ
ij
tkd

i
ky

j
t +

NI
∑

i=1

NT
∑

t=1

φi
td

i
t ≥ 0. (22)

In what follows, we want to show that the matrix associated with constraints (19) is totally unimodular,
and in order to do so, we use the next two very well known results.

Theorem 4. A matrix A is TU iff: (a) the transpose matrix AT is TU iff (b) the matrix (A, I) is TU,
where I denotes the identity matrix. (Hoffman & Kruskal, 1957)

Theorem 5. A matrix A is TU if: (a) aij ∈ {−1, 0,+1} for all i, j, and (b) for any subset M of the
rows, there exists a partition (M1,M2) of M such that each column j satisfies

∣

∣

∑

i∈M1
aij −

∑

i∈M2
aij

∣

∣ ≤ 1.
Ghouila-Houri (1962)

Theorem 6. The matrix associated with constraints (19) is totally unimodular.

Proof. Denote A the matrix associated to constraints (19). Let A = (B, I), where B is the submatrix with
the columns corresponding to variables θ and φ and I is the identity submatrix with those columns related
to the γ variables. Using Theorem 4, we can concentrate on B, as A = (B, I) is totally unimodular if
B is totally unimodular. Furthermore, we focus on BT and show that the properties in Theorem 5 hold.
Property (a) clearly holds. Now, given M we add to M1 the lines associated to the φ variables and to M2

those associated to the θ variables. Thus the result holds.

We now analyze nondominated inequalities (22) obtained via (18)-(21). Note that Theorem 6 implies
that we can concentrate only on integer solutions for (18)-(21).

Lemma 7. Nondominated inequalities are only related to a single item i ∈ I.

Proof. Constraints (19)-(21) do not relate variables connected to different items. This implies that (18)-(21)
can be solved separately for each item. Thus, any inequality (22) which contains more than one item can be
obtained as a linear combination of the constraints related to each item separately.

Lemma 8. In a nondominated inequality, whenever φi
k = −1, for each period t ≤ k either (a) θ

ij
t = 1 and

γ
ij
tk = 0 or (b) θ

ij
t = 0 and γ

ij
tk = 1.

Proof. Note that both θ
ij
t = 1 and γ

ij
tk = 1 have nonnegative coefficients in the objective function (18). With

φi
k = −1, constraints (19) require that θ

ij
t + γ

ij
tk ≥ 1 for every t ≤ k. Whenever θ

ij
t = 1, γij

tk can be set to

zero. On the other hand, note that whenever γ
ij
tk = 1, γij

tk′ = 1 for every k′ ≥ k for which φi
k′ = −1, since

θ
ij
t = 0.

Lemma 9. For a given item i ∈ I, if there is a most violated inequality (22) in which φi
k = −1 for a given

k > 1, then there is a most violated inequality in which φi
k′ = −1 for every k′ < k.

Proof. Assume there is a most violated inequality obtained as (18) represented by a solution (φ̂, γ̂, θ̂) in

which φ̂i
k = −1. We want to show that we can set φ̂i

k′ = −1 and obtain another most violated inequality. If

we set φ̂i
k′ = −1, observe that constraints (19) are already satisfied for every t ≤ k′ such that θ̂ijt = 1. Now

consider the periods t ≤ k′ such that θ̂ijt = 0 and note that γ̂ij
tk = 1. Let T ′ be formed by all these periods.

Observe that the summation −dik +
∑

t∈T ′(γ̂
ij
tkŷ

j
t )d

i
k is less than or equal to zero as the inequality is a most

violated one. Thus −dik′ +
∑

t∈T ′(γ̂
ij
tk′ ŷ

j
t )d

i
k′ is also nonnegative. Thus, setting φ̂i

k′ = −1 and also γ̂
ij
tk′ = 1

for every t ∈ T ′ leads to an inequality which is at least as violated as the original one. As this is true for
any k′ < k, the result holds.

Theorem 10. Every (l, Sj)-inequality can be obtained as (22).
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Proof. Consider an (l, Sj)-inequality obtained for a given i ∈ I and l ∈ T , with sets Sj for each j ∈ J . This
inequality can be obtained as (22) by considering as only nonzero values:

• φi
k = −1 for every k ∈ L= {1, . . . , l};

• θ
ij
t = 1 for every j ∈ J and t ∈ L \ Sj ;

• γ
ij
tk= 1 for every j ∈ J , t ∈ Sj and k ∈ L with t ≥ k,

which leads to
NJ
∑

j=1

∑

t∈L\Sj

θ
ij
t x

ij
t +

NJ
∑

j=1

∑

t∈Sj

NT
∑

k=t

γ
ij
tkd

i
ky

j
t +

l
∑

t=1

φi
td

i
t ≥ 0,

and, consequently, to
NJ
∑

j=1





∑

t∈L\Sj

x
ij
t +

∑

t∈Sj

NT
∑

k=t

diky
j
t



 ≥ di1l,

which is equivalent to (11).

