
Memetic collaborative approaches for finding balanced incomplete block designs ✩

David Rodrı́guez Ruedaa, Carlos Cottab, Antonio J. Fernández-Leivab

aUniversidad Nacional Experimental del Táchira (UNET), Laboratorio de Computación de Alto Rendimiento (LCAR), San Cristóbal, Táchira, 5001, Venezuela
bUniversidad de Málaga, ETSI Informática, Campus de Teatinos, 29071 Málaga, Spain

Abstract

The balanced incomplete block design (BIBD) problem is a difficult combinatorial problem with a large number of symmetries,
which add complexity to its resolution. In this paper, we propose a dual (integer) problem representation that serves as an alternative
to the classical binary formulation of the problem. We attack this problem incrementally: firstly, we propose basic algorithms (i.e.
local search techniques and genetic algorithms) intended to work separately on the two different search spaces (i.e. binary and
integer); secondly, we propose two hybrid schemes: an integrative approach (i.e. a memetic algorithm) and a collaborative model in
which the previous methods work in parallel, occasionally exchanging information. Three distinct two-dimensional structures are
proposed as communication topology among the algorithms involved in the collaborative model, as well as a number of migration
and acceptance criteria for sending and receiving data. An empirical analysis comparing a large number of instances of our schemes
(with algorithms possibly working on different search spaces and with/without symmetry breaking methods) shows that some
of these algorithms can be considered the state of the art of the metaheuristic methods applied to finding BIBDs. Moreover,
our cooperative proposal is a general scheme from which distinct algorithmic variants can be instantiated to handle symmetrical
optimisation problems. For this reason, we have also analysed its key parameters, thereby providing general guidelines for the
design of efficient/robust cooperative algorithms devised from our proposal.

Keywords: Balanced Incomplete Block Design, Memetic Algorithms, Cooperative Models, Metaheuristics

1. Introduction

The generation of block designs is a well-known combina-
torial problem of enormous difficulty [1]. The problem has a
number of variants [2, 3, 4, 5, 6], among which a popular one is
the so-called balanced incomplete block design (BIBD). Basi-
cally, a BIBD is defined as an arrangement of v different objects
into b blocks such that each block contains exactly k different
objects, each object occurs in exactly r different blocks, and ev-
ery two different objects occur together in exactly λ blocks (for
k,r,λ > 0). The construction of BIBDs was initially tackled
in the area of experimental design [7, 8]; however, nowadays
BIBDs are applied in a variety of fields such as cryptography
[9], coding theory [10], food evaluation [11], load balance in
distributed networks [12], and classification tasks [13], among
others.

BIBD generation is an NP-hard problem [14] that provides an
excellent benchmark for optimisation algorithms since it is scal-
able and has a wide variety of problem instances ranging from

✩This work is partially funded by Junta de Andalucı́a (project P10-TIC-
6083, DNEMESIS – http://dnemesis.lcc.uma.es/wordpress/), Minis-
terio Español de Economı́a y Competitividad (projects TIN2014-56494-C4-1-P,
UMA::EPHEMECH – https://ephemech.wordpress.com/ and TIN2017-
85727-C4-1-P, UMA::DeepBio – http://deepbio.wordpress.com), and
Universidad de Málaga, Campus de Excelencia Internacional Andalucı́a Tech.

Email addresses: drodri@unet.edu.ve (David Rodrı́guez Rueda),
ccottap@lcc.uma.es (Carlos Cotta), afdez@lcc.uma.es (Antonio J.
Fernández-Leiva)

easy instances to very difficult ones. As discussed in Sect. 2.2,
complete methods (including exhaustive search) have been ap-
plied to the problem although it remains intractable even for
designs of a relatively small size [15]. In fact, as proof of the
difficulty of the problem, there are currently a number of open
instances that have not yet been solved (although, it may be that
there is no solution for them; then again, non-solvability cannot
be established by complete methods). The application of meta-
heuristics thus seems to be appropriate to tackle larger problem
instances due to the limitations of complete methods. Indeed,
some approaches in this area have already provided evidence of
the potential of metaheuristic approaches applied to this prob-
lem, e.g. [16, 17, 18, 19].

One of the most interesting features of the BIBD is its highly-
symmetrical nature. This introduces a number of considera-
tions that have to be taken into account. Firstly, the existence
of solutions that are equivalent with respect to the same repre-
sentation space generally increases the size of the search space
and, as a direct consequence, the difficulty of finding solutions
(i.e. the problem solving complexity). In the last few decades,
a number of methods have been applied to deal with symme-
tries [20, 21, 22, 23]. The primary method of dealing with
them consists in applying some symmetry breaking technique.
This method basically imposes new constraints to remove sym-
metries with the goal of reducing the problem’s search space.
Symmetry breaking can be applied in many diverse forms [24].
In connection with this, it is also well known that the encod-
ing of solutions can drastically affect the search process, be-

Preprint submitted to Computers & Operations Research November 5, 2024

ar
X

iv
:2

41
1.

02
25

0v
1

 [
cs

.N
E

]
 4

 N
ov

 2
02

4

http://dnemesis.lcc.uma.es/wordpress/
https://ephemech.wordpress.com/
http://deepbio.wordpress.com

cause it influences the underlying landscape and its navigabil-
ity. This paper proposes an alternative –and novel, to the best
of our knowledge– representation scheme for BIBD solutions
that we call the dual (or decimal) formulation (see Sect. 4.1), in
response to the ‘more natural’ primal (or binary) model consid-
ered in the scientific literature, cf. Sect 2.1. A number of algo-
rithms to tackle the BIBD problem are subsequently considered
to take into account the large number of possible scenarios that
arise from the combination of these two different encodings, as
well as the symmetry-breaking constraints for the BIBD prob-
lem (see Sect. 4.2). Moreover, each scenario is tackled with a
number of metaheuristic techniques, including local search and
genetic algorithms. As a further step, this paper also proposes
mechanisms for hybridising these algorithms. In particular, we
consider both an integrative model (Sect. 3) and a collaborative
scheme (Sect. 4.3). The latter, in particular, defines a network
(i.e. a set) of algorithms that intensify the search in certain parts
of the search space; the communication strategy among these
algorithms is defined by a certain spatial structure. Three dif-
ferent topologies are considered for this purpose. We also study
different policies to control communication among algorithms,
i.e. which information should be submitted and when/how it
should be handled by the metaheuristics in the network. The
resulting techniques are exhaustively analysed from an empir-
ical point of view in Sect. 5. The next section provides an
overview of the problem’s foundations as well as a brief look at
related work.

This paper proposes a (novel) formulation for the represen-
tation of BIBDs and a number of metaheuristics (based on this
formulation) to handle the problem. This paper also describes a
large number of metaheuristic approaches to deal with the gen-
eration of BIBDs. Some of these (i.e. the cooperative methods)
constitute state-of-the-art metaheuristic methods to handle the
problem. Moreover, we provide a general scheme from which
other (possibly cooperative) metaheuristics can be generated.
Finally, we also propose a methodology to address, in a general
way, symmetrical combinatorial problems so that our methods
can be easily adjusted to deal with other symmetrical combina-
torial problems.

2. Background

This section discusses how the BIBD problem has been tack-
led in the literature. The formal classical formulation of the
problem is also provided.

2.1. BIBD: Formulation and primal (or binary) model

As mentioned in the introduction, a BIBD can be speci-
fied with five parameters ⟨v,b,r,k,λ ⟩. Using this notation, a
⟨v,b,r,k,λ ⟩-BIBD problem consists of dividing a set of v ob-
jects into b subsets of k < v objects each, such that each object
belongs to r different subsets and any pair of objects appear
together in exactly λ < b subsets. A standard way of repre-
senting the solution to such a problem –termed here as the pri-
mal (or binary) model (B)– is in terms of its incidence matrix
M≡{mi j}v×b, which is a v×b binary matrix where mi j ∈{0,1}

is equal to 1 if the ith object is contained in the jth block, and
0 otherwise; thus, it is easy to see that each row corresponds to
an object and each column to a block, and that a matrix repre-
senting a feasible solution has exactly r ones per row, k ones
per column, and the scalar product of any pair of different rows
is λ . Figure 1 shows configurations of the incidence matrix M
representing possible solutions to a ⟨8,14,7,4,3⟩−BIBD and a
symmetric (i.e. b = v) ⟨7,7,3,3,1⟩−BIBD, respectively.

Note that the five parameters defining a ⟨v,b,r,k,λ ⟩−BIBD
are interrelated and satisfy the following two relations: bk =
vr and λ (v− 1) = r(k− 1). This means that we could define
an instance using just three parameters ⟨v,k,λ ⟩ and compute b
and r in terms of the former three. However, although these
relations restrict the set of admissible parameters for a BIBD,
such admissibility is a necessary yet insufficient condition to
guarantee its existence [25, 26].

The BIBD problem is a constraint satisfaction problem (CSP)
that can be readily transformed into a constraint optimisation
problem (COP) by relaxing the problem (allowing the viola-
tion of constraints) and defining an objective function that ac-
counts for the number and degree of their violations. More pre-
cisely, let I = ⟨v,b,r,k,λ ⟩ and M represent, respectively, the
instance values and the (binary) incidence matrix of size v× b
for a BIBD problem. In addition, for the rest of the paper, let
N+

h = {1, ...,h} (for any integer number h ≥ 1). Therefore, the
problem of finding a BIBD solution can be formulated as fol-
lows:

min f I(M) =
v

∑
i=1

φi(M,r)+
b

∑
j=1

φ
′
j(M,k)+

v−1

∑
i=1

v

∑
j=i+1

φ
′′
i j(M,λ)

(1)
where

φi(M,r) =

∣∣∣∣∣r− b

∑
j=1

mi j

∣∣∣∣∣ , ∀i ∈ [1,v] (2)

φ
′
j(M,k) =

∣∣∣∣∣k− v

∑
i=1

mi j

∣∣∣∣∣ , ∀ j ∈ [1,b] (3)

φ
′′
i j(M,λ) =

∣∣∣∣∣λ − b

∑
h=1

mihm jh

∣∣∣∣∣ , ∀i, j ∈ [1,v] : i < j (4)

We call this formulation the primal model, denoted as B be-
cause it is based on a binary representation of the candidates to
be solved. Note that the required values of the row constraints,
column constraints and scalar product constraints correspond
with the number of ones per row (i.e. r), the number of ones
per column (i.e. k), and the scalar product of any pair of dif-
ferent rows (i.e. λ). So, for each row i (resp. column j) in
the incidence matrix, φi(M,r) in Eq. (2) (resp. φ ′j(M,k) Eq.(3))
computes the discrepancies between the required value r (resp.
k) of ones for row i (resp. column j) and the existing number
of ones in row i (resp. column j). Also note that for each pair
of distinct rows i, j in the incidence matrix, φ ′′i j(M,λ) in Eq. (4)
calculates the discrepancies between the required value λ of the
scalar product of the rows (i.e. coincidences of ones placed in

2

0 0 0 1 0 1 1 1 0 0 0 1 1 1
1 1 0 1 1 0 1 0 0 1 0 0 0 1
0 1 1 1 1 1 0 0 1 0 0 0 1 0
0 0 0 0 1 1 1 1 1 1 1 0 0 0
1 0 1 0 1 1 0 0 0 0 1 1 0 1
0 1 0 0 0 0 0 0 1 1 1 1 1 1
1 1 1 0 0 0 1 1 1 0 0 1 0 0
1 0 1 1 0 0 0 1 0 1 1 0 1 0

(a)

0 1 0 1 0 1 0
1 0 0 1 0 0 1
1 1 1 0 0 0 0
0 0 1 0 0 1 1
0 1 0 0 1 0 1
1 0 0 0 1 1 0
0 0 1 1 1 0 0

(b)

Figure 1: (a) A ⟨8,14,7,4,3⟩−BIBD. (b) A ⟨7,7,3,3,1⟩−symmetric BIBD.

the same positions in both rows) and the computed scalar prod-
uct of the two rows (i.e. the existing number of ones in the
same position in both rows i and j). As a consequence, for a
given incidence matrix M, the value returned by the objective
function sums up all discrepancies with respect to the required
values of the row constraints (i.e. Eq.(2)), column constraints
(i.e. Eq.(3)) and scalar product constraints (i.e. Eq.(4)).

