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Abstract

We propose an exact algorithm for solving biobjective integer programming problems,
which arise in various applications of operations research. The algorithm is based on
solving Pascoletti-Serafini scalarizations to search specified regions (boxes) in the objective
space and returns the set of nondominated points. We implement the algorithm with
different strategies, where the choices of the scalarization model parameters and splitting
rule differ. We then derive bounds on the number of scalarization models solved; and
demonstrate the performances of the variants through computational experiments both
as exact algorithms and as solution approaches under time restriction. The experiments
demonstrate that different strategies have advantages in different aspects: while some
are quicker in finding the whole set of nondominated solutions, others return good-quality
solutions in terms of representativeness when run under time restriction. We also compare
the proposed approach with existing algorithms. The results of our experiments show
the satisfactory behaviour of our algorithm, especially when run under time limit, as it
achieves better coverage of the whole frontier with a smaller number of solutions compared
to the existing algorithms.

Keywords: Biobjective integer programming, Pascoletti-Serafini scalarization, Algo-
rithms.

1 Introduction

In many operations research applications such as scheduling, task assignment and transporta-
tion, the underlying problem can be modeled as an integer programming problem. Moreover,
a vast amount of these problems require two (or more) criteria to be considered, leading to
biobjective (multiobjective) integer programming problems.

In this study, we focus on biobjective integer programming problems (BOIP) and propose
an algorithm that returns the whole set of nondominated points of these problems. There are
a number of solution approaches that have been designed for BOIP in the literature, most of
which explore the objective (criterion) space by repetitively solving single objective optimiza-
tion problems related to the BOIP, called scalarization problems (or simply, scalarizations).
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A scalarization is formulated by means of a real-valued scalarizing function of the objective
functions of the BOIP, auxiliary scalar or vector variables and/or parameters ([8]).

There are several scalarizations proposed in the literature. The widely-used ones are the
weighted sum scalarization ([26, 12]), the ε-constraint scalarization ([10]) and the (weighted)
Chebyshev scalarization ([3, 24]). Most of the recent algorithms in the literature solve these
scalarizations or their modifications repetitively to find the set of nondominated solutions.
Commonly used algorithms are the perpendicular search and the ε-constraint algorithm, which
are based on weighted sum scalarization and ε-constraint scalarization, respectively ([10, 6, 5,
21, 11, 13]). Examples of algorithms using weighted Chebychev scalarizations are proposed by
[20] and [23], where a modified version of the scalarization is used. There are also two-phase
algorithms, which generate the nondominated points at the extreme points of the convex hull
(called “extreme supported” points) in the first phase and find the unsupported nondominated
points by exploring the triangles defined by two consecutive supported nondominated points
in the second phase ([25, 19]). Recently, the balanced box algorithm is proposed by [2], and a
two-stage algorithm which combines the balanced box and ε-constraint algorithms is discussed
by [7]. Similarly, [14] suggests a hybrid approach combining ε-constraint method and binary
search in the objective space, which was previously discussed in [21].

We propose an exact solution algorithm that finds the whole set of nondominated solu-
tions to BOIPs. The algorithm is based on the Pascoletti-Serafini scalarization ([18]), which
depends on two parameters, a reference point and a direction vector. It has been employed
in many vector optimization algorithms, mainly designed for continuous (linear / nonlinear
convex / non-convex) problems, see for example [1, 15, 16, 17]. It is known that many scalar-
ization models, including the weighted sum and the ε-constraint scalarizations, can be seen as
a special case of the Pascoletti-Serafini scalarization ([9]). Moreover, using this scalarization,
it is possible to find the set of all nondominated points even if the corresponding multiobjective
optimization problem is not convex (which is not possible, for instance, with the weighted sum
scalarization) or even if it has an ordering cone different from the nonnegative cone (which
is not the case, for instance, with the ε-constraint scalarization). The main motivation of
using the Pascoletti-Serafini scalarization in this work is to use its flexible structure in order
to generate a ‘nice’ representation of the nondominated set, quickly. Note that by choosing
the reference point and the direction vector, one has control on the positions of newly found
nondominated points, which has the potential to reach this goal. As we will elaborate later
on, in a weighted sum scalarization, the weight vector can be used to control the positions of
newly found nondominated points in a similar way. However, since such approaches can only
generate unsupported points by iteratively making them locally supported (supported within
a box); it may not be possible to reach such points in the early iterations, which may reduce
representativeness under time limited implementations.

We adapt the Pascoletti-Serafini scalarization model for biobjective integer programming
settings and discuss different implementation strategies for the algorithm, which we call vari-
ants for short. We compare these variants with respect to the number of (mixed) integer
programming problems (IPs) solved and solution time. We also test the performances of the
variants under time limit and report on the representativeness of the obtained solution sets
using the (scaled) coverage error ([22, 4]). We also perform similar comparative tests with
existing algorithms from the literature.

The main contributions of this work can be summarized as follows: (i) demonstrating the
advantages and drawbacks of various implementations of a generic box exploration framework
based on different parameter choices and splitting rules, (ii) providing an intuitive geometric
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interpretation on how to set the direction in Pascoletti-Serafini scalarization so as to obtain
good results under time limit, and (iii) performing an extensive comparative analysis.

The structure of the paper is as follows. In Section 2 we give the preliminaries and the
problem definition. In Section 3 we explain the algorithm and provide bounds on the number
of (mixed) integer programming problems solved. We test the performance of the algorithm
and report the results of our experiments in Section 4. We conclude our discussion in Section
5.

2 Preliminaries and problem definition

A general biobjective integer programming problem is formulated as

“min”{ z(x) = (z1(x), z2(x))T | x ∈ X ⊆ Zn }, (P )

where zi(·), i = 1, 2 are integer-valued objective functions. The set X represents the feasible
set in the decision space, and the set Z = {z(x)| x ∈ X} represents the feasible set in the
objective space. Note that the quotation marks are used for min as there is no complete order
in the two dimensional vector space.

Throughout the paper we will use the following notation for vector inequalities:

z(x
′
) ≤ z(x) ⇐⇒ zi(x

′
) ≤ zi(x) for i ∈ {1, 2};

z(x
′
) � z(x) ⇐⇒ z(x

′
) ≤ z(x) and z(x

′
) 6= z(x);

z(x
′
) < z(x) ⇐⇒ zi(x

′
) < zi(x) for i ∈ {1, 2}.

Definition 2.1. z(x
′
) ∈ Z dominates (strictly dominates) z(x) ∈ Z if z(x

′
) � z(x) (z(x

′
) <

z(x)). If there exists no x
′ ∈ X such that z(x

′
) dominates (strictly dominates) z(x), then

z(x) is nondominated (weakly nondominated) and x is efficient (weakly efficient).

The set of all nondominated vectors is denoted by N . The ideal and nadir points of
problem (P ), respectively, are as follows:

s0 =
(

min
x∈X

z1(x),min
x∈X

z2(x)
)T
, u0 =

(
max
z∈N

z1,max
z∈N

z2

)T
.

A lexicographic optimization problem with two objective functions is given by

lexmin{ zi(x), zj(x)| x ∈ X }, (1)

where i, j ∈ {1, 2} and i 6= j. Solving (1) means solving the following two (single objective)
optimization problems: First, min{ zi(x)| x ∈ X }, and given an optimal solution x

′
of the

first model, min{ zj(x)| x ∈ X , zi(x) = zi(x
′
) }. Solving a lexicographic optimization yields

an efficient solution.
In general, scalarization models are solved in order to find (weakly) efficient solutions.

Throughout, the Pascoletti-Serafini scalarization is employed with two parameters: a reference
point s ∈ R2 and a direction d ∈ R2

+ \ {0}. The model is as follows:

min
{
α | x ∈ X , z(x) ≤ s+ αd, α ∈ R

}
. (2)

Lemma 2.2 ([18]). If (x∗, α∗) is an optimal solution of (2) for some s ∈ R2 and d ∈ R2
+\{0},

then x∗ is weakly efficient.
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Lemma 2.3. If (x∗, α∗) is an optimal solution of (2) for some s ∈ R2 and d ∈ R2
+ \ {0} then

y∗ = s+ α∗d and z(x∗) are equal in at least one component.