Theorem 11. For every most violated inequality obtained as (18), there is a corresponding most violated
(l, Sj)-inequality.

Proof. The result follows from Lemmas 7, 8 and 9.

Corollary 12. Let zSTD+ be the value of the linear relaxation of (1)-(5) with the addition of the inequalities
(11), and zFL be the value of the linear relaxation of (6)-(10), then zSTD+ = zFL.

Corollary 12 follows from Theorems 10 and 11.

5 A simple MIP heuristic

In this section, we show how to use the facility location formulation, which often provides strong relaxations,
in a heuristic way. Note that its O(NI×NJ×NT 2) variables and constraints turn the formulation prohibitive
for being used to deal with large instances.

Let KMH be a constant integer given as input to the MIP heuristic. The MIP heuristic only considers
variables X ij

tk defined for periods t ∈ T and k ∈ T , with t ≤ k and k ≤ t+K−1, i.e., variables corresponding
to an interval of size KMH . The MIP heuristic thus consists of solving the formulation

zFL(KMH) =min

NI
∑

i=1

NJ
∑

j=1

NT
∑

t=1

NT
∑

k=t
k≤t+KMH−1

PijX
ij
tk +

NJ
∑

j=1

NT
∑

t=1

Ojy
j
t +

NI
∑

i=1

NT
∑

t=1

Hi(

t
∑

u=1

NT
∑

k=t+1
k≤u+KMH−1

X
ij
uk) (23)

NJ
∑

j=1

t
∑

t=1
k≤t+KMH−1

X
ij
tk = dik, for i ∈ I, k ∈ T, (24)

X
ij
tk ≤ diky

j
t , for i ∈ I, j ∈ J, t ∈ T, k ∈ {t, . . . ,min{t+KMH − 1, NT }}, (25)

y
j
t ∈ {0, 1}, for j ∈ J, t ∈ T, (26)

X
ij
tk ≥ 0, for i ∈ I, j ∈ J, t ∈ T, k ∈ {t, . . . ,min{t+KMH − 1, NT }}. (27)

Note that the objective function and all the constraints are similar to those of the facility location formulation
(6)-(10), differing only by the fact that solely a subset of the variables are considered. This formulation has
O(NI × NJ × NT ×KMH) variables and constraints. It is worth mentioning that the achieved reduction
depends greatly on the size of the planning horizon, and it can get close to one order of magnitude as KMH

gets smaller.
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6 Computational experiments

This section summarizes the computational experiments conducted to assess the performance of the pro-
posed approaches. All computational experiments were carried out on a machine running under Ubuntu
GNU/Linux, with an Intel(R) Core(TM) i7-8700 CPU @ 3.20GHz processor and 16Gb of RAM. The algo-
rithms were coded in Julia v1.2.0, using JuMP v0.18.6. The formulations were solved using Gurobi 9.0.1
with the standard configurations, except the relative optimality tolerance gap which was set to 10−6. Sub-
section 6.1 describes the benchmark instances. Subsection 6.2 details the tested approaches and parameter
settings. Subsection 6.3 assesses the effectiveness of the preprocessing approach. Subsection 6.4 compares
the exact mixed integer programming (MIP) formulations. Subsection 6.5 displays the results for the MIP
heuristic.

6.1 Benchmark instances

The computational experiments were performed using the original benchmark set of instances proposed
by Basnet and Leung (2005), where more details can be obtained. Instances are assembled into instance
groups, which are identified as (NJ,NI,NT ). Each instance group (NJ,NI,NT ) is composed of 15 ran-
domly created instances with NJ suppliers, NI items, and NT periods. All the data were generated using
uniform distributions. The transaction costs lie in [1000,2000], the unitary purchase prices lie in [20,50], the
holding costs lie in [1,5], and the demands lie in [1,200]. The benchmark set contains ten instance groups,
which are summarized in Table 3, giving a total of 150 instances.