Then, a solution to the BIBD problem is a configuration M∗

such that f I(M∗) = 0.

2.2. Related work

The BIBD problem has been tackled by a number of different
techniques in the literature, with varying levels of success. Tra-
ditionally, the problem has been dealt with deterministic, con-
structive and/or complete methods. For instance, Whitaker et
al. [27] used mathematical programming methods to look for
an optimal incomplete block design. Zergaw [28] also consid-
ered the error correlation, and presented a sequential algorithm
for constructing optimal block designs. Along the same lines,
Tjur [29] incorporated interchange mechanisms with the addi-
tion of experimental units (blocks) one by one. Flener et al.
[30] proposed a matrix model based on ECLIPSE to solve the
problem of block generation.

One of the key points of interest in the problem is its symmet-
rical nature (i.e. rows and columns can be permuted and objects
can be relabelled). In this sense, constraint programming is the
most frequently used technique to deal with this issue. For in-
stance, Puget [31] formulated the problem as a CSP where each
instance was represented by a classical binary matrix of size
v× b, and proposed combining methods for symmetry break-
ing via dominance detection and symmetry breaking using sta-
bilisers in order to solve the problem. In addition, Meseguer
and Torras [24] explored two strategies (namely, a heuristic for
variable selection and a domain pruning procedure) to exploit
the symmetry of the problem. The underlying idea in this ap-
proach was to use symmetries to guide the search for a solution.
The objective was not to solve specific instances but rather to
be effective in reducing the search effort [1].

Although all these methods can be used to design BIBDs,
their applicability is limited by the size of the problem in-
stances. To address this, stochastic methods have also been
applied to the problem. For instance, Bofill et al. [32] formu-
lated the generation of BIBD as a combinatorial optimisation

problem tackled with a neural network. A simulated anneal-
ing algorithm endowed with this neural network (NN-SA) was
shown to offer better performance than an analogous hybridi-
sation with mean field annealing. These results were further
improved upon by Prestwich [16, 33], who considered differ-
ent schemes for adding symmetry breaking constraints inside a
constrained local search (CLS).

These results were improved by Rodrı́guez et al. [17] who
used both local search methods (hill climbing and tabu search)
and population-based techniques (genetic algorithms). Two
different neighbourhood structures (defined over the primal
encoding described in Sect. 2.1) were proposed, one based
on bit-flipping and the other on position-swapping. It was
shown that the swap-based neighbourhood (sw) was superior
to the flip-based neighbourhood, and that tabu search based
on position-swapping (TSsw) offered the best performance, be-
ing capable not only of beating hill climbing methods –also
based on the swap-based neighbourhood– and genetic algo-
rithms (GAsw) –based on both position-swapping and the bit-
wise uniform crossover operator (UX)– in more than 78% of the
instances, but also of solving 57 instances from a selected set
of 86 (66.28%), one more than CLS, the best method until that
moment. Later, Rodrı́guez et al. [17] explored, in greater depth,
the use of population-based methods [19], and more specifi-
cally, the use of memetic algorithms (MAs) in the form of a
synergistic combination of a genetic algorithm with the use of a
heuristic recombination operator and a TS-based local searcher.
It was shown that MAs with a greedy recombination operator
(Gd), termed MAGd, performed better than MAs based on the
bitwise uniform crossover operator (UX) (as proposed in [17])
as well as its constituent parts TSsw and GAsw (as described in
[17]). By increasing the number of evaluations, MAGd solved
63/86 instances (73.26%), TSsw 59/86, and GAGd (i.e. a GA
with the operator Gd) 48/86. MAGd can be considered the state-
of-the-art (non-commercial) heuristic method.

There are other approaches which address the generation of
BIBDs. In particular, there have been several constructive ap-
proaches such as the one described by Yokoya and Yamada
[34]. These authors made use of the power of the commer-
cial linear programming solver CPLEX and proposed a non-
linear mixed-integer programming approach that was shown to
be effective in solving BIBD instances. Later, Mandal [35] pre-
sented an improved linear integer programming approach that

3

Table 1: Number (#) and percentage (%) of problem instances solved by the
basic and integrative metaheuristics (identified in first column) working alone
on the set of 86 instances taken from [16, 32]. The third column indicates the
reference in which the method was reported.

algorithm # (%) Ref.
NN-SA 16 (18.60%) [32]

CLS 56 (65.12%) [33, 16]
TSsw 57 (66.28%) [17]
GAsw 37 (43.02%) [17]
TSsw 59 (68.60%) [19]
GAGd 48 (55.81%) [19]
MAGd 63 (73.26%) [19]

TABU-BIBD(20) 78 (90.70%) [34]
Multi-step 79 (91.86%) [35]

Ts+Hc 74 (86.05%) [36]

handled the problem in an easier way. Along the same lines,
Rodrı́guez et al. [36] also proposed a constructive approach,
based on local search with multi-start, that provided a greater
capacity of exploration of new zones (major diversification) un-
like, for example, other approaches that use major intensifica-
tion. This method has shown good performance, although there
were instances for which it was not able to reach optimal solu-
tions. These methods, although efficient in finding solutions, all
demand a high computational effort to generate BIBDs. More-
over, they follow a constructive approach that is very different
from our metaheuristic proposals. Consequently, they are not
considered here in our experimental study.

Table 1 summarises the performance (measured in number
of problem instances solved) of all the metaheuristics methods
mentioned in this section. We do not provide running times as
this information was not reported for all the methods and, in
addition, it strongly depends on many external factors.

3. Solving the BIBD with metaheuristics

With the aim of keeping this paper relatively self-contained,
this section describes part of our previous work on the appli-
cation of metaheuristics to the BIBD problem; in particular we
outline the work described in [17, 19], where the primal prob-
lem representation (i.e. the binary encoding) was used.

In [17], two neighbourhood structures were considered: the
first arose naturally from the binary representation of solutions
using the incidence matrix M and was based on the Hamming
distance (bit-flip (bf)); the second (denoted as swap (sw)) took
an object from one block, and moved it to a different one, which
can be formulated in binary terms as permuting a 0 and a 1
within the same row. Then, three different techniques based
on these two neighbourhood variants, were proposed; more
specifically, two hill climbing (HC) methods (i.e. steepest de-
scent procedures termed HCb f and HCsw), two tabu search al-
gorithms (TSb f and TSsw), and two steady-state genetic algo-
rithms based on binary tournament selection and replacement of
the worst individual in the population (termed GAb f and GAsw);

GAb f used uniform crossover and bit-flip mutation –easy to
implement in the binary space, whereas GAsw used uniform
crossover at row level (that is, it randomly selects entire rows
from either parent) and swap mutation (the interested reader is
referred to [17] for more details). For the experiments, 86 in-
stances taken from [16] were used as benchmarks. The best
proposal was TSsw which solved 57 instances from those 86,
and performed better than CLS [16], the previous best solution
method (see Table 1).

Subsequently, in [19] we proposed a memetic algorithm
(MA) [37] to finding BIBDs. The resulting MA could be
characterised as a steady-state genetic algorithm (GA) –which
serves as the underlying population-based search mechanism–
based on the sw scheme defined before (hence, intrinsically en-
forcing the row constraint), that incorporates two intensifying
components, namely a specific heuristic recombination opera-
tor, and a local searcher, in order to guide the search towards
promising regions in the search space. More precisely, two dif-
ferent multi-parent recombination operators, one based on uni-
form crossover and termed UX, and a specific greedy version of
the uniform crossover termed Gd, were proposed. The Gd oper-
ator starts by creating a set with all available rows in the parents;
then (if there are enough different rows; otherwise, standard UX
is invoked), it randomly selects an initial row, and subsequently
tests all available rows, picking the one which violates fewer
scalar-product constraints. It was shown that the recombination
operator played an important role in the discovery of new im-
proved solutions. The local search (LS) method used inside the
MA to intensify the search was TSsw (mentioned above). More
details can be found in [19].

The general scheme of the MA is depicted in Algorithm 1.
The input of this algorithm consists of the problem parameters
(i.e. v, b, r, k, and λ), as well as the algorithm parameters, i.e
the genetic operators and their associated parameters (such as,
e.g. application rates); the output of the algorithm is the best
individual found during the search process. Parent selection
was done randomly using a binary tournament for breeding and
replacement of the worst individual in the population. To pre-
serve the diversity in the population, no duplicate solution was
accepted, and a re-starting mechanism re-activated the search
whenever stagnation occurred. This was done by keeping a
fraction f % of the top individuals in the current population, and
refreshing the rest of the population with random individuals
(line 19). This procedure was triggered after a number of eval-
uations without any improvement in the current best solution
(nι). The local search was restricted to explore nν neighbours,
and pLS, pX and pM represent the probability of applying local
search, the crossover and mutation rates, respectively.

It was shown that algorithms with the Gd operator solve
more instances than their counterparts with UX, and MAs also
outperform their GA counterparts. The version MAGd solved
63/86 instances, which even better than TSsw, Even though a
higher number of evaluations (i.e. 2× 107) was considered in
[19] than the one given in [17] (i.e, 2× 106), MAGd can be
considered the best metaheuristic solution reported so far in the
literature.

4

Algorithm 1: Pseudo-code of the memetic algorithm.

1 begin
2 for i← 1 to popsize do
3 pop[i]← GENERATEMATRIX(v,b,r);
4 EVALUATE(pop[i]);
5 end
6 while numEvals < maxEvals do
7 if rand < pX then
8 parent1 ← TOURNAMENTSELECT(pop);
9 ...;

10 parentm ← TOURNAMENTSELECT(pop);
11 offspring←

RECOMBINE(parent1,. . .,parentm);
12 else
13 offspring← TOURNAMENTSELECT(pop);
14 end
15 offspring← MUTATE(offspring, pM);
16 if rand < pLS then offspring←

LOCALSEARCH(offspring,nν) ;
17 EVALUATE(offspring);
18 pop← REPLACE(pop, offspring);
19 if stagnation(nι) then pop←

RESTART(pop, f %) ;
20 end
21 end

4. A new battery of metaheuristics based on symmetry
breaking, dual models and hybridisation

This section presents a number of new metaheuristic propos-
als to handle the BIBD problem. In Sect. 4.1, we first propose
a novel dual problem representation for the BIBD, and a new
problem formulation based on it. Next, Sect. 4.2 describes a
symmetry-breaking method (that, to the best of our knowledge,
is also novel for the problem under consideration in this paper)
for both the primal representation (i.e. the classical binary one)
and its dual encoding (i.e. the decimal representation). Finally,
in Sect. 4.3, we suggest a cooperative scheme as an alterna-
tive to the integrative memetic algorithm (Algorithm 1). One of
the primary particularities of this cooperative scheme is that it
allows the cooperation of algorithms designed to work on dif-
ferent representation models (i.e. primal or dual).