Proof. Assume to the contrary that z(x∗) and y∗ are different in both components. That
is, z(x∗) < y∗. Hence there exists ᾱ < α∗ such that z(x∗) ≤ s + ᾱd, which contradicts the
optimality of (x∗, α∗).

When a subset N̄ of N is found through an algorithm or a procedure, in order to measure
how well N̄ represents the set of all nondominated points (N ), it is possible to use the
‘coverage error’ that is introduced by [22]. Similar measures are used in the literature to
measure representativeness, for example the coverage gap measure used recently in [4]. Here,
we provide the definition of coverage error for the special case where Chebyshev (L∞) metric
is used. Note that this metric provides the maximum possible error that can be observed in
any of the objective function values. As mentioned by [22], other Lp metrics would tend to
add up coordinate-wise distances, which would not be appropriate in most cases where the
objective functions are of a different nature, such as cost and quality. In that sense, using the
Chebyshev metric is the safest choice.

We also introduce the scaled version as in [4].

Definition 2.4. Let N̄ ⊆ N be a representative subset. The coverage error of N̄ with respect
to n ∈ N is

CE(N̄ , n) = min
n̄∈N̄

(max{|n1 − n̄1|, |n2 − n̄2|}) ,

the coverage error of N̄ is
CE(N̄ ) = max

n∈N
CE(N̄ , n)

and the scaled coverage error of N̄ is

SCE(N̄ ) =
CE(N̄ )

max{u0
1 − s0

1, u
0
2 − s0

2}
,

where u0 and s0 are the nadir and the ideal points, respectively.

In addition to the coverage error, we also use ‘hypervolume gap’ as another measure of
representativeness, see e.g. [27, 2, 14]. We employ the metric as used in [2]. In particular, for
N̄ ⊆ N , the hypervolume H(N̄ ) of N̄ is computed as the area of the region⋃

n∈N̄

{z ∈ R2| n ≤ z ≤ u0},

where u0 is the nadir point of the problem. The hypervolume of the true set H(N ) is higher
than that of a representative subset. Hypervolume gap is the difference H(N )−H(N̄ ) and a
subset with less hypervolume gap is considered as having better representativeness. Similar
to the scaled coverage error, we consider a scaled version of this metric.

Definition 2.5. Let N̄ ⊆ N be a representative subset. The scaled hypervolume gap (SHG)
of N̄ is

SHG(N̄ ) =
H(N )−H(N̄ )

H(N )
.
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3 The algorithm

Throughout the algorithm the search regions in the objective space are referred to as boxes. A
box is defined by three points in the criterion space, namely the starting point s, the nondom-
inated point t which defines the first component of the starting point and the nondominated
point p which defines the second component of the starting point, and denoted as follows

b(s, p, t) = { y ∈ R2 | s1 ≤ y1 ≤ p1, s2 ≤ y2 ≤ t2 }.

Note that it is possible to define the box using only p and t. However, we keep the starting
point s in the definition as it is used in the scalarization models.

The general idea of the algorithm can be described as follows. At the beginning, two
sets namely N and B, are defined to denote the set of nondominated points and boxes to
be investigated, respectively. For initialization, two corner points of the nondominated set
are found by solving lexmin{ z1(x), z2(x)| x ∈ X } and lexmin{ z2(x), z1(x)| x ∈ X }. Let the
optimal objective function vectors of these models be t0, p0, respectively. We initialize N as
{t0, p0} and B as {b(s0, p0, t0)}, where s0 is the ideal point. Clearly, the initial box includes
all nondominated points. See Figure 1 for the illustration of the initial region.

 

Figure 1: Initial box

At each iteration, the algorithm searches one box from set B to find a (weakly) non-
dominated point by solving a Pascoletti-Serafini scalarization. In order to ensure finding a
nondominated point, an (two) extra model(s) is (are) solved and the obtained nondominated
point(s) is (are) added to N . Then, the explored box is discarded and if at least one new
nondominated point is found, two new boxes are added to B to be searched in the next iter-
ations. The algorithm continues until there are no boxes to explore. The pseudocode of the
algorithm is given by Algorithm 1.

At an arbitrary iteration, a box b = b(sb, pb, tb) from set B is selected and the following
optimization problem is solved to search the box

min{α| x ∈ X , α ∈ R, z(x) ≤ sb + αd, z1(x) ≤ pb1 − ε, z2(x) ≤ tb2 − ε }, (R(b, d))
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where d ≥ 0 is a direction vector in R2 and 0 < ε < 1. This is a slightly modified Pascoletti-
Serafini model. The last two constraints are added to prevent finding the (possibly weakly)
nondominated points pb and tb, which are already found in the previous iterations. If this
problem is infeasible, then there is no nondominated point other than pb and tb in the box.
Otherwise, let the optimal solution of (R(b, d)) be (αb, xb) and the corresponding (weakly)
nondominated point be nb = z(xb), see Lemma 2.2. Note that αb is the step size and
defines the point yb = sb + αbd, which has at least one common component with nb, see
Lemma 2.3. Since the scalarization only guarantees that nb is weakly nondominated, the
following problem(s) is (are) solved to ensure that a nondominated point is found. If the first
components of yb and nb are equal (nb1 = yb1) then,

min{ z2(x)| x ∈ X , z1(x) = z1(xb) } (P1(xb))

is solved and, if the second components are equal (nb2 = yb2) then,

min{ z1(x)| x ∈ X , z2(x) = z2(xb) } (P2(xb))

is solved. Notice that it is possible to have yb = nb and in this case, both problems are solved.
Let the solutions of (P1(xb)) and (P2(xb)) be x1 and x2, respectively and n1 = z(x1) and
n2 = z(x2) be the corresponding points in the criterion space. If only (P1(xb)) is solved, then
n2 is set to nb and symmetrically, if only (P2(xb)) is solved n1 is set to nb (to be used in
partitioning) (see lines 8-17 in Algorithm 1). Then, N is updated accordingly (lines 18-23).

If both (P1(xb)) and (P2(xb)) are solved, it is possible to find two nondominated points
n1 and n2 in the same iteration. In this case, both n1 and n2 are added to N . See Figures
2-4 for illustrations of these cases.

For any (weakly) nondominated point n, the dominated region {y ∈ R2 | n ≤ y} and the
dominating region {y ∈ R2 | y ≤ n} ({y ∈ R2 | y < n}) can not contain any nondominated
points; hence the current box b(sb, pb, tb) is split into two boxes using n1 and n2. More
specifically, the first box is formed as b(s1, pb, n1), where s1 = (n1

1, p
b
2)T and the second box

is formed as b(s2, n2, tb), where s2 = (tb1, n
2
2)T . See Figures 2-4 for the illustrations of newly

formed boxes for different cases.
Finally, the algorithm avoids searching regions which cannot have any new nondominated

points, by taking the advantage of the integrality of the problem (P ) and the structure of a
box. The boxes which do not satisfy pb1 − sb1 > 1 and tb2 − sb2 > 1 are eliminated since they
can not include any nondominated points other than pb and tb. After new boxes are defined
and their sizes are checked to make sure that they can include nondominated points, they are
added to set B to be searched in the next iterations. Then, the searched box b(sb, pb, tb) is
removed from the set B (lines 24-30). The algorithm repeats the steps which are introduced
above until there is no box in B. Note that the child boxes obtained by splitting a newly
explored box are added to the end of the list of boxes, B, (see lines 26-29) and the boxes are
explored starting from the first box in B (see line 4). Due to this structure, the algorithm
always explores boxes obtained in previous iterations, before exploring the newly formed child
boxes. This is to encourage exploration of the relatively larger boxes first. We, however, note
that there might be exceptions: there might be cases, where a newly generated box is larger
than a box generated in a previous iteration and hence explored later. We elaborate on this
issue in Section 4.1.

Remark 3.1. Note that it is possible to have either n1 (see Figure 3) or n2 (see Figure 2) being
not nondominated but only weakly nondominated. Hence for a box b(sb, pb, tb) considered
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=

Figure 2: (P1(xb)) is solved, n1 is found as a
nondominated point and n2 is set to nb.

 

=

Figure 3: (P2(xb)) is solved, n2 is found as
nondominated point and n1 is set to nb.