Instance groups

(3, 3, 10); (3, 3, 15); (4, 4, 10); (4, 4, 15); (5, 5, 20); (10, 10, 50);
(15, 15, 100); (20, 20, 100); (20, 20, 200); (50, 50, 200).

Table 3: Dimensions of the instance groups.

Furthermore, in order to analyze the performance of the newly proposed approaches under different cost
configurations, we generated two new benchmark sets. The first one has all the data randomly determined
similarly to the original instances, with exception of the transaction costs which lie in [10000,12000]. For the
second new benchmark set, on the other hand, the transaction costs lie in [15000,17000] while the holding
costs lie in [10,20]. Each of these new benchmark sets is composed of ten instance groups, as described in
Table 3, with 15 instances each. They are denoted as instances N1 and N2, correspondingly. Observe that,
when compared to the original instances, instances N1 have higher transaction costs, while instances N2
have higher transaction costs as well as increased holding costs.

6.2 Tested approaches and parameter settings

The following approaches were considered in the computational experiments:

(a) STD: the standard formulation (1)-(5);

(b) FL: the facility location formulation (6)-(10);

(c) PFL: the facility location formulation (6)-(10) preprocessed using the results of section 3.1.1;

(d) BC: a branch-and-cut using the (l, Sj)-inequalities (11) based on STD;

(e) MH: the MIP heuristic presented in Section 5.
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6.2.1 Implementation details and parameter settings

All tests for STD, FL, PFL and BC were carried out with a time limit of one hour (3600s). A time limit
of ten minutes (600s) was imposed for each execution of MH, which represents one-third of that allowed by
Cárdenas-Barrón et al. (2015). The choices of the parameters were defined based on preliminary experiments
which took into consideration around 10% of the original instances, randomly chosen, with varying sizes.

The cutting planes for BC were implemented as solver callbacks. In each round of cut, the separation
of the inequalities is performed using inspection for each item i ∈ I and each selected interval [k, l], with
1 ≤ k ≤ l ≤ NT . An interval [k, l] is defined in a way that every period in [1, k − 1] is forced to be in
L \ Sj for every j ∈ J and a most violated inequality is determined with the appropriate choices of Sj for
each of the suppliers j ∈ J considering the periods in [k, l]. We also tested a separation procedure using
the more efficient algorithm described in Section 3.2.1, which finds a most violated inequality for each item
i ∈ I. We observed, in the preliminary experiments, that even though each round of cut could be performed
in less computational time, the number of rounds to achieve good lower bounds became larger, implying
larger overall computational times. For this reason, we did not use this separation procedure in the complete
computational experiments.

Separation for violated cuts is only performed at the root node. The maximum number of rounds of cuts
to be carried out by the solver was set to ten (the values 10, 20, 30, and 50 were tested). We limited the size
of intervals of the (l, Sj)-inequalities to be separated to five periods for instances with at most 50 periods
and to two periods for those with at least 100 periods (the values 2, 5, 10, and 15 were tested).

The values in {2, 5, 10} were tested for the sizes of the intervals in the MIP heuristic, i.e., KMH . The
results for all these three configurations are reported in Section 6.5.

6.3 Effectiveness of the preprocessing approach

The results assessing the effectiveness of the preprocessing approach presented in Section 3.1.1 are summa-
rized in Tables 4-6. The values in each line represent average values over the corresponding instance group.
The first column identifies the instance group. In the following columns, for FL and PFL, the tables present
the average upper bound (ub), the average time in seconds to prove optimality for the instances that could
be solved (time), the number of instances solved to optimality (#opt), and the average open gap for those
instances not solved to optimality (gap), which is determined for each instance as 100 × ub−lb

ub
, where lb is

the lower bound achieved at the end of the execution. Besides, the last column (red) indicates the average
reduction (in %) of the X variables eliminated by PFL using preprocessing. The value ’–’ in the column
time means that no instance in that group was solved to optimality, while its presence in the column gap
indicates that all the instances in the group were optimally solved. Besides, the value ’n/a’ represents the
fact that executions were halted by the computer due to memory limitation.

Table 4 shows the results for the original instances. The table indicates that considerable gains were
achieved by PFL when compared to FL, especially for the larger instances. Column red shows that substantial
reductions were achieved by the preprocessing, starting from 30% for the smallest instance groups and
reaching nearly 90% for the instances with 100 periods. Both approaches could solve to optimality all
instances with at most 50 periods within a few seconds on average. PFL shows a larger number of instances
with 100 periods solved to optimality and lower average optimality gaps for the unsolved instances. We
remark that the sizes of the formulations were prohibitive to be executed in the available computational
resources for the larger instances with 200 periods, even with preprocessing.