4.1. A dual representation
It is well-known that the representation of candidate solu-

tions can have dramatic effects on the problem solving process,
especially in the universe of evolutionary algorithms [38]. For
this reason, we consider the concept of duality as a way to ob-
tain alternative representations to the natural (and primal) en-
coding of the solutions to the BIBD problem. Hence, the alter-
native model we propose is termed the dual model or decimal
formulation (D); Figure 2 shows an example of a dual repre-
sentation for a given symmetric BIBD instance. Basically, the
solution (or candidate) to the BIBD is now defined by a dual in-
cidence matrix Md ≡ {md

i j}v×r, which is a v× r integer matrix

Figure 2: Primal/Binary and dual/decimal encodings of the
⟨7,7,3,3,1⟩−symmetric BIBD shown in Figure 1 (b). The number of
columns (7 and 3 for the primal and dual representations, respectively) and
rows (7 in both cases) are identified for clarity.

where md
i j ∈ N+

b contains a value from the range [1,b] which
identifies a block containing the object i. Note that there are r
columns (i.e. j ∈ [1,r]), so that each object i is contained ex-
actly in r blocks if a constraint that all values in a row have to be
different is imposed. The dual formulation of the BIBD prob-
lem corresponds to a relaxed CSP problem with an objective
function that involves the number and degree of violations of
constraints defined only on the parameters k and λ as follows:

min f I
d(M

d) =
b

∑
j=1

ψ j(Md ,k)+
v−1

∑
i=1

v

∑
j=i+1

ψ
′
i j(M

d ,λ) (5)

such that every object should be assigned to r distinct blocks,
that is to say:

∀ j,h ∈ N+
r : j , h⇒ md

i j , md
ih, ∀i ∈ [1,b] (6)

where

ψ j(Md ,k) =

∣∣∣∣∣k− v

∑
i=1

r

∑
h=1

[md
ih = j]

∣∣∣∣∣ , ∀ j ∈ [1,b] (7)

ψ
′
i j(M

d ,λ) =

∣∣∣∣∣λ − r

∑
h=1

r

∑
l=1

[md
ih = md

jl]

∣∣∣∣∣ , (8)

∀i, j ∈ [1,v] : i < j

In Eq. (7) and Eq. (8) we employ the Iverson brackets [] (i.e.
[P]=1 if P is true, and 0 otherwise). Observe that, by adding
an all-different-value constraint associated with each row – i.e.
constraint (6)– each row i now contains the r (required) block
assignments of object i, and thus the constraint requiring that
each object be placed in r blocks is implicitly present in the
new dual model. Therefore, the function to be minimised –
i.e. (5) – only has two components. The first one, shown in
Eq. (7), sums the discrepancies from the value k. Note that
∑

v
i=1 ∑

r
h=1[m

d
ih = j] quantifies how many times the jth block ap-

pears in the solution and each block j ∈ [1,b] has to contain ex-
actly k objects, something that happens when ψ j(Md ,k) equals
0. The second component of the objective function, shown in

5

Eq. (8), computes the discrepancies from the value λ . Observe
that each object i has to coincide with any other object j in ex-
actly λ blocks, which means that each two rows of Md have to
share λ blocks (as in the primal model). Hence, we measure
the discrepancies between any two objects in (8) with respect
to the required value λ . A solution to the BIBD problem is thus
a configuration Md∗ such that f I

d(M
d∗) = 0.

In this model the neighbourhood is similar to the swap ver-
sion considered for the primal scheme as defined in [17], that
is to say, a neighbour of a matrix Md is any other incidence
matrix M′d obtained from Md by replacing an element φ ∈ N+

b
contained in a cell md

i j by any other label in N+
b \{φ}, provided

constraint (6) is still satisfied.

4.2. Symmetry breaking

According to [22], one way of reducing a problem’s sym-
metries is to transform it into another problem with the same
characteristics as the original but eliminating all or most sym-
metrical states. In the last few decades, a number of meth-
ods have been applied to deal with the problem of symmetry
[20, 22, 23, 24]. Most of these methods are primarily aimed
to reduce the search space of the problem. Other recent works
have shown how solving combinatorial problems via mixed in-
teger linear programming approaches can be sped up by adding
symmetry breaking constraints to the original formulation. An-
other idea is to consider asymmetric representatives formula-
tions (ARF) as alternatives to the natural symmetric formula-
tion of the problem. They have been shown to be effective to
deal with combinatorial optimisation problems such as p job
grouping, binary clustering, node colouring, or blocking exper-
imental designs [39, 40, 41, 42].

In this paper, we consider a symmetry-breaking approach,
both for the primal model and for the dual model. This ap-
proach is called variable reduction in [42].

4.2.1. Primal (or binary) model
Consider the problem representation introduced in Sect. 2.1.

In general, BIBD symmetries arise, first of all, because any two
objects are interchangeable in the sense that any two rows can
be permuted (i.e. the corresponding objects can have their la-
bels swapped) in the incidence matrix and the resulting candi-
date will be the same solution. For primal encoding, in partic-
ular, this argument can be extended to blocks/columns, as any
two columns can be permuted as well. To tackle these symme-
tries, we impose the following four constraints on the primal
problem formulation:

• In Row 1: set m1 j = 1 for each j ∈ N+
r and m1 j = 0 for

r < j ≤ b. In other words, place the first object (row 1) in
the first r blocks (i.e. the first r columns) so that the row
constraint is satisfied for object 1.

• In Row 2: set m2 j = 1 for j ∈ N+
λ

, m2(λ+ j′) = 0 and
m2(r+ j′) = 1 for j′ ∈ N+

r−λ
, and set the other cells in row

2 to 0. This guarantees that the scalar product constraint
between rows 1 and 2 is satisfied.

Figure 3: Symmetry breaking in an ⟨8,14,7,4,3⟩-instance (binary encoding.)

• In Column 1: set mi1 = 1 for each i ∈ N+
k and m1i = 0 for

r < i≤ v. In other words, place the first k objects in the first
block (i.e. the first column) so that the column constraint
is satisfied for the first block.

• In Column 2: set mi2 = 1 for v− k− (m12 +m22)< i≤ v,
and the other values in the column (except the first two
rows, to 0). In other words, taking into account that
(m12 +m22) objects have already been placed in block 2,
we place the last k−(m12+m22) objects in block 2, so that
the column constraint is satisfied.

These four constraints can also be viewed as a preset pro-
cess that fixes the values of the first two rows and the first two
columns in the incidence binary matrix M ≡ {mi j}v×b of a par-
ticular ⟨v,b,r,k,λ ⟩-instance. This produces a slight reduction
of the problem symmetries. Note that the first two rows and
the first two columns remain constant in each candidate solu-
tion so that they will never be permuted with any other row
(resp. column). As a direct consequence, the search space is
also reduced. Fixing these two rows/columns means that op-
timisation only has to be conducted in a binary matrix of size
(v−2)× (b−2). Figure 3 shows an example of how to fix the
rows and columns for an ⟨8,14,7,4,3⟩-instance in the binary
problem representation.

4.2.2. Dual (or decimal) model
Now, consider the dual problem representation introduced in

Sect. 4.1. Symmetry breaking is achieved by fixing the two first
rows of the incident matrix Md as follows:

• In Row 1: set m1 j = j for j ∈N+
r . In other words, the first

row contains numbers from 1 to r in sequence. This con-
straint assures that the first object (i.e. row 1) is placed in
the first r blocks and breaks the symmetry of object place-
ment.

• In Row 2: set m2 j = j for j ∈N+
λ

, and set m2 j′ = r+ j′−λ

for j′ > λ . In this way, the second object is placed in the
first λ blocks (where the first object is also placed), and
also in r−λ blocks other than those in which the first ob-
ject was placed. This constraint guarantees that the scalar
product constraint is satisfied for objects 1 and 2.

6

Figure 4: Symmetry breaking in the dual model of an ⟨8,14,7,4,3⟩-instance.
The first two rows correspond to the dual representation of the first two rows in
the primal representation shown in Figure 3.

The idea is to fix the values of the first two rows in the inci-
dence dual matrix Md (of size v×r) of a particular ⟨v,b,r,k,λ ⟩-
instance so that optimisation only has to be conducted in an in-
teger matrix of size (v−2)× r. Note that, unlike in the primal
model, we have not fixed the columns in the dual formulation.
The reason is that the first column would only be partially com-
pleted anyway, since, in the dual formulation, it is not possible
to specify that an object (e.g. objects 5 and 6) is not placed in
some specific block (e.g. blocks 1 and 2). This is possible in
the primal model by using the value 0 in a cell of the matrix
(see Figure 3). In addition, from an implementation point of
view, partially completing the first columns would also hinder
the natural encoding of individuals as a rectangular matrix. Fig-
ure 4 shows an example of how to fix the two first rows in the
dual encoding of a problem instance ⟨8,14,7,4,3⟩.

4.3. Cooperative model architecture
The memetic algorithm described in Sect. 3, and presented in

Algorithm 1, can be viewed, according to the taxonomy for hy-
brid and cooperative algorithms given by Puchinger and Raidl
[43], as an integrative hybrid algorithm in which a local search
is subordinated to the execution of an external genetic algo-
rithm (GA). In other words, local search is executed inside a
GA. Puchinger and Raidl presented another interesting scheme,
the collaborative approach in which several optimisation algo-
rithms are executed in parallel (or sequentially) and exchange
information with certain frequency. This kind of cooperation
can be considered in itself a programming paradigm compris-
ing two main elements [44]: (a) a set of autonomous programs
(usually called agents), each implementing a particular solution
method, and (b) a cooperative scheme that combines these au-
tonomous elements into a simple and unified strategy for trou-
bleshooting. In this collaborative approach, the idea is to ap-
ply a number of (possibly different) optimisation algorithms
each of which explores a specific part of the search landscape
through processes of intensification. Next, the agents synchro-
nise from time to time to exchange information. A specific spa-
tial structure (e.g. a ring in which each agent has a predecessor
and a successor) identifies the communication topology, that is
to say, the way in which this information is transmitted between

Algorithm 2: COOPERATIVE-MODELn

1 for i ∈ N+
n do

// Generation Adjusted to the problem

model tackled by agent ai
2 Si← GENERATEINITIALPOPULATION();
3 end
4 cycles← 1;
5 while cycles≤Θ do
6 for i ∈ N+

n do
// Population update

7 Si← ai(Si);
8 end
9 for (i, j) ∈ TR do

// Select candidate to migrate via

the migration policy

10 ssubmitted ← SELECTCANDIDATEFROM(Si) ;
// Now, test candidate acceptance via

the acceptance policy

11 if
ACCEPTSUBMITTEDCANDIDATE(ssubmitted ,S j)
then
// Selection of candidate to

replace

12 stobereplaced ←
SELECTCANDIDATETOREPLACEIN(S j);

// adding migrated candidate

(translated to the problem

encoding of agent j)
13 S j← S j ∪{ENCODING j(ssubmitted)}\

{stobereplaced} ;
14 end
15 end
16 cycles← cycles+1;
17 end
18 return argmin{FITNESS(BEST(Si)) | i ∈ N+

n };

the agents (e.g. the information is transmitted from any given
agent to its successor in the ring-based structure). The set of
agents involved in this collaborative scheme can be regarded
as a network of nodes, each containing a certain optimisation
algorithm. These algorithms (i.e. the agents) operate in dif-
ferent parts of the same search space. The whole scheme con-
stitutes an effective mechanism for escaping from local minima
(by means of the information exchange among the agents). This
approach has been proven to be efficient for a number of com-
binatorial problems [45, 46, 47, 48].

Now, unlike what it is often done in this kind of collabo-
rative approach, we study the effect of considering different
search spaces to be handled separately in the nodes of the net-
work. More precisely, we consider a number of cooperative al-
gorithms in which agents are loaded with one of the techniques
previously proposed in Sect. 3 or their equivalent adapted to
the dual representation (as shown in Sect. 4.1), and where the
method loaded in any given agent might also have symmetry

7

breaking constraints (as explained in Sect. 4.2). This means that
some agents possibly work on different encoding/search spaces
and use distinct problem formulations. The algorithms depend
on their interaction topology and the model used for encoding
the candidates, and these are discussed below.