 

=

Figure 4: (P1(xb)) and (P2(xb)) are solved, n1

and n2 are found as nondominated points.
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through the algorithm, it is possible that pb, tb are only weakly nondominated points. However,
by the structure of forming the new boxes, even if pb (tb) is not nondominated, there exists a
nondominated point p (t) such that pb1 = p1 (tb2 = t2). Clearly, the feasible region of (R(b, d))
model is the same as if the corresponding nondominated points p, t are considered instead of
the weakly nondominated ones. The only difference is in the selection of the reference point
sb. Because of this special structure, having boxes with weakly nondominated corners is not
a problem in the sense that all the remaining nondominated points are included in the set of
boxes to be searched.

The algorithm works correctly and returns the set of all nondominated points after finitely
many iterations. These are shown by the following two propositions.

Proposition 3.2. Algorithm 1 works correctly: It returns the set of all nondominated points.

Proof. The points that are added to set N are guaranteed to be nondominated. Indeed,
(R(b, d)) is a Pascoletti-Serafini scalarization with box contraints and by Lemma 2.2, it returns
a weakly efficient solution. By solving (P1(xb)) and/or (P2(xb)), finding an efficient solution
is guaranteed. Moreover, by the structure of defining the new boxes, see Remark 3.1, it is
guaranteed that the set of all boxes to be searched (B) includes all the remaining (if any)
nondominated points at any time through the algorithm.

Proposition 3.3. Algorithm 1 solves (3N +C− 3C2−E− 1) mixed integer programs, where
N = |N | is the number of nondominated points, C is the number of cases where (yb = nb),
C2 is the number of sub-cases that two nondominated points are found and E is the number
of eliminated boxes using the elimination rule.

Proof. The following expression, parts (a) − (g) of which will be explained in detail, shows
the number of models solved:

(4)︸︷︷︸
(a)

+ (1)︸︷︷︸
(b)

+ (2C2)︸ ︷︷ ︸
(c)

+ 2(N − 2− 2C2)︸ ︷︷ ︸
(d)

+ (N − 2)︸ ︷︷ ︸
(e)

+ (C − C2)︸ ︷︷ ︸
(f)

− (E)︸︷︷︸
(g)

At the beginning of Algorithm 1, two lexicographical minimization problems are solved to
find t0 and p0 (a) and one (R(b, d)) problem is solved to search the initial box at the first
iteration of the while loop (b). 2C2 points are found in C2 number of cases (yb = nb and two
solutions are found), each of these points leads to a new box, hence a new (R(b, d)) model (c).
For the rest of the nondominated points, (N − 2C2 − 2), each point results in two new boxes
(and hence two (R(b, d)) models to be solved) (d). As for the (Pi(x

b)) models: N -2 points
are found by solving a single second stage model (either (P1(xb)) or (P2(xb))) (e). Moreover,
when yb = nb and only a single nondominated point is found (in C−C2 number of cases), we
solve an extra (P1(xb)) or (P2(xb)), which does not yield a new point (f). Finally, E boxes
are eliminated, avoiding the (R(b, d)) models that would otherwise have been solved (g).

Note that the values for C,C2, E may not be deterministic even for a particular instance.
Indeed, if the solver breaks ties arbitrarily whenever there are multiple optimal solutions, the
order of the nondominated points found may change. This, of course, could affect the values
of C,C2 and E. Below, we provide the best- and worst-case bounds depending only on N .

Proposition 3.4. Without using the elimination rule, the upper and lower bounds on the
number of mixed integer programs solved through the algorithm are 4N − 3 and 2N + 1,
respectively.
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Algorithm 1: The Proposed Algorithm for BOIP

Input : Problem (P )
Output: The set of all nondominated solutions (N )

1 Initializations

(I1) Set d ≥ 0, 0 < ε < 1

(I2) Solve lexmin{ z1(x), z2(x)| x ∈ X } . to find the nondominated point t0

(I3) Solve lexmin{ z2(x), z1(x)| x ∈ X } . to find the nondominated point p0

(I4) N = {t0, p0}, s0 = (t01, p
0
2)T , B = {b(s0, p0, t0)}

2 MainLoop
3 while B is not empty do
4 Let b(sb, pb, tb) ∈ B and solve (R(b, d))
5 if (R(b, d)) is feasible then
6 yb = sb + αbd
7 nb = z(xb)
8 if yb1 = nb

1 then
9 Solve (P1(xb)). Let x1 be an optimal solution.

10 n1 = z(x1)
11 else
12 n1 = nb

13 if yb2 = nb
2 then

14 Solve (P2(xb)) Let x2 be an optimal solution.
15 n2 = z(x2)
16 else
17 n2 = nb

18 if n1
2 < nb

2 then
19 N ← N ∪ {n1}
20 if n2

1 < nb
1 then

21 N ← N ∪ {n2}
22 if n1

2 ≥ nb
2 and n2

1 ≥ nb
1 then

23 N ← N ∪ {nb}
24 s1 = (n1

1, p
b
2)T . first box b(s1, pb, n1)

25 s2 = (tb1, n
2
2)T . second box b(s2, n2, tb)

26 if pb1 − s1
1 > 1 and n1

2 − s1
2 > 1 then

27 B ← B ∪ {b(s1, pb, n1)}
28 if n2

1 − s2
1 > 1 and tb2 − s2

2 > 1 then
29 B ← B ∪ {b(s2, n2, tb)}

30 B ← B \ {b(sb, pb, tb)}

9



Proof. By Proposition 3.3, Algorithm 1 solves 3N + C − 3C2 − 1 mixed integer programs
without the elimination rule. Moreover, by the definition of C and C2 we have

C2 ≤ C ≤ N − 2− C2. (3)

The last inequality follows by the fact that two nondominated points are found at the ini-
tialization step and C2 of them are found additionally if two nondominated points are ob-
tained after solving a Pascoletti-Serafini scalarization. The worst case occurs if C2 = 0 and
C = N − 2, which yields the upper bound 4N − 3.

For the best case, it is required that C takes its lowest possible value, which implies
C = C2. In this case the number of mixed integer programs can be written as 3N − 2C2 − 1.
Clearly, C2 needs to take its highest possible value for the best case. By (3), we have C2 ≤
N−2

2 , hence the best case occurs if C = C2 = N−2
2 , which yields the lower bound 2N + 1.

Note that the number of eliminated boxes depends highly on the structure of the problem.
In the worst case E could be 0, while in the best case it could be as high as N − 1. Consider
an instance with N = 2a + 1 for some integer a. If the nondominated points are located
exactly on the integer diagonals of a 2a × 2a plane, the number of eliminated boxes would be
N − 1. This can easily be seen by induction.

3.1 An Alternative Splitting Strategy

The new search regions added to B in each iteration can be chosen differently. In addition
to the base version that is described above, we consider employing yb = sb + αbd in defining
the new regions. Accordingly, we use yb instead of nb in order to define a new box if it
yields a smaller region than the base version, see Figures 5 and 6. This is done by replacing
lines 12 and 17 of Algorithm 1 with n1 = yb and n2 = yb, respectively. Notice that since
the corners of the newly formed boxes are not necessarily integer valued, one also needs to
change the elimination rule slightly. More specifically, for this variant the strict inequalities
on lines 26 and 28 of Algorithm 1 are replaced by greater than or equal to signs. The following
proposition shows this splitting strategy also works correctly.

Proposition 3.5. Algorithm 1 works correctly if yb = sb + αbd is used in order to partition
the boxes.

Proof. Similar to the proof of Proposition 3.2, N consists of nondominated points. To com-
plete the proof, we show that it is not possible to eliminate a region which may contain a
nondominated point. Note that there is no nondominated point in region R := {y| sb ≤
y < sb + αbd}, where (αb, xb) is an optimal solution of (R(b, d)) for some box b and direction
d. Indeed, for a feasible solution x̃ with z(x̃) ∈ R, there exists α̃ < αb such that (α̃, x̃) is
feasible for (R(b, d)), which contradicts the optimality of (αb, xb). Moreover, if there is a
nondominated point n satisfying ni = ybi , for i ∈ {1, 2}, then it is found by solving (P1(xb))
or (P2(xb)). Hence, no nondominated point is missed from the closure of R.