Table 5 displays the results for the new instances N1. It can be observed that both FL and PFL
encountered more difficulties with these instances than with the original ones. It is noteworthy that due to
the highest transaction costs, the achieved reductions were more modest, especially for the smaller instances
with at most 20 periods, but these reductions still achieved around 50% as the sizes of the instances increased.
None of the instances with at least 100 periods could be solved to optimality, and it can be observed that PFL
achieved lower gaps for these instances. Similar to what happened for the original instances, the formulations
were prohibitively large to be executed in the available computational resources for the instances with 200
periods.
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Table 6 presents the results for the new instances N2. It can be noted that both approaches encountered
more difficulties with these instances than with the original ones, but they were still more tractable than
instances N1. It can be observed that the reductions achieved by PFL were more modest when compared to
those obtained for the original instances, especially for the smaller ones, but still more considerable than those
for instances N1. Note, however, that the achieved reductions grew much larger as the sizes of the instances
increased. Considering the larger instance groups for which both FL and PFL solved the same amount of
instances to optimality, (10,10,50) and (20,20,100), the reduction in the average times is remarkable. Again,
the formulations were prohibitively large to be solved using the available computational resources for the
instances with 200 periods.

FL PFL
Inst group ub time #opt gap ub time #opt gap red
(3,3,10) 101940 <0.1 15 – 101940 <0.1 15 – 29.4
(3,3,15) 147163 <0.1 15 – 147163 <0.1 15 – 38.6
(4,4,10) 124526 <0.1 15 – 124526 <0.1 15 – 29.2
(4,4,15) 185681 <0.1 15 – 185681 <0.1 15 – 44.5
(5,5,20) 300866 0.1 15 – 300866 <0.1 15 – 53.5

(10,10,50) 1336982 8.0 15 – 1336982 1.6 15 – 77.5
(15,15,100) 3800975 541.8 8 0.07 3800975 289.6 12 0.06 88.9
(20,20,100) 4950030 891.1 1 0.10 4949376 1383.1 7 0.07 88.3
(20,20,200) n/a n/a n/a n/a n/a n/a n/a n/a n/a
(50,50,200) n/a n/a n/a n/a n/a n/a n/a n/a n/a

Table 4: Comparison between FL and PFL for the original instances.

FL PFL
Inst group ub time #opt gap ub time #opt gap red
(3,3,10) 126469 <0.1 15 – 126469 <0.1 15 – 0.0
(3,3,15) 199917 <0.1 15 – 199917 <0.1 15 – 0.1
(4,4,10) 161299 <0.1 15 – 161299 <0.1 15 – 0.0
(4,4,15) 245587 <0.1 15 – 245587 <0.1 15 – 0.4
(5,5,20) 387859 0.1 15 – 387859 0.1 15 – 1.7

(10,10,50) 1706395 301.0 13 0.19 1706395 402.6 14 0.22 22.3
(15,15,100) 4870354 – 0 0.82 4868906 – 0 0.78 49.3
(20,20,100) 6217228 – 0 0.86 6215298 – 0 0.82 50.2
(20,20,200) n/a n/a n/a n/a n/a n/a n/a n/a n/a
(50,50,200) n/a n/a n/a n/a n/a n/a n/a n/a n/a

Table 5: Comparison between FL and PFL for the new instances N1.

FL PFL
Inst group ub time #opt gap ub time #opt gap red
(3,3,10) 188177.9 <0.1 15 – 188177.9 <0.1 15 – 6.1
(3,3,15) 284028.9 <0.1 15 – 284028.9 <0.1 15 – 20.6
(4,4,10) 229132.5 <0.1 15 – 229132.5 <0.1 15 – 6.3
(4,4,15) 349938.3 <0.1 15 – 349938.3 <0.1 15 – 21.2
(5,5,20) 535305.7 0.1 15 – 535305.7 0.1 15 – 34.5

(10,10,50) 2270084.6 435.6 14 0.28 2270084.6 129.7 14 0.08 68.4
(15,15,100) 6207751.7 616.4 10 0.12 6207751.7 648.5 13 0.08 83.1
(20,20,100) 7620294.5 409.8 8 0.24 7620909.7 51.9 8 0.13 83.3
(20,20,200) n/a n/a n/a n/a n/a n/a n/a n/a n/a
(50,50,200) n/a n/a n/a n/a n/a n/a n/a n/a n/a

Table 6: Comparison between FL and PFL for the new instances N2.