4.3.1. Formal definition
Let R be an architecture with n agents; each agent ai (1≤ i≤

n) in R consists of one of the metaheuristics described in preced-
ing sections. Therefore, these agents can work on the primal or
dual model, with or without symmetry breaking. The agents en-
gage in periods of isolated exploration followed by synchronous
communication. We denote by Θ the maximum number of ex-
ploration/communication cycles in a certain cooperative model.
In addition, let Si be the pool of solution candidates associated
with agent ai (i.e. if the agent is loaded with a local search (LS)
method then #Si = 1, and if the agent is endowed with a pop-
ulation based method –e.g. an MA– then #Si ≥ 1, where #Si
represents the cardinality of Si), and let TR ⊆ N+

n ×N+
n be the

communication topology over R (i.e. if (i, j) ∈ TR then agent
ai can send information to agent a j). The general architecture
of the model is described in Algorithm 2. This algorithm’s in-
put consists of the problem parameters (i.e. v, b, r, k, and λ),
the topology of the agent network (that defines the communica-
tion policy, as explained below), the n algorithms (i.e. agents or
metaheuristics) running on each node of the cooperative system
(i.e. the network), the candidate migration policy, and the cri-
teria for accepting the candidates (see below for details about
these two procedures). Each agent also has its own parame-
ters (such as operator application rates, and type of encoding
–primal/dual–). The algorithm’s output is the best individual
found during the search process (line 18; note that the FITNESS
function is a well-known concept in evolutionary computing
and basically returns a value that measures how close a can-
didate is to an optimal solution). First, all the agents are ini-
tialised with random solution(s) (lines 1-3). The initialisation
of a pool Si associated with agent i in the system is specific to
the model (i.e. primal or dual) handled by the agent ai. Next,
the algorithm is executed for a maximum number Θ of iteration
cycles (lines 5-15) where, in each cycle, the search technique
contained within each agent is executed to update its associated
pool of solutions (lines 6-8); note also that, if the agent con-
tains an LS method, this basically means an improvement of
its unique solution, but if the agent contains a population-based
method, then a new pool of solutions is generated). Next, solu-
tions are fed from one agent to another according to the topol-
ogy considered (lines 9-14). This process means that, initially
(line 10), the candidate to be transmitted from the pool of the
source agent (i.e. node or metaheuristic i) is selected with re-
spect to the migration policy given as input (see below). Next,
agent a j checks (line 11) whether the incoming solution from
agent ai (line 10) has to be accepted according to the accep-
tance criteria also provided as input (see below). Finally, if the
submitted solution is accepted, it replaces an individual in the
candidate pool of agent j (line 13); the candidate to replace is
selected via previously defined heuristics (line 12). Note that
many different criteria for candidate migration (from agent i to

agent j) and candidate acceptance (in agent j) can be defined.
Combining diverse policies generates different cooperative al-
gorithms. We now describe a number of combinations that will
be used in the experimental section.

4.3.2. Communication topologies
Three strategies for TR (see line 9 in Algorithm 2) are con-

sidered here in this paper. These are based on the following
interaction topologies:

• RING: TR = {(i, i(n) + 1) | i ∈
N+

n and i(n) denotes i modulo n}. Thus, there exists
a circular list of agents in which each agent only sends
(resp. receives) information to its successor (resp. from
its predecessor).

• BROADCAST: TR = N+
n ×N+

n , i.e. a go with the winners-
like topology in which the best overall solution at each
synchronisation point is transmitted to all agents. This
means all agents execute the intensification over the same
part of the search space at the beginning of each cycle.

• RANDOM: TR is composed of n pairs (i, j) that are ran-
domly sampled from N+

n ×N+
n . This sampling is done

each time communication takes place, and, hence, any two
agents might eventually communicate at any step.

These communication topologies were already proposed in
[47, 48] to handle a tool switching problem with some success;
however, symmetry breaking, different encodings and differ-
ent policies were not considered for migration and solution ac-
ceptance in that work. Now, we propose a wider cooperative
scheme to handle symmetrical constrained optimisation prob-
lems. Moreover, we have also adapted some of the ideas pro-
posed in [49] for memetic algorithms to our cooperative algo-
rithms generated from the scheme in Algorithm 2. In particular,
we consider a number of policies for the submission of candi-
dates from agent i (i.e. the migration policy) as well as the
acceptance of candidates submitted to agent j (i.e. the recep-
tion/acceptance policy). With respect to candidate selection in
the migration procedure (i.e. SELECTCANDIDATEFROM(Si) in
line 10, of Algorithm 2), we propose three strategies:

• (RANDOM R): send a random solution of the pool from
agent i,

• (DIVERSE D): send the candidate in Si that maximises the
diversity1 in S j, and

• (WORST W): send the worst candidate of the pool in
agent i.

As for the reception and replacement policies (i.e. pro-
cedures ACCEPTSUBMITTEDCANDIDATE(ssubmitted ,S j) in line
11 and SELECTCANDIDATETOREPLACEIN(S j) in line 12, re-
spectively), three alternatives are also considered:

1To this end, individuals whose genotypic distance (in a Hamming sense) to
individuals in the receiving population is maximal are selected.

8

• (RANDOM R): always accept the submitted candidate and
replace one random individual in pool S j,

• (DIVERSE D): accept a new individual if and only if, it
improves the diversity of the pool in agent j and replace
the worst, and

• (WORST W): always accept the candidate and replace the
worst in pool S j.

Also note that if a candidate solution taken from agent i is
finally accepted in agent j, it first has to be translated – if nec-
essary – to the encoding model used in agent j, as agents ai
and a j may work on different search spaces (i.e. representa-
tion models); this is reflected in line 13 by the function called
ENCODING j(ssubmitted).

5. Experiments

This section describes the experimental analysis conducted.
Given the large number of algorithms considered (resulting
from the combination of different metaheuristics, encodings,
use of symmetry-breaking procedures, communication topol-
ogy, etc.), we first describe the notation in detail, as well as the
experimental setting in Sect. 5.1 and Sect. 5.2, respectively.
Subsequently, we report the results obtained in Sect. 5.3 and
Sect. 5.4, and analyse these in Sect. 5.5.

5.1. Notation

In this subsection we explain the notation used to describe
the algorithmic models, providing some specific examples for
the sake of clarity.

5.1.1. Non-cooperative algorithms
Each algorithm is identified by a sequence of identifiers sep-

arated by a dot. First, the basic metaheuristics (as described
in Sect. 3) are hill climbing (Hc), tabu search (Ts), genetic
algorithm (GA), and memetic algorithm (MA), all of which
are based on the swap neighbourhood. Additionally, for the
population-based methods (i.e. GA and MA), the recombina-
tion procedure is characterised by the particular operator used –
here we focus on the use of the greedy crossover operator (Gd)–
and by its arity, i.e. the number m of parents used (denoted as
Am). Additionally, we use an asterisk (∗) to indicate the use
of symmetry-breaking methods, a B to indicate that individuals
are encoded in a binary way (i.e. the primal model), and a D
to indicate that these are encoded in the decimal representation
(i.e. the dual formulation).

Examples of notation of non-cooperative algorithms: Hc.B
(resp. Hc.B*) denotes a hill climbing method that was imple-
mented for the primal (i.e. binary) model without (resp. with)
symmetry breaking; Ts.D (resp. Ts.D*) denotes a tabu search
implemented for the dual model without (resp. with) symme-
try breaking; likewise, GA.B*.A2.Gd denotes a genetic algo-
rithm with 2-parent greedy crossover (as explained in Sect. 3
– see [19] for details on this crossover operator) implemented
for the primal encoding with symmetry breaking, GA.D.A4.Gd

is a genetic algorithm with a 4-parent greedy crossover im-
plemented for the dual formulation without symmetry break-
ing, MA.Hc.B.A2.Gd a memetic algorithm with a hill climbing
method as local search and a 2-parent greedy recombination im-
plemented for the primal formulation without symmetry break-
ing, and MA.Ts.D*.A2.Gd is a memetic algorithm with tabu
search as local search and a 2-parent greedy crossover operator
implemented for the dual model with symmetry breaking.

5.1.2. Cooperative methods
These algorithms are composed of some of the previous tech-

niques combined according to given topology and migration
policies. The notation Tn(a1, . . . ,an)MR is used to characterise
the method. Here:

• T ∈ {BROADCAST (Bc), RANDOM (Ra), RING (Ri)} de-
notes the topology of the model,

• n is the number of agents (i.e. algorithms) connected as
described in Sect. 4.3,

• ai is the optimisation method used by agent i (for 1 ≤ i ≤
n), and

• M, R ∈ {RANDOM (R), DIVERSE (D), WORST (W) }
identify, respectively, the policies to migrate and accept
candidates in the agents (see Sect. 4.3). In our experi-
ments, we have considered the following six combinations
for migration− reception policies:

1. RANDOM-RANDOM (RR), that is to say, RANDOM
policy for both migration and reception.

2. RANDOM-WORST (RW): RANDOM policy for mi-
gration and WORST strategy for reception.

3. RANDOM-DIVERSE (RD): RANDOM policy for mi-
gration and DIVERSE strategy for reception.

4. DIVERSE-RANDOM (DR): DIVERSE policy for mi-
gration and RANDOM strategy for reception.

5. DIVERSE-WORST (DW): DIVERSE policy for mi-
gration and WORST strategy for reception, and

6. DIVERSE-DIVERSE (DD): DIVERSE policy for mi-
gration and DIVERSE strategy for reception.

Note that we do not include the combinations WD (i.e.
WORST-DIVERSE), WR (i.e. WORST-RANDOM) and
WW (i.e. WORST-WORST). The reason is that prelimi-
nary experiments showed that choosing the WORST pol-
icy for migration exhibited a poor performance compared
to the other combinations.

Examples of notation of cooperative algorithms: Ri2(Ts.B,
MA.Ts.D.A2.Gd)RW is a 2-agent {RING topology}-based co-
operative algorithm that connects (a) a TS working on the bi-
nary representation, and (b) an MA that works on the dual
representation, which uses a 2-parent greedy crossover, and
that integrates TS as the underlying local search; in this case,
the algorithm always sends a random candidate selected from
the pool of the origin node (RANDOM policy for migration),

9

which will replace the worst individual in the destination
node (WORST policy for the acceptance policy). Similarly,
Ra3(Ts.B, MA.Ts.B.A2.Gd, MA.Ts.D.A4.Gd)RD denotes a 3-
agent cooperative algorithm that connects, in a RANDOM topol-
ogy, (a) tabu search and (b) two different MAs; the individuals
to migrate are randomly chosen (i.e. a RANDOM policy for mi-
gration) whereas candidates are accepted only if they increase
the diversity of the solution pool (i.e. DIVERSE acceptance cri-
teria).

Note that in the cooperative algorithms the same op-
timisation method might be used by several agents
(this is the case, for instance, in the algorithm
Bc4(Ts.B,Ts.B,Ts.B,MA.Ts.D*.A4.Gd)RD in which 3 of
the 4 agents contain the local search Ts.B.). The rationale for
this is to try to increase the contribution of a certain method to
the resulting cooperative hybrid, whose overall search profile is
influenced by the particular mix of optimisation methods used.
For clarity, in these cases, we use the notation Tn(pa,qb)MR
to denote the n-agent cooperative algorithm

Tn(a, . . . ,a︸ ︷︷ ︸
p times

,b . . .b︸ ︷︷ ︸
q times

)MR

in which agents a and b are employed p and q times respectively
(and where p and q are arbitrary numbers that fulfill n = p+q);
moreover, p (resp. q) is not written when p = 1 (resp. q = 1).
So, for instance, Bc4(3Ts.B, MA.Ts.D*.A4.Gd)RD denotes the
model Bc4(Ts.B,Ts.B,Ts.B,MA.Ts.D*.A4.Gd)RD (i.e. here
p = 3 and q = 1). Also, Ra5(3Ts.B,2MA.Ts.B.A2.Gd)DW is
a 5-agent algorithm where the local search Ts.B is embedded in
3 agents and the algorithm MA.Ts.B.A2.Gd is contained within
the other two agents (i.e. here p = 3 and q = 2).