On the other hand, by Lemma 2.3, yb has at least one integer component satisfying
ybi = nbi . Then, for any box b through the algorithm, tb and pb has at most one non-integer
component. More specifically, by the structure of defining the new boxes, it is ensured to
have pb1, t

b
2 ∈ Z and there exist nondominated points, say p, t such that pb1 = p1 and tb2 = t2.

Therefore, for any 0 < ε < 1, no efficient solution from box b is excluded from the feasible
region of (R(b, d)).
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Figure 5: Forming new boxes using nb

 

=

Figure 6: Forming new boxes using yb

4 Computational results

The algorithm described in Section 3 can be implemented in different ways with respect to
direction and splitting strategy choices. First of all, in each iteration the direction parameter
d can be fixed to (1, 1)T (Fixed) or chosen according to the current box. We consider
two alternatives for the latter: to set d as the diagonal direction of the current box, d =
(pb1 − sb1, tb2 − sb2)T (Changing) and to set d as the direction starting from sb towards the
nadir point, d = (p0

1 − sb1, t02 − sb2)T (Nadir). Secondly, the splitting rule can be fixed as
presented in Algorithm 1 or as explained in Section 3.1.

The six combinations can be seen in Table 1. With a slight abuse of terminology, we refer
to each such implementation as a variant of the algorithm.

Table 1: The variants of the algorithm

Variants
Fixed Changing Nadir

d = (1, 1)T d = (pb1 − sb1, tb2 − sb2)T d = (p0
1 − sb1, t02 − sb2)T

Using nb
FN CN NN

(always)

Using yb
FY CY NY

(if smaller)

We examine the efficiency of the algorithms by solving knapsack and assignment problem
instances which are used in [2]1. Both problem types contain four classes, A, B, C, D each
with five instances. The first set consists of biobjective Knapsack Problem (KP) instances
with 375, 500, 625 and 750 variables. The second set consists of biobjective Assignment
Problem (AP) instances with 200 × 200 and 300× 300 binary variables.

1The instances are available at http:// hdl.handle.net/1959.13/1036183
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The algorithms are coded in C++ and all mixed integer programming models are solved
using CPLEX 12.6. All of the instances are run on a computer with Intel Xeon CPU E5-1650
3.6 GHz processor and 64 GB RAM. Computation times are given in central processing unit
(CPU) seconds. Unless otherwise stated, all performance measures are reported as average
values over the five instances of each class.

We first conduct preliminary experiments on type A knapsack and assignment instances
in order to compare the performances of the algorithm variants. In Tables 2 and 3, we report
the average values for the number of nondominated points (Navg), the number of all (mixed)
integer programming problems solved, the solution time (in CPU seconds), the number of
(R(b, d)) models solved, average time for solving one (R(b, d)) model, average time for solving
one (Pi(x

b)) model, C, C2 and E, see Proposition 3.3.
Overall, we see that partitioning a box using a nondominated point (e.g. nb) is a better

box defining strategy than using yb. This leads to smaller number of problems solved, hence
smaller solution times, except the KP case with changing direction according to nadir (see
NN and NY in Table 2). This good performance is mostly due to the increase in the number
of boxes that are eliminated (E) with our elimination rule (see lines 26 and 28 of Algorithm
1).

We observe that FN consistently performs good in terms of solution time over all test
instances, being the fastest algorithm for KP and the second fastest for AP.

Table 2: Comparison of alternative implementations for class A of the set KP

Navg Algorithm # IP Run Time # (R(b, d)) Time per (R(b, d)) Time per (Pi(x
b)) C C2 E

975.4

FN 2541.20 838.06 1338.00 0.50 0.14 233.20 7.40 595.00
FY 2762.80 947.70 1569.80 0.49 0.15 223.20 7.60 362.80
CN 2398.60 894.72 1351.00 0.58 0.10 72.60 2.40 592.00
CY 2512.60 1098.23 1520.40 0.62 0.14 15.20 0.40 426.60
NN 2325.20 976.52 1347.60 0.65 0.10 0.20 0.00 600.20
NY 2154.20 932.05 1176.80 0.67 0.14 0.00 0.00 771.00

Table 3: Comparison of alternative implementations for class A of the set AP

Navg Algorithm # IP Run Time # (R(b, d)) Time per (R(b, d)) Time per (Pi(x
b)) C C2 E

708.4

FN 1636.20 2150.36 699.20 2.29 0.58 246.60 20.00 674.60
FY 1978.00 2764.41 1056.60 2.09 0.60 231.80 20.80 315.60
CN 1553.40 2187.07 712.00 2.43 0.54 140.20 9.20 683.40
CY 2206.40 3924.58 1372.00 2.52 0.58 132.40 8.40 25.00
NN 1431.00 2043.09 720.60 2.33 0.50 0.00 0.00 693.20
NY 1862.20 2931.79 1151.80 2.22 0.53 0.00 0.00 262.40

Based on these results, we conduct further preliminary experiments with FN, CN and
NN variants. Since finding the whole set of nondominated points might be computationally
demanding for most biobjective integer programming problems, early termination perfor-
mances of the algorithms are also worth considering. Therefore, we run FN, CN and NN with
predetermined time limits and report the quality of the set of nondominated points obtained.

Table 4 shows the performance results for the three algorithm variants when they are run
with time limits for class A of KP and AP. The time limit is set as 300 and 700 seconds for
KP and AP, respectively. This corresponds to approximately 30% of the time required to find
the whole set of nondominated points. The table shows the average values of the number of
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nondominated points found (N̄), the coverage error (CE), the scaled coverage error (SCE)
and the scaled hypervolume gap (SGH) multiplied by 103 for each variant.

Table 4: Representativeness results with time limits for class A instances

KP AP

Algorithm N̄ CE SCE SHG×103 N̄ CE SCE SHG×103

FN 491 377.00 0.1086 8.1044 227 719.20 0.2727 23.3229
CN 530 15.00 0.0043 0.2715 270 22.80 0.0086 0.3979
NN 365 561.00 0.1618 29.0612 231 759.40 0.2879 29.0965

It is seen that CN significantly outperforms the others with respect to representativeness.
This result is expected as setting the direction as the diagonal vector of the box to be searched
encourages the algorithm to find scattered solutions across the Pareto frontier and provides
a highly representative set even at the early stages of the algorithm.

In Figures 7-9, we provide the solution sets found when KP instances are solved with time
limited versions of FN, CN and NN, respectively. Note that the approximation provided by
CN outperforms the other two approximations, especially in terms of representing the tails of
the frontier (top left and lower right). This result is expected and a clear benefit of choosing
the direction vector based on the specifics of the box to-be-explored. To see why, consider an
example case, where a box being explored is relatively wide in one dimension and narrow in
the other. In that case, choosing a fixed direction vector may lead to finding a solution far
away from the center of the box, as depicted in Figure 10, where solving the scalarization with
the fixed and changing direction policies will provide points 1 and 2, respectively. Clearly, 2
is a better representative subset of the set of solutions in the box, with respect to coverage
error. It is seen in Figures 7-9 that such disproportionate boxes have to be explored to find
solutions towards the tails of the Pareto frontier. When a time limit is applied and a subset of
solutions are found with a direction vector different from the diagonal vector, such solutions
are not guaranteed to be close to the centers of the explored boxes, significantly reducing the
representation quality of the subset.

In the first set of preliminary experiments, we eliminated the split strategy that defines the
boxes using yb, and concluded that FN, CN, NN are worth further consideration, FN being
the most computationally efficient one. In the second set of experiments with time limits we
have observed that CN is the top-performer. Based on these preliminary observations, we
decided to perform the main experiments with FN as it is computationally more promising,
and CN, as it outperforms the other variants under time restriction.