6.4 Performance of the exact approaches

Tables 7-9 summarize the results comparing the exact approaches STD, PFL and BC. Note that, as it was
evidenced in the previous subsection that PFL clearly outperforms FL, we do not present the results for the
latter in this subsection. In each of these tables, the first column gives the instance group. In the following
columns, for STD, PFL, and BC, the tables present the average solver linear relaxation bound (glp), which
is given for each instance by the lower bound reported by Gurobi at the end of its execution of the root
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node, the average upper bound (ub), the average time in seconds to prove optimality for the instances that
could be solved (time), the number of instances solved to optimality (#opt), and the average open gap
for those not solved to optimality (gap). Additionally, for PFL, the table also gives the linear relaxation
bound (lp). We report such value because it represents the theoretical linear relaxation bound of FL, PFL
and that obtained when using STD and separating all the (l, Sj)-inequalities. Moreover, we can notice that
the solution of the root node for BC is closer to such value than the solution of STD which supports our
claim that the inequalities play an important role in tightening the optimality gap and strengthening the
formulation.

Table 7 shows the results for the original instances. It can be noticed that PFL outperformed STD and
BC for all instance groups with up to 100 periods in terms of average times and number of instances solved to
optimality, but it was far from being a good alternative for the instances with 200 periods, as it was already
observed in Section 6.3. Regarding such instances, BC outperformed STD for the set of instances (20,20,200)
but it is outperformed by the former for the set of instances (50,50,200). Nevertheless, considering all the
computational experiments BC outperforms STD as it obtains smaller gaps, lower average times, and tighter
lower bounds at the end of the processing of the root node, as presented by column glp. Although we do not
explicitly show the number of enumerated nodes due to the already large number of columns in the tables,
we could observe that both FL and BC outperform STD when we consider the number of enumerated nodes.
As a final remark, notice that the bound at the end of the root node given by PFL is close to the pure linear
relaxation bound, which is already better than the ones provided by STD and BC.

Tables 8 and 9 display the results for the new instances N1 and N2, respectively. It can be observed
that the remarks made in the previous paragraph regarding the comparison between the performance of the
three methods also hold, namely, that PFL outperforms BC and STD for the instance groups which could
be processed without memory issues. Again, BC outperforms STD for all instance groups but the largest
ones, i.e. (50,50,200). Also, one can argue that the instances N2 are probably more difficult than the original
instances and that the instances N1 are possibly even harder. PFL was able to solve all the original instances
up to size (20,20,100) but, for the set N2, it was only able to solve some instances with this size. For the
set N1, on the other hand, it was only able to solve instances with sizes up to (15,15,100). STD and BC
were only able to solve instances with sizes up to (15,15,100) for N2 and (5,5,20) for N1. Furthermore, the
gaps obtained by PFL for the unsolved instances are also larger for N2 than for the original set, and they
are even larger for N1, which was not exactly the case for STD and BC.

6.5 Results for the MIP heuristic

The summary of the results for the MIP heuristic is presented in Tables 10-12. The first column represents
the instance group. Next, for each of the three tested configurations of the MIP heuristic, denoted as
MH-KMH , the table shows the average solution value (ub), the average running time in seconds (time),
and the percentual average optimality gap (gapMH), obtained for each instance as 100 × ub−bestlb

ub
, where

bestlb represents the best lower bound amongst those obtained with STD, PFL, and BC. After that, column
BestMIP presents the best average value considering the exact approaches tested in Section 6.4. For the
original instances, Table 10 also provides the best average upper bounds reported in Basnet and Leung
(2005) and Cárdenas-Barrón et al. (2015), identified by BL05 and CGT15, correspondingly. For CGT15, the
presented value takes into consideration for each instance the best amongst the two variants of the heuristic
described in their work. The best average heuristic solution values are shown in bold. The careful reader
might notice that some of the average times reported are bigger than the 600 seconds time limit, indicating
that some of the heuristics overpass the limit time. Such observation is true and happens because the solver
may take some extra time to finish the solution of the current node.