5.2. Experimental configuration
The experiments were conducted on the 86 instances taken

from [16, 32] where vb ⩽ 1000 and k , 3. This corresponds
to the hardest instances reported, since the cases where k = 3
were easily solvable. All algorithms have been run 30 times per
problem instance and for a maximum number of evaluations
equal to Emax = 2 ·107. All runs of local search techniques in-
side the memetic versions were limited to exploring nν = 2 ·106

neighbours. This number corresponds to the maximum number
of backtrack steps (fixing one entry of the incidence matrix)
performed by CLS in [16]. The GAs consider the equivalent
number of full evaluations in each case. The number of eval-
uations without improvement to trigger intensification in a Lo-
cal Search method or re-starting in a population-based method
is nι = nν/10. Other parameters of the GA/MA are popula-
tion size popsize = 100, crossover and mutation probabilities
pX = .9 and pM = 1/ℓ (where ℓ = vb is the size of individu-
als) respectively, f% = 10% and binary tournament selection of
parents to be recombined. We have also considered 2 and 4 par-
ents for recombination (i.e. m∈{2,4}) and –particularly for the
MA– pLS was set to 0.005. In addition, the number of cycles Θ

was set to 5 in the cooperative versions. These parameter values
were chosen because some preliminary experiments indicated
that they provided a good trade-off between the computational

Table 2: Number (and percentage) of the instances solved by the basic and
integrative metaheuristics working alone on the set of 86 instances taken from
[32, 16].

algorithm # (%) algorithm # (%)
Hc.B 35 (40.70 %) Ts.B 57 (66.28 %)
Hc.D 6 (6.98 %) Ts.D 43 (50.00 %)
Hc.B* 25 (29.07 %) Ts.B* 51 (59.30 %)
Hc.D* 3 (3.49 %) Ts.D* 46 (53.49 %)

GA.B.A2.Gd 25 (29.07 %) GA.B.A4.Gd 35 (40.70 %)
GA.D.A2.Gd 35 (40.70 %) GA.D.A4.Gd 36 (41.86 %)
GA.B*.A2.Gd 38 (44.19 %) GA.B*.A4.Gd 43 (50.00 %)
GA.D*.A2.Gd 28 (32.56 %) GA.D*.A4.Gd 31 (36.05 %)

MA.Hc.B.A2.Gd 43 (50.00 %) MA.Ts.B.A2.Gd 53 (61.63 %)
MA.Hc.B.A4.Gd 46 (53.49 %) MA.Ts.B.A4.Gd 56 (65.12 %)

MA.Hc.D.B.A2.Gd 14 (16.28 %) MA.Ts.D.B.A2.Gd 52 (60.47 %)
MA.Hc.D.B.A4.Gd 15 (17.44 %) MA.Ts.D.B.A4.Gd 52 (60.47 %)
MA.Hc.B*.A2.Gd 43 (50.00 %) MA.Ts.B*.A2.Gd 53 (61.63 %)
MA.Hc.B*.A4.Gd 46 (53.49 %) MA.Ts.B*.A4.Gd 59 (68.60 %)
MA.Hc.D*.A2.Gd 10 (11.63 %) MA.Ts.D*.A2.Gd 51 (59.30 %)
MA.Hc.D*.A4.Gd 9 (10.47 %) MA.Ts.D*.A4.Gd 47 (54.65 %)

cost and the quality of solutions attained. Note however, that
most of these values were the same as those used in [17, 19].
The versions of HC, TS and GA working on the primal model
(i.e. in the binary search space) are those described in [17]. The
MAs with Gd correspond to the versions described in [19].

The dual versions of these algorithms all use the same pa-
rameters (population size, genetic operator rates, etc) as the
corresponding primal versions. Versions with symmetry break-
ing follow the considerations described in Sect. 4.2.1 (for the
primal model-based algorithms) and Sect. 4.2.2 (for the dual
model-based algorithms). The combination of the two prob-
lem representation models and the possibility of breaking the
symmetries gave rise to four different scenarios, namely, pri-
mal representation with and without symmetry breaking, and
their equivalents in the dual model.

5.3. Basic and integrative approaches

Thirty two basic and integrative algorithms have been con-
sidered, i.e. 8 local search algorithms (resulting from the two
LS methods considered in this paper –HC and TS– and the four
aforementioned scenarios), 8 GAs (resulting from the four pre-
vious scenarios plus two different arities for greedy recombi-
nation), and 16 MAs (resulting from the integration of either
HC or TS, for performing local improvement, in each of the
previous GAs). The performance results obtained for all these
metaheuristics are reported in Table 2, which shows the num-
ber of problem instances (out of 86) that were solved in at least
one run by each of the algorithms, along with the corresponding
success percentage.

In general, TS variants outperform both their HC coun-
terparts and GA versions. More specifically, the TS algo-
rithm working on the swap neighbourhood and the primal
model (i.e. Ts.B) has proven to be very efficient (this con-
firms the results shown in [17]). We have also found that
using symmetry breaking in the best memetic proposal (i.e.
MA.Ts.B.A4.Gd) described in [19] produces an improvement:

10

5 10 15 20 25 30

Rank

MA.Ts.B*.A4.Gd
Ts.B

MA.Ts.B.A2.Gd
MA.Ts.B*.A2.Gd
MA.Ts.B.A4.Gd
MA.Ts.D.A4.Gd
MA.Ts.D.A2.Gd

Ts.B*
MA.Ts.D*.A2.Gd
MA.Ts.D*.A4.Gd

Ts.D
MA.Hc.B*.A4.Gd

Ts.D*
MA.Hc.B.A4.Gd

GA.B*.A4.Gd
MA.Hc.B*.A2.Gd
MA.Hc.B.A2.Gd

GA.B*.A2.Gd
GA.D.A2.Gd
GA.B.A4.Gd

Hc.B
GA.D.A4.Gd
GA.D*.A4.Gd
GA.D*.A2.Gd

Hc.B*
GA.B.A2.Gd

MA.Hc.D.A4.Gd
Hc.D

MA.Hc.D.A2.Gd
Hc.D*

MA.Hc.D*.A4.Gd
MA.Hc.D*.A2.Gd

Figure 5: Rank distribution of basic and integrative metaheuristics on the 86
instances taken from [32, 16].

MA.Ts.B*.A4.Gd solves 59 instances while only 56 are solved
by MA.Ts.B.A4.Gd.

5.3.1. A rank-based comparison
Due to the high number of algorithm variants, it is not easy

to compare their performances by simply inspecting the nu-
merical tables. Therefore, we have opted for a rank-based
approach. More precisely, we have computed the rank ri

j of
each algorithm j on each instance i. For ranking purposes,
we have used the number of solutions found for each instance
(from the set of 30 runs) and employed the mean fitness to
break ties. The best algorithm is ranked first and the worst is
ranked 32nd. The distributions of these ranks are shown in Fig-
ure 5. At first glance, the integrative cooperative algorithms (i.e.
the MA versions) perform better than non-cooperative counter-
parts. The results confirm that the MA with symmetry breaking
(i.e. MA.Ts.B*.A4.Gd) outperforms the one without it and can
now be considered the best metaheuristic for the BIBD prob-
lem. A more detailed statistical analysis indicates that there
are significant differences (α = 0.05) among the different al-
gorithms according to the Friedman test [50] and the Iman-
Davenport test [51]. For this reason, we carried out a post-hoc
analysis using the Holm-Bonferroni test [52]. As shown in Ta-
ble 3, MA.Ts.B*.A4.Gd is significantly better than the other
algorithms, except Ts.B and the other three MAs using TS on
the primal model (regardless of the use of symmetry breaking
or recombination arity).

5.3.2. A factor-based comparison
Some interesting observations emerge when the data is fac-

torised along particular dimensions. To begin with, let us con-
sider the representation used. If we compare the algorithms op-
erating on the primal representation with those operating on the
dual representation, we observe a highly significant difference
in favour of the primal representation (according to a Wilcoxon

Table 3: Results of the Holm-Bonferroni test on integrative approaches using
MA.Ts.B*.A4.Gd as the control algorithm. Only the algorithms that show no
significant statistical difference –at the standard level α = 0.05– with respect to
the control algorithm are shown (i.e. those for which p-value ≥ α/i).

i algorithm z-statistic p-value α/i
1 Ts.B 5.039e-001 3.071e-001 5.000e-002
2 MA.Ts.B.A2.Gd 1.345e+000 8.928e-002 2.500e-002
3 MA.Ts.B*.A2.Gd 1.374e+000 8.477e-002 1.667e-002
4 MA.Ts.B.A4.Gd 1.544e+000 6.125e-002 1.250e-002

0.5 1 1.5 2 2.5 3 3.5 4 4.5

Rank

B*

B

D

D*

Figure 6: Rank distribution of the four groups: {primal, dual}×{with
symmetry-breaking, without symmetry-breaking}. B identifies the Binary (i.e.
Primal) model without symmetry breaking, B* the Binary Model with symme-
try breaking, D the Decimal (i.e. Dual) model without symmetry breaking, and
D* the Decimal model with symmetry breaking.

signed rank test [53], p-value ≈ 0). This result also holds for
each group of techniques (LS, GA, MA) when analysed sepa-
rately (p-values always below 0.0001). Now, if an analogous
analysis with regard to the use of symmetry breaking (SB) is
performed considering all algorithms, it turns out that not using
SB is significantly better (again, p-value ≈ 0) as well as for LS
and MAs.

A joint analysis of representation and use of symmetry break-
ing was also executed splitting the data into four groups:
{primal, dual}×{with symmetry breaking, without symmetry
breaking} (i.e. B, D, D and D*). As can be seen in Figure 6,
using the primal model with symmetry breaking yields the best
global rank, and significantly outperforms the other combina-
tions. The Friedman test and the Iman-Davenport test confirm
that there are significant differences (at the standard α = 0.05)
among the different groups. Results of the Holm-Bonferroni
test, applied as a post-hoc analysis and using B∗ as control al-
gorithm, indicates that the control algorithm shows significant
statistical differences (α = 0.05) with the other algorithms (i.e.
in all the cases, p-value < α/i).

Note, we have stated above that –globally speaking– the use
of symmetry breaking (SB) in the basic metaheuristics work-

11

ing as standalone methods is not recommendable. However,
we emphasise that we have utilised just one type of symmetry
breaking, called variable reduction (VR) in [42]. Other types
of symmetry breaking –such as, e.g. lexicographical ordering–
may have more added value. In any case, we have detected that,
when our SB proposal is used by some population-based meth-
ods, the performance improves. So, the best memetic algorithm
(i.e. MA.Ts.B*.A4.Gd) as well as the two best GA versions
(i.e. GA.B*.A2.Gd and GA.B*.A4.Gd) use symmetry break-
ing. Moreover, SB seems to work well when combined with the
primal model but not with the dual model. This demonstrates
that each representation and symmetry-breaking approach pro-
vides a different angle to the search process. This raises inter-
esting prospects on their joint use in cooperative models, whose
performance is analysed next.

5.4. Cooperative approaches

This section evaluates the performance of a number of differ-
ent cooperative algorithms (instantiated from the scheme shown
in Algorithm 2 described in Sect. 4.3). The idea is to harness
the synergy between the metaheuristics when these work in co-
operation. We have considered the three topologies proposed
with a number n of agents between 2 and 5 (following [48]),
and a number of cycles Θ = 5 (we set this value based on pre-
liminary experiments with values of Θ ∈ {5,10,15}).

The cooperative models considered are variations of the tem-
plate (see Sect. 5.1) Tn(pa,qb)MR, where p + q = n and
a,b ∈ A for a certain collection A that contains two types of
agents. We have considered the following four collections:

• A1 = {Ts.B,MA.Ts.B*.A4.Gd}

• A2 ={Ts.B,MA.Ts.B.A2.Gd}

• A3 ={Ts.B,MA.Ts.D.A4.Gd}

• A4 ={Ts.B,MA.Ts.D*.A2.Gd}

The algorithms in these collections have been picked due to
their good individual performances according to Table 3. Ts.B
is the best basic technique whereas the other four algorithms in
these collections represent the best integrative methods in the
domains B*, B, D and D*. Moreover, each collection repre-
sents a form of combining algorithms: A1 represents the co-
operation of a model (in this case, the Binary representation)
with and without symmetry breaking (i.e. B-B*), A2 repre-
sents the cooperation of techniques working in the same com-
putation domains with no symmetry breaking (i.e. B-B), A3
represents the cooperation of methods working in distinct com-
putation domains with no symmetry breaking (i.e. B-D), and
A4 the scheme in which methods working on distinct computa-
tion domains with distinct policies for symmetry breaking are
cooperating (i.e. B-D*). Considering all possible combinations
of topology, number of agents and migration/reception policies,
a total of 288 algorithmic variants were created. The value 288
results from combining: (1) two different representations (i.e.
primal, dual), (2) two distinct forms of managing the problem

Table 4: The 29 problem instances considered hard from the 86 instances in
[32, 16]. The first column is the instance label assigned in [16], columns 2–6
present the instance parameters, and column 7 gives an indication of the size of
the instance.