Tables 5 and 6 show the results of our main experiments, in which we compare FN
and CN over all instances of KP and AP. We report the average values for the number
of nondominated solutions (Navg), the number of models solved, the total solution times,
the number of (R(b, d)) models solved and average time spent to solve (R(b, d)) and (Pi(x

b))
models as well as C, C2 and E. The results verify the observations made at the preliminary
experiments: although FN solves more (mixed) integer programming problems in total, it
solves less of the more difficult (R(b, d)) models, hence it works faster than CN. Moreover,
when FN is used, the number of cases where yb = nb (C) is significantly larger than that of
CN. This is due to the nature of the direction vector used; moving along the search region
in a fixed direction of (1, 1)T , the algorithm visits integer corners more often compared to a
diagonal direction vector. This increases the cases where (P1(xb)) and (P2(xb)) are both solved
within a box. Note that, in only a small portion of these cases two new nondominated points
are found, implying that one (Pi(x

b)) is solved unnecessarily. However, since these models
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are much easier to solve compared to (R(b, d)), solving more of these does not significantly
affect the computational performance of FN.

Table 5: Results of the main experiments on KP

Class:Navg Algorithm # IP Run Time # (R(b, d)) Time per (R(b, d)) Time per (Pi(x
b)) C C2 E

A:975.4
FN 2541.20 838.06 1338.00 0.50 0.14 233.20 7.40 595.00
CN 2398.60 894.72 1351.00 0.58 0.10 72.60 2.40 592.00

B:1539.4
FN 3913.00 1546.16 1984.20 0.62 0.15 409.80 22.40 1046.80
CN 3704.00 2711.98 2027.80 1.04 0.33 140.00 5.20 1037.60

C:2176.2
FN 5453.60 2539.96 2665.00 0.76 0.18 657.20 46.80 1590.80
CN 5152.20 3459.57 2744.00 1.12 0.16 239.40 9.40 1586.60

D:2791.8
FN 6934.40 4605.52 3231.40 1.06 0.34 995.20 86.00 2177.20
CN 6503.20 5404.77 3345.80 1.43 0.19 383.80 20.20 2194.40

Table 6: Results of the main experiments on AP

Class:Navg Algorithm # IP Run Time # (R(b, d)) Time per (R(b, d)) Time per (Pi(x
b)) C C2 E

A:708.4
FN 1636.20 2150.36 699.20 2.29 0.58 246.60 20.00 674.60
CN 1553.40 2187.07 712.00 2.43 0.54 140.20 9.20 683.40

B:1416.2
FN 3247.20 5354.08 1475.80 2.85 0.64 379.20 26.00 1301.60
CN 3096.20 5519.86 1506.20 3.02 0.60 177.60 5.80 1311.60

C:823.6
FN 1895.00 5644.20 803.60 5.22 1.32 288.80 23.00 794.60
CN 1839.40 11212.29 815.80 12.04 1.33 210.60 12.60 803.20

D:1827
FN 4140.20 16403.48 1808.20 6.95 1.64 561.40 58.40 1726.00
CN 3980.40 17451.84 1860.40 7.61 1.54 304.00 13.00 1764.60

CN works slower compared to FN but our preliminary experiments show that it is promis-
ing when used with time limits. We verified this observation by performing experiments for
the whole KP and AP sets with time limit, the results of which are provided in Table 7.

Table 7: Representativeness results (average) with time limits for the full set of problem
instances

KP AP

FN CN FN CN

Class Time N̄ CE SCE SHG×103 N̄ CE SCE SHG×103 Time N̄ CE SCE SHG×103 N̄ CE SCE SHG×103

A 300 491.00 377.00 0.1086 8.1044 530.00 15.00 0.0043 0.2715 700 227.00 719.20 0.2727 23.3229 269.80 22.80 0.0086 0.3979
B 700 810.80 431.40 0.0914 5.9433 789.60 16.80 0.0036 0.2579 1820 479.60 2479.40 0.3131 17.7713 621.40 36.60 0.0046 0.0990
C 1000 998.00 594.40 0.0981 6.3360 814.80 21.40 0.0035 0.3443 2810 380.20 571.00 0.2254 18.2876 246.20 40.00 0.0157 0.8229
D 1670 1345.80 705.20 0.0987 5.9066 1074.40 18.60 0.0026 0.2374 5650 617.20 3077.00 0.3161 17.5117 764.00 54.60 0.0056 0.0841

Overall, one can conclude that both variants are powerful in different aspects. When
used to find the complete set of nondominated points, FN works better since it runs faster.
However, CN is also very promising when run with a time limit since it quickly provides a
highly representative subset of solutions.

4.1 Extensions

In this section we present three extensions of Algorithm 1. The first of these extensions is
specific to CN. The other two can be implemented for all variants, however, we illustrate their
effects also using CN, for demonstration purposes.

When we examine the results of average time spent for an (R(b, d)) model, we observe
that there is significant difference between FN and CN for class C of AP, see Table 6. In these
instances, average time spent per (R(b, d)) model in CN is more than twice of the time spent
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in FN. To investigate this further, we check the solution times of each individual (R(b, d))
model solved in CN for these instances. We summarize the results for class C instances in
Figures 11 and 12, where we report the distribution of runtimes with occurrence frequencies
over all scalarization models solved in these instances (in total: 4079 models, 222 of which
were infeasible). To improve visibility, the outliers (models with run time higher than 30
seconds) are excluded from Figure 11 and are separately reported in Figure 12. We see that
the majority of the total time is occupied by only few models.

Figure 11: Occurrence frequencies of solution
times that are under 30 seconds

Figure 12: Occurrence frequencies of solution
times that are over 30 seconds

To overcome this issue of extreme solution times, we modify CN and solve each (R(b, d))
model under a time limit. If the model is aborted due to the time limit, we slightly modify
the direction and solve the model with the new direction parameter. That is, we change line
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4 of Algorithm 1 as follows2:

Replacement of line 4 of Algorithm 1

Let b(sb, pb, tb) ∈ B and d = (pb1 − sb1, tb2 − sb2)T , attempt to solve (R(b, d))
if (R(b, d)) could not be solved within the time limit then

db2 = db2 − 1
Solve (R(b, d))

We refer to this extension of CN with time limited (R(b, d)) models as TL-CN. We compare
the performance of TL-CN (where a time limit of 50 seconds is used for each (R(b, d)) model)
with those of FN and CN in class C of AP. The results are presented in Table 8, where we
report the average values of each indicator over five instances. When we compare the number
of integer programming problems solved by the algorithms, we observe that CN is the best
algorithm and it is closely followed by TL-CN, as expected. When we analyse the run times
and average (R(b, d)) solution times of TL-CN and CN, we observe that there is a significant
improvement when TL-CN is used, indicating that the extension is successful.

Table 8: Comparison of the FN, CN and TL-CN for class C of the set AP

Algorithm # IP Run Time # (R(b, d)) Time per (R(b, d)) Time per (Pi(x
b)) C C2 E

FN 1895.00 5644.20 803.60 5.22 1.32 288.80 23.00 794.60
TL-CN 1850.80 6978.42 826.00 6.89 1.25 211.60 12.40 803.40

CN 1839.40 11212.29 815.80 12.04 1.33 210.60 12.60 803.20

We also run TL-CN with predetermined time limits for class C of AP and observe the
quality of the solution set (using coverage error and hypervolume gap) by comparing it with
FN and CN. The average values of the number of solutions found are: 380.2, 246.2, 367.8;
the average coverage error values are: 571, 40, 33.8; the average scaled coverage error values
are: 0.2254, 0.0157, 0.0134, and scaled hypervolume gap values are: 18.2876× 10−3, 0.8229×
10−3, 0.4315× 10−3 for FN, CN and TL-CN, respectively. It is seen that TL-CN outperforms
CN and FN in terms of representativeness.

Overall, the results show that this modification (TL-CN) is successful in significantly
reducing run time without sacrificing from performance in representativeness.

In Algorithm 1, since solving (R(b, d)) only guarantees finding a weakly nondominated
point, we rely on two integer programming problems ((P1(xb)) or (P2(xb))), and in some
cases there is a possibility of solving both models, one of which may be redundant. An
alternative strategy would be solving a model of the following form after (R(b, d)):

min{ z1(x) + z2(x)| x ∈ X , z1(x) ≤ z1(xb) z2(x) ≤ z2(xb) } (S(xb))

In this case, a single point is returned at each iteration and the two new boxes are formed
taking this point into account. That is, we modify lines 8-17 of Algorithm 1 as follows:

Replacement of lines 8-17 of Algorithm 1

Solve (S(xb)). Let x1 be an optimal solution.
n1 = z(x1)
n2 = z(x1)

2Note that the direction change is done only once.
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We implement this strategy for CN and refer to the variant as CN-S. We compare this
variant with CN for class A of KP and AP and report the results in Table 9. The table
shows that in CN-S, the number of IPs solved is less, but this decrease is not reflected on
the solution times. This is because the number of (R(b, d)) problems, which take more time
to solve, increases in CN-S compared to CN. Note that in CN-S, each nondominated point
is generated after solving a separate (R(b, d)) problem, while in some iterations of CN (C2

iterations) two nondominated points are found after solving only one (R(b, d)). The redundant
models CN-S avoids are the second stage models, which are easier to solve than (R(b, d)),
hence only account for a small fraction of the total solution time. That is why, we see that
the extension CN-S may not guarantee better results in terms of solution time.