15



STD PFL BC
Inst group glp ub time #opt gap lp glp ub time #opt gap glp ub time #opt gap
(3,3,10) 101509 101940 0.1 15 – 101920 101935 101940 <0.1 15 – 101885 101940 0.6 15 –
(3,3,15) 146366 147163 0.1 15 – 147151 147156 147163 <0.1 15 – 147118 147163 0.6 15 –
(4,4,10) 124263 124526 0.1 15 – 124518 124526 124526 <0.1 15 – 124509 124526 0.6 15 –
(4,4,15) 184696 185681 0.2 15 – 185674 185681 185681 <0.1 15 – 185615 185681 0.7 15 –
(5,5,20) 298964 300866 1.2 15 – 300793 300839 300866 <0.1 15 – 300498 300866 1.1 15 –

(10,10,50) 1318889 1336982 540.0 14 0.02 1336539 1336606 1336982 1.6 15 – 1332484 1336982 205.5 14 0.04
(15,15,100) 3693753 3802248 1740.6 4 0.15 3798505 3798669 3800975 289.6 12 0.06 3736159 3801012 1631.1 4 0.07
(20,20,100) 4782245 5030121 – 0 4.53 4944778 4944913 4949376 1383.1 7 0.07 4836356 4949921 – 0 0.12
(20,20,200) 9244459 10578643 – 0 12.60 n/a n/a n/a n/a n/a n/a 9563041 9974134 – 0 4.41
(50,50,200) 21090139 25140386 – 0 16.18 n/a n/a n/a n/a n/a n/a 20797964 26210847 – 0 20.61

Table 7: Comparison between STD, PFL and BC for the original instances.

STD PFL BC
Inst group glp ub time #opt gap lp glp ub time #opt gap glp ub time #opt gap
(3,3,10) 125604 126469 <0.1 15 – 126444 126453 126469 <0.1 15 – 126361 126469 0.6 15
(3,3,15) 195138 199917 0.2 15 – 199586 199720 199917 <0.1 15 – 199168 199917 0.7 15
(4,4,10) 159774 161299 0.1 15 – 161158 161205 161299 <0.1 15 – 161112 161299 0.6 15
(4,4,15) 239576 245587 0.5 15 – 245237 245375 245587 <0.1 15 – 244681 245587 0.8 15
(5,5,20) 372779 387859 5.3 15 – 387133 387317 387859 0.1 15 0.00 385056 387859 2.7 15

(10,10,50) 1573909 1707243 – 0 2.86 1699417 1699517 1706395 402.6 14 0.22 1634584 1706790 – 0 2.13
(15,15,100) 4269343 4990980 – 0 15.02 4827029 4827116 4868906 – 0 0.78 4252329 4919194 – 0 7.86
(20,20,100) 5463144 6528403 – 0 16.81 6160809 6160863 6215298 – 0 0.82 5437357 6414232 – 0 15.28
(20,20,200) 10015474 13630978 – 0 26.70 n/a n/a n/a n/a n/a n/a 10470462 13396444 – 0 22.18
(50,50,200) 21831899 32707523 – 0 33.19 n/a n/a n/a n/a n/a n/a 21668579 33205632 – 0 34.71

Table 8: Comparison between STD, PFL and BC for the new instances N1.

STD PFL BC
Inst group glp ub time #opt gap lp glp ub time #opt gap glp ub time #opt gap
(3,3,10) 185527 188178 0.1 15 – 188139 188165 188178 <0.1 15 – 187657 188178 0.6 15
(3,3,15) 275458 284029 0.3 15 – 284029 284029 284029 <0.1 15 – 282053 284029 0.7 15
(4,4,10) 224957 229133 0.2 15 – 229049 229071 229133 <0.1 15 – 227504 229133 0.7 15
(4,4,15) 337840 349938 1.1 15 – 349314 349609 349938 <0.1 15 – 345123 349938 1.3 15
(5,5,20) 510609 535306 13.0 15 – 534088 534304 535306 0.1 15 – 526143 535306 14.0 15

(10,10,50) 2041641 2270182 601.0 2 1.62 2256790 2257975 2270085 129.7 14 0.08 2134482 2270110 1403.8 3 1.38
(15,15,100) 5288732 6344819 – 0 17.17 6196495 6197144 6207752 648.5 13 0.08 5203324 6233441 – 0 1.84
(20,20,100) 6544370 8167961 – 0 20.18 7605744 7606692 7620910 51.9 8 0.13 6393756 7976353 – 0 19.28
(20,20,200) 11465361 17640815 – 0 35.11 n/a n/a n/a n/a n/a n/a 11907617 17281521 – 0 31.51
(50,50,200) 22433576 39154536 – 0 42.65 n/a n/a n/a n/a n/a n/a 22087540 40837776 – 0 45.83