ID v b r k λ vb
21 14 26 13 7 6 364
27 15 30 14 7 6 450
28 16 30 15 8 7 480
33 16 32 12 6 4 512
34 15 35 14 6 5 525
39 17 34 16 8 7 578
43 18 34 17 9 8 612
44 25 25 9 9 3 625
46 21 30 10 7 3 630
48 16 40 15 6 5 640
50 15 45 21 7 9 675
54 19 38 18 9 8 722
56 22 33 12 8 4 726
57 14 52 26 7 12 780
58 27 27 13 13 6 729

ID v b r k λ vb
59 21 35 15 9 6 735
62 20 38 19 10 9 760
63 16 48 18 6 6 768
70 21 42 10 5 2 882
71 21 42 12 6 3 882
72 21 42 20 10 9 882
73 16 56 21 6 7 896
76 18 51 17 6 5 918
77 22 42 21 11 10 924
80 16 60 30 8 14 960
82 31 31 10 10 3 961
83 31 31 15 15 7 961
85 22 44 14 7 4 968
86 25 40 16 10 6 1000

solving (i.e. with or without symmetry breaking), (3) three dis-
tinct communication topologies (i.e. RING, RAND or BROAD-
CAST), (4) six options for migration/reception policies, and (5)
4 collections of algorithms to load the agents in the 4-agent
scheme (i.e. collections A1,A2,A3 and A4).

Due to the large number of variants, we consider a reduced
set of 29 instances to evaluate the performance of the algo-
rithms. More specifically, we use the 29 instances that could
not be solved by the (non-constructive) metaheuristics methods
mentioned in Sect. 2.22. These 29 hard problem instances are
shown in Table 4.

5.4.1. Analysis of Design Factors
Given the large number of algorithms, it is useful to factorise

the analysis along different dimensions corresponding to differ-
ent design decisions regarding the number of agents involved,
their topology, or the communication policy. Let us start by
considering the six combinations (i.e. DD, DR, DW, RD, RR
and RW) used. Comparing the results of these six policies
on any single algorithmic variant. More precisely, for each of
the 288/6=48 variants (resulting from different combinations of
topology, number of agents and individual algorithms used), we
ranked the six migration/reception (M/R) policies according to
the number of optimal solutions found (using the mean fitness
to break ties). The best M/R policy is RD (random selection of
migrants, replacement for diversity). This is further confirmed
by a Friedman and Iman-Davenport tests (at the standard level
of α = 0.05) which indicated that there are statistically signifi-
cant differences among policies, and by a Holm-Bonferroni test
that showed that RD is significantly better than the other poli-
cies.

Next, we consider an analysis along the topology axis. In
this case, the three topologies are ranked on 288/3=96 algorith-
mic variants each. As indicated by the Friedman and Iman-

2Note that an MA with Gd proposed in [19] was able to solve 63 of the 86
instances but it required a substantially larger number of evaluations compared
to the same algorithm that solved 57 instances as reported in [17].

12

Davenport tests (α = 0.05) for all topologies, there is a statisti-
cally significant difference in this case. Indeed, the BROAD-
CAST topology stands out from the others, as confirmed by
the Holm-Bonferroni employing BROADCAST as control algo-
rithm. The larger exchange of information among agents in this
topology might be the cause.

We now turn our attention to the number of agents used in the
cooperative model. We have considered n∈ [2,5] and these four
values are ranked across 288/4=72 algorithmic variants each.
Both the Friedman test and the Iman-Davenport test indicate
that there are significant differences among the different values,
so we conducted the Holm-Bonferroni test using n = 2 (the best
ranked value) as the control algorithm. The result was that the
difference is significant against the remaining values of n. The
number of agents is therefore a factor that exerts a significant
influence on the performance of the cooperative model. In our
experiments, the algorithms that employ 2 agents perform better
than those that employ more agents. In addition, the algorithms
that employ 2 or 3 agents perform, in general, better than those
based on 4-5 agents.

5.4.2. Analysis of Top Performing Models
We now focus on the most effective cooperative models.

More specifically, we consider all cooperative models that were
able to solve at least 9 (hard) problem instances (out of the 29
mentioned above) in at least one run. This set of algorithms
is composed of the 41 variants shown in Table 5 together with
the number of problem instances solved and the corresponding
success percentage.

Note first that there is a predominance of the collection A2.
The collaboration of techniques working in the same computa-
tion domain (in this case, Binary encoding) is present in 38 of
the 41 algorithms. Good results are also provided by 3 other
cooperative algorithms in which the collaboration of methods
is based on the collection A3, that is to say, techniques working
collaboratively on the primal and dual models. However, en-
couraging cooperation between methods that manage symme-
try breaking and other techniques that do not consider symme-
try issues does not seem to be helpful. Note however that this
statement should not be generalised to any symmetry breaking.
Specifically, for the case considered here, cooperation between
agents working in B-B* or B-D* (i.e. those based on collec-
tions A1 or A4) is not advisable. Both the Friedman test and
the Iman-Davenport test (with α = 0.05) indicate that there are
significant differences among the different collections of algo-
rithms. Moreover, the Holm-Bonferroni test using A2 as con-
trol algorithm confirms that it is statistically significant from the
other collections.

If we check the relative frequency of each particular design
parameter among these 41 algorithmic models, we obtain the
results shown in Table 6. The results are consistent with the
statistical analysis from the previous section. Thus, we can see
that the RD policy for migration/reception performs best. Re-
garding topology, BROADCAST is present in more than half of
the models. Finally, a low number of agents (i.e. 2 or 3 agents)
seems to offer a good performance more frequently.

Table 5: (Central column) Number (#) and percentage (%) of instances from
Table 4 solved by those cooperative algorithms (identified in the first column)
that were successful in at least 9 (hard) problem instances. Right column dis-
plays the collection of algorithms that collaborate in the cooperative search.

Algorithms # (%) Collection
Bc2(Ts.B,MA.Ts.B.A2.Gd)DD 9 (31.03 %) A2
Bc2(Ts.B,MA.Ts.B.A2.Gd)DR 9 (31.03 %) A2
Bc2(Ts.B,MA.Ts.B.A2.Gd)DW 12 (41.38 %) A2
Bc2(Ts.B,MA.Ts.B.A2.Gd)RD 11 (37.93 %) A2
Bc2(Ts.B,MA.Ts.B.A2.Gd)RR 12 (41.38 %) A2
Bc2(Ts.B,MA.Ts.B.A2.Gd)RW 9 (31.03 %) A2
Ra2(Ts.B,MA.Ts.B.A2.Gd)DD 12 (41.38 %) A2
Ra2(Ts.B,MA.Ts.B.A2.Gd)DR 10 (34.48 %) A2
Ra2(Ts.B,MA.Ts.B.A2.Gd)DW 11 (37.93 %) A2
Ra2(Ts.B,MA.Ts.B.A2.Gd)RD 10 (34.48 %) A2
Ra2(Ts.B,MA.Ts.B.A2.Gd)RR 12 (41.38 %) A2
Ra2(Ts.B,MA.Ts.B.A2.Gd)RW 12 (41.38 %) A2
Ri2(Ts.B,MA.Ts.B.A2.Gd)DD 9 (31.03 %) A2
Ri2(Ts.B,MA.Ts.B.A2.Gd)DR 13 (44.83 %) A2
Ri2(Ts.B,MA.Ts.B.A2.Gd)RD 10 (34.48 %) A2
Ri2(Ts.B,MA.Ts.B.A2.Gd)RR 10 (34.48 %) A2
Ri2(Ts.B,MA.Ts.B.A2.Gd)RW 11 (37.93 %) A2

Bc3(2Ts.B,MA.Ts.B.A2.Gd)DD 9 (31.03 %) A2
Bc3(2Ts.B,MA.Ts.B.A2.Gd)DR 9 (31.03 %) A2
Bc3(2Ts.B,MA.Ts.B.A2.Gd)DW 9 (31.03 %) A2
Bc3(2Ts.B,MA.Ts.B.A2.Gd)RD 11 (37.93 %) A2
Bc3(2Ts.B,MA.Ts.B.A2.Gd)RR 9 (31.03 %) A2
Bc3(2Ts.B,MA.Ts.B.A2.Gd)RW 9 (31.03 %) A2
Ra3(2Ts.B,MA.Ts.B.A2.Gd)DD 9 (31.03 %) A2
Ra3(2Ts.B,MA.Ts.B.A2.Gd)RD 13 (44.83 %) A2
Ra3(2Ts.B,MA.Ts.B.A2.Gd)RR 9 (31.03 %) A2
Ri3(2Ts.B,MA.Ts.B.A2.Gd)DD 9 (31.03 %) A2
Ri3(2Ts.B,MA.Ts.B.A2.Gd)DR 10 (34.48 %) A2
Ri3(2Ts.B,MA.Ts.B.A2.Gd)RD 10 (34.48 %) A2
Ri3(2Ts.B,MA.Ts.B.A2.Gd)RR 9 (31.03 %) A2

Bc4(2Ts.B,2MA.Ts.B.A2.Gd)DR 10 (34.48 %) A2
Bc4(2Ts.B,2MA.Ts.B.A2.Gd)RR 9 (31.03 %) A2
Ra4(2Ts.B,2MA.Ts.B.A2.Gd)DW 9 (31.03 %) A2
Bc5(3Ts.B,2MA.Ts.B.A2.Gd)DD 9 (31.03 %) A2
Bc5(3Ts.B,2MA.Ts.B.A2.Gd)DR 10 (34.48 %) A2
Bc5(3Ts.B,2MA.Ts.B.A2.Gd)RD 9 (31.03 %) A2
Bc5(3Ts.B,2MA.Ts.B.A2.Gd)RW 9 (31.03 %) A2
Ra5(3Ts.B,2MA.Ts.B.A2.Gd)DW 9 (31.03 %) A2

Bc2(Ts.B,MA.Ts.D.A4.Gd)RD 9 (31.03 %) A3
Ra5(3Ts.B,2MA.Ts.D.A4.Gd)RD 9 (31.03 %) A3
Ri5(3Ts.B,2MA.Ts.D.A4.Gd)RD 9 (31.03 %) A3

Table 6: Relative frequency of each particular design parameter among the
selected cooperative algorithms in Table 5. Left column indicates the combina-
tion MR of migration(M)/reception(R) policies where M, R ∈ {RANDOM (R),
DIVERSE (D), WORST (W) as explained in Sect. 5.1. Central column shows
the communication topology where Bc = BROADCAST, Ra = RANDOM, and Ri
= RING. Right column refers to the number of agents in the algorithm.