One key design parameter of Algorithm 1 is the order of boxes. We use a simple strategy
and add the new boxes to the end of the list B and hence implement a First-Generated-
First-Explored rule. This way, without strictly imposing it, we encourage larger boxes to be
explored first. This is the case especially in CN, as the boxes are split with respect to centrally
located points. To see whether there are further benefits if the ordering would always be by
box size, we implement another extension of CN, in which the boxes are explored starting
from the largest. This variant is called CN-BO and the results on class A of KP and AP are
given in Table 9. The results show that there is not a significant difference between CN and
CN-BO, indicating that our box exploration strategy encourages checking larger boxes first.

Table 9: Comparison of CN, CN-BO and CN-S for class A of sets KP and AP

Set Algorithm # IP Run Time # (R(b, d)) Time (R(b, d)) C C2 E

KP
CN 2398.60 894.72 1351.0 787.13 72.60 2.40 592.0

CN-BO 2404.00 889.05 1355.2 773.78 73.60 2.20 588.2
CN-S 2352.40 928.20 1375.0 795.12 - - 572.8

AP
CN 1553.40 2187.07 712.0 1728.28 140.20 9.20 683.4

CN-BO 1552.60 2178.80 713.0 1730.36 137.40 8.20 684.4
CN-S 1434.00 2191.11 723.6 1735.60 - - 690.2

4.2 Comparison with existing algorithms

We also provide comparisons with existing box-searching algorithms in the literature that
are reported to perform well. We coded the box algorithm proposed by [11] (Algorithm
BA), which searches boxes using an epsilon constraint type scalarization and the algorithm
discussed e.g. in [5, 21, 14] (Algorithm WS), which uses weighted sum scalarization with box
defining constraints as follows:

min{wz1(x) + (1− w)z2(x)| x ∈ X , z1(x) ≤ pb1 − ε, z2(x) ≤ tb2 − ε } (WS(b, w))

We implement the algorithms to solve the same set of AP and KP using the same com-
putational environment. To have a fair comparison, we also used our box elimination rule
in all variants of the WS algorithm. However, in BA, since the corners of the boxes are not
necessarily nondominated points, our elimination strategy can not be implemented directly.
Therefore, we use the elimination rule given in the original BA algorithm from [11].

It is possible to implement WS with different parameter choices, each time setting the
weight parameter in a similar way to the direction parameter of the Pascoletti-Serafini scalar-
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ization. Therefore, we first investigate the performance of such WS algorithm variants, in
which the weight parameter w is set as follows:

FW: w=0.5, CW: w =
tb2−sb2

pb1−sb1+tb2−sb2
, NW:w =

t02−sb2
p01−sb1+t02−sb2

The results reported in Table 10 show that in KP, the performances of FW, CW and NW
with respect to the number of IPs is similar, while setting the weight parameters with respect
to the nadir point (NW) results in a considerable increase in solution time. In these instances,
FW requires the minimum solution time, which is similar to the observations made for FN
(implementation of Algorithm 1 with fixed direction). In AP, setting the weight parameters
with respect to the nadir point (NW) may result in an increase in the number of IP models
solved, yet this implementation is the fastest one for this set. Overall, there is no clear winner
over all sets in terms of solution time, FW and NW being the fastest variants over KP and
AP, respectively. CW, on the other hand, seems advantageous in terms of the number of
IPs solved, observed especially in AP; and is the second and the third fastest algorithm in
KP and AP, respectively. By comparing Tables 5, 6 and 10, we observe that for each class
of instances, the fastest variant of the WS algorithm outperforms CN when the goal is to
compute the entire set of nondominated points.

Table 10: Comparison of alternative implementations of WS

KP AP

Class:N Algorithm # IP Run Time E Class:N Algorithm # IP Run Time E3

A:975.4

CW 1387.00 604.58 564.80

A:708.4

CW 729.00 1575.41 688.80
FW 1383.80 582.13 568.00 FW 738.40 1441.38 679.40
NW 1384.60 680.64 567.20 NW 747.00 1384.71 670.80

B:1539.4

CW 2082.40 1347.38 997.40

B:1416.2

CW 1538.60 4335.83 1294.80
FW 2081.40 1313.20 998.40 FW 1555.20 3764.10 1278.20
NW 2080.80 1593.80 999.00 NW 1569.40 3565.28 1264.00

C:2176.2

CW 2827.80 2297.15 1525.60

C:823.6

CW 834.80 3846.29 813.40
FW 2823.00 2189.65 1530.40 FW 847.40 3621.01 800.80
NW 2825.40 2955.11 1528.00 NW 857.00 3516.93 791.20

D:2791.8

CW 3472.00 3603.22 2112.60

D:1827

CW 1910.00 12056.57 1745.00
FW 3466.80 3375.21 2117.80 FW 1935.00 10371.09 1720.00
NW 3466.40 5120.93 2118.20 NW 1964.80 9816.62 1690.20

Table 11: Results of BA

KP AP

Class N Run Time # IP E N Run Time # IP E

A 975.4 389.44 2703.20 975.40 708.4 947.53 1446.80 708.40
B 1539.4 834.10 4080.40 1539.20 1416.2 2257.25 3012.00 1416.20
C 2176.2 1373.00 5420.00 2176.20 823.6 2523.18 1661.20 823.60
D 2791.8 2297.09 6575.20 2791.80 1827 6916.81 3763.20 1827.00

Table 11 shows the results of the experiments performed with BA. When the solution
times required to find all the nondominated solutions are considered, it is observed that in
KP, BA outperforms all other algorithms. The differences are more significant in AP. Since
BA solves two models for each scalarization (to guarantee obtaining a nondominated solution),
the number of IPs is about twice that of WS variants and comparable to those of FN and
CN.
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One of the main motivations to use the Pascoletti-Serafini scalarization is to obtain rep-
resentative subsets in short time; hence we also compare the performance of the algorithms
under time limit. We perform a new set of experiments to compare CN, the best variant in
terms of representativeness, with WS variants and BA.

For each set of instances, we perform runs setting two time limits: T1 and T2. We set the
time limits T1 and T2 such that they are a quarter of and half of the average solution time
of the fastest algorithm (BA), respectively 4.

First, we compare the performances of variants of WS algorithm in terms of representa-
tiveness. Table 12 shows the average values of the number of solutions found, coverage error,
scaled coverage error and scaled hypervolume gap for CW, FW and NW. Accordingly, CW,
in which the weight parameter is set using a similar strategy as in CN, outperforms the others
in terms of representativeness. Hence, only CW is used for the overall comparison. Note that
empty boxes (hence infeasible models) are encountered towards the later iterations of the
algorithm CW, compared to the other variants. As a result, CW returns more solutions than
the other variants when implemented under time limit, which leads to better performance in
representativeness.

In Table 13, we report the average values of the number of solutions found, coverage error,
scaled coverage error and scaled hypervolume gap for CN, CW and BA. We observe that the
performances of CN and CW are comparable, while BA performs significantly worse than the
other two in terms of coverage. Moreover, this good performance of CN is obtained with a
significantly less number of solutions compared to CW and BA (nearly half in most cases).
In that sense, one can see that our algorithm is competitive as it ensures comparable level
of coverage as CW with a subset of much smaller size and better coverage than BA, again
with a much smaller set of solutions, which is desirable ([22]). We also observe that scaled
coverage error and the scaled hypervolume gap do not provide the same order, see e.g. AP(T1)
class C results, where SCE values for CN and BA are 0.0253 and 0.0303, indicating better
performance for CN, while the SHG values are 2.4494 (×10−3) and 1.4997 (×10−3), indicating
the opposite order. When representativess is measured in terms of SHG, we observe that CN
performs worst in some sets, which is mainly due to it returning a small number of solutions.