Table 9: Comparison between STD, PFL and BC for the new instances N2.
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MH-2 MH-5 MH-10 BestMIP BL05 CGT15
Inst group ub time gapMH ub time gapMH ub time gapMH ub ub ub
(3,3,10) 102237 <0.1 0.29 101940 <0.1 0.00 101940 <0.1 0.00 101940 102584 101954
(3,3,15) 147912 <0.1 0.51 147163 <0.1 0.00 147163 <0.1 0.00 147163 147887 147163

(4,4,10) 125122 <0.1 0.49 124526 <0.1 0.00 124526 <0.1 0.00 124526 126345 124526

(4,4,15) 186073 <0.1 0.23 185688 <0.1 0.00 185681 <0.1 0.00 185681 187320 185699
(5,5,20) 301666 <0.1 0.28 300881 <0.1 0.01 300866 <0.1 0.00 300866 303529 300900

(10,10,50) 1338660 0.9 0.13 1336991 1.3 0.00 1336982 1.5 0.00 1336982 1357190 1337662
(15,15,100) 3806436 302.9 0.16 3801107 266.1 0.02 3800977 272.0 0.01 3800975 3856800 3810899
(20,20,100) 4954723 517.1 0.15 4949464 531.9 0.04 4949401 535.9 0.04 4949376 5048826 4975149
(20,20,200) 9825028 600.1 2.97 9818199 602.0 2.90 9818136 600.8 2.90 9974134 10026074 9914548
(50,50,200) 23120817 601.8 8.86 28295969 629.5 18.36 25002196 616.3 12.32 25140386 25373121 23457449

Table 10: Results obtained by MH for the original instances.

MH-2 MH-5 MH-10 BestMIP
Inst group ub time gapMH ub time gapMH ub time gapMH ub
(3,3,10) 136452 <0.1 7.36 126888 <0.1 0.34 126469 <0.1 0.00 126469
(3,3,15) 212629 <0.1 5.99 201466 <0.1 0.74 200112 <0.1 0.09 199917
(4,4,10) 172487 <0.1 6.56 162793 <0.1 0.93 161299 <0.1 0.00 161299
(4,4,15) 256086 <0.1 4.18 247462 <0.1 0.80 245715 <0.1 0.06 245587
(5,5,20) 402094 <0.1 3.59 389528 0.1 0.45 387930 0.1 0.02 387859

(10,10,50) 1764190 155.5 3.30 1712482 142.1 0.37 1706466 164.6 0.02 1706395
(15,15,100) 5003845 600.2 3.45 4881966 600.1 1.04 4871949 600.3 0.84 4868906
(20,20,100) 6340071 600.1 2.77 6230498 600.0 1.06 6216874 600.2 0.84 6215298
(20,20,200) 12709547 600.0 17.99 12457212 602.1 16.32 12597927 605.9 17.23 13396444
(50,50,200) 107583588 600.7 79.72 n/a n/a n/a 118787855 619.7 81.63 32707523

Table 11: Results obtained by MH for the new instances N1.

MH-2 MH-5 MH-10 BestMIP
Inst group ub time gapMH ub time gapMH ub time gapMH ub
(3,3,10) 189082 <0.1 0.49 188178 <0.1 0.00 188178 <0.1 0.00 188178
(3,3,15) 284554 <0.1 0.19 284029 <0.1 0.00 284029 <0.1 0.00 284029
(4,4,10) 229154 <0.1 0.01 229133 <0.1 0.00 229133 <0.1 0.00 229133
(4,4,15) 349938 <0.1 0.00 349938 <0.1 0.00 349938 <0.1 0.00 349938
(5,5,20) 535611 <0.1 0.06 535306 0.1 0.00 535306 0.1 0.00 535306

(10,10,50) 2270086 69.5 0.01 2270085 109.7 0.01 2270085 142.7 0.01 2270085
(15,15,100) 6207752 198.4 0.01 6207752 241.4 0.01 6207832 260.3 0.01 6207752
(20,20,100) 7620910 286.8 0.07 7620997 294.9 0.07 7620945 304.1 0.07 7620910
(20,20,200) 15332550 522.1 22.82 15333970 533.6 22.83 15333724 533.9 22.83 17281521
(50,50,200) 32834743 601.2 31.67 32837872 608.4 31.68 175160673 649.1 84.30 39154536