M/R Policy Topology Number of agents
DD 7 (17.07 %) Bc 19 (46.34 %) n = 2 18 (43.90 %)
DR 7 (17.07 %) Ra 12 (29.27 %) n = 3 13 (31.71 %)
DW 5 (12.19 %) Ri 10 (24.39 %) n = 4 3 (7.32 %)
RD 10 (24.39 %) n = 5 7 (17.07 %)
RR 7 (17.07 %)
RW 5 (12.19 %)

Figure 7 shows the rank distribution for the 41 mod-
els. The Friedman and Iman-Davenport tests indicate sig-
nificant differences in their ranks (α = 0.05). Subsequently,
the Holm-Bonferroni test, using as the control algorithm
Bc3(2Ts.B,MA.Ts.B.A2.Gd)RD, shows that there is no statisti-
cal difference between the first four cooperative algorithms, but
there is a statistically significant difference with the others (see

13

5 10 15 20 25 30 35 40

Rank

Bc3(2Ts.B,MA.Ts.B.A2.Gd)RD
Bc2(Ts.B,MA.Ts.B.A2.Gd)RD
Ri3(2Ts.B,MA.Ts.B.A2.Gd)RD
Ra3(2Ts.B,MA.Ts.B.A2.Gd)RD
Ri2(Ts.B,MA.Ts.B.A2.Gd)RD
Bc2(Ts.B,MA.Ts.D.A4.Gd)RD
Ri3(2Ts.B,MA.Ts.B.A2.Gd)DD
Ri3(2Ts.B,MA.Ts.B.A2.Gd)DR
Ra2(Ts.B,MA.Ts.B.A2.Gd)DD
Bc2(Ts.B,MA.Ts.B.A2.Gd)DD

Ra5(3Ts.B,2MA.Ts.D.A4.Gd)RD
Ra3(2Ts.B,MA.Ts.B.A2.Gd)DD
Ri2(Ts.B,MA.Ts.B.A2.Gd)DD
Ri2(Ts.B,MA.Ts.B.A2.Gd)DR
Ra2(Ts.B,MA.Ts.B.A2.Gd)RD
Bc3(2Ts.B,MA.Ts.B.A2.Gd)DD
Bc2(Ts.B,MA.Ts.B.A2.Gd)RR

Bc3(2Ts.B,MA.Ts.B.A2.Gd)DR
Ra2(Ts.B,MA.Ts.B.A2.Gd)RW
Bc2(Ts.B,MA.Ts.B.A2.Gd)DR

Bc3(2Ts.B,MA.Ts.B.A2.Gd)RW
Ra2(Ts.B,MA.Ts.B.A2.Gd)DR
Bc2(Ts.B,MA.Ts.B.A2.Gd)DW
Ra2(Ts.B,MA.Ts.B.A2.Gd)DW
Ra2(Ts.B,MA.Ts.B.A2.Gd)RR
Bc2(Ts.B,MA.Ts.B.A2.Gd)RW
Ri2(Ts.B,MA.Ts.B.A2.Gd)RW
Bc3(2Ts.B,MA.Ts.B.A2.Gd)RR
Ri5(3Ts.B,2MA.Ts.D.A4.Gd)RD

Ri2(Ts.B,MA.Ts.B.A2.Gd)RR
Bc3(2Ts.B,MA.Ts.B.A2.Gd)DW
Ra3(2Ts.B,MA.Ts.B.A2.Gd)RR
Ri3(2Ts.B,MA.Ts.B.A2.Gd)RR

Bc5(3Ts.B,2MA.Ts.B.A2.Gd)DR
Bc5(3Ts.B,2MA.Ts.B.A2.Gd)DD
Bc5(3Ts.B,2MA.Ts.B.A2.Gd)RD
Bc4(2Ts.B,2MA.Ts.B.A2.Gd)DR
Bc4(2Ts.B,2MA.Ts.B.A2.Gd)RR
Ra4(2Ts.B,2MA.Ts.B.A2.Gd)DW
Ra5(3Ts.B,2MA.Ts.B.A2.Gd)DW
Bc5(3Ts.B,2MA.Ts.B.A2.Gd)RW

Figure 7: Rank distribution of selected cooperative algorithms from Table 5.

results in Table 7).

Table 7: Results of the Holm-Bonferroni test, for cooperative algorithms using
Bc3(2Ts.B,MA.Ts.B.A2.Gd)RD – i.e. the algorithm with the best mean rank
according to Figure 7– as the control algorithm. Only the algorithms that show
no significant difference –α = 0.05– to the control algorithm are shown (i.e.
those for which p-value ≥ α/i).

i algorithm z-statistic p-value α/i
1 Bc2(Ts.B,MA.Ts.B.A2.Gd)RD 4.330e-001 3.325e-001 5.000e-002
2 Ri3(2Ts.B,MA.Ts.B.A2.Gd)RD 6.193e-001 2.679e-001 2.500e-002
3 Ra3(2Ts.B,MA.Ts.B.A2.Gd)RD 8.166e-001 2.071e-001 1.667e-002

5.5. Discussion: Cooperation vs. Integration

The high-level distinction between integration and coopera-
tion is well known in the literature and has been used to tax-
onomise the hybridisation of search algorithms (see e.g. [43]).
This section discusses and compares the performance of our
cooperative and integrative approaches. Note that we have first
compared a collection of 32 integrative metaheuristics on the 86
classical instances of the problem. An interesting result is that
the best metaheuristic approach described previously in the lit-
erature, namely a memetic algorithm, was improved by adding
symmetry breaking. This new algorithm solved 59 out of 86
instances (i.e. 68.60% effectiveness). Despite this improve-
ment, there were 27 instances that could not be solved. These
instances are part of a subset of 29 instances considered diffi-
cult to solve. To tackle these harder instances, we proposed a
number of cooperative algorithms. Two of these could solve 13
of the hard instances, and, overall, 14 different instances were
solved by some of the cooperative methods, namely, instances
21, 27, 28, 33, 34, 39, 44, 48, 50, 57, 58, 64, 73, and 76 in
Table 4 (the precise set of problems solved by each method is
shown in [54]). In summary, this means that we could solve 71
out of 86 instances (i.e. 82.56% effectiveness) by either method
(i.e. 57 instances from the original set of 86 plus 14 hard ones).

Table 8: Running time comparison between MA=Ma.T s.B ∗ .A4.Gd and
Coop=Ra3(2T s.B,Ma.T s.B.A2.Gd)RD. The two problem instances I1 =
⟨14,26,13,7,6⟩ and I2 = ⟨25,25,9,9,3⟩ that were solved by both meth-
ods are selected as benchmarks for comparison. Tmax/Tmin show the maxi-
mum/minimum time (in seconds) consumed by the best execution of each tech-
nique to find a solution. Last column displays the improvement of the coopera-
tive method with respect to the MA.

Instances
I1 I2 Coop/MA(%)

Time(s) MA Coop MA Coop I1 I2
Tmin 23.00 0.02 20.08 0.03 1150 669
Tmax 5754.78 24.67 9317.03 34.91 233 266

It is important to underline that a large number of cooperative
algorithms were successful for many problem instances where
simpler metaheuristics did not succeed. Note that this result,
which shows the advantages of the cooperative techniques with
respect to their underlying components (i.e. the algorithms that
compose the collaboration) working alone, is consistent with
other studies conducted for problems other than the BIBD prob-
lem. For instance, the results are similar to those obtained in
[47] in the context of the tool switching problem, and our find-
ings are consistent with the conclusions of this paper. Needless
to say, not all integrative methods (or cooperative methods) per-
form in the same way. Indeed, the crux of the whole matter with
regards to effectiveness is often (1) the balance between explo-
ration and exploitation and (2) the search overhead in which
composite methods incur. These two issues are influenced by
different factors and in this sense, one of the contributions of the
work presented here, with respect to the conclusions regarding
integration and cooperation of algorithms, is to calibrate them
in this particular domain. Another point of novelty is to shine
a spotlight on two more dimensions (in addition to the meth-
ods used in integrative hybrid and the cooperative schemes de-
fined with them), namely symmetry breaking and problem pri-
mal/dual formulations, which to the best of our knowledge has
not been explored before in this context.

Additionally, we highlight the importance of the policies for
migrating and accepting solutions from the agents in the meta-
heuristic network for the performance of the cooperative algo-
rithms. In our experiments, using the WORST policy for mi-
gration of candidates deteriorated the performance of the algo-
rithm. In general, the combination RD has a positive effect on
cooperation as the first six algorithms from the top-ten coopera-
tive algorithms are based on it. Also note that we have executed
a large number of experiments, and considered other combina-
tions and algorithms, many of which are not reported here to
avoid clutter, given that their performance was poor.

Another very interesting result that can be extracted from our
experiments is that cooperation performs better when all the
connected algorithms are working in the same computation do-
main and using the same problem formulation.

With respect to running times, we have compared the best
integrative approach (i.e. Ma.T s.B ∗ .A4.Gd, which could
only solve 2 of the 29 hard problem instances shown in
Table 4), with one of our best cooperative methods (i.e.

14

Ra3(2T s.B,Ma.T s.B.A2.Gd)RD, which solved 13 of the 29
hard instances). To be fair, we only considered the two in-
stances that were solved by both methods. The results are
shown in Table 8. The memetic algorithm is noticeably much
slower than the cooperative one. This must be due to some kind
of synergy between the agents.

6. Conclusions and future work

This paper has dealt with the generation BIBDs, a difficult
combinatorial problem, using metaheuristic techniques. In pre-
vious work, we tackled this problem by means of local search
algorithms, genetic algorithms and hybrid techniques, always
using a binary genotypical space and a classical (primal) formu-
lation of the problem. In this paper, we have proposed a number
of alternative approaches to deal with this problem. First, we
have defined a (novel) dual problem formulation with a natural
representation in the integer domain. All heuristics proposed in
previous work have been adapted to this novel formulation. In
addition, based on the highly symmetrical nature of the prob-
lem, we have considered basic symmetry-breaking procedures
to reduce the search space of the problem in both encodings,
i.e. primal (binary) and dual (integer). The advantage of using
these procedures is highly dependent on other design decisions
but the best approach has been shown to be a memetic algo-
rithm using symmetry breaking on the primal representation,
outperforming the previous best known metaheuristics for this
problem.

Despite these good results, integrative metaheuristics were
somewhat limited for harder problem instances in the test suite.
We have therefore also proposed a scheme to instantiate coop-
erative models that combine the integrative algorithms. This
scheme is based on a spatial topology and policies for exchang-
ing solutions, and allows a large number of different instantia-
tions. We have considered three different topologies (to define
the flow of information among algorithms), a varying number
of connecting agents in these topologies, three different migra-
tion procedures (for selecting solutions to be sent), and three
different acceptance criteria (for handling incoming solutions).
All these factors affect the performance of the algorithms. For
a better understanding of our cooperative algorithms, we have
also conducted an analysis of the influence of some of these fac-
tors. The conclusions extracted can help design better coopera-
tive algorithms. In addition, some of our cooperative proposals
can be considered at present, as state-of-the-art metaheuristic
methods for handling BIBDs.

Moreover, the conclusions extracted from our use of pri-
mal/dual encodings, symmetry breaking and their combination
in a cooperative model may guide the design of other cooper-
ative algorithms to handle other combinatorial problems with
symmetries. In this sense, the work presented here may also
be viewed as a methodology to address combinatorial problems
with symmetries in a general way, that is to say, firstly designing
basic metaheuristics, secondly applying hybrid methods con-
structed from them (i.e. memetic algorithms), then considering
alternative formulation/encodings of the problem by adjusting

the basic and integrative methods to these, and finally connect-
ing all the previous techniques using cooperative schemes.

The work described here has focused on solving BIBDs.
However, we believe that a large part of our work can be gener-
alised to solve any symmetrical combinatorial problem. For this
reason, our cooperative scheme is general and so does not de-
pend on specific algorithms, but rather on the design factors that
have been analysed here. In this sense, the metaheuristics (espe-
cially the cooperative versions) described should not be applied
directly to handle open problem instances in design theory. To
cope with open instances, our proposals should be tailored to
the problem at hand. This basically means that we should craft
our metaheuristics to suit the particular characteristics of the
open instance with the aim of exploiting the available structure
as much as possible. This requires not only making decisions
about design factors (e.g. nature of agents, topology of the co-
operative system, and migration/reception policies), but also in-
corporating specific knowledge about the problem instance.

In future research, we plan to deepen the study of the intensi-
fication/diversification balance of the algorithm, aiming to im-
prove its performance for the hardest problem instances. An in-
termediate goal would be to endow the MAs with self-adaptive
capabilities [55] to enhance their search capabilities. This topic
can also be explored in cooperative models with many defin-
ing parameters, which could be adjusted while running in re-
sponse to the state of the search. In addition, asymmetric rep-
resentations have been shown to be effective in solving other
combinatorial problems (see [41, 42]) and might be used in the
formulation of the dual model as well.

References

[1] C. Colbourn, J. Dinitz (Eds.), CRC Handbook of Combinatorial Designs,
Discrete Mathematics and Its Applications, CRC Press, 2010.

[2] K. Hinkelmann, O. Kempthorne, Partially Balanced Incomplete Block
Designs, John Wiley & Sons, Inc., pp. 119–157.

[3] B. Ariel, D. P. Farrington, Randomized block designs, in: G. Bruinsma,
D. Weisburd (Eds.), Encyclopedia of Criminology and Criminal Justice,
Springer New York, 2014, pp. 4273–4283.