The results indicate that when the algorithms are implemented so as to find a subset
of fixed cardinality, CN may present a more representative set. This is because, unlike Al-
gorithm 1, the WS algorithm (and hence CW) without the box constraints fails to generate
unsupported points. It can only reach unsupported points by making them locally supported,
iteratively. Hence when the centrally located point(s) of a box are unsupported, they may not
be generated in the early iterations. This can be illustrated in Figure 10, where implementing
CW would return point 1, which is clearly less representative of the set of solutions in the
box compared to point 2, the point returned by CN. Algorithm 1 is able to return centrally
located points whether they are supported or unsupported, which gives CN a clear advantage
in terms of representativeness under fixed cardinality. This can also be seen in Table 14, in
which we show the representativeness measures by fixing the cardinality of the solution sets
of CW and BA to the one returned by CN.

There is also a recent algorithm, the balanced box (BB) algorithm ([2]), which can be seen
as an extension of [11]. Since this algorithm is originally coded using a different language
and involves various enhancements, it is difficult to replicate the results in our computational

4Specifically, T1 is set as 97.5, 208.5, 343 and 574 second in classes A, B, C and D of KP, respectively. T1

is set as 237, 565, 632 and 1729 seconds in classes A, B, C and D of AP, respectively. T2=2×T1 for each class.
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Table 12: Representativeness results of the alternative implementations of WS under time
limit

CW FW NW
Problem Type Class N̄ CE SCE SHG×103 N̄ CE SCE SHG×103 N̄ CE SCE SHG×103

AP (T1)

A 171.4 56.6 0.0214 1.3010 94.6 1098.6 0.4165 165.4009 110.2 1081.8 0.4102 163.2202
B 328 129 0.0163 0.4655 158 3486.4 0.4403 131.0424 167 3470.8 0.4383 130.2929
C 203.4 51.4 0.0204 1.4052 116.8 1031.8 0.4074 186.0266 136.8 1011.6 0.3993 181.2243
D 465.2 123.6 0.0127 0.3070 206.2 4299.6 0.4417 129.8451 243.4 4290.6 0.4408 126.3918

AP (T2)

A 287.8 45.6 0.0172 0.6642 192 1065.8 0.4040 133.0541 218.6 1032.2 0.3914 123.9464
B 540 96.8 0.0122 0.2496 326 3402.4 0.4297 107.5144 356.2 3368.8 0.4255 103.1515
C 348.4 34.6 0.0137 0.7168 240.2 984.6 0.3887 144.3268 275.6 955.2 0.3770 132.3241
D 766.4 84 0.0087 0.1590 446.4 4203.6 0.4318 105.2014 529.8 4163.0 0.4277 97.0106

KP (T1)

A 358.2 44.2 0.0128 1.6565 159.2 1135.6 0.3273 249.0571 128.8 1145.4 0.3302 279.1742
B 547.8 46.4 0.0098 1.2366 240.8 1534.8 0.3257 257.4887 182.8 1538.2 0.3266 287.8895
C 760.8 49.2 0.0082 0.9845 395.6 1977 0.3279 247.1719 284.4 1994.6 0.3308 278.7227
D 983.2 51.8 0.0073 0.7693 567.4 2334.8 0.3264 240.3115 342.8 2413.2 0.3375 281.7669

KP (T2)

A 531 37.2 0.0108 0.8544 293 1040.2 0.2993 188.8417 246.8 1055.2 0.3037 215.4790
B 838.4 39.6 0.0084 0.5830 460.8 1396.2 0.2960 187.5788 356.2 1427.0 0.3025 223.4901
C 1154.2 36.4 0.0061 0.5068 733.8 1792 0.2969 173.8502 514.2 1880.4 0.3118 222.0448
D 1514.4 40.6 0.0057 0.4011 1093.2 2060 0.2879 155.1007 640.8 2264.8 0.3168 227.6428

Table 13: Representativeness results of the existing algorithms under time limit

CN CW BA
Problem Type Class N̄ CE SCE SHG×103 N̄ CE SCE SHG×103 N̄ CE SCE SHG×103

AP (T1)

A 95.8 80.8 0.0306 2.0348 171.4 56.6 0.0214 1.3010 186.2 189.2 0.0718 1.8700
B 209.2 156 0.0197 0.5574 328 129 0.0163 0.4655 388 473.2 0.0596 0.4790
C 100.8 64 0.0253 2.4494 203.4 51.4 0.0204 1.4052 217.8 76.8 0.0303 1.4997
D 283.4 135.2 0.0139 0.3622 465.2 123.6 0.0127 0.3070 493.2 505.4 0.0519 0.4531

AP (T2)

A 190.6 46 0.0175 0.8295 287.8 45.6 0.0172 0.6642 363.8 48.2 0.0183 0.3556
B 405.2 104 0.0132 0.2242 540 96.8 0.0122 0.2496 737 226.6 0.0285 0.1606
C 166.6 45.6 0.0180 1.3423 348.4 34.6 0.0137 0.7168 417.2 33 0.0130 0.3609
D 513.8 69.8 0.0072 0.1466 766.4 84 0.0087 0.1590 932.8 146.6 0.0150 0.0938

KP (T1)

A 225.6 45.8 0.0135 1.5178 358.2 44.2 0.0128 1.6565 353.2 72.4 0.0210 0.8235
B 309.6 39.6 0.0082 1.2757 547.8 46.4 0.0098 1.2366 564.2 57.2 0.0123 0.5105
C 325.8 51.4 0.0085 1.2748 760.8 49.2 0.0082 0.9845 739.4 64.6 0.0107 0.4238
D 376.6 58 0.0081 1.1317 983.2 51.8 0.0073 0.7693 1007.6 72.8 0.0102 0.2993

KP (T2)

A 423.2 22.2 0.0064 0.5189 531 37.2 0.0108 0.8544 637.2 39.4 0.0116 0.1881
B 643.8 23.6 0.0048 0.4171 838.4 39.6 0.0084 0.5830 1019.4 27.2 0.0059 0.1182
C 650.6 21.4 0.0036 0.4839 1154.2 36.4 0.0061 0.5068 1412.6 30 0.0050 0.1034
D 758.2 25.6 0.0036 0.4485 1514.4 40.6 0.0057 0.4011 1804.8 25.2 0.0035 0.0765

environment. Therefore, we do not fully compare the solution times with those of the balanced
box algorithm. We, however, can comment on the number of (mixed) integer programming
problems solved. The balanced box algorithm solves exactly 3N problems. Therefore, it
will solve more models for all of the problem instances considered; indeed it solves 25.5%,
36.5% more problems than our best algorithm variant on average for KP and AP, respectively.
Moreover, on a different computer on which we could run the code of BB algorithm provided by
one of the authors of [2] and our algorithms, we made comparisons between BB and CN when
both are implemented under time limit. Specifically, for each instance in class B and D of sets
KP and AP, we first run BB algorithm until a fixed number of nondominated points are found
(100, 200 and 300 points, respectively) and record the solution time. We then run CN under
the same time limit and report detailed results on the number of nondominated points found,
the coverage error values (CE and SCE) and the scaled hypervolume gap (SHG) for both
algorithms in Tables 15 and 16, for class B and D instances, respectively (See Appendix). The
results indicate better performance of the CN algorithm with respect to representativeness.
In almost all instances, CN provides a solution set with better coverage and hypervolume gap,

21



Table 14: Representativeness results of the existing algorithms for fixed N̄

CW BA
Problem Type Class N̄ CE SCE SHG×103 CE SCE SHG×103

AP (T1)

A 95.8 88 0.0335 2.4701 320.8 0.1219 4.2239
B 209.2 163.8 0.0207 0.7288 841 0.1058 1.4844
C 100.8 79.6 0.0315 2.8475 223.4 0.0883 4.2464
D 283.4 153.2 0.0157 0.5073 878.4 0.0902 1.0034

AP (T2)