Table 12: Results obtained by MH for the new instances N2.
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Table 10 shows the results for the original instances. MH-10 achieved the best results for all instance
groups but the largest one. MH-5 and MH-10 achieved solutions within 0.1% of optimality for all instance
groups with at most 100 periods. For the largest instance group, (50,50,200), MH-2 achieved the best average
solutions, indicating that, even with the heuristic reduction, the formulations of MH-5 and MH-10 already
became too large to be reasonably tractable using the available computational resources. It is noteworthy
that, using our heuristics, it was possible to obtain average values which are at least as good as those of BL05
and CG15 for all instance groups, with strictly better values for eight out of the ten. Furthermore, heuristic
solution values improving those using the exact MIP approaches within the time limit were obtained for
the larger instance groups with 200 periods. Note that even with the solver limited to run for at most 600
seconds, a few reported average values for the larger instances with 200 periods using MH-5 and MH-10
are a little higher than this allowed time limit. The reason for that is related to difficulties of the solver in
finishing its execution for certain instances, possibly encountered in the tasks of freeing the memory given
the sizes of the formulations or finishing a step of the solution method used by the solver (commonly the
barrier method).

Table 11 presents the results for the new instances N1. For these instances, MH-10 achieved average gaps
below 1.0% for all instances with at most 100 periods. MH-5 and MH-2 obtained the best average solution
values for the groups (20,20,200) and (50,50,200), respectively. It is noteworthy that MH-2 obtained much
larger gaps for these instances when compared to its results for the original instances. The reason for this
behavior is probably related to the fact that the larger transaction costs imply fewer periods with setups
and thus larger intervals between orders for low-cost solutions. Note that the MIP heuristic did not perform
very well for the instance group (50,50,200), as the average solution values are much higher than that of the
best exact approach considering the time limit. These observations strengthen the argument that the most
difficult tested instances are probably those in set N1. We remark that the values ’n/a’ observed for MH-5
in the instance group (50,50,200) are related to difficulties of the solver in finishing its execution, probably
due to memory issues or numerical difficulties in generating a basic feasible solution after solving the linear
relaxation using the barrier method.

Table 12 displays the results for the new instances N2. Variants MH-5 and MH-10 obtained average gaps
below 0.1% for all the instance groups with at most 100 periods. MH-5 obtained the best average solution
values for seven out of the ten instance groups. For this instance set, MH-2 outperformed the other variants
for the instance groups with at least 100 periods, as it obtained the best average values for all of them. We
remark, though, that differently from what was observed for the original instances, there is still a reasonably
high open gap for the instances with 200 periods. One possible reason is the fact that the setup costs are
very high, and thus, certain setup decisions can strongly influence the costs of the solutions.

7 Final conclusions

In this paper, we considered the multi-item inventory lot-sizing problem with supplier selection. The com-
plexity of the problem was an open question and thus we have shown that it is NP-hard. Moreover, we have
proposed a facility location extended formulation together with a preprocessing scheme, valid inequalities in
the original space of variables, and an easy to implement mixed integer programming (MIP) heuristic. Ad-
ditionally, we introduced two new benchmark sets of instances with different cost parameters to complement
the original benchmark set in order to better assess the performance of the proposed approaches.

Computational experiments have shown that the preprocessing scheme was able to reach a considerable
reduction in the number of variables considered for optimization. This established the preprocessed facility
location formulation as a very effective approach for optimally solving instances with up to 100 periods,
as nearly all the instances in the original and N2 sets could be solved to optimality. Besides, the valid
inequalities implemented in a branch-and-cut approach could successfully improve the capacity of the solver
to deal with all but the largest instance groups (50,50,200). Finally, the proposed MIP heuristic was able
to encounter high-quality results, outperforming those obtained by a state-of-the-art approach. The newly
proposed benchmark instances have shown to be more challenging for the proposed approaches than the
original set available in the literature, especially instances N1.
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A possible direction for future research is a polyhedral study of the multi-item inventory lot-sizing problem
with supplier selection. Besides, we remark that the problem treated in this paper is for a two-echelon supply
chain composed of one buyer and multiple suppliers. Thus, it would be interesting to explore this problem
in a multi-echelon supply chain. Moreover, in a real environment, one might be subject to certain types of
constraints or situations not considered in this work. In many agricultural supply chains, for instance, one is
subject to shortages of products due to natural incidents. In the service and supply industry, one might face
backordering due to obstacles in the deliveries. Such distinct features are some research avenues that could
be investigated in the future. Finally, we point out that all the models treated in this work are deterministic
and it would be also interesting to model and study the impact of uncertain client demands, which are more
realistic in some fields.
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