[4] M. Buratti, Pairwise balanced designs from finite fields, Discrete Mathe-
matics 208–209 (1999) 103–117.

[5] C.-S. Cheng, Regular graph designs, in: Encyclopedia of Statistical
Sciences, John Wiley & Sons, Ltd, 11 edition, 2014.

[6] K.-T. Fang, D. Lin, Uniform design in computer and physical experi-
ments, in: H. Tsubaki, S. Yamada, K. Nishina (Eds.), The Grammar of
Technology Development, Springer Japan, 2008, pp. 105–125.

[7] J. van Lint, R. Wilson, A Course in Combinatorics, Cambridge University
Press, 2001.

[8] R. Mead, The Design of Experiments: Statistical Principles for Practical
Applications, Cambridge University Press, 1990.

[9] M. Buratti, Some (17q, 17, 2) and (25q, 25, 3)BIBD constructions, De-
signs, Codes and Cryptography 16 (1999) 117–120.

[10] L. Lan, Y. Y. Tai, S. Lin, B. Memari, B. Honary, New constructions
of quasi-cyclic LDPC codes based on special classes of BIDBs for the
AWGN and binary erasure channels, IEEE Transactions on Communica-
tions 56 (2008) 39–48.

[11] R. d. C. dos Santos Navarro, V. P. R. Minim, A. N. da Silva, A. A. Sim-
iqueli, S. M. Della Lucia, L. A. Minim, et al., Balanced incomplete block
design: an alternative for data collection in the optimized descriptive pro-
file, Food Research International 64 (2014) 289–297.

[12] M. Basu, S. Bagchi, D. K. Ghosh, Design of an efficient load balancing
algorithm using the symmetric balanced incomplete block design, Infor-
mation Sciences 278 (2014) 221–230.

15

[13] A. L. Madsen, F. Jensen, A. Salmerón, M. Karlsen, H. Langseth, T. D.
Nielsen, A new method for vertical parallelisation of tan learning based
on balanced incomplete block designs, in: L. C. van der Gaag, A. J.
Feelders (Eds.), 7th European Workshop on Probabilistic Graphical Mod-
els, Springer International Publishing, Cham, 2014, pp. 302–317.

[14] D. G. Corneil, R. Mathon, Algorithmic techniques for the generation
and analysis of strongly regular graphs and other combinatorial configu-
rations, Annals of Discrete Mathematics 2 (1978) 1–32.

[15] P. Gibbons, P. Östergrd, Computational methods in design theory, in:
C. Colbourn, J. Dinitz (Eds.), The CRC handbook of combinatorial de-
signs, Boca Raton: CRC Press, 1996, pp. 730–740.

[16] S. Prestwich, A local search algorithm for balanced incomplete block
designs, in: F. Rossi (Ed.), 9th International Conference on Principles and
Practices of Constraint Programming (CP2003), volume 2833 of Lecture
Notes in Computer Science, Springer, 2003, pp. 53–64.

[17] D. Rodrı́guez, C. Cotta, A. Fernández-Leiva, Finding balanced incom-
plete block designs with metaheuristics, in: 9th European Conference
Evolutionary Computation in Combinatorial Optimization – EvoCOP
2009, volume 5482 of Lecture Notes in Computer Science, Springer,
Berlin Heidelberg, 2009, pp. 156–167.

[18] M. R. Faghihi, S. Tat, On φ p-optimality of incomplete block designs: An
algorithm, Communications in Statistics - Simulation and Computation
45 (2016) 758–769.

[19] D. Rodrı́guez, C. Cotta, A. Fernández-Leiva, A memetic algorithm for
designing balanced incomplete blocks, International Journal of Combina-
torial Optimization Problems and Informatics (IJCOPI) 2 (2011) 14–22.

[20] B. Benhamou, Study of symmetry in constraint satisfaction problems,
in: 2nd Workshop on Principles and Practice of Constraint Programming,
PPCP 94, DTIC Document, pp. 246–254.

[21] R. Backofen, S. Will, Excluding symmetries in constraint-based search,
Constraints 7 (2002) 333–349.

[22] T. Fahle, S. Schamberger, M. Sellmann, Symmetry breaking, in: W. T.
(Ed.), 7th International Conference on the Principles and Practice of Con-
straint Programming - CP 2001, volume 2239 of Lecture Notes in Com-
puter Science, Springer-Verlag, 2001, pp. 93–107.

[23] I. P. Gent, B. Smith, Symmetry breaking in constraint programming,
in: W. Horn (Ed.), 14th European Conference on Artificial Intelligence –
ECAI 2000, IOS Press, 1999, pp. 599–603.

[24] P. Meseguer, C. Torras, Exploiting symmetries within constraint satisfac-
tion search, Artif. Intell. 129 (2001) 133–163.

[25] W. G. Cochran, G. M. Cox, Experimental Design, John Wiley, New York,
1957.

[26] R. A. Fisher, F. Yates, Statistical Tables for Biological, Agricultural and
Medical Research, Oliver & Boy, 3 edition, 1949.

[27] D. Whitaker, C. M. Triggs, J. A. John, Construction of block designs us-
ing mathematical programming, Journal of the Royal Statistical Society.
Series B (Methodological) 52 (1990) 497–503.

[28] G. Zergaw, A sequential method of constructing optimal block designs,
Australian & New Zealand Journal of Statistics 31 (1989) 333–342.

[29] T. Tjur, An algorithm for optimization of block designs, Journal of Sta-
tistical Planning and Inference 36 (1993) 277–282.

[30] P. Flener, A. M. Frisch, B. Hnich, Z. Kzltan, I. Miguel, T. Walsh, Matrix
modelling, in: B. Smith, K. Brown, P. Prosser, I. P. Gent (Eds.), CP-01
Workshop on Modelling and Problem Formulation. International Confer-
ence on the Principles and Practice of Constraint Programming, Paphos,
Cyprus, pp. 1–7.

[31] J.-F. Puget, Symmetry breaking revisited, in: P. V. Hentenryck (Ed.),
8th International Conference on the Principles and Practice of Constraint
Programming (CP 2002), volume 2470 of Lecture Notes in Computer Sci-
ence, Springer, Ithaca, NY, USA, 2002, pp. 446–461.

[32] P. Bofill, R. Guimerà, C. Torras, Comparison of simulated annealing and
mean field annealing as applied to the generation of block designs, Neural
Networks 16 (2003) 1421–1428.

[33] S. Prestwich, Negative effects of modeling techniques on search perfor-
mance, Annals of Operations Research 18 (2003) 137–150.

[34] D. Yokoya, T. Yamada, A mathematical programming approach to the
construction of bibds, International Journal of Computer Mathematics 88
(2011) 1067–1082.

[35] B. N. Mandal, Linear integer programming approach to construction of
balanced incomplete block designs, Communications in Statistics - Sim-
ulation and Computation 44 (2015) 1405–1411.

[36] D. Rodrı́guez, E. Darghan, J. Monroy, A multi-agent proposal in the
resolution of instances of BIBD, Revista Colombiana de Estadı́stica 39
(2016) 267–280.

[37] F. Neri, C. Cotta, P. Moscato, Handbook of Memetic Algorithms, volume
379 of Studies in Computational Intelligence, Springer Berlin Heidelberg,
2012.

[38] F. Rothlauf, Representations for genetic and evolutionary algorithms,
Springer, 2 edition, 2006.

[39] M. Campêlo, V. A. Campos, R. C. Corrêa, On the asymmetric repre-
sentatives formulation for the vertex coloring problem, Discrete Applied
Mathematics 156 (2008) 1097 – 1111. GRACO 2005.

[40] R. Jans, J. Desrosiers, Binary clustering problems: Symmetric, asymmet-
ric and decomposition formulations, GERAD Technical Report G-2010-
44 (2010) 1 – 15.

[41] R. Jans, J. Desrosiers, Efficient symmetry breaking formulations for the
job grouping problem, Computers & Operations Research 40 (2013) 1132
– 1142.

[42] N. Vo-Thanh, R. Jans, E. D. Schoen, P. Goos, Symmetry breaking in
mixed integer linear programming formulations for blocking two-level
orthogonal experimental designs, Computers & Operations Research 97
(2018) 96 – 110.

[43] J. Puchinger, G. R. Raidl, Combining metaheuristics and exact algorithms
in combinatorial optimization: A survey and classification, in: J. Mira,
J. Álvarez (Eds.), Artificial Intelligence and Knowledge Engineering Ap-
plications: A Bioinspired Approach, volume 3562 of Lecture Notes in
Computer Science, Springer, Berlin Heidelberg, 2005, pp. 113–124.

[44] T. G. Crainic, M. Toulouse, Explicit and emergent cooperation schemes
for search algorithms, in: V. Maniezzo, R. Battiti, J.-P. Watson (Eds.),
Learning and Intelligent Optimization – LION 2007 II, Springer, Berlin
Heidelberg, 2008, pp. 95–109.

[45] C. Cruz, D. Pelta, Soft computing and cooperative strategies for opti-
mization, Applied Soft Computing 9 (2009) 30–38.

[46] A. Masegosa, F. Mascia, D. Pelta, M. Brunato, Cooperative strategies and
reactive search: A hybrid model proposal, in: T. Stützle (Ed.), Learning
and Intelligent Optimization, volume 5851 of Lecture Notes in Computer
Science, Springer, Berlin Heidelberg, 2009, pp. 206–220.

[47] J. Amaya, C. Cotta, A. Fernández-Leiva, A memetic cooperative opti-
mization schema and its application to the tool switching problem, in:
R. Schaefer, et al. (Eds.), Parallel Problem Solving from Nature - PPSN
XI, volume 6238 of Lecture Notes in Computer Science, Springer, Berlin
Heidelberg, 2011, pp. 445–454.

[48] J. Amaya, C. Cotta, A. Fernández-Leiva, Memetic cooperative models
for the tool switching problem, Memetic Computing 3 (2011) 199–216.

[49] R. Nogueras, C. Cotta, An analysis of migration strategies in island-based
multimemetic algorithms, in: T. Bartz-Beielstein, J. Branke, B. Filipić,
J. Smith (Eds.), Parallel Problem Solving from Nature – PPSN XIII, vol-
ume 8672 of Lecture Notes in Computer Science, Springer, Berlin Hei-
delberg, 2014, pp. 731–740.

[50] M. Friedman, The use of ranks to avoid the assumption of normality
implicit in the analysis of variance, Journal of the American Statistical
Association 32 (1937) 675–701.

[51] R. Iman, J. Davenport, Approximations of the critical region of the Fried-
man statistic, Communications in Statistics 9 (1980) 571–595.

[52] S. Holm, A simple sequentially rejective multiple test procedure, Scan-
dinavian Journal of Statistics 6 (1979) 65–70.

[53] E. Lehmann, H. D’Abrera, Nonparametrics: statistical methods based on
ranks, Prentice-Hall, Englewood Cliffs, NJ, 1998.

[54] D. Rodrı́guez, C. Cotta, A. Fernández-Leiva, Data for the search of 2-
designs: solutions and metaheuristics code, Data in Brief (2017). Sub-
mitted.

[55] J. Smith, Self-adaptative and coevolving memetic algorithms, in: F. Neri,
C. Cotta, P. Moscato (Eds.), Handbook of Memetic Algorithms, volume
379 of Studies in Computational Intelligence, Springer Berlin Heidelberg,
2012, pp. 167–188.

16

	Introduction
	Background
	BIBD: Formulation and primal (or binary) model
	Related work

	Solving the BIBD with metaheuristics
	A new battery of metaheuristics based on symmetry breaking, dual models and hybridisation
	A dual representation
	Symmetry breaking
	Primal (or binary) model
	Dual (or decimal) model

	Cooperative model architecture
	Formal definition
	Communication topologies

	Experiments
	Notation
	Non-cooperative algorithms
	Cooperative methods

	Experimental configuration
	Basic and integrative approaches
	A rank-based comparison
	A factor-based comparison

	Cooperative approaches
	Analysis of Design Factors
	Analysis of Top Performing Models

	Discussion: Cooperation vs. Integration

	Conclusions and future work