A 190.6 56.6 0.0214 1.1732 154.6 0.0591 1.7069
B 405.2 129 0.0163 0.3622 473.2 0.0596 0.4609
C 166.6 66 0.0262 1.7169 131 0.0518 2.5594
D 513.8 91.4 0.0094 0.2694 505.4 0.0519 0.4503

KP (T1)

A 225.6 51.2 0.0147 2.9080 82.4 0.0241 1.7554
B 309.6 67.8 0.0144 2.4493 103.2 0.0218 1.3959
C 325.8 74.6 0.0124 2.2843 133.8 0.0222 1.3735
D 376.6 70.2 0.0099 1.9943 174.2 0.0244 1.2145

KP (T2)

A 423.2 39.4 0.0114 1.2623 54.6 0.0158 0.5883
B 643.8 46.4 0.0098 1.0227 66.6 0.0141 0.4626
C 650.6 55.8 0.0092 1.2001 75.4 0.0125 0.5125
D 758.2 55 0.0077 1.0475 110.8 0.0155 0.4763

while in a few instances the coverage of the solution set of BB is better. We use Figure 13
to summarize these results and demonstrate how the quality of approximation evolves over
time. The figure shows the change in SCE and SHG values through time for BB and CN.
We see that CN provides better representativeness under all three time limits and that the
difference reduces as time limit increases.

5 Conclusion

We propose an exact solution approach for biobjective integer programming problems based
on solving Pascoletti-Serafini scalarizations to search for nondominated points within boxes
in the objective space. We implement different variations of the algorithm based on how
the boxes are defined and how the direction vector in the scalarization problem is set. We
prove that the algorithm terminates and provide lower and upper bounds on the number of
scalarization models solved.

We compare the performances of alternative implementations of the algorithm under dif-
ferent parameter choices and box splitting strategies, both with and without time limits.
Our results indicate that using nondominated points to define the boxes is a better strategy.
Moreover, although using a fixed direction vector of (1, 1)T leads to more (mixed) integer pro-
gramming problems solved, it requires less computational time since less of the more difficult
scalarization models are solved. We, however, observe that setting direction with respect to
the diagonal of the box to be searched is still promising since it returns a highly representa-
tive subset (measured using coverage error and hypervolume gap) of the set of nondominated
points when it is run with a time limit. This good performance in representativeness is also
verified by comparisons with existing algorithms.

Future research can focus on further comparisons of the discussed approaches on different
sets of problems as well as exploration of different versions of Algorithm 1, one example being
the implementation of the augmented formulation of the scalarization problem instead of
solving second stage models.
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Figure 13: Quality of the approximation over time. (T̄ : Time limit)
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Appendix A: Detailed results on quality of approximation

Table 15: Representativeness results of BB and CN under time limit for class B instances

KP AP
BB CN BB CN

Ins N Time N̄ CE SCE SHG×103 N̄ CE SCE SHG×103 N Time N̄ CE SCE SHG×103 N̄ CE SCE SHG×103

1 1416 135 100 186 0.0433 8.6553 97 124 0.0289 4.8684 1508 321 100 461 0.0567 2.4728 94 368 0.0452 1.4702
2 1793 167 100 217 0.0405 9.0773 78 149 0.0278 6.4003 1362 317 100 485 0.0631 2.3072 96 275 0.0358 1.3666
3 1539 164 100 144 0.0300 9.5240 96 130 0.0271 5.3799 1383 315 100 576 0.0724 2.2801 94 391 0.0492 1.3933
4 1338 127 100 127 0.0282 8.5474 96 144 0.0320 5.0485 1456 325 100 462 0.0596 2.5565 93 288 0.0371 1.5630
5 1611 123 100 165 0.0359 8.9997 87 94 0.0205 5.7980 1372 313 100 401 0.0497 2.3082 93 283 0.0351 1.4088

1 1416 261 200 134 0.0312 3.7353 258 42 0.0098 1.2703 1508 614 200 199 0.0245 1.0482 183 183 0.0225 0.6781
2 1793 353 200 150 0.028 4.0634 197 92 0.0172 2.3858 1362 615 200 296 0.0385 0.9560 182 141 0.0184 0.6460
3 1539 333 200 86 0.0179 4.2037 235 45 0.0094 1.7662 1383 612 200 313 0.0394 0.9515 177 131 0.0165 0.6591
4 1338 243 200 68 0.0151 3.6248 215 52 0.0115 1.8965 1456 624 200 213 0.0275 1.0827 177 164 0.0211 0.7440
5 1611 222 200 84 0.0183 3.9165 179 54 0.0118 2.5501 1372 601 200 244 0.0303 0.9612 179 161 0.02 0.6586

1 1416 377 300 60 0.0140 2.1089 370 42 0.0098 0.8973 1508 898 300 161 0.0198 0.5926 261 106 0.0130 0.3810
2 1793 537 300 114 0.0213 2.4171 320 54 0.0101 1.2813 1362 916 300 141 0.0184 0.5302 273 108 0.0141 0.3395
3 1539 493 300 49 0.0102 2.4582 366 21 0.0044 1.0527 1383 909 300 126 0.0158 0.5318 251 131 0.0165 0.3707
4 1338 373 300 57 0.0127 2.1271 359 21 0.0047 0.9828 1456 919 300 98 0.0126 0.6115 252 164 0.0211 0.4214
5 1611 358 300 59 0.0128 2.2552 318 22 0.0048 1.2060 1372 890 300 161 0.0200 0.5405 252 161 0.0200 0.3803

Table 16: Representativeness results of BB and CN under time limit for class D instances

KP AP
BB CN BB CN

Ins N Time N̄ CE SCE SHG×103 N̄ CE SCE SHG ×103 N Time N̄ CE SCE SHG ×103 N̄ CE SCE SHG ×103

1 3030 209 100 286 0.0396 9.3300 74 218 0.0301 6.6541 1746 904 100 528 0.0532 2.2107 103 362 0.0365 1.2164
2 2836 230 100 274 0.0397 9.2092 74 218 0.0316 6.6024 1889 939 100 550 0.0564 2.5445 104 412 0.0422 1.3476
3 2920 216 100 339 0.0442 8.9635 87 206 0.0269 5.7109 1834 938 100 556 0.0576 2.3210 103 352 0.0365 1.2662
4 2686 205 100 271 0.0385 8.6333 67 214 0.0304 6.5728 1839 952 100 541 0.0558 2.3854 96 383 0.0395 1.4014
5 2487 199 100 329 0.0475 8.4906 94 188 0.0272 4.9580 1827 997 100 569 0.0589 2.4342 106 337 0.0349 1.2618

1 3030 428 200 189 0.0261 4.3571 139 133 0.0184 3.2987 1746 1783 200 299 0.0301 0.9477 203 185 0.0186 0.5560
2 2836 445 200 196 0.0284 4.2477 132 123 0.0178 3.3739 1889 1836 200 273 0.028 1.1116 204 207 0.0212 0.6304
3 2920 467 200 211 0.0275 4.1654 172 118 0.0154 2.7265 1834 1827 200 280 0.029 1.0027 213 181 0.0188 0.5409
4 2686 424 200 190 0.027 4.0136 145 148 0.0211 3.0111 1839 1858 200 269 0.0278 1.0353 204 178 0.0184 0.5920
5 2487 411 200 202 0.0292 3.8847 189 111 0.016 2.3157 1827 1924 200 282 0.0292 1.0571 212 190 0.0197 0.5697

1 3030 664 300 114 0.0158 2.7535 230 133 0.0184 1.9805 1746 2905 300 198 0.02 0.5555 315 166 0.0167 0.3083
2 2836 689 300 91 0.0132 2.6506 205 123 0.0178 2.3463 1889 2725 300 160 0.0164 0.6500 309 122 0.0125 0.3653
3 2920 643 300 115 0.015 2.5678 221 118 0.0154 2.0427 1834 2695 300 167 0.0173 0.5804 323 136 0.0141 0.3155
4 2686 647 300 93 0.0132 2.4708 191 148 0.0211 2.3945 1839 2785 300 168 0.0173 0.6122 307 130 0.0134 0.3425
5 2487 616 300 142 0.0205 2.3954 282 55 0.0079 1.3363 1827 2847 300 158 0.0164 0.6166 322 122 0.0126 0.3335
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